Thierry Roncalli

Introduction to Risk Parity and Budgeting
Introduction

The death of Markowitz optimization?

For a long time, investment theory and practice has been summarized as follows. The capital asset pricing model stated that the market portfolio is optimal. During the 1990s, the development of passive management confirmed the work done by William Sharpe. At that same time, the number of institutional investors grew at an impressive pace. Many of these investors used passive management for their equity and bond exposures. For asset allocation, they used the optimization model developed by Harry Markowitz, even though they knew that such an approach was very sensitive to input parameters, and in particular, to expected returns (Merton, 1980). One reason is that there was no other alternative model. Another reason is that the Markowitz model is easy to use and simple to explain. For expected returns, these investors generally considered long-term historical figures, stating that past history can serve as a reliable guide for the future. Management boards of pension funds were won over by this scientific approach to asset allocation.

The first serious warning shot came with the dot-com crisis. Some institutional investors, in particular defined benefit pension plans, lost substantial amounts of money because of their high exposure to equities (Ryan and Fabozzi, 2002). In November 2001, the pension plan of The Boots Company, a UK pharmacy retailer, decided to invest 100% in bonds (Sutcliffe, 2005). Nevertheless, the performance of the equity market between 2003 and 2007 restored confidence that standard financial models would continue to work and that the dot-com crisis was a non-recurring exception. However, the 2008 financial crisis highlighted the risk inherent in many strategic asset allocations. Moreover, for institutional investors, the crisis was unprecedentedly severe. In 2000, the internet crisis was limited to large capitalization stocks and certain sectors. Small capitalizations and value stocks were not affected, while the performance of hedge funds was flat. In 2008, the subprime crisis led to a violent drop in credit strategies and asset-backed securities. Equities posted negative returns of about −50%. The performance of hedge funds and alternative assets was poor. There was also a paradox. Many institutional investors diversified their portfolios by considering several asset classes and different regions. Unfortunately, this diversification was not enough to protect them. In
the end, the 2008 financial crisis was more damaging than the dot-com crisis. This was particularly true for institutional investors in continental Europe, who were relatively well protected against the collapse of the internet bubble because of their low exposure to equities. This is why the 2008 financial crisis was a deep trauma for world-wide institutional investors.

Most institutional portfolios were calibrated through portfolio optimization. In this context, Markowitz's modern portfolio theory was strongly criticized by professionals, and several journal articles announced the death of the Markowitz model. These extreme reactions can be explained by the fact that diversification is traditionally associated with Markowitz optimization, and it failed during the financial crisis. However, the problem was not entirely due to the allocation method. Indeed, much of the failure was caused by the input parameters. With expected returns calibrated to past figures, the model induced an overweight in equities. It also promoted assets that were supposed to have a low correlation to equities. Nonetheless, correlations between asset classes increased significantly during the crisis. In the end, the promised diversification did not occur.

Today, it is hard to find investors who defend Markowitz optimization. However, the criticisms concern not so much the model itself but the way it is used. In the 1990s, researchers began to develop regularization techniques to limit the impact of estimation errors in input parameters and many improvements have been made in recent years. In addition, we now have a better understanding of how this model works. Moreover, we also have a theoretical framework to measure the impact of constraints (Jagannathan and Ma, 2003). More recently, robust optimization based on the lasso approach has improved optimized portfolios (DeMiguel et al., 2009). So the Markowitz model is certainly not dead. Investors must understand that it is a fabulous tool for combining risks and expected returns. The goal of Markowitz optimization is to find arbitrage factors and build a portfolio that will play on them. By construction, this approach is an aggressive model of active management. In this case, it is normal that the model should be sensitive to input parameters (Green and Hollifield, 1992). Changing the parameter values modifies the implied bets. Accordingly, if input parameters are wrong, then arbitrage factors and bets are also wrong, and the resulting portfolio is not satisfied. If investors want a more defensive model, they have to define less aggressive parameter values. This is the main message behind portfolio regularization. In consequence, reports of the death of the Markowitz model have been greatly exaggerated, because it will continue to be used intensively in active management strategies. Moreover, there are no other serious and powerful models to take into account return forecasts.

1See for example the article “Is Markowitz Dead? Goldman Thinks So” published in December 2012 by AsianInvestor.
The rise of risk parity portfolios

There are different ways to obtain less aggressive active portfolios. The first one is to use less aggressive parameters. For instance, if we assume that expected returns are the same for all of the assets, we obtain the minimum variance (or MV) portfolio. The second way is to use heuristic methods of asset allocation. The term ‘heuristic’ refers to experience-based techniques and trial-and-error methods to find an acceptable solution, which does not correspond to the optimal solution of an optimization problem. The equally weighted (or EW) portfolio is an example of such non-optimized ‘rule of thumb’ portfolio. By allocating the same weight to all the assets of the investment universe, we considerably reduce the sensitivity to input parameters. In fact, there are no active bets any longer. Although these two allocation methods have been known for a long time, they only became popular after the collapse of the internet bubble.

Risk parity is another example of heuristic methods. The underlying idea is to build a balanced portfolio in such a way that the risk contribution is the same for different assets. It is then an equally weighted portfolio in terms of risk, not in terms of weights. Like the minimum variance and equally weighted portfolios, it is impossible to date the risk parity portfolio. The term risk parity was coined by Qian (2005). However, the risk parity approach was certainly used before 2005 by some CTA and equity market neutral funds. For instance, it was the core approach of the All Weather fund managed by Bridgewater for many years (Dalio, 2004). At this point, we note that the risk parity portfolio is used, because it makes sense from a practical point of view. However, it was not until the theoretical work of Maillard et al. (2010), first published in 2008, that the analytical properties were explored. In particular, they showed that this portfolio exists, is unique and is located between the minimum variance and equally weighted portfolios.

Since 2008, we have observed an increasing popularity of the risk parity portfolio. For example, Journal of Investing and Investment and Pensions Europe (IPE) ran special issues on risk parity in 2012. In the same year, The Financial Times and Wall Street Journal published several articles on this topic2. In fact today, the term risk parity covers different allocation methods. For instance, some professionals use the term risk parity when the asset weight is inversely proportional to the asset return volatility. Others consider that the risk parity portfolio corresponds to the equally weighted risk contribution (or ERC) portfolio. Sometimes, risk parity is equivalent to a risk budgeting (or RB) portfolio. In this case, the risk budgets are not necessarily the same for all of the assets that compose the portfolio. Initially, risk parity

only concerned a portfolio of bonds and equities. Today, risk parity is applied to all investment universes. Nowadays, risk parity is a marketing term used by the asset management industry to design a portfolio based on risk budgeting techniques.

More interesting than this marketing operation is the way risk budgeting portfolios are defined. Whereas the objective of Markowitz portfolios is to reach an expected return or to target ex-ante volatility, the goal of risk parity is to assign a risk budget to each asset. Like for the other heuristic approaches, the performance dimension is then absent and the risk management dimension is highlighted. In addition, this last point is certainly truer for the risk parity approach than for the other approaches. We also note that contrary to minimum variance portfolios, which have only seduced equity investors, risk parity portfolios concern not only different traditional asset classes (equities and bonds), but also alternative asset classes (commodities and hedge funds) and multi-asset classes (stock/bond asset mix policy and diversified funds).

By placing risk management at the heart of these different management processes, risk parity represents a substantial break with respect to the previous period of Markowitz optimization. Over the last decades, the main objective of institutional investors was to generate performance well beyond the risk-free rate (sometimes approaching double-digit returns). After the 2008 crisis, investors largely revised their expected return targets. Their risk aversion level increased and they do not want to experience another period of such losses. In this context, risk management has become more important than performance management.

Nevertheless, like for many other hot topics, there is some exaggeration about risk parity. Although there are people who think that it represents a definitive solution to asset allocation problems, one should remain prudent. Risk parity remains a financial model of investment and its performance also depends on the investor’s choice regarding parameters. Choosing the right investment universe or having the right risk budgets is as important as using the right allocation method. As a consequence, risk parity may be useful when defining a reliable allocation, but it cannot free investors of their duty of making their own choices.

About this book

The subject of this book is risk parity approaches. As noted above, risk parity is now a generic term used by the asset management industry to designate risk-based management processes. In this book, the term risk parity is used as a synonym of risk budgeting. When risk budgets are identical, we prefer to use the term ERC portfolio, which is more explicit and less overused by
the investment industry. When we speak of a risk parity fund, it corresponds to an equally weighted risk contribution portfolio of equities and bonds.

This book comprises two parts. The first part is more theoretical. Its first chapter is dedicated to modern portfolio theory whereas the second chapter is a comprehensive guide to risk budgeting. The second part contains four chapters, each of which presents an application of risk parity to a specific asset class. The third chapter concerns risk-based equity indexation, also called smart indexing. In the fourth chapter, we show how risk budgeting techniques can be applied to the management of bond portfolios. The fifth chapter deals with alternative investments, such as commodities and hedge funds. Finally, the sixth chapter applies risk parity techniques to multi-asset classes. The book also contains two appendices. The first appendix provides the reader with technical materials on optimization problems, copula functions and dynamic asset allocation. The second appendix contains 30 tutorial exercises. The relevant solutions are not included in this book, but can be accessed at the following web page:

http://www.thierry-roncalli.com/riskparitybook.html

This book began with an invitation by Professor Diethelm Würtz to present a tutorial on risk parity at the 6th R/Rmetrics Meielisalp Workshop & Summer School on Computational Finance and Financial Engineering. This seminar is organized every year at the end of June in Meielisalp, Lake Thun, Switzerland. The idea of tutorial sessions is to offer an overview on a specialized topic in statistics or finance. When preparing this tutorial, I realized that I had sufficient material to write a book on risk parity. First of all, I would like to thank Diethelm Würtz and the participants of the Meielisalp Summer School for their warm welcome and the different discussions we had about risk parity. I would also like to thank all of the people who have invited me to academic and professional conferences in order to speak about risk parity techniques and applications since 2008, in particular Yann Braouezec, Rama Cont, Nathalie Columelli, Felix Goltz, Marie Kratz, Jean-Luc Prigent, Fahd Rachidy and Peter Tankov. I would also like to thank Jérôme Glachant and my other colleagues of the Master of Science in Asset and Risk Management program at the Évry University where I teach the course on Risk Parity. I am also grateful to the CRC editorial staff, in particular Sunil Nair, for their support, encouragement and suggestions.

I would also like to thank my different co-authors on this subject, Benjamin Bruder, Pierre Hereil, Sébastien Maillard, Jérôme Teiletche and Guillaume Weisang, my colleagues at Lyxor Asset Management who work or have worked with me on risk parity strategies, in particular Cyril Albert-Roulhac, Florence Barjou, Cédric Baron, Benjamin Bruder, Zélia Cazalet, Léo Culierier, Raphael Dieterlen, Nicolas Gaussel, Pierre Hereil, Julien Laplante, Guillaume
Lasserre, Sébastien Maillard, François Millet and Jean-Charles Richard. I am also grateful to Abdelkader Bousabaa, Jean-Charles Richard and Zhengwei Wu for their careful reading of the preliminary versions of this book. Special thanks to Zhengwei Wu who has been a helpful and efficient research assistant.

Last but not least, I express my deep gratitude to Théo, Eva, Sarah, Lucie and Nathalie for their support and encouragement during the writing of this book.

Paris, January 2013

Thierry Roncalli
Contents

Introduction i

List of Figures xiii

List of Tables xvii

List of Symbols and Notations xxi

I From Portfolio Optimization to Risk Parity 1

1 Modern Portfolio Theory 3
 1.1 From optimized portfolios to the market portfolio 4
 1.1.1 The efficient frontier 4
 1.1.1.1 Introducing the quadratic utility function 6
 1.1.1.2 Adding some constraints 9
 1.1.1.3 Analytical solution 11
 1.1.2 The tangency portfolio 12
 1.1.3 Market equilibrium and CAPM 16
 1.1.4 Portfolio optimization in the presence of a benchmark 19
 1.1.5 The Black-Litterman model 22
 1.1.5.1 Computing the implied risk premia 23
 1.1.5.2 The optimization problem 24
 1.1.5.3 Numerical implementation of the model 25
 1.2 Practice of portfolio optimization 27
 1.2.1 Estimation of the covariance matrix 27
 1.2.1.1 Empirical covariance matrix estimator 27
 1.2.1.2 Hayashi-Yoshida estimator 29
 1.2.1.3 GARCH approach 32
 1.2.1.4 Factor models 35
 1.2.2 Designing expected returns 40
 1.2.3 Regularization of optimized portfolios 44
 1.2.3.1 Stability issues 45
 1.2.3.2 Resampling techniques 45
 1.2.3.3 Denoising the covariance matrix 47
 1.2.3.4 Shrinkage methods 49
 1.2.4 Introducing constraints 53
1.2.4.1 Why regularization techniques are not sufficient 54
1.2.4.2 How to specify the constraints .. 57
1.2.4.3 Shrinkage interpretation of the constrained solution 65

2 Risk Budgeting Approach ... 71
 2.1 Risk allocation principle .. 72
 2.1.1 Properties of a risk measure .. 72
 2.1.1.1 Coherency and convexity of risk measures 72
 2.1.1.2 Euler allocation principle .. 77
 2.1.2 Risk contribution of portfolio assets 79
 2.1.2.1 Computing the risk contributions 79
 2.1.2.2 Interpretation of risk contributions 82
 2.1.3 Application to non-normal risk measures 84
 2.1.3.1 Non-normal value-at-risk and expected shortfall 84
 2.1.3.2 Historical value-at-risk ... 92
 2.2 Analysis of risk budgeting portfolios ... 97
 2.2.1 Definition of a risk budgeting portfolio 98
 2.2.1.1 The right specification of the RB portfolio 99
 2.2.1.2 Solving the non-linear system of risk budgeting constraints 102
 2.2.2 Some properties of the RB portfolio 102
 2.2.2.1 Particular solutions with the volatility risk measure 102
 2.2.2.2 Existence and uniqueness of the RB portfolio 108
 2.2.3 Optimality of the risk budgeting portfolio 113
 2.2.4 Stability of the risk budgeting approach 116
 2.3 Special case: the ERC portfolio ... 119
 2.3.1 The two-asset case ($n = 2$) ... 119
 2.3.2 The general case ($n > 2$) ... 121
 2.3.3 Optimality of the ERC portfolio .. 123
 2.3.4 Back to the notion of diversification 125
 2.3.4.1 Diversification index ... 125
 2.3.4.2 Concentration indices .. 126
 2.3.4.3 Difficulty of reconciling the different diversification concepts 128
 2.4 Risk budgeting versus weight budgeting 130
 2.4.1 Comparing weight budgeting and risk budgeting portfolios 130
 2.4.2 New construction of the minimum variance portfolio 131
 2.5 Using risk factors instead of assets ... 135
 2.5.1 Pitfalls of the risk budgeting approach based on assets 135
 2.5.1.1 Duplication invariance property 135
2.5.1.2 Polico invariance property 137
2.5.1.3 Impact of the reparametrization on the asset
universe .. 138
2.5.2 Risk decomposition with respect to the risk factors .. 141
2.5.3 Some illustrations 144
2.5.3.1 Matching the risk budgets 144
2.5.3.2 Minimizing the risk concentration between the
risk factors ... 145
2.5.3.3 Solving the duplication and polico invariance
properties ... 146

II Applications of the Risk Parity Approach 149

3 Risk-Based Indexation 151
3.1 Capitalization-weighted indexation 152
3.1.1 Theory support ... 152
3.1.2 Constructing and replicating an equity index 153
3.1.3 Pros and cons of CW indices 154
3.2 Alternative-weighted indexation 157
3.2.1 Desirable properties of AW indices 159
3.2.2 Fundamental indexation 160
3.2.3 Risk-based indexation 162
3.2.3.1 The equally weighted portfolio 163
3.2.3.2 The minimum variance portfolio 164
3.2.3.3 The most diversified portfolio 168
3.2.3.4 The ERC portfolio 172
3.2.3.5 Comparison of the risk-based allocation ap-
proaches ... 173
3.3 Some illustrations ... 181
3.3.1 Simulation of risk-based indices 181
3.3.2 Practical issues of risk-based indexation 183
3.3.3 Findings of other empirical works 187
3.3.3.1 What is the best alternative-weighted indexa-
tion? .. 187
3.3.3.2 Style analysis of alternative-weighted indexa-
tion .. 189

4 Application to Bond Portfolios 191
4.1 Some issues in bond management 191
4.1.1 Debt-weighted indexation 191
4.1.2 Yield versus risk 193
4.2 Bond portfolio management 194
4.2.1 Term structure of interest rates 194
4.2.2 Pricing of bonds 197
4.2.2.1 Without default risk 197
Conclusion

A Technical Appendix

A.1 Optimization problems
A.1.1 Quadratic programming problem
A.1.2 Non-linear unconstrained optimization
A.1.3 Sequential quadratic programming algorithm
A.1.4 Numerical solutions of the RB problem

A.2 Copula functions
A.2.1 Definition and main properties
A.2.2 Parametric functions
A.2.3 Simulation of copula models
A.2.3.1 Distribution approach
A.2.3.2 Simulation based on conditional copula functions
A.2.4 Copulas and risk management
A.2.5 Multivariate survival modeling

A.3 Dynamic portfolio optimization
A.3.1 Stochastic optimal control
A.3.1.1 Bellman approach
A.3.1.2 Martingale approach
A.3.2 Portfolio optimization in continuous-time
A.3.3 Some extensions of the Merton model
A.3.3.1 Lifestyle funds
A.3.3.2 Lifecycle funds
A.3.3.3 Liability driven investment

B Tutorial Exercises

B.1 Exercises related to modern portfolio theory
B.1.1 Markowitz optimized portfolios
B.1.2 Variations on the efficient frontier
B.1.3 Sharpe ratio
B.1.4 Beta coefficient
B.1.5 Tangency portfolio
B.1.6 Information ratio
B.1.7 Building a tilted portfolio
B.1.8 Implied risk premium
B.1.9 Black-Litterman model
B.1.10 Portfolio optimization with transaction costs
B.1.11 Impact of constraints on the CAPM theory
B.1.12 Generalization of the Jagannathan-Ma shrinkage approach

B.2 Exercises related to the risk budgeting approach
B.2.1 Risk measures
B.2.2 Weight concentration of a portfolio
B.2.3	ERC portfolio	353
B.2.4	Computing the Cornish-Fisher value-at-risk	354
B.2.5	Risk budgeting when risk budgets are not strictly positive	355
B.2.6	Risk parity and factor models	356
B.2.7	Risk allocation with the expected shortfall risk measure	358
B.2.8	ERC optimization problem	359
B.2.9	Risk parity portfolios with skewness and kurtosis	360
B.3	Exercises related to risk parity applications	362
B.3.1	Computation of heuristic portfolios	362
B.3.2	Equally weighted portfolio	362
B.3.3	Minimum variance portfolio	363
B.3.4	Most diversified portfolio	365
B.3.5	Risk allocation with yield curve factors	366
B.3.6	Credit risk analysis of sovereign bond portfolios	368
B.3.7	Risk contributions of long-short portfolios	370
B.3.8	Risk parity funds	371
B.3.9	The Frazzini-Pedersen model	372
B.3.10	Dynamic risk budgeting portfolios	374

Bibliography

377

Subject Index

399

Author Index

405
List of Figures

1.1 Optimized Markowitz portfolios 6
1.2 The efficient frontier of Markowitz 8
1.3 The efficient frontier with some weight constraints 10
1.4 The capital market line 13
1.5 The efficient frontier with a risk-free asset 15
1.6 The efficient frontier with a benchmark 20
1.7 The tangency portfolio with respect to a benchmark 22
1.8 Trading hours of asynchronous markets (UTC time) 30
1.9 Density of the estimator $\hat{\rho}$ with asynchronous returns 31
1.10 Hayashi-Yoshida estimator 33
1.11 Cumulative weight W_m of the IGARCH model 35
1.12 Estimation of the S&P 500 volatility 36
1.13 Density of the uniform correlation estimator 38
1.14 Time horizon of MT, TAA and SAA 41
1.15 Fundamental approach of SAA 42
1.16 Uncertainty of the efficient frontier 46
1.17 Resampled efficient frontier 48
1.18 Weights of penalized MVO portfolios (in %) 54
1.19 PCA applied to the stocks of the FTSE index (June 2012) ... 56
1.20 Sampling the SX5E and SPX indices 65

2.1 Three budgeting methods with a 30/70 policy rule 72
2.2 Density of the risk contribution estimator RC_1 90
2.3 Density of the P&L with a skew normal distribution 97
2.4 Evolution of the weight w^* in the RB portfolio with respect to b and ρ 104
2.5 Simulation of the weight x_1 when the correlation is constant 107
2.6 Evolution of the portfolio's volatility with respect to x_3 112
2.7 Location of the ERC portfolio in the mean-variance diagram when the Sharpe ratios are the same and the asset correlations are uniform ... 124
2.8 Location of the ERC portfolio in the mean-variance diagram when the Sharpe ratios are identical and the asset correlations are not uniform ... 125
2.9 Geometry of the Lorenz curve 128
2.10 Convergence of the iterative RB portfolio $x^{(k)}$ to the MV portfolio 134
2.11 Lorenz curve of risk contributions ... 140

3.1 Lorenz curve of several equity indices (June 29, 2012) 158
3.2 Performance of the RAFI index since January 2000 162
3.3 Illustration of the diversification effect of AW indices 163
3.4 Location of the minimum variance portfolio in the efficient frontier .. 165
3.5 Weight of the first two assets in AW portfolios (Example 31) 180
3.6 Weight with respect to the asset beta β_i (Example 32) 180
3.7 Concentration statistics of AW portfolios .. 183
3.8 Concentration statistics of constrained MV and MDP indexations .. 185

4.1 Term structure of spot and forward interest rates (in %) 196
4.2 PCA factors of the US yield curve (Jan. 2003 – Jun. 2012) ... 197
4.3 Cash flows of a bond with a fixed coupon rate 198
4.4 Movements of the yield curve ... 199
4.5 Cash flows of a bond with default risk 201
4.6 Evolution of the zero-coupon interest rates and the intensity (June 2010 – June 2012) ... 206
4.7 Loss distribution of the bond portfolio with and without default risk 210
4.8 Risk factor contributions of the EW Portfolio #1 218
4.9 Risk factor contributions of the long-short Portfolio #2 ... 218
4.10 Risk factor contributions of the long-short Portfolio #3 ... 219
4.11 Risk factor contributions of the long-short Portfolio #4 ... 219
4.12 P&L of the barbell portfolios due to a YTM variation 221
4.13 Risk factor contributions of the barbell portfolios 221
4.14 Average correlation of credit spreads (in %) 226
4.15 Dynamics of the risk contributions (EGBI portfolio) ... 230
4.16 Dynamics of the risk contributions (DEBT-WB indexation) ... 232
4.17 Dynamics of the risk contributions (GDP-WB indexation) ... 233
4.18 Evolution of the weights (DEBT-RB indexation) 236
4.19 Evolution of the weights (GDP-RB indexation) ... 237
4.20 Dynamics of the credit risk measure (in %) 239
4.21 Evolution of the GIIPS risk contribution (in %) 239
4.22 Simulated performance of the bond indexations 240
4.23 Comparing the dynamic allocation for four countries 241
4.24 Comparison with active management 241

5.1 Term structure of crude oil futures 245
5.2 Contango and backwardation movements 246
5.3 Simulated performance of EW and ERC commodity portfolios 253
5.4 Weights (in %) of ERC HF portfolios 260
5.5 Risk contributions (in %) of ERC HF portfolios 261
5.6 Simulated performance of ERC HF portfolios 261
5.7 Risk factor contributions (in %) of ERC HF portfolios 262
5.8 Weights (in %) of RFP HF portfolios 263
5.9 Risk contributions (in %) of RFP HF portfolios 263
5.10 Risk factor contributions (in %) of RFP HF portfolios 264
5.11 Simulated performance of RFP HF portfolios 264

6.1 Asset allocation puzzle of diversification funds 272
6.2 Equity and bond risk contributions in diversified funds 273
6.3 Realized volatility of diversified funds (in %) 274
6.4 Equity and bond ex-ante risk premia for diversified funds 276
6.5 Histogram of ex-ante performance contributions 276
6.6 Influence of the correlation on the expected risk premium 278
6.7 Backtest of the risk parity strategy 280
6.8 Relationship between the beta β_i and the alpha α_i in the presence of borrowing constraints 283
6.9 Impact of leverage aversion on the efficient frontier 283
6.10 Average allocation of European pension funds 286
6.11 Risk budgeting policy of the pension fund (SAA approach) 288
6.12 Strategic asset allocation in Markowitz framework 289
6.13 Volatility decomposition of the risk-based S&P 100 indices 292
6.14 Volatility decomposition of long-short portfolios 293
6.15 Simulated performance of the S/B risk parity strategies 296
6.16 Simulated performance of the S/B/C risk parity strategies 296

A.1 Example of building a bivariate probability distribution with a copula function ... 309
A.2 Level curves of bivariate distributions (Frank copula) 311
A.3 Level curves of bivariate distributions (Gumbel copula) 311
A.4 Comparison of normal and t copulas 313
A.5 Quantile-quantile dependence measure for the normal copula 318
A.6 Quantile-quantile dependence measure for the t_1 copula 318
A.7 Sensitivity of the equity allocation α^*_S (in %) in lifestyle funds .. 329
A.8 Influence of the parameters on the glide path of target-date funds .. 332
A.9 Example of the LDI utility function 335
A.10 Optimal exposure $\alpha^* (t)$ (in %) in the LDI portfolio 335
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Solving the ϕ-problem</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Solving the unconstrained μ-problem</td>
<td>8</td>
</tr>
<tr>
<td>1.3</td>
<td>Solving the unconstrained σ-problem</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>Solving the σ-problem with weight constraints</td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td>Computation of the beta</td>
<td>17</td>
</tr>
<tr>
<td>1.6</td>
<td>Computation of the beta with a constrained tangency portfolio</td>
<td>18</td>
</tr>
<tr>
<td>1.7</td>
<td>Black-Litterman portfolios</td>
<td>26</td>
</tr>
<tr>
<td>1.8</td>
<td>Sensitivity of the MVO portfolio to input parameters</td>
<td>45</td>
</tr>
<tr>
<td>1.9</td>
<td>Solutions of penalized mean-variance optimization</td>
<td>53</td>
</tr>
<tr>
<td>1.10</td>
<td>Principal component analysis of the covariance matrix Σ</td>
<td>55</td>
</tr>
<tr>
<td>1.11</td>
<td>Principal component analysis of the information matrix \mathcal{I}</td>
<td>55</td>
</tr>
<tr>
<td>1.12</td>
<td>Effect of deleting a PCA factor</td>
<td>57</td>
</tr>
<tr>
<td>1.13</td>
<td>Limiting the turnover of MVO portfolios</td>
<td>60</td>
</tr>
<tr>
<td>1.14</td>
<td>Sampling the SX5E index with the heuristic algorithm</td>
<td>63</td>
</tr>
<tr>
<td>1.15</td>
<td>Sampling the SX5E index with the backward elimination algorithm</td>
<td>63</td>
</tr>
<tr>
<td>1.16</td>
<td>Sampling the SX5E index with the forward selection algorithm</td>
<td>64</td>
</tr>
<tr>
<td>1.17</td>
<td>Minimum variance portfolio when $x_i \geq 10%$</td>
<td>68</td>
</tr>
<tr>
<td>1.18</td>
<td>Minimum variance portfolio when $10% \leq x_i \leq 40%$</td>
<td>69</td>
</tr>
<tr>
<td>1.19</td>
<td>Mean-variance portfolio when $10% \leq x_i \leq 40%$ and $\mu^* = 6%$</td>
<td>69</td>
</tr>
<tr>
<td>1.20</td>
<td>MSR portfolio when $10% \leq x_i \leq 40%$</td>
<td>70</td>
</tr>
<tr>
<td>2.1</td>
<td>Computation of risk measures $\text{VaR}\alpha (x)$ and $\text{ES}\alpha (x)$</td>
<td>76</td>
</tr>
<tr>
<td>2.2</td>
<td>Risk decomposition of the volatility</td>
<td>81</td>
</tr>
<tr>
<td>2.3</td>
<td>Risk decomposition of the value-at-risk</td>
<td>82</td>
</tr>
<tr>
<td>2.4</td>
<td>Risk decomposition of the expected shortfall</td>
<td>82</td>
</tr>
<tr>
<td>2.5</td>
<td>Sensitivity analysis of the volatility with respect to the factor h</td>
<td>84</td>
</tr>
<tr>
<td>2.6</td>
<td>Marginal analysis of the volatility with respect to the factor h</td>
<td>84</td>
</tr>
<tr>
<td>2.7</td>
<td>Value-at-risk (in %) when the P&L is skew normal distributed</td>
<td>96</td>
</tr>
<tr>
<td>2.8</td>
<td>Statistics (in %) to compute the Cornish-Fisher risk contributions</td>
<td>98</td>
</tr>
<tr>
<td>2.9</td>
<td>Risk budgeting portfolio when the risk measure is the expected shortfall ($\alpha = 95%$)</td>
<td>99</td>
</tr>
<tr>
<td>2.10</td>
<td>Risk budgeting portfolio when the risk measure is the expected shortfall ($\alpha = 99%$)</td>
<td>100</td>
</tr>
</tbody>
</table>
2.11 Weights w^* in the RB portfolio with respect to some values of b and ρ .. 103
2.12 RB solutions when the risk budget b_3 is equal to 0 112
2.13 RB solutions when the risk budgets b_3 and b_4 are equal to 0 . 113
2.14 Implied risk premia when $b = (20\%, 25\%, 40\%, 15\%)$ 116
2.15 Implied risk premia when $b = (10\%, 10\%, 10\%, 70\%)$ 116
2.16 Sensitivity of the MVO portfolio to input parameters 117
2.17 Sensitivity of the RB portfolio to input parameters 117
2.18 Shrinkage covariance matrix $\tilde{\Sigma}^{(1)}$ associated to the RB portfolio 118
2.19 Shrinkage covariance matrix $\tilde{\Sigma}^{(3)}$ associated to the RB portfolio 119
2.20 Risk contributions of EW, ERC and MV portfolios 121
2.21 Composition of the ERC portfolio 123
2.22 Diversification measures of MV, ERC, MDP and EW portfolios 129
2.23 Risk decomposition of WB, RB and MR portfolios 132
2.24 Weights and risk contributions of the iterative RB portfolio $x^{(k)}$ 134
2.25 Risk decomposition of Portfolio #1 with respect to the synthetic assets ... 139
2.26 Risk decomposition of Portfolio #1 with respect to the primary assets ... 139
2.27 Risk decomposition of Portfolio #2 with respect to the synthetic assets ... 139
2.28 Risk decomposition of Portfolio #2 with respect to the primary assets ... 140
2.29 Risk decomposition of the EW portfolio with respect to the assets ... 143
2.30 Risk decomposition of the EW portfolio with respect to the risk factors ... 143
2.31 Risk decomposition of the RFP portfolio with respect to the risk factors ... 144
2.32 Risk decomposition of the RFP portfolio with respect to the assets ... 145
2.33 Risk decomposition of the balanced RFP portfolio with respect to the risk factors ... 145
2.34 Risk decomposition of the balanced RFP portfolio with respect to the assets ... 146
2.35 Balanced RFP portfolios with $x_i \geq 10\%$ 146

3.1 Weight and risk concentration of several equity indices (June 29, 2012) ... 158
3.2 Unconstrained minimum variance portfolios 166
3.3 Long-only minimum variance portfolios 166
3.4 Composition of the MV portfolio 168
3.5 Composition of the MDP .. 171
3.6 Weights and risk contributions (Example 26) 175
3.7 Weights and risk contributions (Example 27) 176
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>Weights and risk contributions (Example 28)</td>
<td>177</td>
</tr>
<tr>
<td>3.9</td>
<td>Weights and risk contributions (Example 29)</td>
<td>178</td>
</tr>
<tr>
<td>3.10</td>
<td>Weights and risk contributions (Example 30)</td>
<td>179</td>
</tr>
<tr>
<td>3.12</td>
<td>Simulated performance of AW portfolios by year (in %)</td>
<td>182</td>
</tr>
<tr>
<td>3.13</td>
<td>Annualized monthly turnover of AW portfolios (in %)</td>
<td>184</td>
</tr>
<tr>
<td>3.15</td>
<td>Influence of the covariance estimator</td>
<td>187</td>
</tr>
<tr>
<td>4.1</td>
<td>Price, yield to maturity and sensitivity of bonds</td>
<td>199</td>
</tr>
<tr>
<td>4.2</td>
<td>Impact of a parallel shift of the yield curve on the bond with five-year maturity</td>
<td>200</td>
</tr>
<tr>
<td>4.3</td>
<td>Computation of the credit spread s</td>
<td>202</td>
</tr>
<tr>
<td>4.4</td>
<td>Pricing of the bond</td>
<td>206</td>
</tr>
<tr>
<td>4.5</td>
<td>Risk measure and decomposition of the bond exposure</td>
<td>206</td>
</tr>
<tr>
<td>4.6</td>
<td>Risk allocation of the bond portfolio</td>
<td>208</td>
</tr>
<tr>
<td>4.7</td>
<td>Risk decomposition of the bond portfolio with respect to the PCA factors</td>
<td>208</td>
</tr>
<tr>
<td>4.8</td>
<td>Characteristics of the bond portfolio</td>
<td>215</td>
</tr>
<tr>
<td>4.9</td>
<td>Normalized risk contributions RC_i^* of the bond portfolio (in %)</td>
<td>215</td>
</tr>
<tr>
<td>4.10</td>
<td>Composition of the barbell portfolios</td>
<td>220</td>
</tr>
<tr>
<td>4.11</td>
<td>Some measures of country risk (October 2011)</td>
<td>223</td>
</tr>
<tr>
<td>4.13</td>
<td>Spread $s_i(t)$ (in bps)</td>
<td>225</td>
</tr>
<tr>
<td>4.14</td>
<td>Estimated values of the volatility σ_i^2 (in %)</td>
<td>226</td>
</tr>
<tr>
<td>4.15</td>
<td>Market-based parameters (March 1, 2012)</td>
<td>228</td>
</tr>
<tr>
<td>4.16</td>
<td>Computing the credit risk measure σ_i^2 for one bond</td>
<td>228</td>
</tr>
<tr>
<td>4.17</td>
<td>Credit risk measure of the portfolio with three bonds</td>
<td>228</td>
</tr>
<tr>
<td>4.18</td>
<td>Credit risk measure of the portfolio with four bonds</td>
<td>229</td>
</tr>
<tr>
<td>4.19</td>
<td>Credit risk measure of the portfolio with the Italian meta-bond</td>
<td>229</td>
</tr>
<tr>
<td>4.20</td>
<td>Weights and risk contribution of the EGBI portfolio (in %)</td>
<td>230</td>
</tr>
<tr>
<td>4.21</td>
<td>Weights and risk contribution of the DEBT-WB indexation (in %)</td>
<td>232</td>
</tr>
<tr>
<td>4.22</td>
<td>Weights and risk contribution of the GDP-WB indexation (in %)</td>
<td>233</td>
</tr>
<tr>
<td>4.23</td>
<td>Risk budgets and weights of the DEBT-RB indexation (in %)</td>
<td>236</td>
</tr>
<tr>
<td>4.24</td>
<td>Risk budgets and weights of the GDP-RB indexation (in %)</td>
<td>237</td>
</tr>
<tr>
<td>5.1</td>
<td>Annualized excess return (in %) of commodity futures strategies</td>
<td>252</td>
</tr>
<tr>
<td>5.2</td>
<td>Annualized volatility (in %) of commodity futures strategies</td>
<td>252</td>
</tr>
<tr>
<td>5.3</td>
<td>Main statistics of EW and ERC commodity portfolios</td>
<td>253</td>
</tr>
<tr>
<td>5.4</td>
<td>Calibration of the EMN portfolio</td>
<td>257</td>
</tr>
</tbody>
</table>
List of Symbols and Notations

Symbol Description

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>·</td>
<td>Scalar multiplication</td>
</tr>
<tr>
<td>◦</td>
<td>Hadamard product: ((x \circ y)_i = x_i y_i)</td>
</tr>
<tr>
<td>⊗</td>
<td>Kronecker product (A \otimes B)</td>
</tr>
<tr>
<td>(</td>
<td>E</td>
</tr>
<tr>
<td>(1)</td>
<td>Vector of ones</td>
</tr>
<tr>
<td>(I{A})</td>
<td>The indicator function is equal to 1 if (A) is true, 0 otherwise</td>
</tr>
<tr>
<td>(1) ({x})</td>
<td>The characteristic function is equal to 1 if (x \in A), 0 otherwise</td>
</tr>
<tr>
<td>(0)</td>
<td>Vector of zeros</td>
</tr>
<tr>
<td>((A_{i,j}))</td>
<td>Matrix (A) with entry (A_{i,j}) in row (i) and column (j)</td>
</tr>
<tr>
<td>(A^{-1})</td>
<td>Inverse of the matrix (A)</td>
</tr>
<tr>
<td>(A^T)</td>
<td>Transpose of the matrix (A)</td>
</tr>
<tr>
<td>(A^+)</td>
<td>Moore-Penrose pseudo-inverse of the matrix (A)</td>
</tr>
<tr>
<td>(b)</td>
<td>Vector of weights ((b_1, \ldots, b_n)) for the benchmark (b)</td>
</tr>
<tr>
<td>(B_t(T))</td>
<td>Price of the zero-coupon bond at time (t) for the maturity (T)</td>
</tr>
<tr>
<td>(\beta_i)</td>
<td>Beta of asset (i) with respect to portfolio (x)</td>
</tr>
<tr>
<td>(\beta_i(x))</td>
<td>Another notation for the symbol (\beta_i)</td>
</tr>
<tr>
<td>(\beta(x \mid b))</td>
<td>Beta of portfolio (x) when the benchmark is (b)</td>
</tr>
<tr>
<td>(C) (or (\rho))</td>
<td>Correlation matrix</td>
</tr>
<tr>
<td>(C)</td>
<td>Copula function</td>
</tr>
<tr>
<td>(C(t_m))</td>
<td>Coupon paid at time (t_m)</td>
</tr>
<tr>
<td>(\text{cov}(X))</td>
<td>Covariance of the random vector (X)</td>
</tr>
<tr>
<td>(C_n(\rho))</td>
<td>Constant correlation matrix ((n \times n)) with (\rho_{i,j} = \rho)</td>
</tr>
<tr>
<td>(D)</td>
<td>Covariance matrix of idiosyncratic risks</td>
</tr>
<tr>
<td>(\det(A))</td>
<td>Determinant of the matrix (A)</td>
</tr>
<tr>
<td>(\mathcal{D}\mathcal{R}(x))</td>
<td>Diversification ratio of portfolio (x)</td>
</tr>
<tr>
<td>(\mathbb{E}[X])</td>
<td>The value of the vector is 1 for the row (i) and 0 elsewhere</td>
</tr>
<tr>
<td>(e_i)</td>
<td>Mathematical expectation of the random variable (X)</td>
</tr>
<tr>
<td>(\mathcal{D}\mathcal{E}(\lambda))</td>
<td>Exponential probability distribution with parameter (\lambda)</td>
</tr>
<tr>
<td>(\text{ES}_\alpha(x))</td>
<td>Expected shortfall of portfolio (x) at the confidence level (\alpha)</td>
</tr>
<tr>
<td>(f(x))</td>
<td>Probability density function (pdf)</td>
</tr>
<tr>
<td>(F(x))</td>
<td>Cumulative distribution function (cdf)</td>
</tr>
<tr>
<td>(\mathcal{F})</td>
<td>Vector of risk factors ((\mathcal{F}_1, \ldots, \mathcal{F}_m))</td>
</tr>
<tr>
<td>(F_j)</td>
<td>Risk factor (j)</td>
</tr>
<tr>
<td>(F_t(T))</td>
<td>Instantaneous forward rate at time (t) for the maturity (T)</td>
</tr>
<tr>
<td>(F_t(T, m))</td>
<td>Forward interest rate at (T, m)</td>
</tr>
</tbody>
</table>
time t for the period $[T, T + m]$

- \mathcal{G}: Gini coefficient
- γ: Parameter $\gamma = \phi^{-1}$ of the Markowitz γ-problem
- γ_1: Skewness
- γ_2: Excess kurtosis
- \mathcal{H}: Herfindahl index
- i: Asset i
- I_n: Identity matrix of dimension n
- $\text{IR}(x \mid b)$: Information ratio of portfolio x when the benchmark is b
- $\ell(\theta)$: Log-likelihood function with θ the vector of parameters to estimate
- ℓ_t: Log-likelihood function for the observation t
- $L(x)$: Loss of portfolio x
- $\mathcal{L}(x)$: Leverage measure of portfolio x
- $\mathbb{L}(x)$: Lorenz function
- λ: Parameter of exponential survival times
- \mathcal{MDD}: Maximum drawdown
- \mathcal{MR}_i: Marginal risk of asset i
- μ: Vector of expected returns (μ_1, \ldots, μ_n)
- $\hat{\mu}$: Expected return of asset i
- $\bar{\mu}$: Empirical mean
- μ_1^Y: Annualized return
- $\mu(x)$: Expected return of portfolio x: $\mu(x) = x^\top \mu$
- $\mu(x \mid b)$: Expected return of the tracking error of portfolio x when the benchmark is b
- $\mathcal{N}(\mu, \sigma^2)$: Probability distribution of a Gaussian random variable with mean μ and standard deviation σ
- $\mathcal{N}(\mu, \Sigma)$: Probability distribution of a Gaussian random vector with mean μ and covariance matrix Σ
- Π: Probability density function of the standardized normal distribution
- Φ: Cumulative distribution function of the standardized normal distribution
- $\Phi^{-1}(\alpha)$: Inverse of the cdf of the standardized normal distribution
- r: Return of the risk-free asset
- r^*: Yield to maturity
- R: Vector of asset returns (R_1, \ldots, R_n)
- R_i: Return of asset i
- $R(x)$: Return of portfolio x: $R(x) = x^\top R$
- $\mathcal{R}(x)$: Risk measure of portfolio x
- \mathcal{RC}_i: Risk contribution of asset i
- \mathcal{RC}^*_i: Relative risk contribution of asset i
- \mathcal{R}_i: Return of asset i at time t
- $R_t(T)$: Zero-coupon rate at time t for the maturity T
- \mathcal{RC}_i: Risk contribution of asset i
- \mathcal{RC}^*_i: Relative risk contribution of asset i
- \mathcal{R}: Recovery rate
- ρ (or C): Correlation matrix of asset returns
- \mathcal{C}: Covariance matrix of risk factors
- π: Vector of risk premia (π_1, \ldots, π_n)
- $\tilde{\pi}$: Vector of implied risk premia $(\tilde{\pi}_1, \ldots, \tilde{\pi}_n)$
- π_i: Risk premium of asset i: $\pi_i = \mu_i - r$
- $\pi(y \mid x)$: Risk premium of portfolio y if the tangency portfolio is x: $\pi(y \mid x) = \beta(y \mid x) (\mu(x) - r)$
- Π: Probability density function of the standardized normal distribution
- ϕ: Cumulative distribution function of the standardized normal distribution
- $\phi(x)$: Inverse of the cdf of the standardized normal distribution
- \mathcal{MR}_i: Marginal risk of asset i
- μ: Vector of expected returns (μ_1, \ldots, μ_n)
- μ_i: Expected return of asset i
- $\bar{\mu}$: Empirical mean
- μ_1^Y: Annualized return
- $\mu(x)$: Expected return of portfolio x: $\mu(x) = x^\top \mu$
- $\mu(x \mid b)$: Expected return of the tracking error of portfolio x when the benchmark is b
- $\mathcal{N}(\mu, \sigma^2)$: Probability distribution of a Gaussian random variable with mean μ and standard deviation σ
- $\mathcal{N}(\mu, \Sigma)$: Probability distribution of a Gaussian random vector with mean μ and covariance matrix Σ
\(\rho_{i,j} \) Correlation between asset returns \(i \) and \(j \)
\(\rho(x, y) \) Correlation between portfolios \(x \) and \(y \)
\(s \) Credit spread
\(S_t(x) \) Survival function at time \(t \)
\(\Sigma \) Covariance matrix
\(\hat{\Sigma} \) Empirical covariance matrix
\(\sigma_i \) Volatility of asset \(i \)
\(\sigma_m \) Volatility of the market portfolio
\(\hat{\sigma}_i \) Idiosyncratic volatility of asset \(i \)
\(\hat{\sigma} \) Empirical volatility
\(\sigma_1Y \) Annualized volatility
\(\sigma(x) \) Volatility of portfolio \(x \):
\(\sigma(x) = \sqrt{x^\top \Sigma x} \)
\(\sigma(x \g b) \) Standard deviation of the tracking error of portfolio \(x \) when the benchmark is \(b \)
\(\sigma(x, y) \) Covariance between portfolios \(x \) and \(y \)
\(\sigma(X) \) Standard deviation of the random variable \(X \)
\(\text{SR}_i \) Sharpe ratio of asset \(i \):
\(\text{SR}_i = \text{SR}(e_i \g r) \)
\(\text{SR}(x \g r) \) Sharpe ratio of portfolio \(x \) when the risk-free asset is \(r \)
\(t_v(x) \) Cumulative distribution function of the Student’s \(t \) distribution with \(v \) the number of degrees of freedom
\(t_{\rho,v}^{-1}(\alpha) \) Inverse of the cdf of the Student’s \(t \) distribution with \(\rho \) and \(v \) the number of degrees of freedom
\(\tau(x) \) Turnover of portfolio \(x \)
\(\text{tr}(A) \) Trace of the matrix \(A \)
\(\text{TR}(x \g b) \) Treynor ratio of portfolio \(x \) when the benchmark is \(b \)
\(\text{VaR}_\alpha(x) \) Value-at-risk of portfolio \(x \) at the confidence level \(\alpha \)
\(x \) Vector of weights \((x_1, \ldots, x_n) \) for portfolio \(x \)
\(x_i \) Weight of asset \(i \) in portfolio \(x \)
\(x^* \) Optimized portfolio

Portfolio Notation

<table>
<thead>
<tr>
<th>Portfolio</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERC</td>
<td>Equally weighted risk contribution portfolio (x_{erc})</td>
</tr>
<tr>
<td>EW</td>
<td>Equally weighted portfolio (x_{ew})</td>
</tr>
<tr>
<td>MDP</td>
<td>Most diversified portfolio (x_{mdp})</td>
</tr>
<tr>
<td>MSR</td>
<td>Max Sharpe ratio portfolio (x_{msr})</td>
</tr>
<tr>
<td>MV</td>
<td>Minimum variance portfolio (x_{mv})</td>
</tr>
<tr>
<td>MVO</td>
<td>Mean-variance optimized (or Markowitz) portfolio (x_{mvo})</td>
</tr>
<tr>
<td>RB</td>
<td>Risk budgeting portfolio (x_{rb})</td>
</tr>
<tr>
<td>RFP</td>
<td>Risk factor parity portfolio (x_{rfp})</td>
</tr>
<tr>
<td>RP</td>
<td>Risk parity portfolio (x_{rp})</td>
</tr>
<tr>
<td>WB</td>
<td>Weight budgeting portfolio (x_{wb})</td>
</tr>
</tbody>
</table>