
4. EXAMPLES

The examples use the following data bases:

• frfdem.asc — Ascii file which contains daily quotations of the FRF/DEM
exchange rate since 1987.

• gnp.asc — table B (page 515) of Harvey [1990]. The ascii file consists of US
Real Gross National Product (GNP) (annual data for the period 1910-1970).

• lutkepohl.asc — table E.1 (page 498) of Lütkepohl [1991]. The ascii file
consists of three series: German Fixed Investment, Disposable Income and
Consumption Expenditures (quarterly, seasonally adjusted for the period
1960-1982).

• lynx.asc — series G (page 557) of Brockwell and Davis or data (appendix
3, page 470) of Tong [1990] or data (page 322) of Janacek and Swift
[1993]. The ascii file consists of annual Canadian lynx trappings for the
period 1821-1934.

• purse.asc — table C (page 516) of Harvey [1990] or data (page 324) of
Janacek and Swift [1993]. The ascii file consists of Purses snatched in the
Hyde Park area of Chicago (28-day-period from January 1968).

• rainfall.asc — table D (page 517) of Harvey [1990]. The ascii file consists
of Rainfall in Fortaleza, North-East Brazil (annual data for the period 1849-
1984).

• reinsel.asc — table A.2 (page 227) of Reinsel [1993]. The ascii file consists
of two series: U.S. Fixed Investment and Changes in Business Inventories
(quarterly, seasonally adjusted for the period 1947-1971).

• sunspots.asc — data (page 327) of Janacek and Swift [1993]. The ascii
file consists of Wolfer sun spot numbers.

1. arfima1.prg
We simulate an ARIMA(1,0,1) process

(1− 0.95L) yt = (1− 0.5L) εt (4.1)

with εt ∼ N (0, 2). Then, we estimate the following ARFIMA model in the
frequency domain

(1− φ1L) (1− L)d
yt = (1− θ1L) εt (4.2)

2. arfima2.prg
We examine the problem of several maxima when a fractional process is
estimated in the frequency domain. To do this, we use the simulated pro-
cess (4.1) and estimate the model (4.2) using two algorithms: the scoring
algorithm and the BFGS algorithm of OPTMUM.

184 EXAMPLES

3. arfima3.prg
In certain cases, the problem of several maxima comes from the estimation
of the fractional d coefficient. If we impose the restriction d = 0, we notice
that we get only one maximum. This suggests first using the Geweke-Porter
Hudak (GPH) estimator and then fixing the fractional d coefficient to the
GPH estimator to estimate completely the ARFIMA process.

4. arfima4.prg
We simulate the following ARFIMA process with the procedure RND arfima

(1− 0.8L) (1− L)0.25
yt = (1− 0.4L) εt (4.3)

with εt ∼ N (0, 2). Then, we estimate the following ARFIMA model in the
frequency domain

(1− φ1L) (1− L)d
yt = (1− θ1L) εt (4.4)

Firstly, we estimate the unrestricted model. Secondly, we estimate the model
under the restriction d = 0.25. Thirdly, we impose the restrictions d = 0.25
and θ1 = 0.4. Finally we test the two hypotheses H1 : d = 0.25 and H2 :
(d, θ1) = (0.25, 0.4) with the likelihood ratio statistic.

5. arfima5.prg
Simulation of fractional processes with d = −0.25 and d = 0.75.

6. arma1a.prg
Let y1,t be the variation in investment and y2,t the inventories level. We
estimate the following vector ARMA(1,1) model

[
y1,t

y2,t

]
− Φ1

[
y1,t−1

y2,t−1

]
=

[
ε1,t

ε2,t

]
−Θ1

[
ε1,t−1

ε2,t−1

]
(4.5)

with εt ∼ N (02,Σ). We use the Newton-Raphson algorithm to obtain the
estimates β = vec

[
Φ1 Θ1

]
. The external variables arma sigma and

arma epsilon correspond to the estimate of Σ and to the residuals ε̂ re-
spectively.

7. arma1b.prg
We estimate the model (4.5) by exact maximum likelihood. For this, we use
the Kalman Filter. To obtain the initial conditions, we use both the estimates
of the Conditional Maximum Likelihood and the procedure SSM ic. Given
the procedure KF ml, we construct the log-likelihood function. Then, we
employ TD ml to obtain the exact ML estimates. Note that the estimates
θ correspond to the vector vec

[
β P?

]
with P? = vech (P) and P the

Cholesky decomposition of Σ, that is Σ = PP>.

8. arma1c.prg
The model (4.5) is estimated by conditional maximum likelihood with linear
restrictions of the form β = Rγ + r. We impose β1 = 1 (that is Φ1,11 = 1).

EXAMPLES 185

We have

β1

β2

β3

β4

β5

β6

β7

β8

=
[

01×7

I7

]

γ1

γ2

γ3

γ4

γ5

γ6

γ7

+

1
0
0
0
0
0
0
0

To construct the matrix R, we employ the design procedure. Because the
argument sv in arma CML is 0, the procedure computes the starting values
for the optimization algorithm.

9. arma1d.prg
Estimates the model (4.5) by conditional maximum likelihood under the
restriction Φ1,11 = Φ1,21 (or β1 = β2). We put this linear restriction into
the form

β1

β2

β3

β4

β5

β6

β7

β8

=

1 01×6

1 01×6

06×1 I6

γ1

γ2

γ3

γ4

γ5

γ6

γ7

+ 08×1

10. arma1e.prg
Estimates the model (4.5) by conditional maximum likelihood with the re-
strictions Φ1,12 = Θ1,11 = Θ1,21 = 0 (or β3 = β5 = β6 = 0). These restric-
tions are motivated because these coefficients are not significantly different
from zero. We have

β1

β2

β3

β4

β5

β6

β7

β8

=

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

γ1

γ2

γ3

γ4

γ5

+ 08×1

11. arma1f.prg
In this example, we impose the restriction that the model (4.5) corresponds
to two univariate ARMA(1,1) processes. That is, the matrices Φ1 and Θ1

are of the form [· 0
0 ·

]

12. arma1g.prg
With the command vread, we read from the external variables

186 EXAMPLES

ml derivatives the Jacobian and gradient vectors and the Hessian and
information matrices of the log-likelihood function evaluated at the esti-
mates β̂ corresponding to the ML estimates under the preceding restrictions
(arma1f.prg).

13. arma1h.prg
We test whether the restrictions in the program arma1f.prg are accepted.
To this end, we use the likelihood ratio, the Lagrange multiplier or the Wald
test. Note that the Lagrange multiplier is evaluated by using the vectors
and matrices given by ml derivatives.

14. arma1i.prg
Stability analysis of the model (4.5).

15. arma1j.prg
Forecast Error Variance Decomposition of the model (4.5).

16. arma1k.prg
Impulse Responses of the model (4.5).

17. arma2a.prg
We consider the univariate AR(1) model

yt = 0.5yt−1 + εt

In its state space form, the vector of state variables is
[

yt εt

]>. The
covariance matrix corresponds to

[
E [ytyt] E [ytεt]
E [εtyt] E [εtεt]

]

Computing this covariance can be achieved with the SSM ic procedure.

18. arma2b.prg
Same program as arma2a.prg but with a univariate MA(1) model.

19. arma2c.prg
Same program as arma2a.prg but with the vector model (4.5).

20. arma2d.prg
Exact maximum likelihood estimation of a univariate ARMA(1,1) model by
Kalman filter (Kohn and Ansley [1983]). The results are compared with
those obtained from Ansley’s [1979] algorithm (arima library).

21. arma2e.prg
Exact maximum likelihood estimation of the vector ARMA(1,1) model (4.5)
by Kalman filter (Kohn and Ansley [1983]). The difference with the
arma1b.prg program is that the initial conditions are computed at each it-
eration (SSM ic is included in the ml procedure). arma2e.prg computes the
Exact MLE (arma1b.prg computes an approximation of the Exact MLE).

EXAMPLES 187

22. autocov1.prg
Computes the theoretical autocovariances and autocorrelations of the fol-
lowing VAR(1) process

Yt −

.5 0 0

.1 .1 .3
0 .2 .3

 Yt−1 = εt (4.6)

with εt ∼ N (03, Σ) and

Σ =

2.25 0 0
0 1 .5
0 .5 .74

To read the matrices, we use the varget procedure.

23. autocov2.prg
Computes the theoretical autocovariances and autocorrelations of the fol-
lowing VAR(2) process

Yt −
[

.5 .1

.4 .5

]
Yt−1 −

[
0 0

.25 0

]
Yt−2 = εt (4.7)

with εt ∼ N (02, Σ) and

Σ =
[

.09 0
0 .04

]

24. autocov3.prg
Computes the theoretical autocovariances and autocorrelations of the vector
ARMA model (4.5).

25. autocov4.prg
Same program as autocov2.prg, but autocovariances are computed with the
SSM autocov procedure.

26. autocov5.prg
Same program as autocov3.prg, but autocovariances are computed with the
SSM autocov procedure.

27. autocov6.prg
Computes autocovariances and autocorrelations matrices of a time-invariant
state space model.

28. band1a-1d.prg
Ad hoc examples to show the use of the subband wavelet procedures: split,
extract, select and insert.

29. basis1.prg
We use the procedure isBasis to verify that we have a wavelet packet basis.

30. basis2.prg
We use the procedure BasisPlot to obtain the Time-frequency plane tilings
plot of several bases. We can also see the localization in time and in fre-
quency. For the basis base0, we have a good localization in time, but not in
frequency. For the basis base9, this is the opposite.

188 EXAMPLES

31. basis3.prg
We use the BestLevel procedure to select a basis with the log-energy cost
function. Then, we verify that the selected basis has effectively the minimal
cost value.

32. basis4.prg
Same program as basis3.prg but with the BestBasis procedure and different
cost functions (entropy, `p norm and log-energy).

33. boot1-3.prg
Illustration of the bootstrap SMM procedure.

34. bsm1.prg
We study the Basic Structural Model presented by Harvey [1990]. The
measurement equation is

yt =
[

1 0 1 0 0
]

ηt

ζt

ωt

ωt−1

ωt−2

+ εt

with εt ∼ N (0, H) and the transition equation is

ηt

ζt

ωt

ωt−1

ωt−2

=

1 1 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0

ηt−1

ζt−1

ωt−1

ωt−2

ωt−3

+
[

I3

02×3

]
νt

with νt ∼ N (0, Q). We have
H = σ2

ε

and

Q =

σ2
η 0 0
0 σ2

ζ 0
0 0 σ2

ω

Using the numerical values
(
σ2

ε, σ
2
η, σ2

ζ , σ
2
ω

)
= (1, 0.25, 1.25, 3), we simulate

the BSM model with the initial position
[

100 4 4 2 3
]>. Then we

estimate the BSM model with ML in the frequency domain. In our case, we
set s equal to 4.

35. bsm2.prg
We perform Monte Carlo experiments to investigate the power of the FDML
of the BSM model.

36. bsm3.prg
In this example, we estimate the basic structural model in the frequency and
in the time domains. Because the model is not stable, we cannot use the
procedure SSM ic. There are several ways to initialize the Kalman filter. The
Kalman filter can be used to obtain unobservable components, for example
the seasonal factor.

EXAMPLES 189

37. canon1.prg
Computes the moving average and autoregressive representations of the
VAR(1) process described in equation (4.6).

38. canon2.prg
Computes the moving average and autoregressive representations of the
VAR(2) process described in equation (4.7).

39. canon3.prg
Computes the infinite moving average and autoregressive representations of
the vector ARMA process (4.5).

40. canon4.prg
For a univariate ARMA(p,q) model, we can use the canonical arfima or
canonical arma procedures. The model is

yt − 0.5yt−1 − 0.25yt−2 = ut − 0.4ut−1 + 0.3ut−2 (4.8)

41. canon5.prg
Computes the impulse responses and the accumulated impulse responses (or
the interim multipliers) of the ARMA model (4.8).

42. canon6.prg
Computes the impulse responses and the accumulated impulse responses (or
the interim multipliers) of the ARFIMA process

(
1− 0.5L + 0.25L2

)
(1− L)d

yt = (1− 0.3L)ut (4.9)

The fractional operator d takes different values: −0.5, −0.25, 0, 0.25, and
0.5.

43. canon7.prg
Computes the autocovariances, autocorrelations and partial autocorrelations
of the ARFIMA process (4.9). The AUTOCOV procedure uses the fact that if
the process allows an infinite moving average representation

yt =
∞∑

i=0

θiut−i

then the autocovariances γi of the process (if we assume that var (ut) = 1)
are equal to

γi =
∞∑

j=0

θjθj+i

The autocorrelations correspond to

ρi =
γi

γ0

190 EXAMPLES

and the partial autocorrelations are obtained as the solution of the Toeplitz
system

γ0 γ1 γ2 · · · γi−1

γi−1 γ0 γ1 · · · γi−2

. . .
γi−1 γi−2 γi−3 · · · γ0

ξ1

ξ2
...
ξi

 =

γ1

γ2
...
γi

44. chirp1a.prg
We define the linear chirp xt = sin

(
100πt2

)
. Using the Coiflet #2 filters,

we compute the difference between the original signal and the reconstructed
signal by the inverse wavelet transform.

45. chirp1b.prg
We use the precedent linear chirp. We plot the wavelet packet table of the
signal. Using the basis B = (1, 2, 3, 3), we show that the reconstructed signal
by applying the inverse wavelet packet transform is the same as the original
signal.

46. cml1-5.prg
Illustration of the use of the CML package with TSM.

47. cpdgm1.prg
Illustration of the CPDGM procedure.

48. cspect1-2.prg
Illustration of the CSpectrum procedure.

49. cspect3.prg
Example 11.7.1 in Brockwell and Davis [1991].

50. cusum1.prg
Estimates the Local Level model (or random walk plus noise) with the data
purse. The model corresponds to

{
yt = µt + εt

µt = µt−1 + ηt

Using the Kalman filter, we can construct the standardized innovations

wt =
vt√
ft

Then we build the CUSUM statistic

Wt =
1
s

t∑

i=1

wi

with s the standard deviation of the standardized innovations wt and the
CUSUMsq statistic

W •
t =

t∑
i=1

w2
i

T∑
i=1

w2
i

EXAMPLES 191

51. cusum2.prg
Computes the CUSUM and CUSUMsq statistics. The model is a MA(2)
process and is estimated by exact maximum likelihood using the Kalman
filter.

52. cusum3.prg
This is the same thing as the cusum2.prg example, except that a leverage
point is introduced in the MA(2) process.

53. cycle.src
Spectral generating functions for the trend + cycle model and the cyclical
trend model.

54. cycle1.prg
Represents the power spectra for stochastic cycles.

55. cycle2.prg
Harvey [1989] uses a stochastic cycle plus noise model to explain the rainfall
data. The spectral generating function for a stochastic cycle plus noise model
is the sum of the s.g.f. of the stochastic cycle and the s.g.f. of the noise.
The s.g.f. of the stochastic cycle is given by the cycle sgf procedure. The
model is estimated in the frequency domain with the FD ml procedure. We
observe that we obtain the same results as in Harvey [1989].

56. cycle3.prg
In this example, we compare the periodogram of the Rainfall data with the
estimated spectral generating function.

57. denois1a-1d.prg
We consider the generated series

xt = sin (t) + sin (2t) + ut

with ut a white noise process. Denoising a series could be done by using the
wavelet shrinkage. In a first step, we calculate the wavelet coefficients with
the wt procedure. In a second step, we use a thresholding technique. Finally,
we reconstruct the series by applying the iwt procedure to the thresholding
coefficients.

58. denois2a-2b.prg
In the examples below, the wavelet shrinkage is applied to all the coefficients.
But, we can use thresholding techniques just for some coefficients, for ex-
ample the coefficients of some subband of the wavelet transform or of the
wavelet packet transform.

59. fdml1a.prg
We simulate an AR(2) process. Then, we use the Bloomfield exponential
spectral density. The corresponding spectral generating function is given in
Dzhaparidze [1986] on page 125:

g (λj) = σ2 exp

(
2

r∑

i=1

γi cos (iλj)

)

192 EXAMPLES

We may estimate the vector of parameters θ =
[

γ1 · · · γr σ
]> with

the FD ml procedure. In this example, we have set r equal to 4.

60. fdml1b.prg
We test now r = 4 against r = 5. To compute the spectral LM
test, we can employ the data buffer ml derivatives or the procedure
FDml derivatives.

61. fdml2a.prg
We consider the model zt, defined by

zt = xt + yt

xt = φ1xt−1 + ut

yt = vt − θ1vt−1

with ut ∼ N
(
0, σ2

u

)
and vt ∼ N

(
0, σ2

v

)
. The corresponding spectral gener-

ating function is

g (λj) = σ2
u

1

|1−φ1eiλj |2 + σ2
v

∣∣1− θ1e
iλj

∣∣2

= σ2
u

1

(1−2φ1 cos λj+φ2
1)

+ σ2
v

(
1− 2θ1 cosλj + θ2

1

)

The vector of parameters is set to
[

φ1 σu θ1 σv

]>.

62. fdml2b.prg
To see if θ1 = 0.7 in the above model, we use the LM and LR tests in the
frequency domain.

63. fdml3.prg
The model is

zt = xt + yt

xt = xt−1 + ut − θ1ut−1

yt = vt

with ut ∼ N
(
0, σ2

u

)
and vt ∼ N

(
0, σ2

v

)
. The stationary form is

zt − zt−1 = (1− θ1L) ut + (1− L) vt

The spectral generating function for the stationary form is

g (λj) = σ2
u

∣∣1− θ1e
iλj

∣∣2 + σ2
v

∣∣1− eiλj
∣∣2

=
(
1− 2θ1 cosλj + θ2

1

)
σ2

u + 2 (1− cos λj) σ2
v

Because the stationary form is zt−zt−1, the data used in the FD ml procedure
are z-lag1(z).

64. fdml4.prg
Same example as kalman4c.prg, but the spectral generating function is com-
puted by the sgf SSM procedure.

65. fdml5-6.prg
Examples of Maximum Likelihood of multivariate processes in the frequency
domain.

EXAMPLES 193

66. fft.prg
An example to illustrate the problem of the scaled factor. For any time series
xt, we must verify that the Fourier transform for the first frequency λ0 = 0
equals the mean of xt:

f (λ0) = x̄

67. filter1a.prg
Univariate ARMA process estimation with the arma Filter procedure.

68. filter1b-1c.prg
Univariate ARMA-GARCH process estimation with the arma Filter and
garch Filter procedures.

69. filter2a.prg
Estimation of a Fractional ARMA(2,1) process with the fractional Filter
procedure.

70. fls1.prg
We compare the FLS and OLS methods by applying them to the following
model for t = 1, . . . , N

yt = β1,tx1,t + β2,tx2,t + β3,tx3,t + ut

with
β1,t = 1

β2,t = sin
(

2π

N
t

)
+ v2,t

β3,t = 0.9β3,t−1 + v3,t

ut, v2,t and v3,t are Gaussian processes. For the FLS regression, we pose

µ =

10000
1
1

71. fls2.prg
We graph the residual efficiency frontier

{(
r2
D (µ) , r2

M (µ)
)
, µ ∈ R+

}
of the

preceding model.

72. fls3.prg
We consider the model

yt = xtβt + ut

with

βt =
{

z if t ≤ S
w if t > S

We estimate βt with the FLS, RLS and OLS methods. We show that FLS
can detect an unanticipated shift from z to w.

194 EXAMPLES

73. fls4.prg
An example to illustrate the convergence of the FLS estimates to the OLS
estimates as µ tends to +∞. We consider different values for µ: 104, 106,
107, 108, 4× 108 and 5× 109.

74. fractal1-4.prg — fractal.src
Different examples to illustrate the estimation of the fractional parameter
using wavelets. In fractal1.prg, we estimate the d parameter for a white
noise process. The method proposed by Wornell and Oppenheim [1992]
is based on the complete wavelet coefficients. But, we can use coefficients
for just some levels (and not for all the scales). In fractal2.prg, we consider a
fractional process with d = 0.25. The examples fractal3.prg and fractal4.prg
compute the empirical density of the wavelet and GPH estimators.

75. gfls1.prg
We compare the GFLS and FLS methods with each other on the following
model for t = 1, . . . , N

yt = β1,tx1,t + β2,tx2,t + β3,tx3,t + ut

with β1,t a constant, β2,t a parameter with seasonal path and β3,t a time-
varying parameter.

76. gfls2.prg
An example to show that the FLS method is a special case of the GFLS
method.

77. gfls3.prg
We consider the following multi-dimensional process

[
y1,t

y2,t

]
=

[
x1,t 0 x3,t

0 x2,t x3,t

]

β1,t

β2,t

β3,t

 +

[
u1,t

u2,t

]

with u1,t and u2,t two white noise processes and β1,t, β2,t and β3,t three
time-varying parameters. The corresponding approximately linear system is

[
y1,t

y2,t

]
'

[
x1,t 0 x3,t

0 x2,t x3,t

]

β1,t

β2,t

β3,t

 +

[
0
0

]

β1,t+1

β2,t+1

β3,t+1

 '

1 0 0
0 1 0
0 0 1

β1,t

β2,t

β3,t

 +

0
0
0

We can also estimate β1,t, β2,t and β3,t with the GFLS filter. For the first
estimation, we set Dt = I3, Mt = I2, Q0 = I3, p0 = 03 and µ = 1. For the
second estimation, Dt is equal to

1 0 0
0 1

10 0
0 0 1

10

and µ is set to 10.

EXAMPLES 195

78. gfls4.prg
In this example, we show the use of GFLS for the estimation of specific and
common components. Suppose a two-dimensional process with

{
yt = sy

t + ct + uy
t

xt = sx
t + ct + ux

t

with ct the common component of yt and xt while sy
t and sx

t are the two
specific components. Let us consider the approximately linear system

[
yt

xt

]
'

[
1 0 1
0 1 1

]

α1,t

α2,t

α3,t

 +

[
0
0

]

α1,t+1

α2,t+1

α3,t+1

 '

1 0 0
0 1 0
0 0 1

α1,t

α2,t

α3,t

 +

0
0
0

Then, α1,t and α2,t can be wiewed as the specific components and we can
interpret α3,t as the common factor. Note that the choice of Q0 and p0 are
not very important in this example, because it does not affect the curve form
of the estimates (we obtain the same estimates, but with a slight translation).

79. gfls5.prg
The local level model takes the approximately linear form:

{
yt ' βt

βt+1 ' βt

We compare the estimation of the state vector process obtained with the
Kalman filter with that given by the GFLS filter (see ll2.prg example).

80. gfls6.prg
The local linear trend model takes the approximately linear form:

yt ' [
1 0

] [
δt

βt

]
+

[
0
0

]

[
δt+1

βt+1

]
'

[
1 1
0 1

] [
δt

βt

]
+

[
0
0

]

We compare the estimation of the state vector process obtained with the
Kalman filter with the resulting one through the GFLS filter (see llt2.prg
example).

81. gmm1a.prg
We consider the linear model

yt = xtβ + ut (4.10)

with ut ∼ N (0, σ2) and β a 4 × 1 vector. Let θ = vec
[

β σ
]

be the
vector of parameters. We estimate θ with GMM by considering the moment
conditions

E [ut] = 0
E

[
u2

t − σ2
]

= 0
E [utxt,i] = 0 ∀ i = 1, . . . , 4

Note that we use the analytical gradient to perform GMM.

196 EXAMPLES

82. gmm1b.prg
Constrained GMM of the model (4.10) with β1 = β2.

83. gmm2a.prg
The model is

yt = β1 + β2xt + ut

ut ∼ N (0, h2
t)

h2
t = α2

0 + α2
1u

2
t−1

Let θ = vec
[

β1 β2 α0 α1

]
be the vector of parameters. We estimate

θ by the ML and GMM methods. For the GMM estimation, we consider the
moment conditions

Et [ut] = 0
Et

[
u2

t − h2
t

]
= 0

Et [utxt] = 0
Et

[(
u2

t − h2
t

)
u2

t−1

]
= 0

84. gmm2b.prg
This is the same program as gmm2a.prg, but we impose that α1 = 0 (no
ARCH effect).

85. gmm3a.prg
We consider a geometric Brownian motion process

{
dxt = µxt dt + σxt dWt

x (t0) = x0
(4.11)

where Wt is a Wiener process. The solution of the stochastic differential
equation (4.11) is

x (t) = x0 exp
[(

µ− 1
2
σ2

)
(t− t0) + σ (W (t)−W (t0))

]

Let h be the sampling interval of the discrete-time data. We set

εt = ln
xt

xt−1
−

(
µ− 1

2
σ2

)
h

We can estimate the vector of parameters θ = vec
[

µ σ
]

by maximum
likelihood or by the generalized method of moments. For the ML estimation,
we have

`t = −1
2

ln (2π)− 1
2

ln
(
σ2h

)− 1
2

ε2
t

σ2h

For the GMM estimation, we consider the two moment conditions
{

Et−1 [εt] = 0
Et−1

[
ε2

t − σ2h
]

= 0

86. gmm3b.prg
We consider an Ornstein-Uhlenbeck process

{
dxt = a (b− xt) dt + σ dWt

x (t0) = x0
(4.12)

EXAMPLES 197

The solution of the stochastic differential equation (4.12) is

x (t) = x0e
−a(t−t0) + b

(
1− e−a(t−t0)

)
+ σ

∫ t

t0

ea(θ−t) dW (θ)

We define
εt = xt − e−ahxt−1 − b

(
1− e−ah

)

Let θ = vec
[

a b σ
]

be the vector of parameters. The expression of the
log-likelihood is

`t = −1
2

ln (2π)− 1
2

ln
(

σ2

(
1− e−2ah

2a

))
− 1

2
ε2

t

σ2
(

1−e−2ah

2a

)

GMM estimation of θ can be performed by considering the following moment
conditions

Et−1 [εt] = 0
Et−1

[
ε2
t − σ2

(
1−e−2ah

2a

)]
= 0

Et−1 [εtxt−1] = 0

87. gmm3c.prg
Chan, Karolyi, Longstaff and Sanders [1992] consider the following
stochastic differential equation

{
dyt = (α + βyt) dt + σ |yt|γ dWt

y (t0) = x0
(4.13)

To estimate the vector of parameters θ = vec
[

α β γ σ
]
, they use the

discrete-time model

yt+1 − yt = (α + βyt)h + εt+1

with εt+1 ∼ N (0, σ2 |yt|2γ
h). They consider the following moment condi-

tions

Et [εt+1] = 0
Et

[
ε2

t+1 − σ2 |yt|2γ
h
]

= 0
Et [εt+1yt] = 0
Et

[(
ε2
t+1 − σ2 |yt|2γ

h
)

yt

]
= 0

to estimate θ with GMM. In this example, we simulate an Ornstein-
Ulhenbeck. Then, we estimate the parameters of the stochastic differential
equation (4.13). The Ornstein-Uhlenbeck is a special case of the model (4.13)
by imposing γ = 0. In this case, we have the following correspondence

{
α = ab
β = −a

88. gmm4a-4i.prg
Parameters estimation of the Bernoulli, Binomial, Negative Binomial, Pois-
son, Gamma, Beta, Laplace-Gauss, Log-normal and Exponential distribu-
tions.

198 EXAMPLES

89. gmm5a-5b.prg
Parameters estimation of univariate ARMA processes.

90. gmm6a-6c.prg
Parameters estimation of state space models.

91. golay1.prg
The program computes the coefficients of the Savitzky-Golay filter for dif-
ferent values of M , nL and nR. It replicates the table given on page 646 in
Press, Teukolsky, Vetterling and Flannery [1992].

92. golay2.prg
An illustration of the Savitzky Golay procedure applied to noisy data.

93. gph1.prg
Geweke and Porter-Hudak [1983] suggested the following regression to
estimate the fractional integration order d of a time series

ln I (λj) = c− d sin2 λj

2
+ ut (4.14)

We employ this method to estimate the fractional root of a white noise
process. We test d = 0.

94. gph2.prg
Reisen [1994] proposes employing the smoothed periodogram in regression
(4.14). The series used is a random walk process. We compare the estimates
of d based on the periodogram and those based on the smoothed periodogram
with the Parzen lag window generator. Then, we test the null hypothesis
d = 1.

95. gph3.prg
We estimate the fractional root of a white noise process by using different
smoothed periodograms and then we test if the hypothesis d = 0 cannot be
rejected.

96. gph4.prg
This example is a Monte Carlo investigation of the power of the GPH es-
timator and the estimator based on a smoothed periodogram (Bartlett and
Tukey with the parameter equal to 0.20). To obtain the density of the dif-
ferent estimators, we use the kernel estimator.

97. gph5.prg
In the frequency domain, we estimate an ARFIMA process in two ways.
The first one consists of estimating all the parameters by maximizing the
log-likelihood function. In the second method, we use the GPH estimator
to estimate the fractional part of the ARFIMA model and we estimate the
ARMA part of the ARFIMA model.

98. gph6.prg
Monte Carlo experiments of the standard errors of the GPH estimator and
those based on the smoothing periodogram.

EXAMPLES 199

99. hankel1.prg
Hankel matrix of a univariate time series.

100. hankel2.prg
Hankel matrix of a multivariate time series.

101. hankel3.prg
Monte Carlo experiments of the singular value decomposition of the Hankel
matrix for white noise and AR(1) processes.

102. hankel4.prg
Monte Carlo experiments of the singular value decomposition of the Hankel
matrix for an AR(2) process.

103. hankel5.prg
McMillan order of a VAR process.

104. hankel6.prg
Computes the theoretical and the empirical Hankel matrices of the
ARMA(1,1) model (4.5).

105. hankel7.prg
In this example, we check for the McMillan order of various state space
models to be equal to the number of state variables.

106. hurst1.prg — hurst.src
R/S statistic and Hurst exponent with a white noise process.

107. hurst2.prg — hurst.src
R/S statistic and Hurst exponent with a fractional process.

108. hurst3.prg — hurst2.src
Estimates the Hurst exponent with the method described in Taqqu,
Tererovsky and Willinger [1995].

109. icss1-2.prg — icss.src
Detection of changes of variance by the ICSS algorithm.

110. impuls1a-2b.prg — impuls.txt
Computes the standard errors of the impulse responses by simulation tech-
niques.

111. jump.prg
An example of jump and sharp cust detection by wavelets.

112. kalman1a.prg
We consider the following state space model

[
y1,t

y2, t

]
=

[
1 0
0 1

] [
αt

βt

]
+

[
10
0

]
+ εt[

αt

βt

]
=

[
0.5 0.3
0 0.2

] [
αt−1

βt−1

]
+

[
1
4

]
+

[
1
1

]
ηt

(4.15)

200 EXAMPLES

with

H = E
[
εtε

>
t

]
=

[
2 0
0 1

]
(4.16)

and Q = E [ηtηt] = 1. We build the state space model in a time-invariant
form.

113. Kalman1b.prg
We build the state space model (4.15) in a time-variant form.

114. kalman1c.prg
We simulate the state space model (4.15).

115. kalman1d.prg
Kalman filtering of the state space model (4.15) in its time-invariant form.
a0 and P0 are computed using the SSM ic procedure.

116. kalman1e.prg
Kalman filtering of the state space model (4.15) in its time-variant form.

117. kalman1f.prg
Graphical representation of the estimated value of αt with its 95% confidence
interval.

118. kalman1g.prg
Graphical representation of the log-likelihood vector.

119. kalman1h.prg
Exact Maximum likelihood estimation of the model

[
y1,t

y2, t

]
=

[
θ1 0
0 θ2

] [
αt

βt

]
+

[
θ3

0

]
+ εt[

αt

βt

]
=

[
θ6 θ7

0 θ8

] [
αt−1

βt−1

]
+

[
θ9

θ10

]
+

[
1
1

]
ηt

(4.17)

with

H =
[

θ4 0
0 θ5

]
(4.18)

and Q = θ11.

120. kalman1i.prg
Conditional MLE with a0 = 0 and P0 = 02×2 in the time-variant form. Note
the use of external variables.

121. kalman1j.prg
Smoothing of the estimated model.

122. kalman1k.prg
Forecasting of the estimated model.

EXAMPLES 201

123. kalman2a.prg
Maximum likelihood estimation of the state space model

yt =
[

1 xt t
]

β0,t

β1,t

β2,t

 + εt

β0,t

β1,t

β2,t

 =

1 0 0
0 1 0
0 0 1

β0,t

β1,t

β2,t

 +

1 0 0
0 1 0
0 0 1

η0,t

η1,t

η2,t

(4.19)

The unknown parameters θ are H = θ2
1 and

Q =

θ2
2 0 0
0 θ2

3 0
0 0 θ2

4

 (4.20)

a0 and P0 are set to the null vector and matrix respectively.

124. kalman2b.prg
Same program as kalman2a.prg, but a0 and P0 are fixed differently. This
program shows the initialization problem of the Kalman filter.

125. kalman3a.prg
We simulate a linear process with ARMA parameters.

126. kalman3b.prg
Conditional maximum likelihood of the corresponding state space model

yt =
[

xt 0
] [

βt

ηt

]
+ εt[

βt

ηt

]
=

[
φ1 −θ1

0 0

] [
βt−1

ηt−1

]
+

[
1
1

]
ηt

(4.21)

The estimated parameters are φ1, θ1, σε and ση.

127. kalman3c.prg
Conditional maximum likelihood of another representation of the above state
space model

yt =
[

xt 0 1
]

βt

ηt

εt

βt

ηt

εt

 =

φ1 −θ1 0
0 0 0
0 0 0

βt−1

ηt−1

εt−1

 +

1 0
1 0
0 1

[
ηt

εt

]

This program is an illustration of the identification problem.

128. kalman4a.prg
Suppose that we observe a process yt with a measurement error εt. We note
zt the observed process. We have

zt = yt + εt (4.22)

202 EXAMPLES

We suppose that yt is an ARMA(1,1) process

yt = φ1yt−1 + ut − θ1ut−1 (4.23)

The state space form of this model is

zt =
[

1 0
] [

yt

ut

]
+ εt[

yt

ut

]
=

[
φ1 −θ1

0 0

] [
yt−1

ut−1

]
+

[
1
1

]
ut

(4.24)

We simulate the ARMA plus noise process and then we use the Kalman filter
to obtain the estimate of the unobserved component yt.

129. kalman4b.prg
In this example, we estimate the coefficients φ1, θ1, σu and σε of the model
(4.24) by maximum likelihood in the time domain.

130. kalman4c.prg
We estimate the ARMA plus noise model by maximum likelihood in the
frequency domain. The corresponding spectral generating function is

g (λj) = σ2
u

1− 2θ1 cos λj + θ2
1

1− 2φ1 cos λj + φ2
1

+ σ2
ε (4.25)

131. kalman4d.prg
We estimate the model (4.24) under the restriction θ1 = 0. This restriction
can be written as:

φ1

θ1

σu

σε

 =

1 0 0
0 0 0
0 1 0
0 0 1

φ1

σu

σε

 +

0
0
0
0

 (4.26)

The restricted ML estimates are obtained both in the frequency domain (with
the FD cml procedure) and in the time domain (with the TD cml procedure).

132. kalman4e.prg
Illustrate the KForecasting procedure to obtain forecasts of a process.

133. kalman4f.prg
In the model (4.24), we compute the smoothed component a t|T . If the
variance of εt is zero, then we must verify that the first component of a t|T
is just equal to zt or yt.

134. kalman4g.prg
Smoothing the model (4.24) with the Kalman filter.

135. kalman5a.prg
Modelling the lutkepohl data as a VAR(2) process

y1,t

y2,t

y3,t

 =

µ1

µ2

µ2

 + Φ1

y1,t−1

y2,t−1

y3,t−1

 + Φ2

y1,t−2

y2,t−2

y3,t−2

 +

ε1,t

ε2,t

ε3,t

 (4.27)

EXAMPLES 203

with εt ∼ N (0, Σ). We estimate this model in the time domain with the
Kalman filter. We use the Cholesky decomposition to define the matrix Q,
that is Q = PP>. The estimated vector θ corresponds to

vec (Φ1)
vec (Φ2)

µ
vech (P)

with vech the operator in Lütkepohl sense.

136. kalman5b.prg
Does not income/consumption (y2,t – y3,t) cause investment (y1,t) ? We can
test this hypothesis by using the Wald statistic. Note that this hypothesis
corresponds to the fact that the matrices Φ1 and Φ2 are of the form

· 0 0
· · ·
· · ·

This is equivalent to test θ4 = θ7 = θ13 = θ16 = 0.

137. kalman5c.prg
Using the results of the t-statistics in the kalman5a.prg example, we impose
that the following coefficients are zero:

{θ2, θ3, θ4, θ5, θ7, θ10, θ11, θ12, θ13, θ14, θ16, θ17, θ18, θ19, θ23}

The restricted model is estimated by maximum likelihood in the time do-
main.

138. kalman5d.prg
We check the accuracy of the above restrictions. To this end, we use the
Likelihood Ratio (LR) and the Lagrange Multiplier (LM) statistics. The
LM test is computed using the different matrices of the ml derivatives
external variable.

139. kalman5e.prg
Another way to compute the LM tests with the TDml derivatives proce-
dure.

140. kalman5f.prg
Computes the LM test with an OPG artificial regression.

141. kalman6a.prg
We study a time-variant model

yt = β0,tx0,t + β1,tx1,t + ut (4.28)

with ut ∼ N (
0, σ2

u

)
and

{
β0,t = β0,t−1 + v0

β1,t = β1,t−1 + v1
(4.29)

204 EXAMPLES

with
[

v0

v1

]
∼ N (0, Σv). We suppose that

Σv =
[

σ2
0 0
0 σ2

1

]

The state space form of the model (4.28-4.29) is

yt =
[

x0,t x1,t

] [
β0,t

β1,t

]
+ ut

[
β0,t

β1,t

]
=

[
1 0
0 1

] [
β0,t−1

β1,t−1

]
+

[
1 0
0 1

] [
v0

v1

] (4.30)

This example shows how to construct a time-variant state space model. Next,
we use the KFiltering and the KSmoothing procedures to estimate the
unobservable components β0,t and β1,t.

142. kalman6b.prg
Maximum Likelihood of the model (4.30). Note the declaration of sigma as
an external variable and the definition of sigma in the ml procedure.

143. kfgain1-2.prg
Illustration of the KF gain procedure.

144. kernel1.prg
Density estimation (normal random number).

145. kernel2.prg
Density estimation (χ2 random number) with the truncated (at left) normal
kernel.

146. kernel3.prg
Density estimation (uniform random number) with the trunacted normal (at
left and right) kernel.

147. kernel4.prg
We investigate the empirical probability density of the FRF/DEM return for
different scales : 1, 2, 5, 10 and 30 days. We use the thresholding method
to compare the “noisy” density with the “denoised” density.

148. kpss.prg — kpss.src
KPSS statistic.

149. ks1.prg
Computes the Kolmogorov-Smirnov test for a white noise process presented
in Brockwell and Davis [1991].

150. ks2.prg
Computes the Kolmogorov-Smirnov test for a unit root process.

151. ks3.prg
Computes the Kolmogorov-Smirnov test for the random walk plus noise
model applied to the purse data.

EXAMPLES 205

152. ll1.prg
Estimates the Local Level model for the purse data in the frequency domain
with the method of scoring and the BFGS algorithm.

153. ll2.prg
Estimates the unobserved component of the purse Local Level model.

154. ll3.prg
Estimates the purse Local Level model in the time domain. This program
shows the importance of the choice of the initial conditions.

155. llt1.prg
Estimates the Local Linear model for the gnp data in the frequency domain
with the method of scoring and the BFGS algorithm.

156. llt2.prg
Estimates the unobserved component of the gnp Local Linear model.

157. llt3.prg
Estimates the gnp Local Linear model in the time domain with the BHHH
algorithm.

158. matrix1.prg
Computes the matrices L4, D4 and K4,3.

159. matrix2.prg
Shows the difference between the vech and vech operators.

160. matrix3.prg
Verifies the following propositions (Lütkepohl [1991]) for m = 1, . . . , 10

LmDm = Im(m+1)/2

Km,mDm = Dm

Km,1 = K1,m = Im

trace (Km,m) = m

trace
(
D>

mDm

)
= m2

LmL>m = Im(m+1)/2

trace
(
D>

mDm

)−1
=

m (m + 3)
4

161. matrix4-5.prg
An illustration of the xpnd2 procedure with real and complex matrices.

162. matrix6a-6d.prg
An illustration of the Explicit to Implicit and Implicit to Explicit
procedures.

163. missing1.prg
Illustration of the Missing procedure.

206 EXAMPLES

164. nw.prg — nw.src
Newey and West estimator of the variance.

165. optmum2a-2c.prg
Some examples with the optmum2 procedure.

166. pdgm1.prg
Computes the periodogram of the Lynx data and the Fisher’s g statistic.

167. pdgm2.prg
Smoothed periodogram of a stable AR(2) process.

168. pdgm3.prg
Periodogram of the sunspots data.

169. pdgm4.prg
Covariogram of a time series using the PDGM and inverse fourier proce-
dures.

170. pdgm5.prg
We consider the state space model

[
y1,t

y2,t

]
=

[
1 0
0 1

] [
α1,t

α2,t

]
+ εt[

α1,t

α2,t

]
=

[
0.5 0.3
0 −0.5

] [
α1,t−1

α2,t−1

]
+

[
1
1

]
ηt

(4.31)

with ηt ∼ N (0, 0.25) and

εt ∼ N (
[

0
0

]
,

[
0.2 0
0 0.1

]
)

We compare the spectral density of the state space model with the smoothed
periodogram of a realization of the model.

171. pdgm6.prg
We compare the theoretical covariances and the cross-covariances of the
model (4.31) with the empirical covariances and the cross-covariances of a
realization.

172. pdgm7.prg
Spectral density of a univariate ARMA(2,1) process.

173. qmf1.prg
In this example, we verify the following properties of quadrature mirror
filters:

p∑
k=0

hk =
√

2
p∑

k=0

gk = 0
p∑

k=0

h2
k = 1

p∑
k=0

hkgk = 0

EXAMPLES 207

174. qmf2.prg
Same program as qmf1.prg with Pollen filters.

175. riccati1.prg
Solves the Algebraic Riccati Equation for the state space model given in
exercise 4.8 by Harvey [1990].

176. rls1.prg
We apply the RLS procedure to a time-invariant model.

177. rls2.prg
We apply the RLS procedure to a model whose coefficients follow a random
walk process.

178. robinson.prg — robinson.src
Estimates the Hurst exponent with Robinson’s [1995] method in the fre-
quency domain.

179. scalogrm.prg
This example is taken from Arino and Vidakovic [1995]. The scalogram
can be used to decompose a time series into different time series. We consider
a time series xt which is the sum of two time series yt and zt, that is we have

xt = yt + zt

The first component yt is a trend and the second component zt is a cycle.
Wavelet analysis is useful for describing the time series xt because the trend
is better localized for high scales (the cycle is better localized for the first
scales).

180. spectrum.prg
There are several techniques to estimate the power spectrum with wavelet
or wavelet packet. Firstly, we compute the periodogram. Secondly, we cal-
culate the coefficients of the wavelet transform. Thirdly, we transform the
coefficients. Finally, we compute the inverse wavelet transform. We can use
thresholding techniques to perform the transformation. In this example, we
transform the wavelet coefficients by extracting some subbands.

181. ssm1-5.prg
Printing state space models.

182. ssm6a.prg
Same program as varx1e.prg, but responses to forecast errors are computed
with the SSM impulse procedure.

183. ssm6b.prg
Same program as varx1e.prg, but responses to orthogonal impulses are com-
puted with the SSM orthogonal procedure.

184. ssm6c.prg
Same program as varx1d.prg, but we compute the forecast error variance
decomposition with the SSM fevd procedure.

208 EXAMPLES

185. ssm7a.prg
Same program as arma1k.prg, but responses to forecast errors are computed
with the SSM impulse procedure.

186. ssm7b.prg
Same program as arma1k.prg, but responses to orthogonal impulses are com-
puted with the SSM orthogonal procedure.

187. ssm7c.prg
Same program as arma1j.prg, but we compute the forecast error variance
decomposition with the SSM fevd procedure.

188. ssm8a.prg
We consider the state space model

y1,t

y2,t

y3,t

 =

1 1
4 2
2 −3

[
α1,t

α2,t

]
+ εt

[
α1,t

α2,t

]
=

[
.5 .45
−.5 .8

] [
α1,t

α2,t

]
+

[
1 0
0 1

] [
η1,t

η2,t

] (4.32)

with

εt ∼ N

03,

5 1 0
1 4 0
0 0 8

and [
η1,t

η2,t

]
∼ N

(
02,

[
2 0.5

0.5 1

])

We compute the responses to the forecast error e =
[

1 0
]>.

189. ssm8b.prg
We compute the responses to the forecast error e =

[
1 −1

]> for the state
space model (4.32).

190. ssm9a.prg
We compute the responses to the orthogonal impulse e =

[
1 0

]> for the
state space model (4.32).

191. ssm9b.prg
We compute the responses to the orthogonal impulse e =

[
1 −1

]> for
the state space model (4.32).

192. ssm10.prg
We compute the forecast error variance decomposition for the state space
model (4.32).

193. surrog1.prg
Surrogate data in the univariate case.

194. surrog2.prg
Surrogate data in the multivariate case.

EXAMPLES 209

195. surrog3.prg — rk4.src
Surrogate data can be used to detect non-linearities. In this example, we
use the Lorenz model defined by

d x
d t = σ (y − x)
d y
d t = −xz + Rx− y
d z
d t = xy − βz

196. tdml1a.prg
Teräsvirta [1994] suggests a LSTAR model to fit the lynx data

xt = β1xt−1 + [β2xt−2 + β3xt−3 + β4xt−4 + β5xt−9 + β6xt−11]
× [1 + exp (ρ× 1.8 (xt−3 − θ))]−1 + ut

(4.33)
This program estimates the model (4.33). Note the use of the external
variable tsm parnm for the names of the estimated coefficients.

197. tdml2a.prg
To model the lynx data, Ozaki [1982] suggests to use the EXPAR model

xt =
[
β1 + (β2 + β3xt−1) exp

(−δx2
t−1

)]
xt−1[

β4 + (β5 + β6xt−1) exp
(−δx2

t−2

)]
xt−2 + ut

with ut ∼ N (
0, σ2

)
. With the TD ml procedure, we estimate the coefficients

θ =
[

β> δ σ
]>

.

198. tdml2b.prg
This is a modification of the tdml2a.prg example by setting δ to 3.89.

199. tdml3a.prg
Maximum Likelihood estimation of a linear model.

200. tdml3b.prg
Maximum Likelihood estimation of a linear model under linear restrictions.

201. tdml4a.prg
Maximum Likelihood of the linear model with AR(1) errors:

{
yt = xtβ + ut

ut = ρut−1 + εt

with εt ∼ N
(
0, σ2

)
. The parameter vector θ is

[
β> ρ σ

]>
. The ML

function is based on Beach and MacKinnon [1978]. We test also ρ = 0
with LM and LR statistics.

202. tdml4b.prg
Maximum Likelihood of a PROBIT model. The program contains the nor-
mality test for PROBIT models of Bera, Jarque and Lee [1984]. Note
that the ML procedure uses the analytical Jacobian.

203. twofft.prg
An illustration of the fourier2 procedure.

210 EXAMPLES

204. varx1a.prg
Define the following series with the Lutkepohl data

y1,t = INV (t)− INV (t− 1)
y2,t = INC(t)− INC(t− 1)
y3,t = CONS(t)− CONS(t− 1)

The program estimates the VAR(2) process

y1,t

y2,t

y3,t

 = Φ1

y1,t−1

y2,t−1

y3,t−1

 + Φ2

y1,t−2

y2,t−2

y3,t−2

 +

µ1

µ2

µ3

 + εt (4.34)

and performs a stability analysis. The θ vector of coefficients corresponds to

vec (Φ1)
vec (Φ2)

µ

205. varx1b.prg
Computes the Wald test for no Granger-causality from INC/CONS to INV.

206. varx1c.prg
Computes the Wald test for no Instantaneous-causality between INC/CONS
and INV.

207. varx1d.prg
Forecast Error Variance Decomposition of the above VAR(2) model.

208. varx1e.prg
Impulses Responses of the above VAR(2) model.

209. varx1f.prg
Impulses Responses of the above VAR(2) model (graphical representation).

210. varx1g.prg
VAR order selection with the BIC, AIC alpha, SIC, FPE, AIC and HQ
criteria.

211. varx1h.prg
Estimates the model (4.34) with the restrictions

Φ1 =

· 0 0
0 0 ·
0 · ·

Φ2 =

0 0 0
0 0 0
0 · 0

and

µ =

0
·
·

EXAMPLES 211

212. varx2a.prg
Estimation of the Dynamic Simultaneous Equations

[
INCt

CONSt

]
= Φ1

[
INCt−1

CONSt−1

]
+

[
µ1

µ2

]
+

[
α1

α2

]
INVt−1 +

[
ε1,t

ε2,t

]

(4.35)

213. varx2b.prg
Estimation of the Constrained Dynamic Simultaneous Equations
[

INCt

CONSt

]
=

[
1 0

φ21 φ22

] [
INCt−1

CONSt−1

]
+

[
0
µ2

]
+

[
α1

0

]
INVt−1+

[
ε1,t

ε2,t

]

(4.36)

214. varx2c.prg
Estimation of the model (4.36) by Maximum Likelihood.

215. varx3a.prg
Use of the varx ls procedure to compute OLS estimates. The results are
compared with those calculated with the ols procedure.

216. varx3b.prg
We use the varx cls procedure to compute the SUR estimator. The example
is taken from Judge, Hill, Griffiths, Lütkepohl and Lee [1988] pages
453 and 454.

217. varx3c.prg
We use the varx cls procedure to compute the restricted SUR estimator.
The example is taken from Judge, Hill, Griffiths, Lütkepohl and Lee
[1988] pages 460 to 462.

218. varx3d.prg
We use the varx cls procedure to estimate a system of simultaneous equa-
tions. The example is taken from Judge, Hill, Griffiths, Lütkepohl
and Lee [1988] pages 656 to 663.

219. window2a-2b.prg
Somes examples to show the use of the window2 procedure.

220. wn1.prg
Estimates the white noise model in the frequency domain

yt = εt

with εt ∼ N (
0, σ2

)
. Then we plot the empirical distribution of 2 I(λj)

g(λj)
and

the theoretical χ2
2 distribution.

221. wn2.prg
This is the same program as wn1.prg applied to a unit root process.

222. wn3.prg
We check if the FRF/DEM is a unit root process.

212 EXAMPLES

223. wpkt1.prg
We select a wavelet packet basis for a time series with the BestBasis and
the BestLevel procedures based on the entropy cost function.

224. wpkt2.prg
We simulate a fractional process. Then, we draw the wavelet packet table
of this process. We illustrate the fact that the wavelet transform is a special
case of the wavelet packet transform with a special basis.

225. wt1a.prg-wt1b.prg
We evaluate the inverse wavelet transform for different unit vectors e to see
how wavelets look like (see Press, Teukolsky, Vetterling and Flan-
nery [1992], page 591).

226. wt2.prg
Reconstruction of an ARMA process by the quantile thresholding method
with different values of p.

227. wt3.prg
An important result is that the “mother” coefficient of the wavelet transform
of a time series xt of length N = 2M is equal to

c0 =
N∑

t=1

xt

/
2

M
2

We indicate the correspondence between the examples and the procedures:

• ARE — riccati1.prg.

• arfima — arfima1-4.prg, filter2a.prg, gph5.prg.

• arma autocov — arma2a-2c.prg, autocov1-5.prg.

• arma CML — arma1c-1h.prg.

• arma fevd — arma1j.prg, varx1d.prg.

• arma Filter — filter1a-2a.prg, gmm5a-5b.prg.

• arma impulse — arma1k.prg, impuls1a-1b.prg, varx1e-1f.prg.

• arma ML — arma1a.prg, arma1h.prg, cusum2-3.prg, filter1a.prg.

• arma orthogonal — arma1k.prg, impuls2a.prg, varx1e-1f.prg.

• arma roots — arma1i.prg, varx1a.prg.

• arma to SSM — arma1b.prg, arma2a-2e.prg, autocov4-5.prg, cml2-5.prg,
cusum2-3.prg, fdml6.prg, hankel5-6.prg, impuls1b.prg, impuls2b.prg,
pdgm7.prg, ssm6a-7c.prg.

• arma to VAR1 —

• Basis — chirp1b.prg, basis3.prg, denois2b.prg, wpkt2.prg.

EXAMPLES 213

• BasisPlot — basis2.prg.

• BestBasis — basis4.prg, wpkt1.prg.

• BestLevel — basis3.prg, wpkt1.prg.

• Bootstrap —

• bootstrap SSM — boot1-3.prg, impuls1b.prg, impuls2b.prg.

• BSM — bsm1-3.prg.

• canonical arfima — canon4-7.prg.

• canonical arma — canon1-4.prg.

• Coiflet — chirp1a-1b.prg, qmf1.prg, wt1b.prg, wt3.prg.

• commutation — matrix1.prg, matrix3.prg.

• CPDGM — cpdgm1.prg, cspect1-3.prg.

• CSpectrum — cspect1-3.prg.

• Daubechies — denois1a-1d.prg, denois2a-2b.prg, fractal1-4.prg, jump.prg,
kernel4.prg, qmf1.prg, scalogrm.prg, spectrum.prg, wpkt1.prg, wt1a-b.prg,
wt2-3.prg.

• duplication — matrix1.prg, matrix3.prg.

• elimination — matrix1.prg, matrix3.prg.

• Entropy — basis4.prg, wpkt1.prg.

• Explicit to Implicit — matrix6a-6d.prg.

• extract — band2.prg, spectrum.prg.

• FDml derivatives — fdml1b.prg, fdml2b.prg.

• FD cml — fdml1b.prg, fdml2b.prg, kalman4d.prg.

• FD ml — cycle2-3.prg, fdml1a.prg, fdml2a-2b.prg, fdml3-4.prg, kalman4c.prg,
wn1-3.prg.

• FLS — fls1-4.prg, gfls1-2.prg.

• fourier — twofft.prg.

• fourier2 — twofft.prg.

• fractional Filter — filter2a.prg.

• garch Filter — filter1b-1c.prg.

• GFLS — gfls3-6.prg.

• GFLS2 — gfls1-2.prg.

214 EXAMPLES

• GMM — gmm1a-6c.prg.

• Haar — basis3-4.prg, qmf1.prg, wpkt2.prg.

• Hankel — hankel1-4.prg, hankel6.prg.

• Implicit to Explicit — matrix6a-6d.prg.

• insert — band4.prg, denois2a.prg.

• inverse fourier — pdgm4.prg, pdgm6.prg.

• isBasis — basis1.prg, basis2.prg.

• iwpkt — chirp1b.prg, denois2b.prg.

• iwt — chirp1a.prg, denois1a-1d.prg, denois2a.prg, kernel4.prg, scalogrm.prg,
spectrum.prg, wt1a-b.prg, wt2.prg.

• iwt matrix —

• Kernel — fractal3-4.prg, gph4.prg, kernel1-4.prg.

• KFiltering — arma1b.prg, arma2d-2e.prg, bsm3.prg, cml2-5.prg, cusum1-
3.prg, gfls5-6.prg, gmm6a-6c.prg, impuls1b.prg, impuls2b.prg, kalman1d-
1k.prg, kalman2a-2b.prg, kalman3b-3c.prg, kalman4a-4b.prg, kalman4d-
4g.prg, kalman5a-5f.prg, kalman6a-6b.prg, ll2-3.prg, llt2-3.prg, riccati1.prg.

• KForecasting — kalman1k.prg, kalman4e.prg.

• KF gain — kfgain1-2.prg.

• KF matrix — cusum1-3.prg, gfls5-6.prg, gmm6a-6c.prg, kalman1d-1f.prg,
kalman1j.prg, kalman2a-2b.prg, kalman4a.prg, kalman4g.prg, kalman6a-
6b.prg, ll2.prg, llt2.prg, riccati1.prg.

• KF ml — arma1b.prg, arma2d-2e.prg, bsm3.prg , cml2-5.prg, kalman1g-
1i.prg, kalman2a-2b.prg, kalman3b-3c.prg, kalman4b.prg, kalman4d.prg,
kalman5a-5f.prg, kalman6b.prg, ll3.prg, llt3.prg.

• KSmoothing — gmm6a.prg, kalman1j.prg, kalman4f.prg, kalman4g.prg,
kalman6a-6b.prg.

• Linear Filter — icss2.prg.

• LogEnergy — basis3.prg, basis4.prg.

• LpNorm — basis4.prg.

• Missing — fls1.prg, missing1.prg, surrog2.prg, tdml3a-3b.prg, tdml4a-4b.prg.

• optmum2 — optmum2a-2c.prg.

• padding — kernel4.prg.

EXAMPLES 215

• PDGM — cdgm1.prg, cspect1-3.prg, cycle3.prg, fdml1a.prg, fractal3-4.prg,
gph1-6.prg, kalman4c.prg, ks1-3.prg, pdgm1-4.prg, robinson.src, spec-
trum.prg, surrog1.prg, wn1-3.prg.

• PDGM2 — fdml5-6.prg, pdgm5-6.prg.

• Pollen — qmf2.prg, wt3.prg.

• RLS — fls3.prg, rls1-2.prg.

• RND arfima — arfima4-5.prg, fractal2.prg, fractal4.prg, gph5.prg, robin-
son.prg, wpkt2.prg.

• RND arma — filter1a-2a.prg, gmm5a-5b.prg, pdgm4.prg, surrog2.prg, wt2.prg.

• RND SSM — bsm1-3.prg, fdml5.prg, kalman1c.prg, pdgm5-6.prg.

• Savitzky-Golay — golay1-2.prg.

• Scalogram — scalogrm.prg.

• select — band3.prg, fractal.src, denois2a.prg, jump.prg.

• SemiSoft — denois1b.prg.

• sgf arfima — pdgm7.prg.

• sgf SSM — fdml4-6.prg, pdgm5-7.prg.

• Smoothing — cpdgm1.prg, cycle3.prg, gph2-4.prg, gph6.prg, pdgm2.prg,
pdgm5.prg, spectrum.prg.

• sm cycle —

• sm LL — cusum1.prg, gfls5.prg, gmm6b.prg, ks3.prg, ll1-2.prg.

• sm LLT — llt1-2.prg, gfls6.prg, gmm6a.prg.

• split — band1.prg, scalogrm.prg.

• SSM — hankel7.prg, ssm1-5.prg.

• SSM autocov — autocov4-6.prg.

• SSM build — arma1b.prg, arma2a-2e.prg, autocov4-6.prg, bsm1-3.prg, cml2-
5.prg, cusum1-3.prg, fdml4-6.prg, hankel5-7.prg, gfls5-6.prg, gmm6a-6c.prg,
impuls1b.prg, impuls2b.prg, kalman1a-1k.prg, kalman2a-2b.prg, kalman3b-
3c.prg, kalman4a-4b.prg, kalman4d-4g.prg, kalman5a-5f.prg, kalman6a-
6b.prg, ll2-3.prg, llt2-3.prg, pdgm5-7.prg, ssm6a-10.prg.

• SSM fevd — ssm6c.prg, ssm7c.prg, ssm10.prg.

• SSM Hankel — hankel5-7.prg.

• SSM ic — arma1b.prg, arma2a-2e.prg, cml2-5.prg, cusum2-3.prg,
kalman1d.prg, kalman1f.prg, kalman4d-4f.prg.

216 EXAMPLES

• SSM impulse — ssm6a.prg, ssm7a.prg, ssm8a-8b.prg.

• SSM orthogonal — impuls2b.prg, ssm6b.prg, ssm7b.prg, ssm9a-9b.prg.

• SSM to arma —

• surrogate — surrog1-3.prg.

• TDml derivatives — cml5.prg, filter2c.prg, kalman5e-5f.prg.

• TD cml — gmm1b.prg, gmm2b.prg, kalman4d.prg, kalman5c-5d.prg,
tdml3b.prg, tdml4a.prg.

• TD ml — arma1b.prg, arma2d-arma2e.prg, bsm3.prg, cusum2-3.prg, fdml5-
6.prg, filter1a-2a.prg, fractal1-4.prg, gmm1a.prg, gmm2a.prg, gmm3a-3b.prg,
gmm5a-5b.prg, gmm6a-6c.prg, kalman1h-1i.prg, kalman2a-2b.prg, kalman3b-
3c.prg, kalman4b.prg, kalman5a-5b.prg, kalman6b.prg, ll3.prg, llt3.prg,
tdml1a.prg, tdml2a-2b.prg, tdml3a.prg, tdml4b.prg.

• Thresholding — denois1d.prg, denois2b.prg, kernel4.prg, wt2.prg.

• TSMset —

• varx CLS — varx1h.prg, varx2b.prg, varx3b-3d.prg.

• varx CML — varx1h.prg, varx2c.prg.

• varx LS — impuls1a-2b.prg, ssm6a-6c.prg, varx1a-1b.prg, varx1e-1f.prg,
varx2a.prg, varx3a.prg.

• varx ML — impuls2a-2b.prg, kalman5a.prg, varx1c.prg, varx1g.prg.

• vech — cml2.prg, matrix2.prg.

• VisuShrink — denois1c.prg, denois2a.prg.

• WaveShrink — denois1a.prg.

• window2 — window2a-2b.prg.

• wpkPlot — chirp1b.prg.

• wpkt — basis3-4.prg, chirp1b.prg, denois2b.prg, wpkt2.prg.

• wPlot — chirp1a.prg, denois1a.prg, wt2.prg.

• wt — chirp1a.prg, denois1a-1d.prg, denois2a.prg, fractal1-4.prg, jump.prg,
kernel4.prg, scalogrm.prg, spectrum.prg, wpkt2.prg, wt2-3.prg.

• wt matrix —

• xpnd — matrix2.prg.

• xpnd2 — autocov4-6.prg, matrix4-5.prg, ssm6a-7c.prg.

