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Abstract

The purpose of this paper is to analyse different implications of the stochastic behavior of asset
prices volatilities for option hedging purposes. We present a simple stochastic volatility model for option
pricing and illustrate its consistency with financial stylized facts. Then, assuming a stochastic volatility
environment, we study the accuracy of Black and Scholes implied volatility-based hedging. More precisely,
we analyse the hedging ratios biases and investigate different hedging schemes in a dynamic setting.

1 Introduction

Assumptions concerning the underlying asset price dynamics are the fundamental characteristic of any
option-pricing model. The classical Black and Scholes [1973] model assumes that the asset price is
generated by a geometric Brownian motion. However, many empirical studies document the excess kurtosis
of financial asset returns’ distributions and their conditional heterockedasticity.

Models that allow the volatility of asset prices to change randomly are consistent with these observations.
Moreover, a stochastic volatility environment justifies the existence of the smile effect for the Black and
Scholes implied volatilities and permits us to explain its features. Traditionally, the stochastic behavior of
volatility was explained in terms of information arrivals or related to changes in the level of the stock price
(see Christie [1982]).

Despite its strong empirical rejection, the Black and Scholes model is commonly used by practitioners,
often in an internally inconsistent manner. For example, the hedging properties of the Black and Scholes
model seem better when one uses the series of implied volatilities rather than the close-to-close historical
volatility data. In this way, one admits that asset returns’ variability changes over time and one uses a model
that assumes a constant volatility diffusion process for the asset prices.

The reason of popularity of the Black and Scholes model is its simplicity. It gives a simple formula
for the option price and permits us to explicitly calculate option hedging ratios. On the other hand, a
stochastic volatility option pricing model requires the use of numerical techniques for option price and greeks
computing. Moreover, its practical implementation requires a preliminary estimation of the parameters of
the unobservable latent volatility process (see Ghysels and al. [1995] for a survey on this topic).

Heston [1993] derived a closed-form solution for European options in a special stochastic volatility en-
vironment. Generally, researchers have used Monte Carlo or finite difference methods to solve stochastic
volatility option pricing problems. Kurpiel and Roncalli [1998] show how to apply Hopscotch methods,
a class of finite difference algorithms introduced initially by Gourlay [1970], to two-state financial mod-
els. Unlike Monte Carlo, Hopscotch methods are very useful for American option pricing and easy greeks
computing in a stochastic volatility framework.
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The object of this paper is to investigate different implications of the stochastic behavior of volatilities
for option hedging purposes. We analyse different hedging strategies and study the accuracy of Black and
Scholes methods when volatilities of asset prices are random. Previous work concerned with the performance
of hedging schemes for options on stocks has been carried out by Boyle and Emanuel [1980] and Galai
[1983]. Boyle and Emanuel look into the distribution of discrete rebalanced delta hedge cost in the Black
and Scholes world. Galai studies the sources of the cost arising from the discrete delta hedging. Hull
and White [1987 b] analyse the performance of different hedging schemes for currency options in a simple
stochastic volatility environment. However, they use the Black and Scholes formula to approximate option
prices and hedging ratios. Moreover, they concentrate only on the case where the asset price returns are not
correlated with their volatilities.

The paper is organized as follows. In section 2, we briefly present a stochastic volatility model for option
pricing. Then, in section 3, we confront it with some financial stylized facts. Finally, in section 4, we discuss
option hedging problems in stochastic volatility environment.

2 Stochastic volatility model for option pricing

A stochastic volatility option pricing model is a special case of the two-state financial model, with two sources
of risk. The two-dimensional state vector X (t) =

[
S (t) σ (t)

]ᵀ is generated by a diffusion defined from
a probability space (Ω,F ,P), which is the fundamental space of the underlying asset price process S (t)

[
dS (t)
dσ (t)

]
=

[
µS (t)
µ2 (t, S (t) , σ (t))

]
dt +

[
σ (t)S (t) σ1,2 (t, S (t) , σ (t))
σ2,1 (t, S (t) , σ (t)) σ2,2 (t, S (t) , σ (t))

] [
dW1 (t)
dW2 (t)

]
(1)

with E [W1 (t)W2 (t)] = ρt. The risk-free interest rate r (t) is assumed constant or deterministic. The market
permits continuous and frictionless trading and no arbitrage opportunities exists. However, because there is
no asset that is clearly instantaneously perfectly correlated with the state variable σ (t), the market is not
complete.

In this case, assuming that σ1,2 (t, S (t) , σ (t)) = σ2,1 (t, S (t) , σ (t)) = 0, the valuation partial differential
equation for a contingent claim P (t) on an asset paying a continuous dividend d = d (t, S (t) , σ (t)) reduces
with simplified notation to





1
2σ2 (t) S2 (t)PSS + 1

2σ2
2,2Pσσ + ρσ (t)S (t)σ2,2PSσ

+ [rS (t)− d] PS + [µ2 − λ2 (t) σ2,2] Pσ + Pt − rP = 0
P (T ) = f (S (T ) , σ (T ))

(2)

where λ2 (t) is called the volatility risk premium process. For any choice of λ2 (t), the solution of the system
(2) is an admissible price process for the contingent claim P (t).

Heston [1993] suggests an Ornstein-Uhlenbeck process for the volatility which by application of Ito’s
lemma leads to a square-root process for the instantaneous variance v (t) = σ2 (t). The state diffusion process
becomes [

dS (t)
dv (t)

]
=

[
µS (t)
κ [θ − v (t)]

]
dt +

[ √
v (t)S (t) 0

0 σv

√
v (t)

] [
dW1 (t)
dW2 (t)

]
(3)

In Breeden’s [1979] intertemporal asset pricing model, the assets risk premia are proportional to their
instantaneous covariance with respect to aggregate consumption growth. In this case

λ2 (t) = γCov
[
dv (t) ,

dC (t)
C (t)

| Ft

]
(4)

where γ = −C UCC

UC
is the constant relative risk aversion coefficient. Considering the consumption process

that emerges in the general equilibrium model of Cox, Ingersoll, and Ross [1985]

dC (t) = µcv (t) C (t) dt + σc

√
v (t)C (t) dW3 (t) (5)
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Figure 1: Influence of the volatility risk premium on the European call option prices

and assuming that E [W2 (t)W3 (t)] = ρ?t, Heston generates the volatility risk premium that is proportional
to the current value of the instantaneous variance process

λ2 (t) = λv (t) (6)

with λ = γσcσvρ?.1

In such a framework, the contingent claim price P (t) becomes a linear function of λ. Consequently, the
choice of λ is irrelevant for option hedging purposes and in the remainder of this paper we set λ = 0 for
simplicity. This assumption states that the volatility risk premium is noncompensated.

Setting λ = 0 is consistent with the log utility function of the representative agent (γ = 0) or with
a zero correlation between the volatility and the aggregate consumption growth. In the latter case, the
price fluctuations due to the random term in the variance are completely diversifiable : the volatility has
zero systematic risk. The assumption of the zero volatility risk premium was interpreted by Follmer and
Schweizer [1992] as the choice of an equivalent martingale measure which is closest to P in terms of relative
entropy.

3 Stochastic volatility and some financial stylized facts

The ability to reproduce empirical stylized facts is an important model specification and selection criterion.
In this section, we consider the stochastic volatility data generating process as defined by the diffusion (3).

We choose the following parameter values : µ = 0, the long-run instantaneous variance mean θ = 0.32,
the mean-reversion speed κ = 0.5, the volatility of the variance process σv = 0.9, the constant risk-free

1This is a little stronger restriction that the Assumption 2.2 in Renault and Touzi [1996].
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Figure 2: Terminal stock price distributions

instantaneous interest rate r = 0.08. We assume that the current variance v (t0) is equal to its long-run
mean θ.

Fixing the time horizon to one month τ = 1
12 , we simulated our stochastic volatility model 100 times

with 2000 discretisation points. We find the following average skewness and kurtosis statistics for the asset
price returns :

Sk t(H0: Sk = 0) Ku t(H0: Ku = 3)
ρ = 0 0.000 0.014 3.454? 4.147
ρ = −0.9 0.034 0.624 3.377? 3.444
ρ = 0.9 −0.031 0.566 3.393? 3.588

The parameter ρ corresponds to the instantaneous correlation of random shocks that affect the asset price
and its volatility process.

Black [1976] suggests that stock price movements are negatively correlated with volatility. Because
falling stock prices imply an increased leverage of firms, this entails more uncertainty and hence the stock
price volatility tends to rise. In a simple Modigliani/Miller world with no dividends and a constant interest
rate, the assumption of ρ = 0 is equivalent to a constant value of the firm or a zero leverage. Johnson
and Shanno [1987] suggest that if the firm’s profitable investments tend to have high variance, then the
continuous stream of news about these investments will produce increments in stock price and its volatility,
which are positively correlated. Similarly, if the new investments have low variance, then ρ should be negative.
However, Scott [1991] by studying transactions prices from CBOE was unable to compute estimates of ρ
significantly different from zero. He worked in a stochastic volatility framework where the log-volatility
follows an Orstein-Uhlenbeck process.

The table above shows that stochastic volatility implies heavy tails in the distribution of stock price
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Figure 3: Smile curve for European call options on the CAC 40 on October 2, 1998

returns. ARCH models provide a formal link between dynamic conditional volatility behavior and un-
conditional leptokurtosis. The skewness effects presented in the table are consistent with the sign of ρ but
statistically insignificant. In fact, empirical evidence reported by Black [1976], Christie [1982] and Schw-
ert [1989] suggests that leverage alone is too small to explain the empirical asymmetries one observes in
stock prices. The parameter ρ corresponds to the current correlation between stock return’s and its vari-
ance’s shocks, when skewness of asset price returns is essentially characterized by the negative correlation
between the current stock price and its future volatility.

On the other hand, the impact of ρ on the terminal stock price S (T ) distribution is clear. The shape of the
terminal stock price distribution explains Black and Scholes pricing biases caused by stochastic volatility.
For example, when ρ < 0, Black and Scholes model tends to overestimate the price of out-of-the-money
(underestimate the price of in-the-money) call options and underestimate the price of out-of-the-money
(overestimate the price of in-the-money) put options. This is because when the stock price increases, volatility
tends to decrease, making it less likely that really high stock prices will be achieved. When the stock price
decreases, volatility tends to increase, making it more likely that really low stock prices will be achieved. The
same pricing biases are well reflected in the smile effect implied by a stochastic character of the volatility.

The Black and Scholes implied (or implicit) volatility is defined as the value of σ which equates the option
price given by the Black and Scholes formula to the observed market price of the option. If option prices in
the market were conformable with the Black and Scholes model, all the Black and Scholes implied volatilities
corresponding to various options written on the same asset would coincide with the volatility parameter σ
of the underlying asset. In reality this is not the case, and the Black and Scholes implied volatility heavily
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Figure 4: Smile curve: influence of ρ

depends on the calendar time, the time to maturity and the moneyness2 of the option. The smile curve
represents Black and Scholes implied volatilities across different strike prices. Figure 3 displays the volatility
smile for call options on the CAC 40 quoted on October 2, 1998 in MONEP.

In this paper we assume that the observed option prices are given by the stochastic volatility option
pricing model as defined in Section 1. This gives us a precise definition of the Black and Scholes implied
volatility σi (t, x (t) , σ (t)) as the unique solution to

P (t, x (t) , σ (t)) = PBS
(
t, x (t) , σi (t, x (t) , σ (t))

)

Figure 4 represents the impact of ρ on the shape of the smile curve. For ρ 6= 0 we observe the skewness of the
smile, which is more often encountered for options written on stocks than for interest rate or exchange rate
options. The leverage effect ρ < 0 implies a decreasing smile curve. Clearly, the CAC 40 smile corresponds
to this case.

4 Option hedging problems

Option price depends on several parameters, such as the underlying stock price and its volatility, the risk-free
interest rate, and the time to maturity. The sensitivities of option prices to these arguments play a crucial
role in trading and managing portfolios of options.

2Renault and Touzi [1996] define moneyness of an option on the asset S with strike price K and maturity τ as

x (t) = ln

 
S (t)

K
R t+τ

t exp (−r (u)) du

!
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Practitioners consider the following option sensitivities (or greeks) :

∆ =
∂P

∂S

Γ =
∂∆
∂S

=
∂2P

∂S2

V =
∂P

∂σ

R =
∂P

∂r

Θ =
∂P

∂t

For the Black and Scholes formula, these option sensitivities can be calculated explicitly. Delta is the rate
of change of the portfolio value with respect to the asset price. Gamma is the rate of change of delta with
respect to the asset price. Vega is the rate of change of the portfolio value with respect to the asset’s
volatility.

The delta, gamma and vega measures are the most important in hedging the exposure of a portfolio of
options to the market risk. The practitioners use them to quantify the different aspects of the risk inherent
in their option portfolios. They attempt to make the portfolio immune to small changes in the price of the
underlying asset (delta/gamma hedging) and its volatility (sigma hedging). Consequently, there is a need
for very accurate computing of greeks.

Option traders find that hedging ratios computed with the Black and Scholes model and with the close-
to-close historic volatility fail to achieve a well-hedged position. The usual practice to improve the hedging
properties of the Black and Scholes model is to use the Black and Scholes implied volatility. However, in
presence of stochastic volatility, the use of Black and Scholes implied volatilities in conjunction with the
Black and Scholes computed greeks may produce various biases in option hedging strategies.

4.1 Hedging ratios biases

Following Renault and Touzi [1996], we define the delta hedging bias as the difference between the Black
and Scholes implied volatility-based delta and the stochastic volatility model’s one

∆BS
t

(
x, σi

)−∆SV
t (x, σ)

Renault and Touzi prove that, provided we have ρ = 0, we verify ∀x ≥ 0 and σ > 0

∆BS
(
x, σi (x, σ)

) ≤ ∆SV (x, σ)
∆BS

(−x, σi (−x, σ)
) ≥ ∆SV (−x, σ)

∆BS
(
0, σi (0, σ)

)
= ∆SV (0, σ)

For an in-the-money (out-of-the-money) option, the use of Black and Scholes implied volatility leads to an
underhedged (overhedged) position.

We illustrate this in Figure 5. What is interesting, is the impact of ρ on the delta hedging bias.
We find one-signed biases when absolute values of ρ tend to one (|ρ| ≥ 0.5 for our parameter values).

Proposition 1 ∀x and ∀σ > 0 we have

ρ → −1 =⇒ ∆BS
(
x, σi (x, σ)

) ≤ ∆SV (x, σ)
ρ → +1 =⇒ ∆BS

(
x, σi (x, σ)

) ≥ ∆SV (x, σ)
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Figure 5: Black and Scholes implied volatility-based and the stochastic volatility model’s deltas for a Euro-
pean call option

For ρ strongly negative, the Black and Scholes implied volatility-based delta hedging leads systematically
to an underhedged position, whatever the moneyness of the option. For ρ strongly positive, the use of Black
and Scholes implicit volatility leads systematically to an overhedged position.

Gamma measures the speed of option price changes in reaction to the underlying asset price modification.
Therefore, gamma reflects the need of relatively frequent adjustments in the portfolio in order to keep it delta
neutral. If gamma is large, delta is highly sensitive to the price of underlying asset and good management of
options portfolio requires an active delta hedging. If gamma is small, delta changes slowly and rebalancing
to keep a portfolio delta neutral can be made relatively less frequently.

Figure 7 compares the Black and Scholes implied volatility-based gammas with the stochastic volatility
model ones. We tend to have the following relations

ρ = 0 =⇒ ΓBS
(
x, σi

) ≤ ΓSV (x, σ) for x −→ 0
ρ → −1 =⇒ ΓBS

(
x, σi

) ≤ ΓSV (x, σ) for x < 0
ρ → +1 =⇒ ΓBS

(
x, σi

) ≤ ΓSV (x, σ) for x > 0

Recall the feature of the smile curve for the CAC 40 call options. It implies that Black and Scholes delta-
neutral positions are in this case insufficient. Moreover, in the case of out-of-the-money options, the delta
hedging needs to be more dynamic.

In order to make a portfolio gamma neutral, we need a new position in a traded option. If Γ is the
gamma of the portfolio and Γo is the gamma of a traded option, the position in traded option that makes
the portfolio gamma neutral is − Γ

Γo
. As in the pure delta hedging case, the accurate calculation of greeks is

crucial.
As in the gamma case, we can make a portfolio immune to changes in volatility of the underlying asset

price by taking a new − V
Vo

position in a traded option, where V and Vo are respectively the vegas of the
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Figure 6: Delta hedging bias: influence of ρ

portfolio and of the traded option. Next, we have to readjust our position in the underlying asset in order to
keep delta-neutrality of the portfolio. Such a strategy is called delta-sigma hedging. Bajeux and Rochet
[1992] prove that in a stochastic volatility context with ρ = 0 the hedging problem can be solved through a
delta-sigma hedging strategy : any European option completes the market.

It is shown in Figure 8 that the vega calculated from a stochastic volatility model is quite similar to the
Black and Scholes vega when ρ = 0. It is not the case when ρ tends to 1 in absolute terms.

4.2 Option hedging strategies in stochastic volatility environment

A financial institution that sells an option faces the problem of managing its market risk. For example,
the hedging problem for a financial institution that writes at time t0 a European call option of price C (t0)
consists of producing a wealth of Max[S (T )−K, 0] at the maturity time T = t0 + τ .

In the Black and Scholes world, where volatilities of asset prices are constant, pure delta hedging suffices
to solve the hedging problem. A short position in an option is hedged with a time-varying long position in
the underlying stock. At any given time, the long positions are readjusted to equal the delta of the option
position. When the hedge is rebalanced continuously, the actualized cost of this strategy is exactly equal to
the price C (t0) of the option : the net hedge cost is zero. Figure 9 shows the distributions of Black and
Scholes net hedge costs for weekly, daily and twice a day rebalancing. All have a mean not significantly
different from zero. The standard deviations of net costs are respectively 1.01, 0.53 and 0.38, and the hedge
performances3 0.27, 0.14 and 0.10.

3Hedge performance is defined as the ratio of standard deviation of the cost of writing option and hedging it to the initial
theoretical price of the option. Hull and White [1987 b] interpret so defined hedge performance as a mesure of the percentage
overpricing of the option that is necessary to provide a certain level of protection against lost.
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Figure 7: Patterns for variation of gamma: Black and Scholes and stochastic volatility model case

The delta-gamma strategy enables the performance of a discrete rebalanced hedging to be improved. The
delta-gamma hedging scheme applied to the example of Figure 9 reduces the standard deviations of the net
hedge costs to 0.28, 0.10 and 0.06 respectively for the weekly, daily and two-times a day rebalancing. The
respective hedge performances become 0.08, 0.03 and 0.02.

In this section, we study the performances of hedging schemes in a stochastic volatility word as defined
in section 2. More precisely, we compare performances of Black and Scholes implied volatility-based hedging
with the stochastic volatility model based ones. We assume that the contingent claim prices satisfy the
partial differential equation (2) with for simplicity λ2 (t) = 0 and d = 0.

The methodology we apply is inspired by the Hull and White [1997 b] paper. Hull and White study dif-
ferent hedging schemes for currency options in stochastic volatility environment. However, in their calculus,
they use the Black and Scholes model based formulas for greeks and option price.

4.2.1 Pure delta hedging

Consider a continuously rebalanced hedge portfolio consisting of a short position in one European call option
and a long position in α underlying stocks

P (t) = −C (t) + αS (t) (7)

The setting up of this portfolio is financed by a loan at the constant risk-free interest rate r. The instantaneous
change in the value of the hedge portfolio P is given by

R (P (t)) = −rP (t) dt + dP (t) (8)
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Figure 8: Patterns for variation of vega: Black and Scholes and stochastic volatility model case

with
dP (t) = DPdt + PS (t, S (t) , σ (t)) σ (t)S (t) dW1 (t)

+Pσ (t, S (t) , σ (t)) σ2,2 (t, S (t) , σ (t)) dW2 (t) (9)

where D is the Dynkin operator. We have with simplified notation

DP = Pt + µS (t)PS + µ2Pσ +
1
2
σ2 (t) S2 (t)PSS +

1
2
σ2

2,2Pσσ + ρσ (t)S (t)σ2,2PSσ

The portfolio P is delta neutral at time t if 4

α = CS =
∂C

∂S
(t, S (t) , σ (t)) (10)

Using the Black and Scholes model and the Black and Scholes implied volatility to estimate α leads to

αBS = ∆BS = ∆BS
(
t, x (t) , σi (t, x (t) , σ (t))

)
(11)

In this case we obtain

dPBS (t) =
[−DC (t) + ∆BSµS (t)

]
dt

+
[
∆BS − CS

]
σ (t)S (t) dW1 (t) + Cσσ2,2dW2 (t) (12)

4When the portfolio consists of a short position in one European call option and a position in an European exchange-traded
option on the same stock, we have

P (t) = −C1 (t) + αC2 (t)

This portfolio is delta neutral at time t if

α =
C1

S

C2
S

=
∂C1

∂S
(t, S (t) , σ (t))

∂C2

∂S
(t, S (t) , σ (t))
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Figure 9: Delta neutral Black and Scholes net hedge cost distributions with discrete rebalancing, σ = 0.3,
r = 0.08 and τ = 1

12

In a stochastic volatility world CS = ∆SV . Noting that HB= ∆BS −∆SV gives

dPBS (t) =
[−DC (t) + ∆BSµS (t)

]
dt

+HBσ (t)S (t) dW1 (t) + Cσσ2,2dW2 (t) (13)

The instantaneous change in value of the Black and Scholes implied volatility-based hedge portfolio has two
stochastic components. The first arises from the delta hedging bias. The second arises from the fact that
the volatility is not hedged at all. The instantaneous variance of dPBS is

var
[
dPBS (t) | Ft

]

dt
= HB2σ2 (t)S2 (t) + C2

σσ2
2,2 + 2ρHBσ (t)S (t)Cσσ2,2 (14)

Now consider the delta neutral hedge portfolio based on the stochastic volatility option pricing model. In
this case, we have

αSV = ∆SV = CS (t, S (t) , σ (t)) (15)

and the instantaneous variance of the change in value of the hedge portfolio is

var
[
dPSV (t) | Ft

]

dt
= C2

σσ2
2,2 (16)

In order to compare equation (14) with equation (16) suppose first that ρ = 0. In this case, the third term
in equation (14) vanishes. Remember that for ρ = 0 the delta hedging bias is relatively small (|HB| < 0.015
for our parameter values). Consequently, the hedge performances of the Black and Scholes and stochastic
volatility model based strategies may be quite similar.
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When |ρ| → 1, the hedging biases are greater (but always inferior to 0.1 in absolute terms for our
parameter values) and the third term in equation (14) is always negative. The strong correlation, whatever
its sign, between the asset prices’ returns and their volatility tends to reduce the variance of the Black and
Scholes implied volatility-based net hedge cost. In this case, the Black and Scholes based delta neutral
hedging may outperform the delta neutral strategy based on the stochastic volatility option pricing model.
In fact, when the correlation between asset prices returns and their volatility is strongly positive (negative),
the Black and Scholes systematic delta overhedging (underhedging) corrects partly for the non hedge of the
volatility.

We simulated the two delta neutral hedging strategies in the stochastic volatility framework of section
3 with r = 0.08. The maturity of the European call option was fixed to one month and the hedge was
rebalanced daily. We started the simulations with S (t0) = K = 100. We performed 300 replications and
applied the acceleration method of antithetic variates. The table below presents the standard errors σ of
the net hedge costs and the hedge performances HP that arised from our simulations.

BS SV
ρ = 0 σ 0.873 0.872

HP 0.237 0.237
ρ = −0.9 σ 0.705 0.913

HP 0.189 0.245
ρ = 0.9 σ 0.742 0.952

HP 0.202 0.259

This simulation study confirms the mathematical results. The performances of the Black and Scholes and
stochastic volatility based hedging schemes are similar for ρ = 0. For |ρ| = 0.9, the Black and Scholes hedge
performances are better.

We notice that when volatilities of asset prices are stochastic, the overall performance of delta neutral
hedging is much poorer than in the Black and Scholes world. The standard deviations of Black and Scholes
net hedge costs are roughly 1.5 times greater in the presence of stochastic volatilities than when volatilities
are constant. The Black and Scholes hedge performance with daily rebalancing in a stochastic volatility
environment is comparable to its performance in a Black and Scholes word with hedge rebalanced only ones
a week.

Failing to hedge the stochastic volatility induces a considerable risk on the financial institutions’ hedged
positions. This risk can be substantially reduced trough delta-sigma hedging.

4.2.2 Delta-sigma hedging

Consider a continuously rebalanced hedge portfolio consisting of a short position in one European call option,
a position in α2 units of the underlying asset and a position in α1 units of any other exchange-traded option
on the same asset

P (t) = −C1 (t) + α1C
2 (t) + α2S (t) (17)

The setting up of this portfolio is financed by a loan at the constant risk-free interest rate r.
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The portfolio P is delta and vega neutral if 5





α1 = C1
σ

C2
σ

=
∂C1
∂σ (t,S(t),σ(t))

∂C2
∂σ (t,S(t),σ(t))

α2 = C1
S − α1C

2
S = ∂C1

∂S (t, S (t) , σ (t))− α1
∂C2

∂S (t, S (t) , σ (t))

(18)

Using the Black and Scholes model and the Black and Scholes implied volatility to estimate α1 and α2 leads
to 




αBS
1 = VBS

1
VBS

2
=

VBS
1 (t,x(t),σi(t,x(t),σ(t)))
VBS

2 (t,x(t),σi(t,x(t),σ(t)))

αBS
2 = ∆BS

1 − αBS
1 ∆BS

2

= ∆BS
1

(
t, x (t) , σi (t, x (t) , σ (t))

)− αBS
1 ∆BS

2

(
t, x (t) , σi (t, x (t) , σ (t))

)
(19)

In this case we obtain

dPBS (t) =
[−DC1 + αBS

1 DC2 + αBS
2 µS (t)

]
dt

+
[−C1

S + αBS
1 C2

S + αBS
2

]
σ (t)S (t) dW1 (t)

+
[−C1

σ + αBS
1 C2

σ

]
σ2,2dW2 (t)

(20)

In a stochastic volatility world Ci
S = ∆SV

i and Ci
σ = VSV

i , i = 1, 2. Noting that HB1 = ∆BS
1 − ∆SV

1 and
HB2 = ∆BS

2 −∆SV
2 gives

dPBS (t) =
[
−DC1 + VBS

1
VBS

2
DC2 +

(
∆BS

1 − VBS
1
VBS

2
∆BS

2

)
µS (t)

]
dt

+
[
HB1 − VBS

1
VBS

2
HB2

]
σ (t) S (t) dW1 (t)

+
[
−VSV

1 + VBS
1
VBS

2
VSV

2

]
σ2,2dW2 (t)

(21)

The instantaneous change in the value of the Black and Scholes implied volatility-based hedge portfolio has
two stochastic components which arise from the delta and vega hedging biases. The instantaneous variance
of dPBS is

1
dtvar

[
dPBS (t) | Ft

]
=

[
HB1 − VBS

1
VBS

2
HB2

]2

σ2 (t)S2 (t) +
[
−VSV

1 + VBS
1
VBS

2
VSV

2

]2

σ2
2,2

+2ρ
[
HB1 − VBS

1
VBS

2
HB2

] [
−VSV

1 + VBS
1
VBS

2
VSV

2

]
σ (t) S (t)σ2,2

(22)

Now consider the delta-sigma hedging portfolio based on the stochastic volatility option pricing model. In
this case, we have





αSV
1 = VSV

1
VSV

2
= C1

σ(t,S(t),σ(t))
C2

σ(t,S(t),σ(t))

αSV
2 = ∆SV

1 − αSV
1 ∆SV

2 = C1
S (t, S (t) , σ (t))− αSV

1 C2
S (t, S (t) , σ (t))

(23)

If the hedge is rebalanced continuously, the instantaneous variance in the value of this portfolio is zero : the
stochastic volatility model based delta-sigma scheme solves the hedging problem.

Suppose that ρ = 0. In this case, the third term in equation (22) vanishes. Moreover, the delta and vega
hedging biases are relatively small. Consequently, the Black and Scholes implied volatility-based delta-sigma
hedging performs almost as well as the delta-sigma hedging based on the stochastic volatility model.

5When the portfolio consists of a short position in one European call option and positions in two other exchange-traded
European options on the same asset, we have

P (t) = −C1 (t) + α1C2 (t) + α2C3 (t)

This portfolio is delta and vega neutral if 8
>><
>>:

α1 =
C1

σC3
S−C3

σC1
S

C2
σC3

S
−C3

σC2
S

α2 = 1
C3

S

�
C1

S − α2C2
S

�
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When the correlation between asset prices’ returns and their volatility is strong in absolute terms, the
Black and Scholes systematic one-signed delta hedging biases on the two options C1 and C2 tend to compen-
sate. This effect reduces the instantaneous variance of the Black and Scholes delta-sigma hedge portfolio.

We undertook a similar Monte Carlo study to that in sub-section 4.2.1. The hedged option has a one
month maturity, τ1 = 30

360 . The maturity of the second exchange-traded option was fixed at six months,
τ2 = 1

2 . The two options start at-the-money. The hedge was rebalanced daily. We obtain the following hedge
performances HP and standard errors σ of the net hedge costs for the two delta-sigma hedging schemes.

BS SV
ρ = 0 σ 0.497 0.488

HP 0.135 0.133
ρ = −0.9 σ 0.497 0.491

HP 0.134 0.132
ρ = 0.9 σ 0.486 0.486

HP 0.132 0.132

We can see clearly that the hedge performances in a stochastic volatility environment are substantially
improved when one uses the delta-sigma hedging scheme. The variability of hedge positions is reduced
significantly (by roughly 40%) with respect to the pure delta neutral hedging. The standard deviations of
the net hedge costs and the delta-sigma hedge performances are comparable to those obtained for the delta
neutral hedging in the Black and Scholes world.

We notice that, although the stochastic volatility model based delta-sigma hedge tends to perform slightly
better, the differences with the Black and Scholes implied volatility-based strategy are not significant. In
fact, as suggested by Hull and White [1987 b], it is important to distinguish between the effect of stochastic
volatility on the value of option and on its partial derivatives at one point in time and the effect of stochastic
volatility on the performance over time of different hedging schemes. The first effect (hedging ratios biases)
may be significant or not, depending on the option’s moneyness and maturity and on parameter values of
the underlying stochastic volatility data generating process. However, errors in greeks calculus may swamp
mutually in a dynamic setting. The Black and Scholes implied volatility-based hedging, although logically
inconsistent, may in this case perform just as well as the stochastic volatility model based hedging strategies.
What matters, is not to neglect the risk that the stochastic behavior of volatilities induces in option positions.
Delta-sigma hedging enables it to be reduced considerably.

4.2.3 Correcting for discrete hedge rebalancing

The use of second partial derivatives of the option price with respect to the state variables enables the
performance of discretely rebalanced hedging to be improved. Gamma is the rate of change of delta with
respect to the underlying asset price. It is relatively large for the near-the-money options. The delta-gamma
strategy is a well known hedging scheme. On the other hand, the rate of change of vega with respect to the
volatility of the underlying asset price is not a commonly used hedging ratio. Vega seems to be sensitive to
the volatility of the underlying asset price only for the relatively deep out-of-the-money and in-the-money
options. For the options near-the-money, the sensitivity of vega tends to zero.

The delta-gamma scheme consists in hedging a short position in an option with a position in α2 units
of the underlying asset and a position in α1 units of any other exchange traded option on the same asset

P (t) = −C1 (t) + α1 (t)C2 (t) + α2 (t)S (t) (24)

The setting up of the portfolio P is financed by a loan at the constant risk-free interest rate. The hedge is
not rebalanced between times t and t + ∆t. We have

P (t + ∆t) = −C1 (t + ∆t) + α1 (t)C2 (t + ∆t) + α2 (t)S (t + ∆t) (25)

and
∆P (t) = −∆C1 (t) + α1∆C2 (t) + α2∆S (t) (26)
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Following Hull and White [1987 b], we can expand ∆P (t) in Taylor series about S (t), σ (t) and t to
obtain, with simplified notations

∆P =
[−C1

S + α1C
2
S + α2

]
∆S +

[−C1
σ + α1C

2
σ

]
∆σ +

[−C1
t + α1C

2
t

]
∆t

+ 1
2

[−C1
SS + α1C

2
SS

]
(∆S)2 + 1

2

[−C1
σσ + α1C

2
σσ

]
(∆σ)2 + 1

2

[−C1
tt + α1C

2
tt

]
(∆t)2

+
[−C1

Sσ + α1C
2
Sσ

]
∆S∆σ +

[−C1
St + α1C

2
St

]
∆S∆t +

[−C1
σt + α1C

2
σt

]
∆σ∆t + . . .

(27)

The portfolio P is delta and gamma neutral at time t if




α1 = C1
SS

C2
SS

=
∂2C1

∂S2 (t,S(t),σ(t))

∂2C2

∂S2 (t,S(t),σ(t))

α2 = C1
S − α1 (t)C2

S = ∂C1

∂S (t, S (t) , σ (t))− α1
∂C2

∂S (t, S (t) , σ (t))

(28)

Using the Black and Scholes model and the Black and Scholes implied volatility to estimate α1 and α2 leads
to 




αBS
1 = ΓBS

1
ΓBS

2
=

ΓBS
1 (t,x(t),σi(t,x(t),σ(t)))

ΓBS
2 (t,x(t),σi(t,x(t),σ(t)))

αBS
2 = ∆BS

1 − αBS
1 ∆BS

2

= ∆BS
1

(
t, x (t) , σi (t, x (t) , σ (t))

)− α1∆BS
2

(
t, x (t) , σi (t, x (t) , σ (t))

)
(29)

Noting that in the stochastic volatility environment Ci
S = ∆SV

i , Ci
SS = ΓSV

i and Ci
σ = VSV

i , i = 1, 2 gives

∆PBS =
[
HB1 − αBS

1 HB2

]
∆S +

[−VSV
1 + αBS

1 VSV
2

]
∆σ +

[−C1
t + αBS

1 C2
t

]
∆t

+ 1
2

[−ΓSV
1 + αBS

1 ΓSV
2

]
(∆S)2 + 1

2

[−C1
σσ + αBS

1 C2
σσ

]
(∆σ)2 + 1

2

[−C1
tt + αBS

1 C2
tt

]
(∆t)2

+
[−C1

Sσ + αBS
1 C2

Sσ

]
∆S∆σ +

[−C1
St + αBS

1 C2
St

]
∆S∆t +

[−C1
σt + αBS

1 C2
σt

]
∆σ∆t + . . .

(30)
The variance of ∆PBS can be approximated as

var
[
∆PBS | Ft

] ' [−VSV
1 + αBS

1 VSV
2

]2 var [∆σ | Ft] + 1
4

[−C1
σσ + αBS

1 C2
σσ

]2 var
[
(∆σ)2 | Ft

]

+
[
HB1 − αBS

1 HB2

]2 var [∆S | Ft] + 1
4

[−ΓSV
1 + αBS

1 ΓSV
2

]2 var
[
(∆S)2 | Ft

]

+2
[
HB1 − αBS

1 HB2

] [−VSV
1 + αBS

1 VSV
2

]
cov [∆S, ∆σ | Ft]

+
[−VSV

1 + αBS
1 VSV

2

] [−ΓSV
1 + αBS

1 ΓSV
2

]
cov

[
(∆S)2 , ∆σ | Ft

]

+
[
HB1 − αBS

1 HB2

] [−C1
σσ + αBS

1 C2
σσ

]
cov

[
∆S, (∆σ)2 | Ft

]

(31)

Now consider the delta-gamma hedging portfolio based on the stochastic volatility option pricing model. In
this case we have





αSV
1 = ΓSV

1
ΓSV

2
= C1

SS(t,S(t),σ(t))

C2
SS(t,S(t),σ(t))

αSV
2 = ∆SV

1 − αSV
1 ∆SV

2 = C1
S (t, S (t) , σ (t))− αSV

1 C2
S (t, S (t) , σ (t))

(32)

and the variance of ∆PSV is approximated by

var
[
∆PSV | Ft

] ' [−VSV
1 + αSV

1 VSV
2

]2 var [∆σ | Ft] + 1
4

[−C1
σσ + αSV

1 C2
σσ

]2 var
[
(∆σ)2 | Ft

]

'
[
−VSV

1 + ΓSV
1

ΓSV
2
VSV

2

]2

σ2
2,2∆t + 1

2

[−C1
σσ + αSV

1 C2
σσ

]2
σ4

2,2 (∆t)2
(33)

It is difficult to compare analytically the performance of these two delta-gamma strategies. The table
below presents the results of our Monte Carlo study. The hedged option has a one month maturity. The
maturity of the second exchange-traded option was fixed to six months in the first instance and to 45 days
in the second. The two options start at-the-money. The hedge was rebalanced daily.
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BS SV
τ2 = 1

2 τ2 = 45
360 τ2 = 1

2 τ2 = 45
360

ρ = 0 σ 1.165 0.763 1.184 0.808
HP 0.316 0.207? 0.321 0.219?

ρ = −0.9 σ 0.895 0.713 1.825 1.188
HP 0.241 0.192 0.490 0.319

ρ = 0.9 σ 1.479 0.906 1.014 0.555
HP 0.403 0.247 0.276 0.151?

The asterisk means a higher performance with respect to the pure delta neutral strategy.

We remark that in a stochastic volatility environment the hedge performance of delta-gamma strategies
deteriorates with the maturity of the exchange-traded option. For τ2 high, the effect of stochastic volatility
swamps the advantage of correcting for discrete hedge rebalancing. Consider equation (33) and neglect its
second term. For τ2 > τ1 >> 0, ΓSV

2 is a decreasing function of τ2 and VSV
2 is an increasing function of τ2.

Moreover, ΓSV
1

ΓSV
2

> 1 and VSV
2 > VSV

1 . In this case, var
[
∆PSV | Ft

]
becomes larger when τ2 increases. The

same is true for var
[
∆PBS | Ft

]
. This result confirms the conclusion of Hull and White [1987 b].

For τ2 = 1
2 , the delta-gamma hedge performance is always poorer than the performance of pure delta

neutral hedging. For τ2 = 45
360 , the relative performance of the delta-gamma and the pure delta hedging

strategies depends on ρ and the model used for the calculus of hedging ratios.

When ρ ≤ 0, the Black and Scholes implied volatility-based delta-gamma hedging performs better than
the delta-gamma scheme based on the stochastic volatility model. For ρ > 0 the inverse is true.

We remark that when volatilities of asset prices are stochastic, the overall performance of delta-gamma
hedging is significantly poorer than the performance of the delta-sigma strategies. As we have seen in section
4.2.1, failing to hedge the stochastic volatility is significantly risky.

The delta-gamma-sigma scheme consists in hedging a short position in an option with a position in
α3 units of the underlying asset and two positions in respectively α1 and α2 units of any other exchange
traded options on the same asset

P (t) = −C1 (t) + α1 (t)C2 (t) + α2 (t) C3 (t) + α3 (t)S (t) (34)

The setting up of the portfolio P is financed by a loan at the risk-free interest rate. The hedge is not
rebalanced between times t and t + ∆t. Applying the same methodology as above, we obtain

∆P =
[−C1

S + α1C
2
S + α2C

3
S

]
∆S +

[−C1
σ + α1C

2
σ + α2C

3
σ

]
∆σ

+
[−C1

t + α1C
2
t + α2C

3
t

]
∆t + 1

2

[−C1
tt + α1C

2
tt + α2C

3
tt

]
(∆t)2

+ 1
2

[−C1
SS + α1C

2
SS + α2C

3
SS

]
(∆S)2 + 1

2

[−C1
σσ + α1C

2
σσ + α2C

3
σσ

]
(∆σ)2

+
[−C1

Sσ + α1C
2
Sσ + α2C

3
Sσ

]
∆S∆σ +

[−C1
St + α1C

2
St + α2C

3
St

]
∆S∆t

+
[−C1

σt + α1C
2
σt + α2C

3
σt

]
∆σ∆t + . . .

(35)

The portfolio P is delta, gamma and vega neutral at time t if




α1 = C3
SSC1

σ−C1
SSC3

σ

C2
σC3

SS−C2
SSC3

σ

α2 = 1
C3

SS

(
C1

SS − α1C
2
SS

)

α3 = C1
S − α1C

2
S − α2C

3
S

(36)

Using the Black and Scholes model and the Black and Scholes implied volatility to evaluate α1, α2 and α3
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leads to 



αBS
1 = ΓBS

3 VBS
1 −ΓBS

1 VBS
3

ΓBS
3 VBS

2 −ΓBS
2 VBS

3

αBS
2 = 1

ΓBS
3

(
ΓBS

1 − αBS
1 ΓBS

2

)

αBS
3 = ∆BS

1 − αBS
1 ∆BS

2 − αBS
2 ∆BS

3

(37)

The change in value of the Black and Scholes delta-gamma-sigma hedge portfolio is then given by

∆PBS =
[
HB1 − αBS

1 HB2 − αBS
2 HB3

]
∆S +

[−VSV
1 + αBS

1 VSV
2 + αBS

2 VSV
3

]
∆σ

+
[−C1

t + αBS
1 C2

t + αBS
2 C3

t

]
∆t + 1

2

[−C1
tt + αBS

1 C2
tt + αBS

2 C3
tt

]
(∆t)2

+ 1
2

[−ΓSV
1 + αBS

1 ΓSV
2 + αBS

2 ΓSV
3

]
(∆S)2 + 1

2

[−C1
σσ + αBS

1 C2
σσ + αBS

2 C3
σσ

]
(∆σ)2

+
[−C1

Sσ + αBS
1 C2

Sσ + αBS
2 C3

Sσ

]
∆S∆σ +

[−C1
St + αBS

1 C2
St + αBS

2 C3
St

]
∆S∆t

+
[−C1

σt + αBS
1 C2

σt + αBS
2 C3

σt

]
∆σ∆t + . . .

(38)

and its variance can be approximated as

var
[
∆PBS | Ft

] ' [−VSV
1 + αBS

1 VSV
2 + αBS

2 VSV
3

]2 var [∆σ | Ft]
+ 1

4

[−C1
σσ + αBS

1 C2
σσ + αBS

2 C3
σσ

]2 var
[
(∆σ)2 | Ft

]

+
[
HB1 − αBS

1 HB2 − αBS
2 HB3

]2 var [∆S | Ft]
+ 1

4

[−ΓSV
1 + αBS

1 ΓSV
2 + αBS

2 ΓSV
3

]2 var
[
(∆S)2 | Ft

]

+2
[
HB1 − αBS

1 HB2 − αBS
2 HB3

] [−VSV
1 + αBS

1 VSV
2 + αBS

2 VSV
3

]
cov [∆S,∆σ | Ft]

+
[−VSV

1 + αBS
1 VSV

2 + αBS
2 VSV

3

] [−ΓSV
1 + αBS

1 ΓSV
2 + αBS

2 ΓSV
3

]
cov

[
(∆S)2 , ∆σ | Ft

]

+
[
HB1 − αBS

1 HB2 − αBS
2 HB3

] [−C1
σσ + αBS

1 C2
σσ + αBS

2 C3
σσ

]
cov

[
∆S, (∆σ)2 | Ft

]

(39)
An approximation for the variance of the change in value of the delta-gamma-sigma hedge portfolio based

on the stochastic volatility model for option pricing is given by

var
[
∆PSV | Ft

] ' 1
4

[−C1
σσ + αSV

1 C2
σσ + αSV

2 C3
σσ

]2 var
[
(∆σ)2 | Ft

]

' 1
2

[−C1
σσ + αSV

1 C2
σσ + αSV

2 C3
σσ

]2
σ4

2,2 (∆t)2
(40)

Monte Carlo simulations enable us to analyse the hedge performance of these two delta-gamma-sigma
strategies. The hedged option has a maturity of one month. The maturities of the two exchange-traded
options were fixed to three and six months, τ2 = 1

4 , τ3 = 1
2 . All the three options start at the money. The

hedge was rebalanced daily.

BS SV
ρ = 0 σ 0.496 0.161

HP 0.135 0.044
ρ = −0.9 σ 0.336 0.139

HP 0.090 0.037
ρ = 0.9 σ 0.193 0.362

HP 0.053 0.099

We remark that in almost all the cases the daily rebalanced delta-gamma-sigma strategies significantly
outperform the delta-sigma hedging scheme. Correcting for discrete hedge rebalancing improves substantially
performances of the delta-sigma strategy. The exception is the case of Black and Scholes implied volatility-
based hedging for ρ = 0.

When ρ ≤ 0, the hedge performance of the delta-gamma-sigma strategy based on the stochastic volatility
model for option pricing is more than two times better than the hedge performance of the scheme based on
the Black and Scholes model. It is not the case for ρ > 0, where the Black and Scholes model outperforms
the stochastic volatility methods.
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Figure 10: Hedge performances in a stochastic volatility environment for different values of ρ

When ρ ≤ 0, the delta-gamma-sigma scheme based on stochastic volatility model reduces the variability
of hedge positions by roughly 67 % with respect to the delta-sigma hedge and by roughly 82 % with respect
to the pure delta hedging scheme. The hedge performances of the stochastic volatility model based delta-
gamma-sigma strategy are in this case comparable to the performance of the delta-gamma hedging in the
Black and Scholes world.

5 Conclusion

We presented a simple stochastic volatility model for option pricing. We showed the consistency of our model
with some well-known financial stylized facts, such as the leptokurtosis of asset returns’ distributions and
the smile effect of the Black and Scholes implied volatilities. Then, we analyzed option hedging problems
assuming that volatilities of asset prices are stochastic.

Many empirical studies suggest a negative correlation between the stock price movements and their
volatility (leverage effect). Figure 10 summarizes our results for differents values of ρ, Figure 11 details the
case of a strong leverage effect.

It is important to stress the fundamental difference between the impact of stochastic volatility on the value
of an option and on the value of hedge ratios at one point in time and the effect of stochastic volatility on the
performance over time of different hedging schemes. For ρ strongly negative, the Black and Scholes implied
volatility-based delta hedging leads systematically to an underhedged position. However, in a dynamic
setting, the pure delta hedging scheme based on the Black and Scholes model outperforms the stochastic
volatility model based delta neutral strategy. This is because the one-signed Black and Scholes delta hedging
bias partly corrects for the non hedge of volatility. In the case of the delta-sigma hedging strategy, the Black
and Scholes hedging biases tend to swamp together and the performance of the Black and Scholes model
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Figure 11: Black and Scholes and stochastic volatility model based net hedge cost distributions in the case
of ρ = −0.9

based hedge is comparable with the performance of the delta-sigma hedging based on the “true” stochastic
volatility model. In the case of delta-gamma-sigma hedging scheme, the relative performances of the two
models depend on ρ. For ρ < 0, the stochastic volatility model based hedging substantially outperforms the
strategy based on the Black and Scholes methods.

Finally, the main conclusion of this paper is the importance of volatility hedging. Hedging volatility makes
hedge performances comparable to those obtained in the Black and Scholes world where the variabilities of
asset prices are constant. On the other hand, failing to hedge stochastic volatility induces a risk on financial
institutions’ hedge positions that can not be neglected.
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A Hedging comparison

Delta hedging
ρ −0.9 −0.5 −0.3 −0.1 0 0.1 0.3 0.5 0.9

σBS 0.705 0.822 0.856 0.852 0.873 0.825 0.826 0.805 0.742
HPBS 0.189 0.222 0.232 0.231 0.237 0.224 0.225 0.216 0.202
σSV 0.913 0.886 0.875 0.853 0.872 0.826 0.845 0.867 0.952

HPSV 0.245 0.239 0.237 0.231 0.237 0.224 0.230 0.236 0.259
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Delta-gamma hedging
ρ −0.9 −0.5 −0.3 −0.1 0 0.1 0.3 0.5 0.9

σBS 0.713 0.739 0.717 0.726 0.763 0.766 0.799 0.840 0.906
HPBS 0.192 0.199 0.194 0.197 0.207 0.208 0.217 0.229 0.247
σSV 1.188 1.032 0.903 0.830 0.808 0.746 0.702 0.619 0.555

HPSV 0.319 0.278 0.225 0.225 0.219 0.203 0.191 0.169 0.151

Delta-sigma hedging
ρ −0.9 −0.5 −0.3 −0.1 0 0.1 0.3 0.5 0.9

σBS 0.497 0.494 0.495 0.494 0.497 0.493 0.493 0.498 0.486
HPBS 0.134 0.134 0.134 0.134 0.135 0.134 0.134 0.136 0.132
σSV 0.491 0.482 0.487 0.483 0.488 0.484 0.502 0.496 0.486

HPSV 0.132 0.130 0.132 0.131 0.133 0.132 0.137 0.135 0.132

Delta-gamma-sigma hedging
ρ −0.9 −0.5 −0.3 −0.1 0 0.1 0.3 0.5 0.9

σBS 0.336 0.498 0.505 0.481 0.496 0.483 0.452 0.462 0.198
HPBS 0.090 0.134 0.137 0.131 0.135 0.131 0.123 0.126 0.054
σSV 0.139 0.145 0.187 0.153 0.161 0.189 0.220 0.259 0.388

HPSV 0.037 0.039 0.051 0.042 0.044 0.052 0.059 0.071 0.106
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