INTERPRETATION AND ESTIMATION OF DEFAULT CORRELATIONS

Petit Déjeuner de la Finance

Maison des Polytechniciens - Frontières en Finance, 29 Septembre 2004

P. Demey & T. Roncalli

Joint work with D. Kurtz, J-F. Jouanin, A. Quillaud & C. Roget

Groupe de Recherche Opérationnelle Crédit Agricole SA http://gro.creditlyonnais.fr

Agenda

- Motivations
- 1st Case : Default Correlations and Loss distribution of a Credit Book
 - 1. Raroc and credit pricing
 - 2. Credit portfolio management
 - 3. Definition of default correlations
 - 4. MLE of default correlations
- 2nd Case : Default Correlations and Credit Basket Pricing/Hedging
 - 1. Duality between factor models and copula models
 - 2. Default correlations and spread jumps
 - 3. Trac-X implied correlation
 - 4. Implications for CDO pricing

1 Motivations

Correlations = Parameter of the multivariate Normal distribution / Linear dependence between gaussian random variables

 \Rightarrow The second point of view is the reference in finance (regression, factor analysis, etc.)

In asset management, correlations are used to represent the dependence between returns.

Objective: computing risk/return of portfolios.

 \Rightarrow Correlation = a good tool for credit risk modelling ?

Our point of view = Correlation is a mathematical tool to define the loss of credit portfolios (CreditRisk+).

Default correlation \neq dependence between default times (KMV, CreditMetrics).

 \Rightarrow Credit Portfolio Management = Loss distribution of a portfolio (Credit VaR, Risk Contribution, Stress Testing, etc.)

 \Rightarrow Credit Derivatives Pricing/Hedging = Loss distribution of a tranche & Spread dynamics

2 Default Correlations and Loss distribution of a Credit Book

2.1 Raroc and credit pricing Some notations:

$$\begin{array}{c|c} L \\ \mathsf{EL} = \mathbb{E}\left[L\right] \\ \mathsf{UL} \end{array} \begin{array}{c} \mathsf{Loss of a loan or a portfolio} \\ \mathsf{Expected Loss or risk cost} \\ \mathsf{Unexpected Loss} \\ = \mathsf{VaR}\left[L;\alpha\right] - \mathsf{EL} \end{array}$$

Definition of Raroc:

Raroc =
$$\frac{\text{Expected Return}}{\text{Economic Capital}}$$
$$= \frac{\text{PNB} - \text{Cost} - \text{EL}}{\text{UL}}$$

Objective:

Target on Return on Equity \Leftarrow Target on Raroc

Interpretation and Estimation of Default Correlations Default Correlations and Loss distribution of a Credit Book

2.1.1 Ex-Ante Raroc of a loan

Economic Capital = Risk contribution of the loan to the total risk of the portfolio

$Raroc = \frac{Expected Return}{Risk Contribution of the Ioan}$

Problems: What is the target portfolio of the bank ? Given this portfolio, how to calibrate the parameters of the Raroc model ? How to approximate the risk contribution when the credit is well modelled (ex-ante raroc) ?

2.1.2 An example with an infinitely fine-grained portfolio

and a one factor model

Let $UL = VaR[L; \alpha] - EL$. If the portfolio is infinitely fine-grained, we have $RC_i = \mathbb{E}[L_i | L = EL + UL] - \mathbb{E}[L_i]$. We consider the following proxy $UL^* = k \times \sigma(L)$. Because we have:

$$\sigma(L) = \sum_{i} \sigma(L_{i}) \frac{\operatorname{cov}(L, L_{i})}{\sigma(L) \sigma(L_{i})} = \sum_{i} f_{i} \times \sigma(L_{i})$$

we deduce that a proxy of the risk contribution is $RC_i^* = k \times f_i \times \sigma(L_i)$. f_i is called the diversification factor, because it depends on the dependence structure of the portfolio. In the case of one-factor model and an homogeneous portfolio, we obtain:

$$f = \sqrt{\frac{C(PD, PD; \rho) - PD^2}{\frac{\sigma^2[LGD]}{\mathbb{E}^2[LGD]}PD + (PD - PD^2)}}$$

 \Rightarrow f depends on the default correlation ρ .

Interpretation and Estimation of Default Correlations Default Correlations and Loss distribution of a Credit Book

2.2 Credit Portfolio Management

 \Rightarrow Moving the original portfolio to obtain the target portfolio

- the original portfolio without management is generally concentrated (either at a name, industry or geography level, etc.)
- the target portfolio is generally an infinitely fine-grained portfolio which has some other good properties (= optimise the capital)

Dis-investment / Re-investment

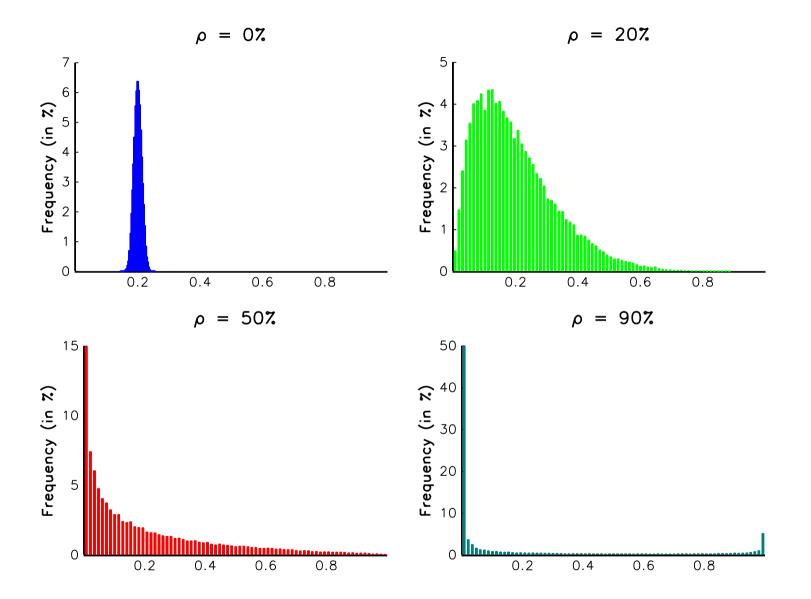
- Single-name hedges (CDS) / Multi-name hedges (F2D, CDO)
- Securitisations (CBO)
- Investment opportunities (CDS / CDO)
- \Rightarrow CPM needs default correlations.

2.3 Definition of default correlations

- Default time correlation $\rho(\tau_1, \tau_2)$
- Default event correlations $\rho(1 \{\tau_1 \leq t_1\}, 1 \{\tau_2 \leq t_2\})$
- Spread jumps $s_1(t_1 | \tau_2 = t_2, \tau_1 \ge t_2)$
- Asset / Equity correlations
- \Rightarrow How to calibrate correlations needed by CPM ?

In the target portfolio, the credit risk is principally a risk on default rates.

probability of default ⇔ mean of default rates
default correlations ⇔ volatility of default rates



2.4 Data

- History of annual default rates by risk class
- Risk classes are typically industrial sectors, rating grades, geographical zones, ...

For example : S&P provides this data, between 1980 and 2002 by industrial sector and by rating.

2.5 The model

- Merton model : obligor n defaults if and only if $Z_n \leq B_n$.
- The latent variable Z_n is gaussian
- Homogeneity of risk classes : $B^n = B^c$
- Within a given class of risk the correlation between two firms is constant, that is:

$$\rho_{m,n} = \rho_c, \quad \forall m, n \in c$$

 Given any pair of risk classes (c, d) there is a unique correlation between any couple of firms (m, n) belonging to each class, that is:

$$\rho_{m,n} = \rho_{c,d}, \quad \forall m \in c, n \in d$$

Let's define

$$\Sigma = \begin{pmatrix} \rho_1 & \rho_{1,2} & \dots & \rho_{1,C} \\ \rho_{2,1} & \rho_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \rho_{C-1,C} \\ \rho_{C,1} & \dots & \rho_{C,C-1} & \rho_C \end{pmatrix}$$

then we can rewrite Z_n as a linear function of F factors X_f (with $A^{\top}A = \Sigma$)

$$Z_n = \sum_{f=1}^F A_{f,c} X_f + \sqrt{1 - \rho_c} \varepsilon_n, \quad n \in c$$

2.6 MLE of default correlations

The number of default in risk class $D^c \mid X = \mathbf{x} \sim \mathcal{B}(n_t^c; P_c(\mathbf{x}))$. The default probability conditionally to the factors \mathbf{X} is:

$$P_c(\mathbf{x}) = \Phi\left(\frac{B^c - \sum_{f=1}^F A_{f,c} x_f}{\sqrt{1 - \rho_c}}\right)$$

The unconditional log-likelihood is then:

$$\ell_{t}(\theta) = \ln \int \cdots \int_{\mathbb{R}^{F}} \prod_{c=1}^{C} \operatorname{Bin}_{c,t}(\mathbf{x}) \, \mathrm{d}\Phi(\mathbf{x})$$

with:

$$\operatorname{Bin}_{c,t}(\mathbf{x}) = \binom{n_t^c}{d_t^c} P_c(\mathbf{x})^{d_t^c} (1 - P_c(\mathbf{x}))^{n_t^c - d_t^c}$$

 \Rightarrow The loglikelihood is not tractable (in particular when C increases), due to the multi-dimensional integration.

2.7 Constrained Model

$$\Sigma = \begin{pmatrix} \rho_1 & \rho & \dots & \rho \\ \rho & \rho_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \rho \\ \rho & \dots & \rho & \rho_C \end{pmatrix}$$

$$Z_n = \sqrt{\rho}X + \sqrt{\rho_c - \rho}X_c + \sqrt{1 - \rho_c}\varepsilon_n$$

Interpretation : Z_n is explained by a common factor X and by a specific factor X_c depending on the risk class.

Why : robustness of estimation; this assumption seems intuitive

$$P_c(x, x_c) = \Phi\left(\frac{B^c - \sqrt{\rho}x - \sqrt{\rho_c - \rho}x_c}{\sqrt{1 - \rho_c}}\right)$$

Interpretation and Estimation of Default Correlations Default Correlations and Loss distribution of a Credit Book The conditional likelihood is first computed and then integrated successively on the distribution of each sectorial factor and on the distribution of the common factor:

$$\ell_t(\theta) = \ln \int_{\mathbb{R}} \left(\prod_{c=1}^C \int_{\mathbb{R}} \operatorname{Bin}_{c,t}(x, x_c) \, \mathrm{d}\Phi(x_c) \right) \, \mathrm{d}\Phi(x)$$

This is the 'binomial' MLE.

2.7.2 Asymptotic MLE

Let $\mu_t^c = \frac{d_t^c}{n_t^c}$ be the default rate at time t in class c.

$$\mu_t^c \mid X = \mathbf{x}, X_c = x_c \to P(x, x_c)$$

The loglikelihood function is then:

$$\ell_t(\theta) = \ln \int_0^1 \prod_{c=1}^C \phi(f(y)) \frac{\sqrt{1-\rho_c}}{\sqrt{\rho_c - \rho}} \frac{1}{\phi\left(\Phi^{-1}(\mu_t^c)\right)} \,\mathrm{d}y$$

with:

$$f(y) = \frac{B^{c} - \sqrt{1 - \rho_{c}} \Phi^{-1}(\mu_{t}^{c}) - \sqrt{\rho} \Phi^{-1}(y)}{\sqrt{\rho_{c} - \rho}}$$

Interpretation and Estimation of Default Correlations Default Correlations and Loss distribution of a Credit Book

2.8 Monte Carlo simulations

Single-factor T = 20 years, number of firms $n_t = N = 200$, homogeneous class (PD = 200 bp), $\rho = 25\%$

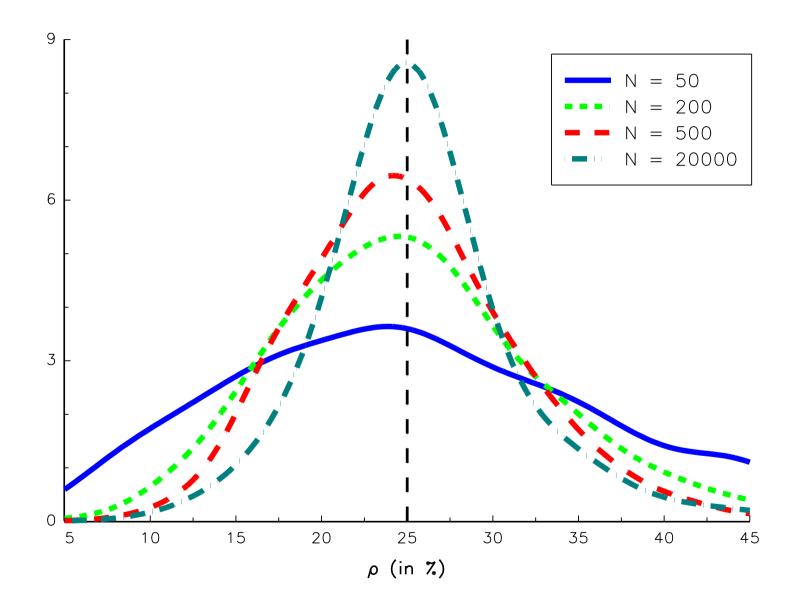
- MLE1: full information estimator ($B = \Phi^{-1}$ (PD) is known)
- MLE2: limited information estimator (*B* is estimated)

	Asymptotic		Binc	omial			
Statistics (in %)	MLE1	MLE2	MLE1	MLE2			
mean	23.7	22.5	25.2	23.6			
std error	5.8	7.2	7.6	8.5			
Statistics of the estimates (PD = 200 bp)							

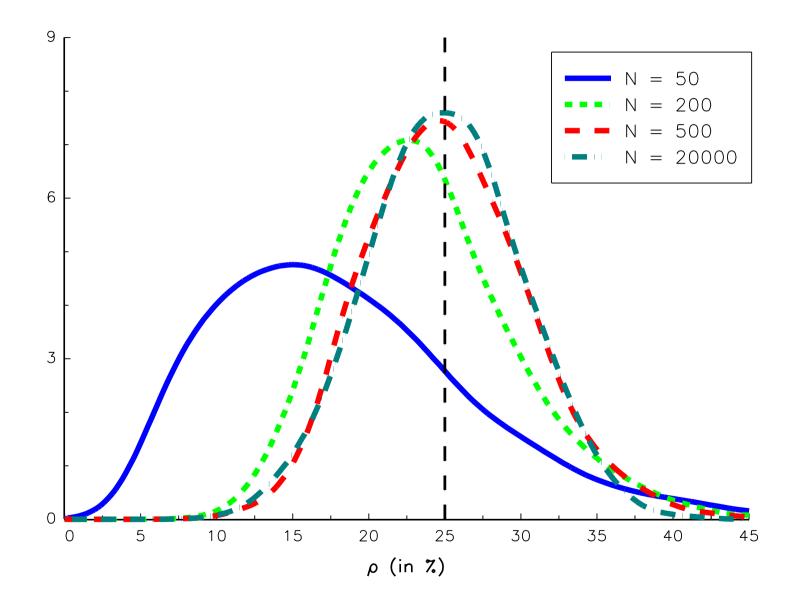
- \Rightarrow Bias for Asymptotic estimators
- \Rightarrow Downward bias for MLE2
- \Rightarrow Standard error is important

Interpretation and Estimation of Default Correlations Default Correlations and Loss distribution of a Credit Book

Impact of \boldsymbol{N} on binomial MLE



Impact of \boldsymbol{N} on asymptotic MLE



Two risk classes

$$\Sigma = \begin{pmatrix} \rho_1 & \rho \\ \rho & \rho_2 \end{pmatrix} = \begin{pmatrix} 20\% & 7\% \\ 7\% & 10\% \end{pmatrix}$$

Statistics	Asymptotic			Binomial		
(in %)	$ ho_1$	$ ho_2$	ho	$ ho_1$	$ ho_2$	ho
mean				19.9		
std error	4.8	3.1	3.1	6.4	4.3	3.7
Statistics of the estimates (PD = 200 bp)						

Remark 1 The bias seems lower than in the one risk class experiment.

2.9 Estimation using S&P data

			two-factor		Single-	factor
	$ar{N}_c$	$ar{\mu}_c$	Asymp.	Bin.	Asymp.	Bin.
Aerospace / Automobile	301	2.08%	13.3%	13.9%	13.7%	11.6%
Consumer / Service sector	355	2.37%	12.2%	10.6%	12.2%	8.9%
Energy / Natural ressources	177	2.10%	23.2%	25.5%	16.2%	14.5%
Financial institutions	424	0.57%	17.0%	16.4%	12.0%	9.5%
Forest / Building products	282	1.90%	18.1%	18.8%	28.6%	31.5%
Health	135	1.27%	12.9%	10.6%	13.1%	13.2%
High technology	131	1.66%	15.0%	16.4%	12.9%	10.6%
Insurance	166	0.61%	26.3%	34.3%	13.6%	17.8%
Leisure time / Media	232	3.01%	13.8%	9.4%	17.2%	12.0%
Real estate	133	1.01%	43.2%	52.4%	48.7%	53.0%
Telecoms	100	1.91%	22.9%	29.1%	27.0%	34.0%
Transportation	146	2.02%	17.7%	11.1%	12.8%	10.4%
Utilities	206	0.43%	14.4%	18.7%	10.4%	17.5%
Inter-sector			7.2%	9.4%	\checkmark	\checkmark

Conclusion

- we extend the study of Gordy and Heitfield (2002)
- we apply our methodology to S&P data
- there is a downward bias that one could try to correct

Application to Stress-Testing

 \Rightarrow Pillar II.

3 Default Correlations and Credit Basket Pricing/Hedging

3.1 Duality between factor models and copula models

Let $Z_i = \sqrt{\rho}X + \sqrt{1 - \rho}\varepsilon_i$ be a latent variable with X the common factor and ε_i the specific factor. We have

$$D_i(t) = 1 \Leftrightarrow Z_i < B_i = \Phi^{-1}(\mathsf{PD}_i(t))$$

Let $\Sigma = C(\rho)$ be the constant correlation matrix. We have

$$S(t_1, ..., t_I) = \Pr \{ \tau_1 > t_1, ..., \tau_I > t_I \}$$

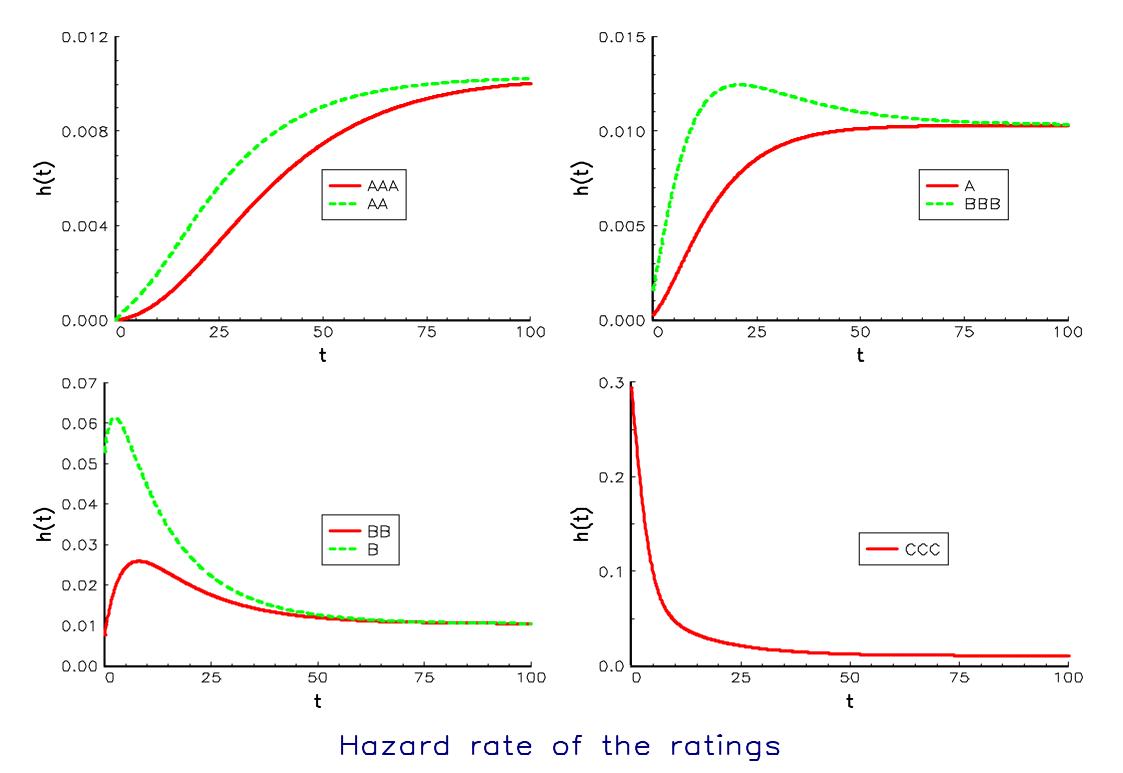
= $\Pr \{ Z_1 > \Phi^{-1} (\Pr D_1(t_1)), ..., Z_I > \Phi^{-1} (\Pr D_I(t_I)) \}$
= $C (1 - \Pr D_1(t_1), ..., 1 - \Pr D_I(t_I); \Sigma)$
= $C (S_1(t_1), ..., S_I(t_I); \Sigma)$

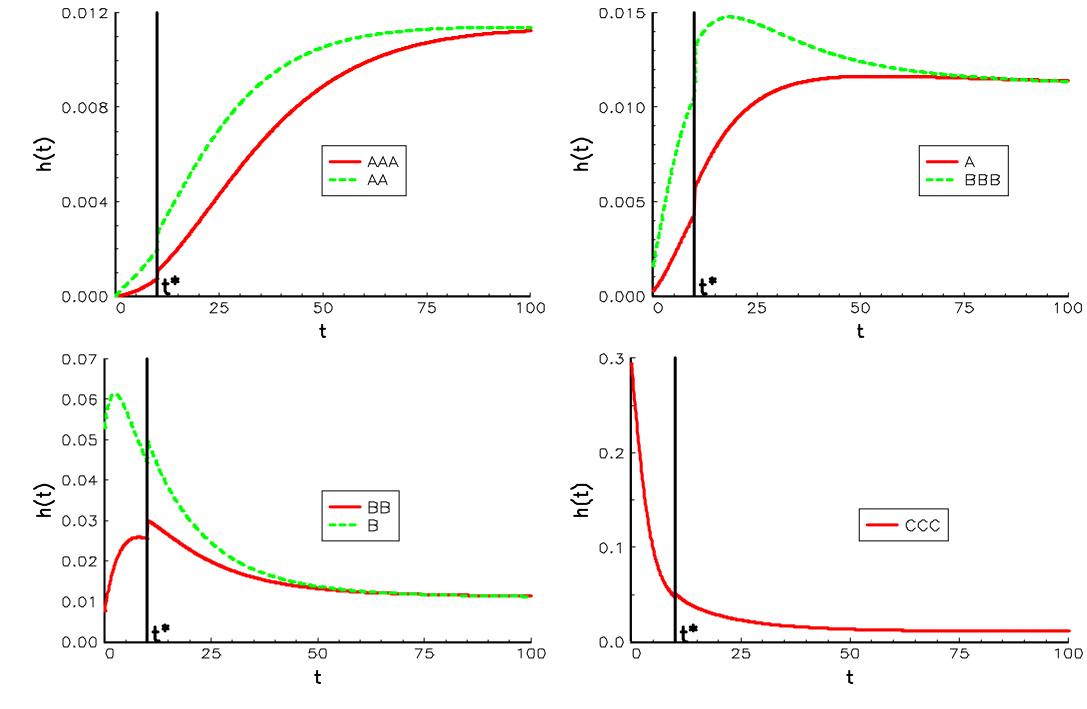
where \mathbf{C} is the Normal copula.

Remark 2 Let τ_1 et τ_2 be two default times with the joint survival function $\mathbf{S}(t_1, t_2) = \breve{C}(\mathbf{S}_1(t_1), \mathbf{S}_2(t_2))$. We have $\mathbf{S}_1(t \mid \tau_2 = t^*) = \partial_2 \breve{C}(\mathbf{S}_1(t), \mathbf{S}_2(t^*))$. If $\mathbf{C} \neq \mathbf{C}^{\perp}$, default probability of one firm changes when the other has defaulted.

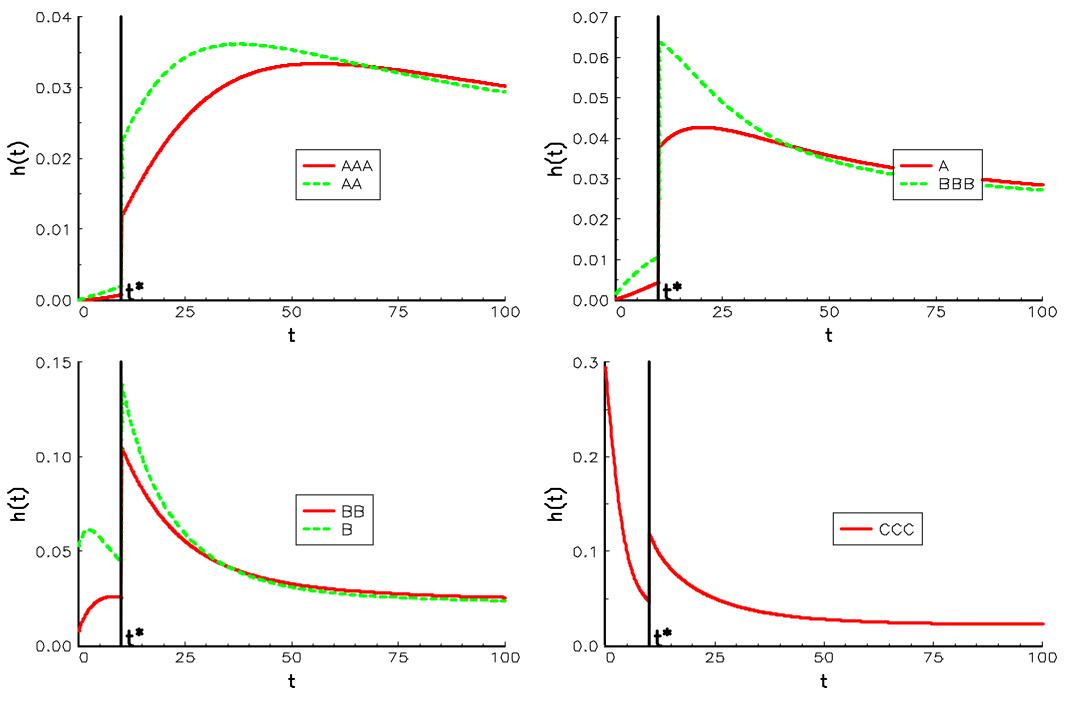
Example 1 The next figures show jumps of the hazard function $\lambda(t) = f(t)/S(t)$ of the annual S&P transition matrix. With a Normal copula and $\Sigma = C_I(\rho)$, we have

$$\mathbf{S}_{1}(t \mid \tau_{2} = t^{*}) = \Phi\left(\frac{\Phi^{-1}(\mathbf{S}_{1}(t)) - \rho\Phi^{-1}(\mathbf{S}_{2}(t^{*}))}{\sqrt{1 - \rho^{2}}}\right)$$

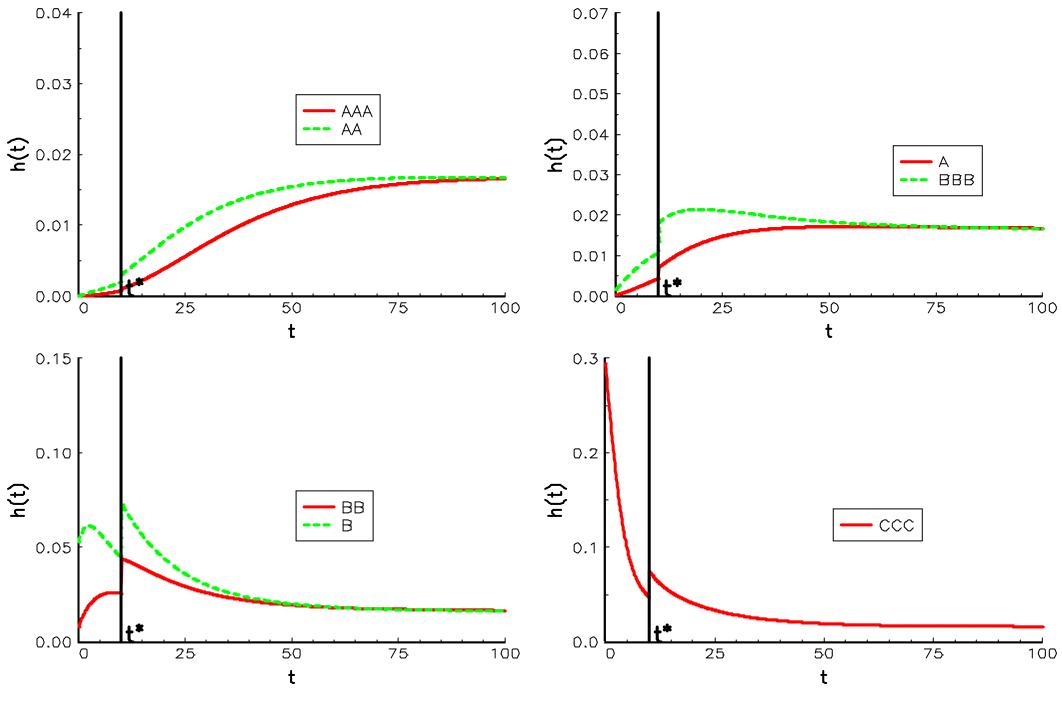




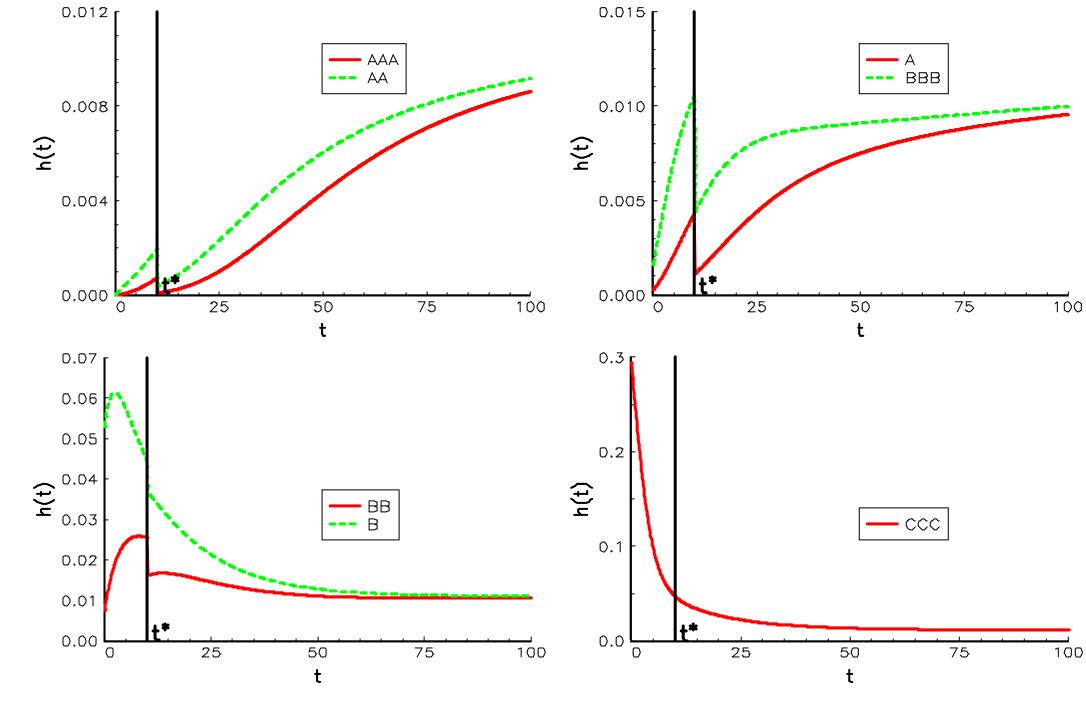
A firm rated AAA defaults - $\rho = 5\%$



A firm rated AAA defaults – $\rho = 50\%$



A firm rated BB defaults - $\rho = 50\%$



A firm rated CCC defaults $-\rho = 50\%$

3.2 Default correlations and spread jumps

We assume an exponential default model with intensity λ . Let s and R be the spread of the CDS and the recovery rate. We have

 $s = \lambda \left(1 - R \right)$

It comes that the default probability is

$$PD(t) = 1 - \exp\left(-\frac{s}{1-R}t\right)$$

The conditional probability of the first name given that the second name has defaulted at time t^* is then

$$\mathsf{PD}_{1}(t \mid \tau_{2} = t^{\star}) = \partial_{2} C(\mathsf{PD}_{1}(t), \mathsf{PD}_{2}(t^{\star})) \qquad (t \ge t^{\star})$$

we deduce that the spread of the first name after the default of the second name becomes

$$s_1(t \mid \tau_2 = t^*, \tau_1 \ge t^*) = -\frac{(1 - R_1)}{(t - t^*)} \ln \left(1 - \mathsf{PD}_1(t \mid \tau_2 = t^*, \tau_1 \ge t^*)\right)$$

Correlation implied to Ahold default

		Start	Wide	Jump	Correlatio	on implied
	Recovery	28/10/2002	28/02/2003		Normal	T4
AHOLD	40%	235	1205	970		
CASINO	40%	235	152	-83	-8	-48
SAINSBURY	40%	48	95	47	12	-31
CARREFOUR	40%	60	47	-13	-4	-52
KROGER	40%	127,5	108	-19,5	-3	-47
SAFEWAY	40%	66,5	145	78,5	15	-27

		Start	Wide	Jump	Correlatio	on implied
	Recovery	20/02/2003	28/02/2003		Normal	T4
AHOLD	40%	195	1205	1010		
CASINO	40%	135	160	25	-7	-79
SAINSBURY	40%	68	95	27	3	-76
CARREFOUR	40%	43	47	4	1	-80
KROGER	40%	90	95	5	1	-78
SAFEWAY	40%	195	145	-50	-3	-78

Correlation implied to Worldcom default

		Start	Wide	Jump	Correlatio	on implied
	Recovery	05/07/2001	01/05/2002		Normal	T4
WORLDCOM	15%	165	1700	1535		
TELECOMI	15%	165	130	-35	-5	-41
TELEFONI	15%	95	80	-15	-3	-43
BELLSOUT	15%	47	75	28	9	-31
BRITELEC	15%	105	105	0	0	-39
MOTOROLA	15%	285	300	15	1	-29
ATTCORP	15%	110	600	490	45	19
TELECOM	15%	185	345	160	15	-16

Correlation implied to TXU Corp. default

		Start	Wide	Jump	Correlatio	on implied
	Recovery	13/08/2002	10/10/2002		Normal	T4
TXU Corp.	40%	450	1250	800		
SEMPRA	40%	275	400	125	7	-33
DUKEENER	40%	170	225	55	5	-39
VIVENENV	40%	170	152,5	-17,5	-2	-48
SUEZ	40%	105	130	25	4	-43
AMELECPO	40%	380	925	545	20	-15
RWEAG	40%	67	98	31	6	-41
ENEL	40%	68	87	19	4	-44

3.3 Trac-X implied correlation <u>Model</u> : $Z_i = \beta X + \sqrt{1 - \beta^2} \varepsilon_i$. $\Rightarrow \beta = \sqrt{\rho}$.

Expectation of losses (5Y maturity)

Value of the floating leg (5Y maturity)

Implied correlation

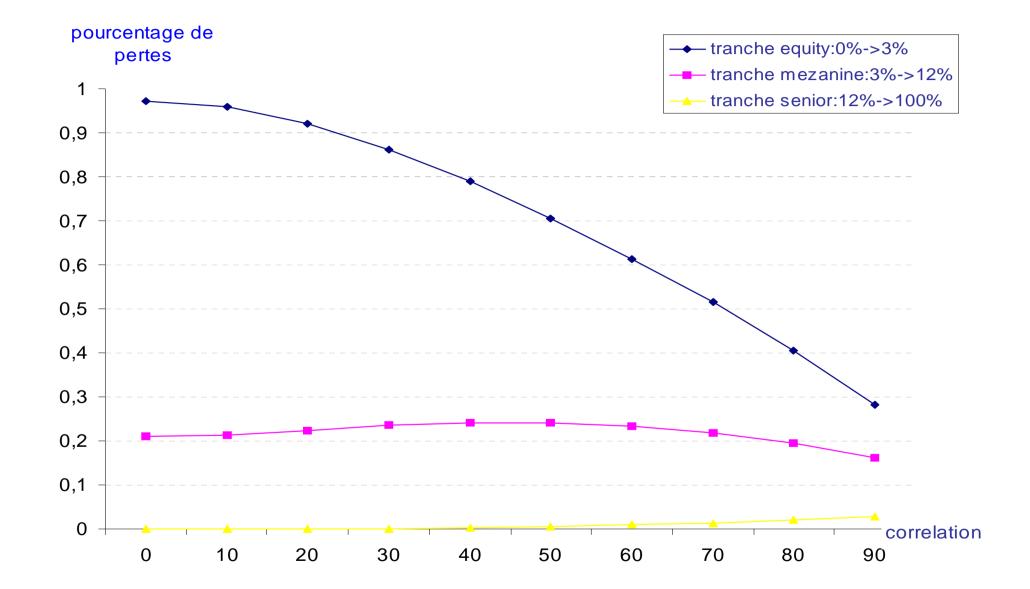
Attachment points: $0 = A_0 < A_1 < \dots < A_M \leq 1$

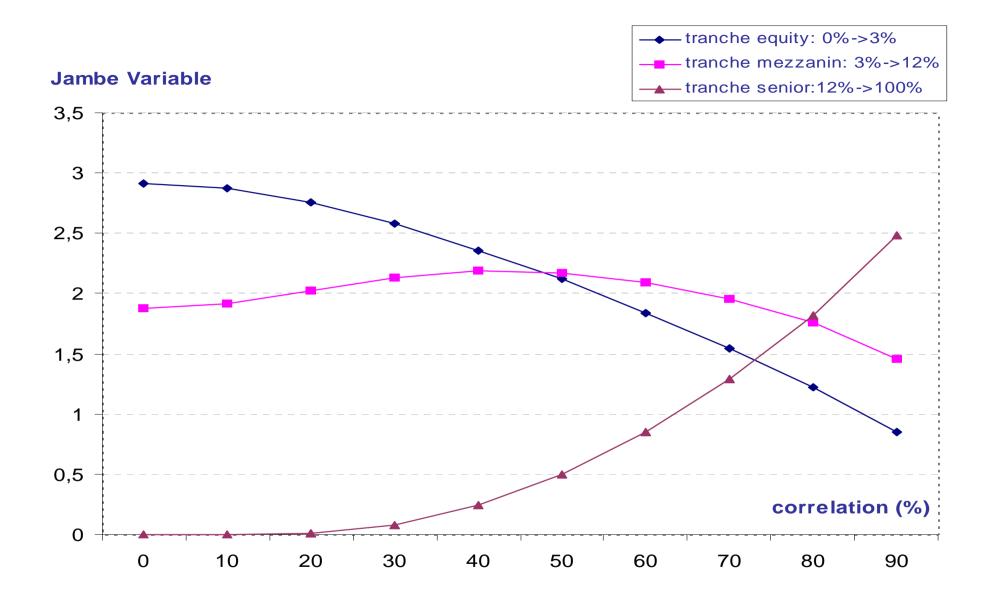
Marked spread: $s(A_{i-1}, A_i)^{obs}$ for the tranche $[A_{i-1}, A_i]$

The implied correlation for the tranche $[A_{i-1}, A_i]$ verify:

$$\forall i \neq 1, \ s(A_{i-1}, A_i, \rho(A_{i-1}, A_i)) = s(A_{i-1}, A_i)^{obs},$$

(correction for the equity tranche because of upfront payment)





Example: Trac-X Euro 02/06/2004.

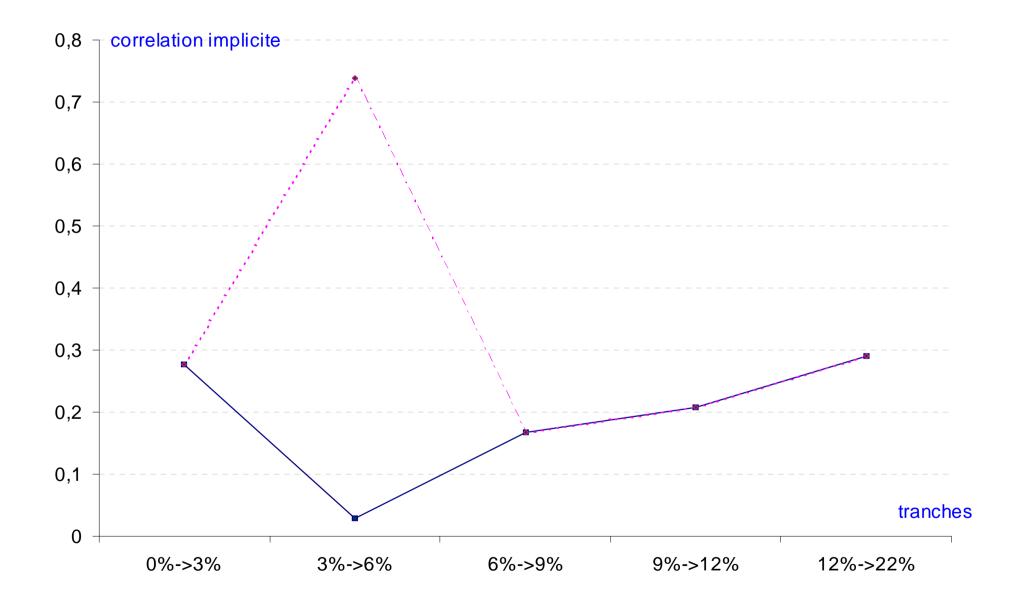
A	В	Upfront payment	Running spread (bp)
0%	3%	34%	500
3%	6%		279
6%	9%		114
9%	12%		58
12%	22%		23

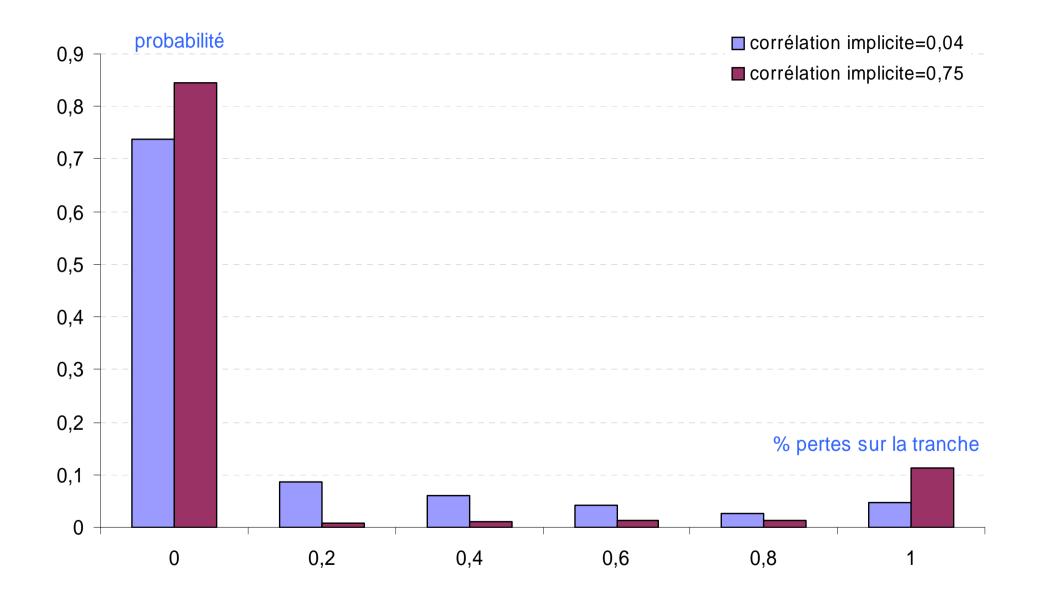
Implied correlation of Trac-X

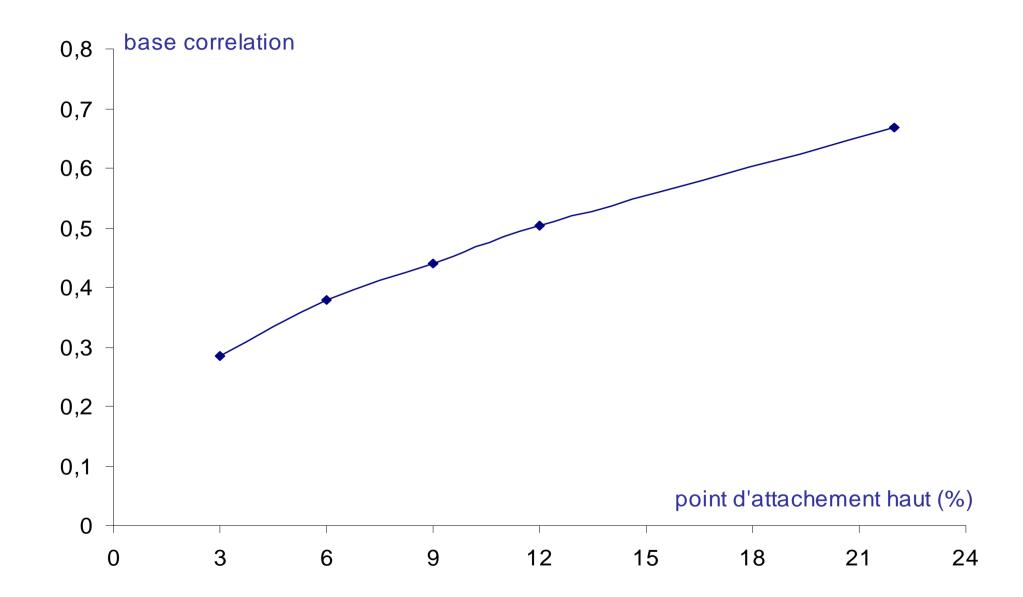
Loss distribution for the second tranche

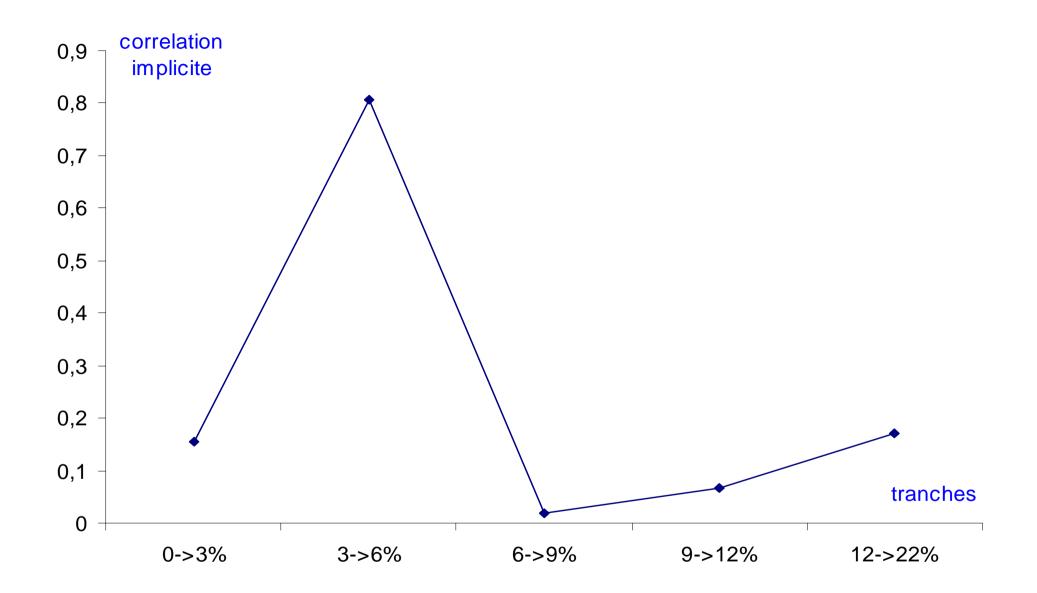
Base correlation of Trac-X

Implied correlation of Trac-X (T9 copula)





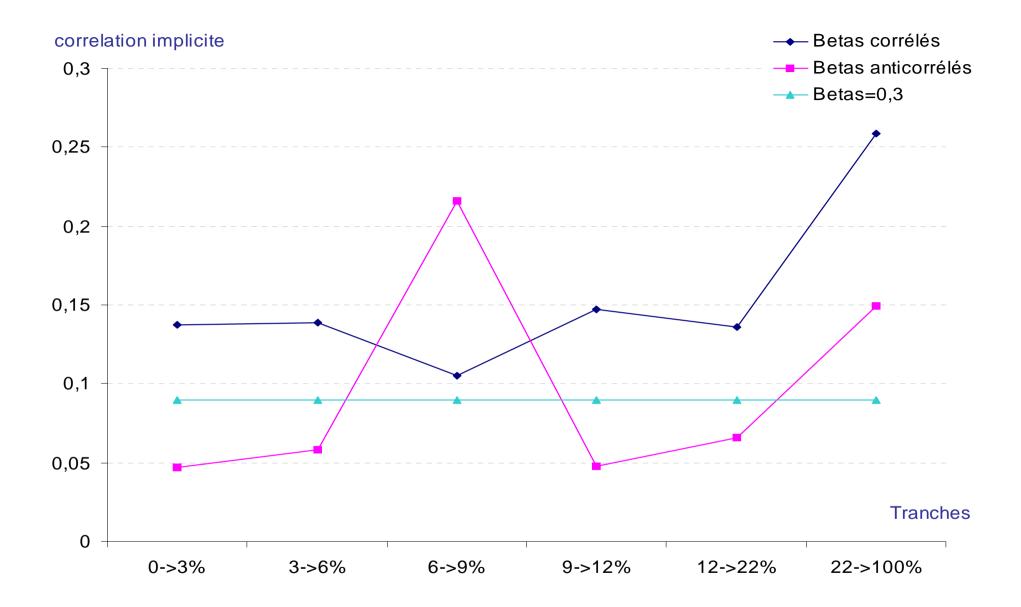




Gaussian factors with three types of names (spread = 50 bp, 150 bp and 250 bp).

Three structures of correlation :

$$\Sigma_{1} = \begin{pmatrix} 1 & 0.3^{2} & 0.3^{2} \\ 0.3^{2} & 1 & 0.3^{2} \\ 0.3^{2} & 0.3^{2} & 1 \end{pmatrix}, \ \Sigma_{2} = \begin{pmatrix} 1 & 0.1 \times 0.3 & 0.1 \times 0.5 \\ 0.1 \times 0.3 & 1 & 0.3 \times 0.5 \\ 0.1 \times 0.5 & 0.3 \times 0.5 & 1 \end{pmatrix}$$
$$\Sigma_{3} = \begin{pmatrix} 1 & 0.5 \times 0.3 & 0.1 \times 0.5 \\ 0.5 \times 0.3 & 1 & 0.3 \times 0.1 \\ 0.1 \times 0.5 & 0.3 \times 0.1 & 1 \end{pmatrix}$$

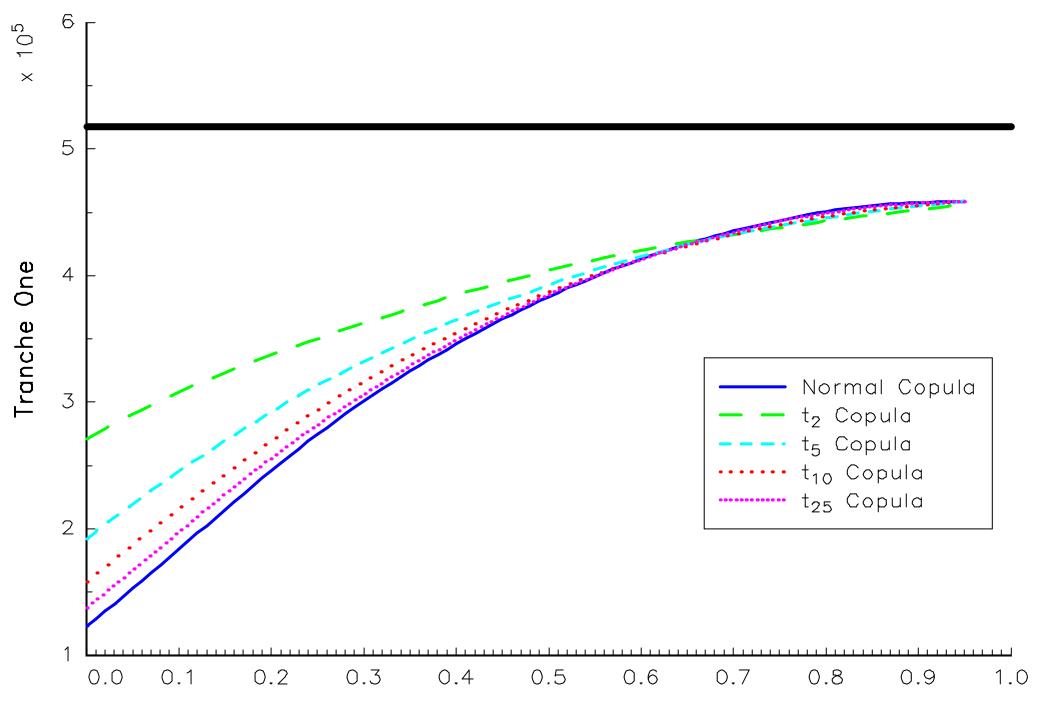


3.4 Implications for CDO pricing

Implied correlation = not useful for CDO pricing.

Implied correlation of CDO \neq Implied correlation of spread of two equity indices

A new dimension = TRAC-X PORTFOLIO. What is the meaning of implied correlation ? \Rightarrow the mathematical root of an equation



ρ