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Abstract

In this article, we analyze the impact of weights constraints in portfolio theory using
the seminal work of Jagannathan and Ma (2003). They show that solving the global
minimum variance portfolio problem with some constraints on weights is equivalent
to use a shrinkage estimate of the covariance matrix. These results may be easily
extended to mean variance and tangency portfolios. From a financial point of view, the
shrinkage estimate of the covariance matrix may be interpreted as an implied covariance
matrix of the portfolio manager. Using the universe of the DJ Eurostoxx 50, we study
the impact of weights constraints on the global minimum variance portfolio and the
tangency portfolio. We illustrate how imposing lower and upper bounds on weights
modify some properties of the empirical covariance matrix. Finally, we draw some
conclusions in the light of recent developments in the asset management industry.

Keywords: Global minimum variance portfolio, Markowitz optimization, tangency portfo-
lio, Lagrange coefficients, shrinkage methods, covariance matrix.
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1 Introduction
We consider a universe of n assets. We denote by µ the vector of their expected returns
and by Σ the corresponding covariance matrix. Let us specify the Markowitz problem in
the following way:

min
1
2
w>Σw

u.c.
{

1>w = 1
w ∈ Ω

⋂ C (1)

where w is the vector of weights in the portfolio and Ω is the search space. For example,
if Ω = Rn, the optimisation problem defines the global minimum variance portfolio. if

∗I am grateful to Ghislain Yanou (University of Paris-1, UG5/CES/CNRS) who has participated to an
internal seminar in Lyxor Asset Management and has introduced me to the work of Jagannathan and Ma
(2003).
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Ω =
{
w ∈ Rn : µ>w ≥ µ?

}
, we obtain the efficient portfolio where µ? is the desired expected

return of the investor. The tangency portfolio is the efficient portfolio which maximizes the
Sharpe ratio. C is the set of weights constraints. We consider two definitions of C:

1. C is equal to Rn. In this case, the solution is unconstrained and we note it w? or
w? (µ, Σ).

2. We may impose some bounds w−i ≤ wi ≤ w+
i on the weight of the asset i. In this

case, we note C = C (w−, w+) and we define w̃ as the solution of the corresponding
optimisation problem.

The idea of this paper is to analyse the impact of constraints C (w−, w+) on the discrep-
ancy between w? and w̃. Following Jagannathan and Ma (2003), we may show that the
constrained solution may be obtained by solving the unconstrained problem with another
specification of µ and Σ. We have also:

w̃ = w?
(
µ̃, Σ̃

)

where µ̃ and Σ̃ are perturbations of the original vector of expected returns µ and the original
covariance matrix Σ. Traditionally, the impacts of weights constraints are analysed by
studying the difference between w? and w̃. In this paper, we analyse these impacts by
studying the difference between the implied parameters µ̃ and Σ̃ and the original parameters
µ and Σ.

The paper is organized as follows. In section two, we review the main results of Jagan-
nathan and Ma (2003) and we illustrate these results with an example. In section three,
we consider an empirical application on the DJ Eurostoxx 50 universe. We focus on the
global minimum variance portfolio and the tangency portfolio, because Demey et al. (2010)
has shown that restrictive constraints on weights should be imposed for these methods in
order to avoid extreme concentration in optimized portfolios. We illustrate how these con-
straints impact the covariance matrix, in terms of volatilities, correlations and risk factors.
Finally, section 4 draws some conclusions in the light of recent developments in the asset
management industry.

2 The effects of constraints in portfolio theory
In this section, we review the main results of Jagannathan and Ma (2003) for three portfolio
optimisation problems (global minimum variance portfolio, mean variance portfolio and
tangency portfolio). We illustrate each problem with the same generic example of 4 assets
and the covariance matrix given in Table 1.

Table 1: Specification of the covariance matrix Σ (in %)

σi ρi,j

15.00 100.00
20.00 10.00 100.00
25.00 40.00 70.00 100.00
30.00 50.00 40.00 80.00 100.00
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2.1 The global minimum variance portfolio

2.1.1 Analytics of the solution

The global minimum variance portfolio corresponds to the solution of the optimisation prob-
lem (1) when Ω = Rn and C = Rn. We define the Lagrange function as:

f (w;λ0) =
1
2
w>Σw − λ0

(
1>w − 1

)

with λ0 ≥ 0. The first order conditions are:
{

Σw − λ01 = 0
1>w − 1 = 0

We deduce that the optimal solution is:

w? =
1

1>Σ1
Σ−11

This solution depends only on the covariance matrix Σ and we note w? = w? (Σ).

If we impose now the weights constraints C (w−, w+), the Lagrange function becomes:

f
(
w;λ0, λ

−, λ+
)

=
1
2
w>Σw − λ0

(
1>w − 1

)−

λ−
> (

w − w−
)− λ+> (

w+ − w
)

with λ0 ≥ 0, λ−i ≥ 0 and λ+
i ≥ 0. In this case, the Kuhn-Tucker conditions are:





Σw − λ01− λ− + λ+ = 0
1>w − 1 = 0
min

(
λ−i , wi − w−i

)
= 0

min
(
λ+

i , w+
i − wi

)
= 0

It is not possible to obtain an analytic solution but we may numerically solve the optimisation
problem using a quadratic programming algorithm.

2.1.2 An implied covariance matrix

Given a constrained portfolio w̃, it is possible to find a covariance matrix Σ̃ such that w̃

is the solution of the global minimum variance portfolio. Let E =
{

Σ̃ > 0 : w̃ = w?
(
Σ̃

)}

denotes the corresponding set. We have:

E =
{

Σ̃ > 0 :
(
1>Σ̃1

)
· Σ̃w̃ = 1

}

Of course, the set E contains several solutions. From a financial point of view, we are
interested to covariance matrices Σ̃ which are closed to Σ. Jagannathan and Ma (2003)
remark that the matrix Σ̃ defined by:

Σ̃ = Σ +
(
λ+ − λ−

)
1> + 1

(
λ+ − λ−

)> (2)
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is a solution of E . It is easy to show that Σ̃ is a positive definite matrix and we have:

Σ̃w̃ = Σw̃ +
(
λ+ − λ−

)
1>w̃ + 1

(
λ+ − λ−

)>
w̃

= Σw̃ +
(
λ+ − λ−

)
+ 1

(
λ+ − λ−

)>
w̃

= λ01 + 1 (λ01−Σw̃)> w̃

=
(
2λ0 − w̃>Σw̃

)
1

Because Σ̃w̃ is a constant vector, it proves that w̃ is the solution of the unconstrained
optimisation problem1.

The implied covariance matrix defined by the equation (2) is very interesting for two
points:

• This implied covariance matrix is easy to compute when we has solved the constrained
optimisation problem, because it only requires the computation of the Lagrange coef-
ficients.

• This implied covariance matrix has a natural interpretation. Indeed, we have:

Σ̃i,j = Σi,j + ∆i,j

where the elements of the perturbation matrix are:

(∆)i,j w−i
]
w−i , w+

i

[
w+

i

w−j − (
λ−i + λ−j

) −λ−j λ+
i − λ−j]

w−j , w+
j

[ −λ−i 0 λ+
i

w+
j λ+

j − λ−i λ+
j λ+

i + λ+
j

The perturbation ∆i,j may be negative, nul or positive. It is nul when the optimized
weights do not reach the constraints w̃i 6=

(
w−i , w+

i

)
and w̃j 6=

(
w−j , w+

j

)
. It is positive

(resp. negative) when one asset reaches its upper (resp. lower) bound whereas the
second asset does not reach its lower (resp. upper) bound. Introducing weights con-
straints is also equivalent to apply a shrinkage method to the covariance matrix (Ledoit
and Wolf, 2003). Lower bounds have a negative impact on the volatility whereas upper
bounds have a positive impact on the volatility:

σ̃i =
√

σ2
i + ∆i,i

The impact on the correlation coefficient is more complex. In the general case, we
have:

ρ̃i,j =
ρi,jσiσj + ∆i,j√

(σ2
i + ∆i,i)

(
σ2

j + ∆j,j

)

The correlation may increase or decrease depending on the magnitude of the Lagrange
coefficients with respect to the parameters ρi,j , σi and σj .

1The lagrange coefficient λ?
0 for the unconstrained problem is 2λ̃0 − w̃>Σw̃ where λ̃0 is the Lagrange

coefficient for the constrained problem.
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2.1.3 An illustrative example

Let us consider the universe of 4 assets with the covariance matrix specified in Table 1.
Given these parameters, the global minimum variance portfolio is equal to:

w? =




72.742%
49.464%

−20.454%
−1.753%




In this portfolio, we have two long positions on the first and second assets and two short
positions on the third and four assets. Suppose now that we impose a no short-selling
constraint. All the results (in %) are reported in Table 2. In the constrained optimized
portfolio, the weights of the third and fourth assets are set to zero. Imposing the constraints
wi ≥ 0 implies also to decrease the volatility of these two assets. Indeed, the implied
volatility σ̃i of the third asset is equal to 22.4% whereas its volatility σi is equal to 25%.
Concerning the correlations, we notice that they are lower than the original ones, but the
difference is small.

Table 2: Global minimum variance portfolio when wi ≥ 0

w̃i λ−i λ+
i σ̃i ρ̃i,j

65.487 0.000 0.000 15.000 100.000
34.513 0.000 0.000 20.000 10.000 100.000
0.000 0.613 0.000 22.413 26.375 64.398 100.000
0.000 0.725 0.000 27.478 37.005 30.483 75.697 100.000

In Table 3 and 4, we report the results when the lower bound is respectively 10% and
20%. It is interesting to notice that the ranking of volatilities is not preserved. Finally,
we illustrate in Table 4 the case when both lower and upper bounds are imposed. In the
previous results, we observe a decrease of volatilities and correlations. In Table 4, the effect
is more complex and correlations may increase and decrease.

Table 3: Global minimum variance portfolio when wi ≥ 10%

w̃i λ−i λ+
i σ̃i ρ̃i,j

56.195 0.000 0.000 15.000 100.000
23.805 0.000 0.000 20.000 10.000 100.000
10.000 1.190 0.000 19.671 10.496 58.709 100.000
10.000 1.625 0.000 23.980 17.378 16.161 67.518 100.000

Table 4: Global minimum variance portfolio when wi ≥ 20%

w̃i λ−i λ+
i σ̃i ρ̃i,j

40.000 0.000 0.000 15.000 100.000
20.000 0.390 0.000 17.944 −3.344 100.000
20.000 2.040 0.000 14.731 −24.438 40.479 100.000
20.000 2.670 0.000 19.131 −14.636 −19.225 45.774 100.000
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Table 5: Global minimum variance portfolio when 0% ≤ wi ≤ 50%

w̃i λ−i λ+
i σ̃i ρ̃i,j

50.000 0.000 1.050 20.857 100.000
50.000 0.000 0.175 20.857 35.057 100.000
0.000 0.175 0.000 24.290 46.881 69.087 100.000
0.000 0.000 0.000 30.000 52.741 41.154 79.937 100.000

2.2 The mean variance portfolio
Let us now consider the problem when we impose to reach an expected return:

µ>w = µ?

Without constraints on bounds, the Lagrange function is:

f (w;λ0, λ1) =
1
2
w>Σw − λ0

(
1>w − 1

)− λ1

(
µ>w − µ?

)

with λ0 ≥ 0 and λ1 ≥ 0. The first order conditions are:




Σw − λ01− λ1µ = 0
1>w − 1 = 0
µ>w − µ? = 0

With constraints on bounds, the Lagrange function becomes:

f
(
w; λ0, λ

−, λ+
)

=
1
2
w>Σw − λ0

(
1>w − 1

)− λ1

(
µ>w − µ?

)−

λ−
> (

w − w−
)− λ+> (

w+ − w
)

with λ0 ≥ 0, λ1 ≥ 0, λ−i ≥ 0 and λ+
i ≥ 0. In this case, the Kuhn-Tucker conditions become:





Σw − λ01− λ1µ− λ− + λ+ = 0
1>w − 1 = 0
min

(
λ−i , wi − w−i

)
= 0

min
(
λ+

i , w+
i − wi

)
= 0

We may show that the constrained portfolio w̃ is the solution of the unbounded optimization
problem:

w̃ = w?
(
µ̃, Σ̃

)

with the following implied expected returns and covariance matrix2:
{

µ̃ = µ

Σ̃ = Σ + (λ+ − λ−)1> + 1 (λ+ − λ−)>

2Indeed, we have:

Σ̃w̃ = Σw̃ +
`
λ+ − λ−

´
1>w̃ + 1

`
λ+ − λ−

´>
w̃

= λ01 + λ1µ + 1 (λ01−Σw̃)> w̃

=
“
2λ0 − w̃>Σw̃ + µ?λ1

”
1 + λ1µ

It proves that w̃ is the solution of the unbounded optimization problem with Lagrange coefficients λ?
0 =

2λ0 − w̃>Σw̃ + µ?λ1 and λ?
1 = λ1.
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We consider the previous example and we assume that expected returns are respectively
5%, 3%, 7% and 7%. In this case, the optimal portfolio for µ? = 6% is w?

1 = 77.120%,
w?

2 = −13.560%, w?
3 = 56.022% and w?

4 = −19.582%. If we impose that the weights are
between 0% and 40%, we obtain results in Table 6. We remark that the correlation between
the first and second assets increases by 30% whereas the other implied correlations are
very close to the original correlations. The underlying idea is to reduce the diversification
component between the first two assets in order to decrease the weight of these two assets
in the portfolio.

Table 6: Mean variance portfolio when 0% ≤ wi ≤ 40% and µ? = 6%

w̃i λ−i λ+
i σ̃i ρ̃i,j

40.000 0.000 1.573 23.227 100.000
5.000 0.000 0.000 20.000 40.308 100.000

40.000 0.000 0.595 27.276 57.888 75.065 100.000
15.000 0.000 0.000 30.000 54.857 40.000 80.595 100.000

2.3 The tangency portfolio
The optimisation problem to solve the tangency portfolio is:

max
(µ− r)> w√

w>Σw

u.c.
{

1>w = 1
w ∈ Ω

⋂ C (3)

With this specification, it is difficult to use the previous framework. Nevertheless, since the
seminal work of Harry Markowitz and because the tangency portfolio belongs to the efficient
frontier, we know that the tangency portfolio is the solution of a quadratic programming
problem. More formally, we have (Roncalli, 2010):

min
1
2
w>Σw − φw>µ

u.c.
{

1>w = 1
w ∈ Ω

⋂ C (4)

Let w? be the tangency portfolio for the unconstrained problem Ω = Rn and w̃ be the
tangency portfolio for the constrained problem with C = C (w−, w+). We have:

w̃ = w?
(
µ̃, Σ̃, φ̃

)

with φ̃ the optimal value of φ for the constrained optimisation program and:
{

µ̃ = µ

Σ̃ = Σ + (λ+ − λ−)1> + 1 (λ+ − λ−)>

Let us consider the special case where all the assets have the same Sharpe ratio (Mar-
tinelli, 2008), that is when expected excess returns are proportional to volatilities. This
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tangency portfolio is known as the MSR portfolio3. Using the previous example, we obtain
results in Table 7. This example is interesting because it illustrates how imposing weights
constraints may modify the underlying assumptions of portfolio theory. In the case of the
MSR portfolio, the central assumption is that all the assets have the same Sharpe ratio.
However, this assumption is only true in the unconstrained problem. If we impose some
weight constraints, it is obvious that this assumption does not hold. The question is how far
is the optimized portfolio from the key assumption. If we consider the optimized portfolio
given in Table 7 and if we assume that the Sharpe ratio is 0.5 for all the assets, the implied
Sharpe ratio does not change for the third and four assets, but is is respectively equal to
0.381 and 0.444 to the first and second assets.

Table 7: MSR portfolio when 0% ≤ wi ≤ 40%

w̃i λ−i λ+
i σ̃i ρ̃i,j

40.000 0.000 0.810 19.672 100.000
40.000 0.000 0.540 22.539 37.213 100.000
0.000 0.000 0.000 25.000 46.970 71.698 100.000

20.000 0.000 0.000 30.000 51.850 43.481 80.000 100.000

3 Empirical results with the Eurostoxx 50 universe

In this section, we consider an application of the previous framework on risk-based indexa-
tion, which is part (with fundamental indexation) of alternative-weighted indexation. Since
some years, capitalization-weighted indexes have faced some criticisms because of their trend-
following style and their lack of risk diversification. The study of Demey et al. (2010) focuses
on four popular risk-based indexation methods: the equally-weighted portfolio (EW), the
ERC portfolio4, the global minimum variance portfolio (MIN) and the MDP/MSR portfolio.
For these two last methods, the authors show that we need to impose weights constraints in
order to limit the portfolio concentration and the turnover. In this section, we consider the
universe of the DJ Euro Stoxx 50 Index from January 1992 to December 2009. The esti-
mated covariance matrix corresponds to the empirical covariance matrix with a one-year lag
window and the portfolio is rebalanced every end of the month. In Figure 1, we report the
Lorenz curve of weights and risk contributions of the different allocation methods as well
as the capitalization method (MCAP). The MIN and MSR portfolios appear to be more
concentrated than the MCAP portfolio. We remark that the maximum weight may reach
respectively 60% and 40%. In average, the MIN portfolio contains 14 stocks whereas the
MSR portfolio contains 19 stocks.

This strong concentration implies that the turnover of the MIN and MSR portfolios
may be high. That explains that these two strategies are implemented with some weights
constraints in practice. For example, if we consider an upper bound of 5%, we obtain results
in Figure 2. These constrained portfolios are more balanced and Demey et al. (2010) show
that the turnover is reduced by a factor of two. In this section, we extend this study in order
to analyze the impact of imposing weights constraints on the implied covariance matrix.

3It is also called the “Most Diversified Portfolio” by Choueifaty and Coignard (2008).
4The ERC portfolio corresponds to the portfolio in which every asset has the same risk contribution

(Maillard et al., 2010)
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Figure 1: Statistics of weights

Figure 2: Statistics of weights with a 5% upper bound
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3.1 Application to the global minimum variance portfolio

As Demey et al. (2010), we consider the weights constraints C (0%, 5%). At each rebalancing
date t, we compute the one-year empirical covariance matrix Σt, we then estimate the
constrained optimized portfolio w̃t and deduce the implied shrinkage covariance matrix Σ̃t.
In Figure 3, we report some results on the volatility. We define the mean and the maximum
of absolute deviations as δσ = 1

n

∑n
i=1 |σ̃i,t − σi,t| and δ+

σ = maxi |σ̃i,t − σi,t|. Generally, δσ

takes a small value. Nevertheless, we observe two periods (Dec-02 to Feb-04 and May-08 to
Dec-09) when the mean of absolute deviations is bigger than 2%. During these periods, we
may observe deviations larger than 10% between implied and original volatilities. In Figure
3, we also report the Kendall τ statistic between the volatilities σ̃t and σt. This statistic
measures the coherency of ranking. Generally, the rank correlation is very high, but there
is one period when it falls below 80%.

Figure 3: Impact (in %) on the volatilities

The impact on the correlations is more important than the impact on the volatilities. In
Figure 4, we report the statistics5 δσ = 2

n(n−1)

∑
i>j |ρ̃i,j,t − ρi,j,t|, δ+

ρ = maxi,j |ρ̃i,j,t − ρi,j,t|
and πρ (x) = 2

n(n−1)

∑
i>j 1 {|ρ̃i,j,t − ρi,j,t| > x}. Moreover, we may observe periods for

which an absolute deviation bigger than 10% may concern more than 30% of the correlations.
As a consequence, we may think that weights constraints may have a significant impact on
the risk factor decomposition of the covariance matrix. To verify this point, we consider a
principal component analysis of the covariance matrices Σt and Σ̃t. Let λj and λ̃j be the
normalized eigenvalues. We report the differences λj − λ̃j in Figure 5. The first risk factor
may be considered as the market risk factor. In average, this risk factor explains 70% of the
variance of the stocks. We notice that weights constraints have a negative impact on this
risk factor. It means that the representation quality of the market risk factor is lower for

5πρ (x) indicates how many absolute deviations are larger than x in mean.

10



Understanding the Impact of Weights Constraints in Portfolio Theory

Figure 4: Impact (in %) on the correlations

Figure 5: Difference λj − λ̃j (in %)
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the implied covariance matrix than for the empirical covariance matrix. In the same time,
the representation quality of the other factors increases as illustrated in Figure 5. This
result is disturbing because the general principle of shrinkage methods is to decrease the
representation quality of the last risk factors in order to reinforce the first risk factors.

3.2 Application to the MSR portfolio
If we consider the MSR portfolio, we obtain similar results but the difference between the
covariance matrix Σt and Σ̃t are generally smaller than for the MIN portfolio6. More in-
teresting is the impact on the Sharpe ratio. In the theory of the MSR portfolio, all the
assets present the same constant Sharpe ratio. But this assumption is not valid in the case
of weights constraints. We report the empirical probability density function of the implied
Sharpe ratio for several dates in Figure 6. We notice that Sharpe ratio varies between
0.30 and 0.60 whereas the theoretical Sharpe ratio is 0.5, and the differences depend of the
rebalancing date.

Figure 6: Density of the implied Sharpe ratio

Remark 1 The differences between the values of the theoretical Sharpe and the implied
Sharpe depends on the number of assets in the universe and the weights constraints. Of
course, we observe more differences when the bounds are tighter. The relationship with the
universe is more complex. Our experience shows that the differences generally increase and
then decrease with the number of assets in average. Nevertheless, with very large universe,
we may find some assets which present outlier implied Sharpe values.

6It is more true for the correlations than for the volatilities.
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4 Conclusion
In this article, we apply the framework of Jagannathan and Ma (2003) to analyse the implied
covariance matrix of the constrained optimisation portfolio. Using an empirical application
on the DJ Eurostoxx 50 universe, we show that weights constraints may modify substantially
the covariance matrix.

Weights constraints are used by (almost) all portfolio managers. However, a few of them
have a critical view on their constraints. Generally, they consider several sets of weights
constraints and show their impact on the optimized portfolio weights. We think that it
may be useful to complete this analysis by studying the impact on the covariance matrix.
When the portfolio manager adds some constraints, he would like to obtain an optimized
portfolio which satisfy his views. Using the previous framework, he may verify that its
weights constraints are compatible with its views7 on volatilities, correlations, risk factors,
Sharpe ratios, etc.

This framework is also useful to analyse some alternative-weighted indexes. Since some
years, we observe a large development of these investments products based on portfolio
theory. Generally, index providers impose some bounds on the portfolio weights in order
to obtain a more robust portfolio with lower turnovers, smaller concentrations, etc. The
approach of Jagannathan and Ma (2003) is a very powerful tool to understand the impact
of the bounds on these index portfolios, in particular when the bounds are sharp.
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