From Portfolio Optimization to Risk Parity¹

Thierry Roncalli*

*Lyxor Asset Management, France & University of Évry, France

6th R/Rmetrics Meielisalp Workshop & Summer School on Computational Finance and Financial Engineering

Meielisalp, Lake Thune Switzerland, June 24 - 28, 2012

¹The opinions expressed in this presentation are those of the author and are not meant to represent the opinions or official positions of Lyxor Asset Management.

Thierry Roncalli

From Portfolio Optimization to Risk Parity

1 / 76

Outline

Some issues on Markowitz portfolios

- The market portfolio theory
- Portfolio optimization and active management
- Stability issues
- 2 Regularization using resampling and shrinkage methods
 - Resampling methods
 - Factor analysis
 - Shrinkage methods
 - Why these regularization techniques are not enough?
- 3 The impact of the weight constraints

- Shrinkage interpretation of weight constraints
- Some examples
- Myopic behavior of portfolio managers?
- A Risk parity techniques
 - Definition
 - Main properties
 - Some popular RB portfolios
 - RB portfolios vs optimized portfolios
- 5 Some applications
 - Risk-based indexation
 - Risk-balanced allocation

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

王

Executive summary

Over the last fifty years, mean-variance optimization has been widely used to manage asset portfolios and to build strategic asset allocations. However, it faces some stability issues because of its tendency to maximize the effects of estimation errors. At the end of the eighties, researchers began to develop some regularization methods to avoid these stability issues. For example, Michaud used resampling techniques of the objective function whereas Ledoit and Wolf introduced some new shrinkage estimators of the covariance matrix. More recently, results on ridge and lasso regressions have been considered to improve Markowitz portfolios. But, even if all these appealing methods give some answers to the regularization problem, portfolio managers prefer to use a less sophisticated method by constraining directly the weights of the portfolio. As shown by Jagannathan and Ma (2003), this approach could be viewed as a Black-Litterman approach or a shrinkage method. For some years now, another route has been explored by considering some heuristic methods like the minimum variance, equal risk contribution, or equally-weighted portfolios. These portfolios are special cases of a more general allocation approach based on risk budgeting methods (called also risk parity). This approach has opened a door to develop new equity and bond benchmarks (risk-based indexation) and to propose new multi-assets allocation styles (risk-balanced allocation).

3

The market portfolio theory Portfolio optimization and active management Stability issues

Some issues on Markowitz portfolios

- The market portfolio theory
- Portfolio optimization and active management
- Stability issues

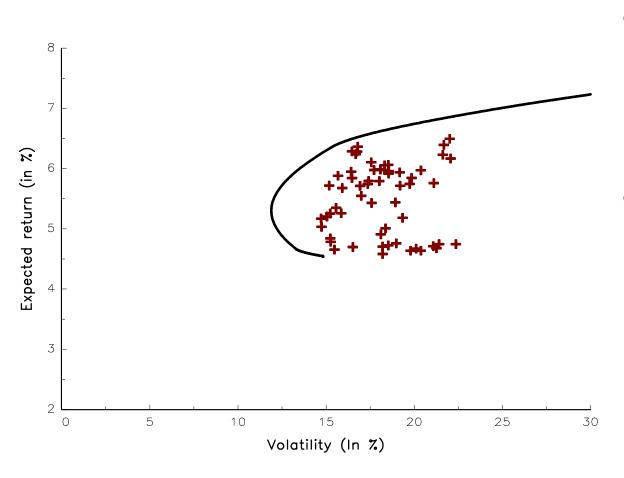
▲□▶ ▲□▶ ▲□▶ ▲□▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

王

The market portfolio theory Portfolio optimization and active management Stability issues

The market portfolio theory The efficient frontier of Markowitz



- "the investor does (or should) consider expected return a desirable thing and variance of return an undesirable thing"(Markowitz, 1952).
- We consider a universe of n assets. Let μ and Σ be the vector of expected returns and the covariance matrix of returns. We have:

 $\max \mu(x) = \mu^{\top} x$ u.c. $\sigma(x) = \sqrt{x^{\top} \Sigma x} = \sigma^{\star}$

< ∃ →

There isn't one optimal portfolio, but a set of optimal portfolios!

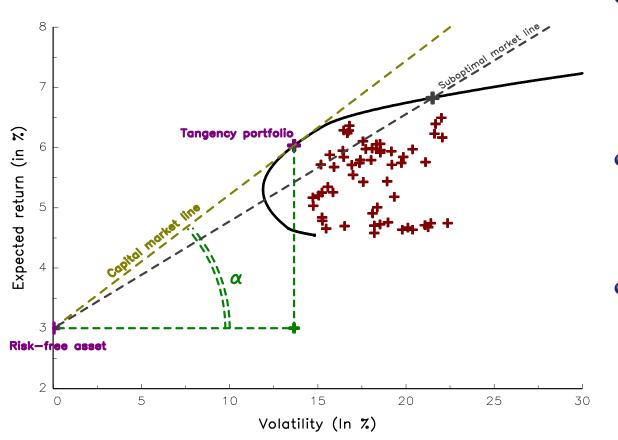
 $\mathcal{A} \mathcal{A} \mathcal{A}$

王

The market portfolio theory Portfolio optimization and active management Stability issues

The market portfolio theory

Does one optimized portfolio dominate all the other portfolios?



- Tobin (1958) introduces the risk-free rate and shows that the efficient frontier is a straight line.
- Optimal portfolios are a combination of the tangency portfolio and the risk-free asset.
- *Separation theorem* (Lintner, 1965).

There is one optimal (risky) portfolio!

 $\mathcal{A} \mathcal{A} \mathcal{A}$

∍

The market portfolio theory Portfolio optimization and active management Stability issues

The market portfolio theory How to compute the tangency portfolio?

- Sharpe (1964) develops the CAPM theory.
- If the market is at the equilibrium, the prices of assets are such that the tangency portfolio is the market portfolio (or the market-cap portfolio).
- Avoids assumptions on expected returns, volatilities and correlations!
- It is the beginning of passive management:
 - Jensen (1969): no alpha in mutual equity funds
 - John McQuown (Wells Fargo Bank, 1971)
 - Rex Sinquefield (American National Bank, 1973)

(日) (同) (三) (三)

The market portfolio theory Portfolio optimization and active management Stability issues

Portfolio optimization and active management

For active management, portfolio optimization continues to make sense.

However...

"The indifference of many investment practitioners to mean-variance optimization technology, despite its theoretical appeal, is understandable in many cases. The major problem with MV optimization is its tendency to maximize the effects of errors in the input assumptions. Unconstrained MV optimization can yield results that are inferior to those of simple equal-weighting schemes" (Michaud, 1989).

Are optimized portfolios optimal?

< ロ > < 同 > < 三 > < 三 > <

The market portfolio theory Portfolio optimization and active management Stability issues

- We consider a universe of 3 assets.
- The parameters are: $\mu_1 = \mu_2 = 8\%$, $\mu_3 = 5\%$, $\sigma_1 = 20\%$, $\sigma_2 = 21\%$, $\sigma_3 = 10\%$ and $\rho_{i,j} = 80\%$.
- The objective is to maximize the expected return for a 15% volatility target.
- The optimal portfolio is (38.3%, 20.2%, 41.5%).

What is the	ρ		70%	90%		90%	
	σ_2				18%	18%	
sensitivity to	μ_{1}						9%
the input	X 1	38.3%	38.3%	44.6%	13.7%	0.0%	56.4%
the input	X2	20.2%	25.9%	8.9%	56.1%	65.8%	0.0%
parameters?	X 3	41.5%	35.8%	46.5%	30.2%	34.2%	43.6%

<ロト < 同ト < 三ト < 三ト -

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Ξ

The market portfolio theory Portfolio optimization and active management Stability issues

In order to stabilize the optimal portfolio, we have to introduce some regularization techniques:

- regularization of the objective function by using resampling techniques
- regularization of the covariance matrix:
 - Factor analysis
 - Shrinkage methods
 - Random matrix theory
 - etc.

Stability issues

Solutions

 regularization of the program specification by introducing some weight constraints

< 口 > < 同 > < 三 > < 三 > < 三 > <

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Э.

Regularization using resampling and shrinkage methods

- Resampling methods
- Factor analysis
- Shrinkage methods
- Why these regularization techniques are not enough?

 $\mathcal{A} \mathcal{A} \mathcal{A}$

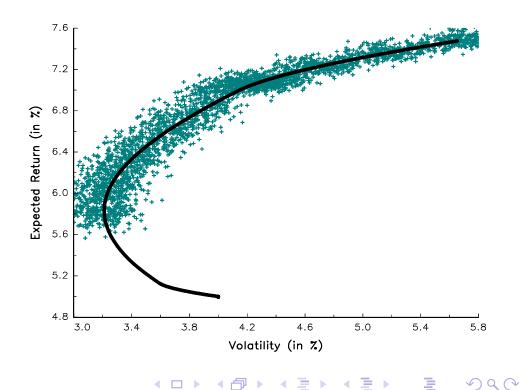
Ξ

Resampling methods

Resampling methods Factor analysis Shrinkage methods Why these regularization techniques are not enough?

- Jacknife
- Cross validation
 - Hold-out
 - K-fold
- Bootstrap
 - Resubstitution
 - Out of the bag
 - .632

Figure: An example of resampled efficient frontier



Factor analysis

How to denoise the covariance matrix?

- Factor analysis by imposing a correlation structure (MSCI Barra).
- Factor analysis by filtering the correlation structure (APT).
- Principal component analysis.
- Random matrix theory² (Bouchaud et al., 1999).

²In a random matrix of dimension $T \times n$, the maximal eigenvalue satisfies:

$$\lambda_{\max} pprox \sigma^2 \left(1 + n/T + 2\sqrt{n/T}
ight)$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Э.

Resampling methods Factor analysis Shrinkage methods Why these regularization techniques are not enough?

Resampling methods Factor analysis Shrinkage methods Why these regularization techniques are not enough?

Shrinkage methods The Ledoit and Wolf approach

- Let $\hat{\Sigma}$ be the empirical covariance matrix. This estimator is without bias but converges slowly.
- Let $\hat{\Phi}$ be another estimator which is biased but converges faster.

Ledoit and Wolf (2003) propose to combine $\hat{\Sigma}$ and $\hat{\Phi}$:

$$\hat{\Sigma}_{lpha} = lpha \hat{\Phi} + (1 - lpha) \hat{\Sigma}$$

The value of α is estimated by minimizing a quadratic loss:

$$lpha^{\star} = rg\min \mathbb{E}\left[\left\|lpha \hat{\Phi} + (1-lpha) \hat{\Sigma} - \Sigma
ight\|^2
ight]$$

They find analytical expression of α^* when:

- $\hat{\Phi}$ has a constant correlation structure;
- $\hat{\Phi}$ corresponds to a factor model or is deduced from PCA.

▲□▶ ▲□▶ ▲□▶ ▲□▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Э.

Resampling methods Factor analysis Shrinkage methods Why these regularization techniques are not enough?

Shrinkage methods Linear regression and characteristic portfolios

We consider the quadratic utility function

$$\mathscr{U}(x) = x^{\top} \mu - \frac{1}{2} \phi x^{\top} \Sigma x$$

The solution is:

$$x^{\star} = \left(X^{\top}X
ight)^{-1}X^{\top}Y = rac{1}{\phi}\hat{\Sigma}^{-1}\hat{\mu}$$

where X is the matrix of asset returns, $\hat{\Sigma} = n^{-1} (X^{\top} X)$ is the sample covariance matrix and $Y = \phi^{-1} \mathbf{1}$.

Optimized (characteristic) portfolios \Leftrightarrow Linear regression

Regularization of linear regression:

- the ridge approach $(L^2 \text{ norm or } \sum \beta_i^2)$
- the lasso approach $(L^1 \text{ norm or } \sum |\beta_i|)$

▲□▶ ▲□▶ ▲□▶ ▲□▶

500

3

Resampling methods Factor analysis Shrinkage methods Why these regularization techniques are not enough?

Shrinkage methods The ridge approach

We consider the ridge regression:

$$\mathbf{x}^{\star}(\lambda) = rgmin rac{1}{2} \phi \mathbf{x}^{ op} \mathbf{\Sigma} \mathbf{x} - \mathbf{x}^{ op} \mu + rac{\lambda}{2} \mathbf{x}^{ op} A \mathbf{x}$$

The solution is (with $\lambda' = \lambda/\phi$):

$$x^{\star}(\lambda) = \left(\mathbf{I} + \lambda' \hat{\Sigma}^{-1} A\right)^{-1} x^{\star}$$

• If A = I, we obtain:

$$x^{\star}(\lambda) = \left(\mathbf{I} + \lambda' \hat{\Sigma}^{-1}\right)^{-1} x^{\star}$$

• If $A = \mathscr{V}$ with $\mathscr{V}_{i,i} = \sigma_i^2$ and $\mathscr{V}_{i,j} = 0$, we obtain:

$$\begin{array}{lll} x^{\star}\left(\lambda\right) & = & \displaystyle \frac{1}{\phi}\left(\frac{1}{1+\lambda'}\hat{\Sigma} + \left(1 - \frac{1}{1+\lambda'}\right)\mathscr{V}\right)^{-1}\hat{\mu} \\ \\ & = & \displaystyle \left(\frac{1}{1+\lambda'}\mathbf{I} + \left(1 - \frac{1}{1+\lambda'}\right)\hat{\mathbf{C}}^{-1}\right)^{-1}x^{\star} \end{array}$$

 $x^{\star}(\lambda)$ is a combination of a portfolio with correlations and a portfolio without correlations.

590

Resampling methods Factor analysis Shrinkage methods Why these regularization techniques are not enough?

Shrinkage methods

Extension to lasso regression and dynamic allocation

• Extension to lasso regression:

$$\mathbf{x}^{\star}(\lambda) = rgminrac{1}{2} \mathbf{\phi} \mathbf{x}^{ op} \mathbf{\Sigma} \mathbf{x} - \mathbf{x}^{ op} \mathbf{\mu} + rac{\lambda}{2} \mathbf{a}^{ op} |\mathbf{x}|$$

- \Rightarrow Deleveraged portfolios & asset selection.
- Extension to dynamic allocation:
 - Lasso approach

$$x^{\star}(\lambda) = rgmin \frac{1}{2} \phi x^{\top} \Sigma x - x^{\top} \mu + \frac{\lambda}{2} \mathbf{a}^{\top} |x - x_0|$$

 \Rightarrow Interpretation in terms of turnover and trading costs (Scherer, 2007).

• Ridge approach

$$x^{\star}(\lambda) = \arg\min\frac{1}{2}\phi x^{\top}\Sigma x - x^{\top}\mu + \frac{\lambda}{2}(x - x_0)^{\top}A(x - x_0)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ ≥ < □ > □ ≥ < □ ≥ > □ ≥ < □ ≥ < □ ≥ > □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ <

Resampling methods Factor analysis Shrinkage methods Why these regularization techniques are not enough?

Why these regularization techniques are not enough? On the importance of the information matrix

Optimized portfolios are solutions of the following quadratic program:

$$egin{array}{rcl} x^{\star} &=& rg\max x^{ op} \mu - rac{1}{2} \phi x^{ op} \Sigma x \ & \ ext{u.c.} & \left\{ egin{array}{c} \mathbf{1}^{ op} x = 1 \ x \in \mathbb{R}^n \end{array}
ight. \end{array}$$

Let $\mathscr{C} = \mathbb{R}^n$ (no constraints). We have:

$$x^{\star} = \frac{\Sigma^{-1} \mathbf{1}}{\mathbf{1}^{\top} \Sigma^{-1} \mathbf{1}} - \frac{1}{\phi} \cdot \frac{\left(\left(\mathbf{1}^{\top} \Sigma^{-1} \mu \right) \Sigma^{-1} \mathbf{1} - \left(\mathbf{1}^{\top} \Sigma^{-1} \mathbf{1} \right) \Sigma^{-1} \mu \right)}{\mathbf{1}^{\top} \Sigma^{-1} \mathbf{1}}$$

Optimal solutions are of the following form: $x^* \propto f(\Sigma^{-1})$. The important quantity is then the information matrix $\mathscr{I} = \Sigma^{-1}$ and the eigendecomposition of \mathscr{I} is:

$$V_i(\mathscr{I}) = V_{n-i}(\Sigma)$$
 and $\lambda_i(\mathscr{I}) = rac{1}{\lambda_{n-i}(\Sigma)}$

Resampling methods Factor analysis Shrinkage methods Why these regularization techniques are not enough?

Why these regularization techniques are not enough?

We consider the example of Slide 9:

 $\mu_1 = \mu_2 = 8\%$, $\mu_3 = 5\%$, $\sigma_1 = 20\%$, $\sigma_2 = 21\%$, $\sigma_3 = 10\%$ and $ho_{i,j} = 80\%$.

The eigendecomposition of the covariance and information matrices is:

	Cov	variance mat	rix Σ	Information matrix I			
Asset / Factor	1	2	3	1	2	3	
1	65.35%	-72.29%	-22.43%	-22.43%	-72.29%	65.35%	
2	69.38%	69.06%	-20.43%	-20.43%	69.06%	69.38%	
3	30.26%	-2.21%	95.29%	95.29%	-2.21%	30.26%	
Eigenvalue	8.31%	0.84%	0.26%	379.97	119.18	12.04	
% cumulated	88.29%	97.20%	100.00%	74.33%	97.65%	100.00%	

 \Rightarrow It means that the first factor of the information matrix corresponds to the last factor of the covariance matrix and that the last factor of the information matrix corresponds to the first factor.

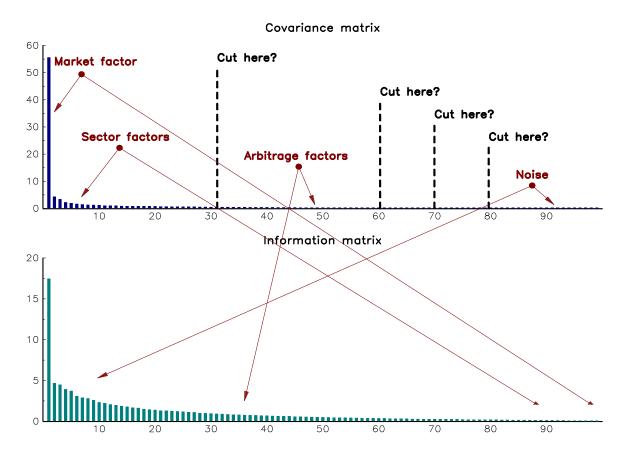
 \Rightarrow Optimization on arbitrage risk factors, idiosyncratic risk factors and (certainly) noise factors!

< ロ > < 同 > < 三 > < 三 > < 三 > <

Resampling methods Factor analysis Shrinkage methods Why these regularization techniques are not enough?

Why these regularization techniques are not enough? Working with a large universe of assets

Figure: Eigendecomposition of the FTSE 100 covariance matrix



 \Rightarrow Shrinkage is then necessary to eliminate the noise factors, but is not sufficient because it is extremely difficult to filter the arbitrage factors!

Thierry Roncalli

From Portfolio Optimization to Risk Parity

 $\mathcal{A} \mathcal{A} \mathcal{A}$

20 / 76

The impact of the weight constraints

- Shrinkage interpretation of weight constraints
- Some examples
- Myopic behavior of portfolio managers?

◆□▶ ◆□▶ ◆□▶ ◆□▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

王

Shrinkage interpretation of weight constraints Some examples Myopic behavior of portfolio managers?

Shrinkage interpretation of weight constraints

We consider a universe of *n* assets. We denote by μ the vector of their expected returns and by Σ the corresponding covariance matrix. We specify the optimization problem as follows:

$$\min \frac{1}{2} x^{\top} \Sigma x$$

u.c.
$$\begin{cases} \mathbf{1}^{\top} x = 1\\ \mu^{\top} x \ge \mu^{\star}\\ x \in \mathbb{R}^{n} \cap \mathscr{C} \end{cases}$$

where x is the vector of weights in the portfolio and \mathscr{C} is the set of weights constraints. We define:

• the unconstrained portfolio x^* or $x^*(\mu, \Sigma)$:

$$\mathscr{C} = \mathbb{R}^n$$

• the constrained portfolio \tilde{x} :

$$\mathscr{C}(x^-, x^+) = \left\{ x \in \mathbb{R}^n : x_i^- \le x_i \le x_i^+ \right\}$$

Shrinkage interpretation of weight constraints Some examples Myopic behavior of portfolio managers?

Shrinkage interpretation of weights constraints Main result

Theorem

Jagannathan and Ma (2003) show that the constrained portfolio is the solution of the unconstrained problem:

$$ilde{x} = x^{\star}\left(ilde{\mu}, ilde{\Sigma}
ight)$$

with:

$$\begin{cases} \tilde{\mu} = \mu \\ \tilde{\Sigma} = \Sigma + (\lambda^+ - \lambda^-) \mathbf{1}^\top + \mathbf{1} (\lambda^+ - \lambda^-)^\top \end{cases}$$

where λ^- and λ^+ are the Lagrange coefficients vectors associated to the lower and upper bounds.

 \Rightarrow Introducing weights constraints is equivalent to introduce a shrinkage method or to introduce some relative views (similar to the **Black-Litterman** approach).

Shrinkage interpretation of weight constraints Some examples Myopic behavior of portfolio managers?

Shrinkage interpretation of weights constraints Proof for the global minimum variance portfolio

We define the Lagrange function as $f(x; \lambda_0) = \frac{1}{2}x^{\top}\Sigma x - \lambda_0 (\mathbf{1}^{\top}x - 1)$ with $\lambda_0 \ge 0$. The first order conditions are $\Sigma x - \lambda_0 \mathbf{1} = 0$ and $\mathbf{1}^{\top}x - 1 = 0$. We deduce that the optimal solution is:

$$x^{\star} = \lambda_0^{\star} \Sigma^{-1} \mathbf{1} = \frac{1}{\mathbf{1}^{\top} \Sigma \mathbf{1}} \Sigma^{-1} \mathbf{1}$$

With weights constraints $\mathscr{C}(x^-, x^+)$, we have:

$$f(x;\lambda_0,\lambda^-,\lambda^+) = \frac{1}{2}x^{\top}\Sigma x - \lambda_0\left(\mathbf{1}^{\top}x - \mathbf{1}\right) - \lambda^{-\top}(x - x^-) - \lambda^{+\top}(x^+ - x)$$

with $\lambda_0 \ge 0$, $\lambda_i^- \ge 0$ and $\lambda_i^+ \ge 0$. In this case, the first-order conditions becomes $\Sigma x - \lambda_0 \mathbf{1} - \lambda^- + \lambda^+ = 0$ and $\mathbf{1}^\top x - 1 = 0$. We have:

$$\tilde{\Sigma}\tilde{x} = \left(\Sigma + \left(\lambda^{+} - \lambda^{-}\right)\mathbf{1}^{\top} + \mathbf{1}\left(\lambda^{+} - \lambda^{-}\right)^{\top}\right)\tilde{x} = \left(2\tilde{\lambda}_{0} - \tilde{x}^{\top}\Sigma\tilde{x}\right)\mathbf{1}$$

Because $\tilde{\Sigma}\tilde{x}$ is a constant vector, it proves that \tilde{x} is the solution of the unconstrained optimisation problem with $\lambda_0^* = \left(2\tilde{\lambda}_0 - \tilde{x}^\top \Sigma \tilde{x}\right)$.

Shrinkage interpretation of weight constraints Some examples Myopic behavior of portfolio managers?

Some examples The minimum variance portfolio

Table: Specification of the covariance matrix Σ (in %)

	σ_i		$ ho_{I}$	i,j	
-	15.00	100.00			
	20.00	10.00	100.00		
	25.00	40.00	70.00	100.00	
	30.00	50.00	40.00	80.00	100.00

Given these parameters, the global minimum variance portfolio is equal to:

$$x^{\star} = \begin{pmatrix} 72.742\% \\ 49.464\% \\ -20.454\% \\ -1.753\% \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Ξ

Shrinkage interpretation of weight constraints Some examples Myopic behavior of portfolio managers?

Some examples The minimum variance portfolio

Table: Global minimum variance portfolio when $x_i \ge 10\%$

<i>x̃</i> i	λ_i^-	λ_i^+	$\tilde{\sigma}_i$		$ ilde{ ho}$	i,j	
56.195	0.000	0.000	15.000	100.000			
23.805	0.000	0.000	20.000	10.000	100.000		
10.000	1.190	0.000	19.671	10.496	58.709		
10.000	1.625	0.000	23.980	17.378	16.161	67.518	100.000

Table: Global minimum variance portfolio when $0\% \le x_i \le 50\%$

<i>x</i> _i	λ_i^-	λ_i^+	$\tilde{\sigma}_i$		$ ilde{ ho}$	i,j	
50.000	0.000	1.050	20.857	100.000			
50.000	0.000	0.175	20.857	35.057	100.000		
0.000	0.175	0.000	24.290	46.881	69.087	100.000	
0.000	0.000	0.000	30.000	100.000 35.057 46.881 52.741	41.154	79.937	100.000

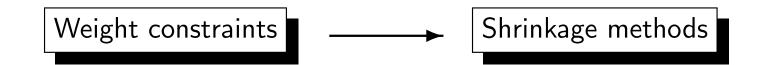
▲□▶ ▲□▶ ▲□▶ ▲□▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Ξ.

Shrinkage interpretation of weight constraints Some examples Myopic behavior of portfolio managers?

Myopic behavior of portfolio managers?



By using weight constraints, the portfolio manager changes (implicitly):

- the values of the volatilities;
- the ordering of the volatilities;
- the values of the correlations;
- the ordering of the correlations;
- the sign of the correlations.

The question is then the following:

Is the portfolio manager aware and agreed upon these changes?

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶

The risk budgeting (or risk parity) approach

- Definition
- Main properties (From Bruder and Roncalli, 2012)
- Some popular RB portfolios
- RB portfolios vs optimized portfolios

Remark

What is risk parity?

- sensu strictissimo: an ERC portfolio on bonds and equities
- sensu stricto: all the assets have the same risk contribution
- sensu lato: a risk budgeting portfolio

Some applications

Definition Main properties Some popular RB portfolios RB portfolios vs optimized <u>portfolios</u>

Three methods to build a portfolio

Weight budgeting (WB) 100% 100 2 Risk budgeting 90 (RB)Asset 1 80 Operformance Asset 2 budgeting (PB) 70 60 Weights Ex-ante analysis 50 \neq 40 **Ex-post analysis** 30 20% 20 Important result Return 10% Risk 10 RB = PB0 WB < □ ▶ RB< 同 ▶ < 三 ▶ PB 🕨 E 590 •

Figure: The 30/70 rule

Thierry <u>Roncalli</u>

From Portfolio Optimization to Risk Parity

29 / 76

Definition Main properties Some popular RB portfolios RB portfolios vs optimized portfolios

Weight budgeting versus risk budgeting

Let $x = (x_1, ..., x_n)$ be the weights of *n* assets in the portfolio. Let $\mathscr{R}(x_1, ..., x_n)$ be a coherent and convex risk measure. We have:

$$\mathcal{R}(x_1, \dots, x_n) = \sum_{i=1}^n x_i \cdot \frac{\partial \mathcal{R}(x_1, \dots, x_n)}{\partial x_i}$$
$$= \sum_{i=1}^n \mathrm{RC}_i (x_1, \dots, x_n)$$

Let $b = (b_1, ..., b_n)$ be a vector of budgets such that $b_i \ge 0$ and $\sum_{i=1}^{n} b_i = 1$. We consider two allocation schemes:

Weight budgeting (WB)

$$x_i = b_i$$

Risk budgeting³ (RB)

$$\mathrm{RC}_i = b_i \cdot \mathscr{R}(x_1, \ldots, x_n)$$

³The ERC portfolio is a special case when $b_i = 1/n$.

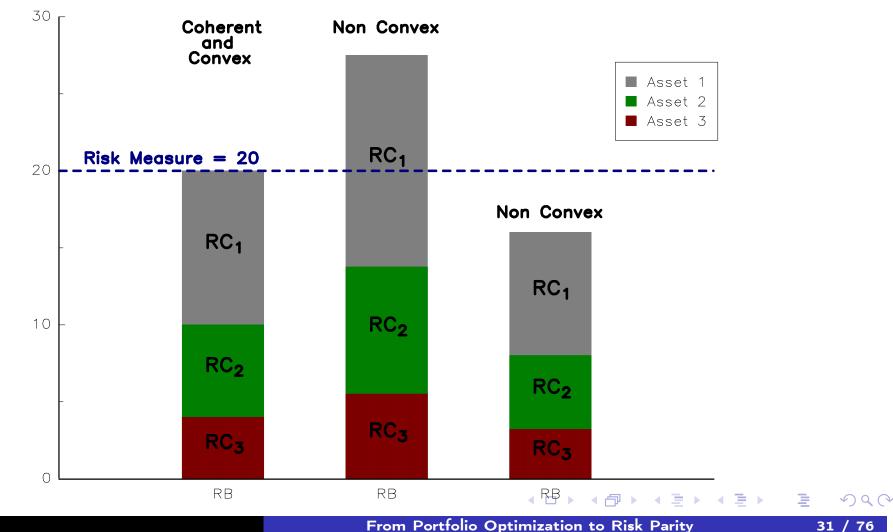
30 / 76

Some applications

Definition Main properties Some popular RB portfolios RB portfolios vs optimized portfolios

Importance of the coherency and convexity properties

Figure: Risk Measure = 20 with a 50/30/20 budget rule



Thierry Roncalli

From Portfolio Optimization to Risk Parity

Definition Main properties Some popular RB portfolios RB portfolios vs optimized portfolios

Application to the volatility risk measure

Let Σ be the covariance matrix of the assets returns. We assume that the risk measure $\mathscr{R}(x)$ is the volatility of the portfolio $\sigma(x) = \sqrt{x^{\top}\Sigma x}$. We have:

$$\frac{\partial \mathscr{R}(x)}{\partial x} = \frac{\Sigma x}{\sqrt{x^{\top}\Sigma x}}$$

$$\operatorname{RC}_{i}(x_{1},...,x_{n}) = x_{i} \cdot \frac{(\Sigma x)_{i}}{\sqrt{x^{\top}\Sigma x}}$$

$$\sum_{i=1}^{n} \operatorname{RC}_{i}(x_{1},...,x_{n}) = \sum_{i=1}^{n} x_{i} \cdot \frac{(\Sigma x)_{i}}{\sqrt{x^{\top}\Sigma x}} = x^{\top} \frac{\Sigma x}{\sqrt{x^{\top}\Sigma x}} = \sigma(x)$$

The risk budgeting portfolio is defined by this system of equations:

$$\begin{cases} x_i \cdot (\Sigma x)_i = b_i \cdot (x^\top \Sigma x) \\ x_i \ge 0 \\ \sum_{i=1}^n x_i = 1 \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲ □▶

An example

Illustration

- 3 assets
- Volatilities are respectively 30%, 20% and 15%
- Correlations are set to 80% between the 1^{st} asset and the 2^{nd} asset, 50% between the 1^{st} asset and the 3^{rd} asset and 30% between the 2^{nd} asset and the 3^{rd} asset and the 3^{rd} asset
- Budgets are set to 50%, 20% and 30%
- For the ERC (Equal Risk Contribution) portfolio, all the assets have the same risk budget

Weight budgeting (or traditional) approach

Asset	Weight	Marginal	Risk Contribution		
Asset	weight	Risk	Absolute	Relative	
1	50.00%	29.40%	14.70%	70.43%	
2	20.00%	16.63%	3.33%	15.93%	
3	30.00%	9.49%	2.85%	13.64%	
Volatility			20.87%		

Risk budgeting approach

Asset	Weight	Marginal	Risk Contribution		
Asset	weight	Risk	Absolute	Relative	
1	31.15%	28.08%	8.74%	50.00%	
2	21.90%	15.97%	3.50%	20.00%	
3	46.96%	11.17%	5.25%	30.00%	
Volatility			17.49%		

ERC approach

Accot	Weight	Marginal	Risk Contribution		
Asset	weight	Risk	Absolute	Relative	
1	19.69%	27.31%	5.38%	33.33%	
2	32.44%	16.57%	5.38%	33.33%	
3	47.87%	11.23%	5.38%	33.33%	
Volatility			16.13%		

▲□▶ ▲□▶ ▲□▶ ▲□▶

Definition

Main properties

Some popular RB portfolios

RB portfolios vs optimized portfolios

 $\mathcal{A} \cap \mathcal{A}$

3

Definition Main properties Some popular RB portfolios RB portfolios vs optimized portfolios

RB is (a little) more complex than ERC

Let us consider the two-asset case. Let ρ be the correlation and x = (w, 1 - w) be the vector of weights. The ERC portfolio is:

$$w^* = \left. rac{1}{\sigma_1} \right/ \left(rac{1}{\sigma_1} + rac{1}{\sigma_2}
ight)$$

The RB portfolio with (b, 1-b) as the vector of risk budgets is:

$$w^{\star} = \frac{(b - \frac{1}{2})\rho\sigma_{1}\sigma_{2} - b\sigma_{2}^{2} + \sigma_{1}\sigma_{2}\sqrt{(b - \frac{1}{2})^{2}\rho^{2} + b(1 - b)}}{(1 - b)\sigma_{1}^{2} - b\sigma_{2}^{2} + 2(b - \frac{1}{2})\rho\sigma_{1}\sigma_{2}}$$

It introduces some convexity with respect to b and ρ .

			$\sigma_2 = \sigma_1$				$\sigma_2 = 3 \times \sigma_1$			
	Ь	20%	50%	70%	90%	20%	50%	70%	90%	
	-99.9%	50.0%	50.0%	50.0%	50.0%	75.0%	75.0%	75.0%	75.0%	
	-50%	41 .9%	50.0%	55.2%	61.6%	68.4%	75.0%	78.7%	82.8%	
	0%	33.3%	50.0%	60.4%	75.0%	60.0%	75.0%	82.1%	90.0%	
•	25%	29.3%	50.0%	63.0%	80.6%	55.5%	75.0%	83.6%	92 .6%	
ρ	50%	25.7%	50.0%	65.5%	84.9%	51.0%	75.0%	85.1%	94.4%	
	75%	22.6%	50.0%	67.8%	87.9%	46.7%	75.0%	86.3%	95 .6%	
	90%	21.0%	50.0%	69 . 1 %	89 .2%	44.4%	75.0%	87.1%	96 .1%	

Table: Weights w^* with respect to some values of b and ρ

Thierry Roncalli

From Portfolio Optimization to Risk Parity

34 / 76

Definition Main properties Some popular RB portfolios RB portfolios vs optimized portfolios

Some analytical solutions

- The case of uniform correlation⁴ $\rho_{i,j} = \rho$
 - ERC portfolio $(b_i = 1/n)$

$$x_i(\rho) = \frac{\sigma_i^{-1}}{\sum_{j=1}^n \sigma_j^{-1}}$$

• RB portfolio

$$x_{i}\left(-\frac{1}{n-1}\right) = \frac{\sigma_{i}^{-1}}{\sum_{j=1}^{n}\sigma_{j}^{-1}}, \ x_{i}(0) = \frac{\sqrt{b_{i}}\sigma_{i}^{-1}}{\sum_{j=1}^{n}\sqrt{b_{j}}\sigma_{j}^{-1}}, \ x_{i}(1) = \frac{b_{i}\sigma_{i}^{-1}}{\sum_{j=1}^{n}b_{j}\sigma_{j}^{-1}}$$

• The general case

$$x_i = \frac{b_i \beta_i^{-1}}{\sum_{j=1}^n b_j \beta_j^{-1}}$$

where β_i is the beta of the asset *i* with respect to the RB portfolio.

⁴The solution is noted $x_i(\rho)$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ -

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Э.

Definition Main properties Some popular RB portfolios RB portfolios vs optimized portfolios

The RB portfolio is a minimum variance (MV) portfolio subject to a constraint of weight diversification

Let us consider the following minimum variance optimization problem:

$$egin{array}{rll} x^{\star}(c) &=& rg\min\sqrt{x^{ op}\Sigma x} \ && \ ext{u.c.} & \left\{ egin{array}{ll} \sum_{i=1}^n b_i \ln x_i \geq c \ \mathbf{1}^{ op}x = 1 \ x \geq \mathbf{0} \end{array}
ight. \end{array}$$

if c = c⁻ = -∞, x^{*}(c⁻) = x_{MV} (no weight diversification)
if c = c⁺ = ∑_{i=1}ⁿ b_i ln b_i, x^{*}(c⁺) = x_{WB} (no variance minimization)
∃ c⁰ : x^{*}(c⁰) = x_{RB} (variance minimization and weight diversification)
⇒ if b_i = 1/n, x_{RB} = x_{ERC} (variance minimization, weight diversification and perfect risk diversification⁵)

Definition Main properties Some popular RB portfolios RB portfolios vs optimized portfolios

The RB portfolio is located between the MV portfolio and the WB portfolio

• The RB portfolio is a combination of the MV and WB portfolios:

$$\partial_{x_i} \sigma(x) = \partial_{x_j} \sigma(x)$$
 (MV)

$$x_i/b_i = x_j/b_j$$
 (WB)

$$x_i \partial_{x_i} \sigma(x) / b_i = x_j \partial_{x_j} \sigma(x) / b_j$$
 (RB)

• The volatility of the RB portfolio is between the volatility of the MV portfolio and the volatility of the WB portfolio:

$$\sigma_{MV} \leq \sigma_{RB} \leq \sigma_{WB}$$

With risk budgeting, we always diminish the volatility compared to the weight budgeting

 \Rightarrow For the ERC portfolio, we retrieve the famous relationship:

$$\sigma_{MV} \leq \sigma_{ERC} \leq \sigma_{1/n}$$

< ロ > < 同 > < 三 > < 三 > < 三 > <

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Definition Main properties Some popular RB portfolios RB portfolios vs optimized portfolios

Existence and uniqueness

- If $b_i > 0$, the solution exists and is unique.
- If $b_i \ge 0$, there may be several solutions.
- If $\rho_{i,j} \ge 0$, the solution is unique.

An example with 3 assets: $\sigma_1 = 20\%$, $\sigma_2 = 10\%$, $\sigma_3 = 5\%$ and $\rho_{1,2} = 50\%$.

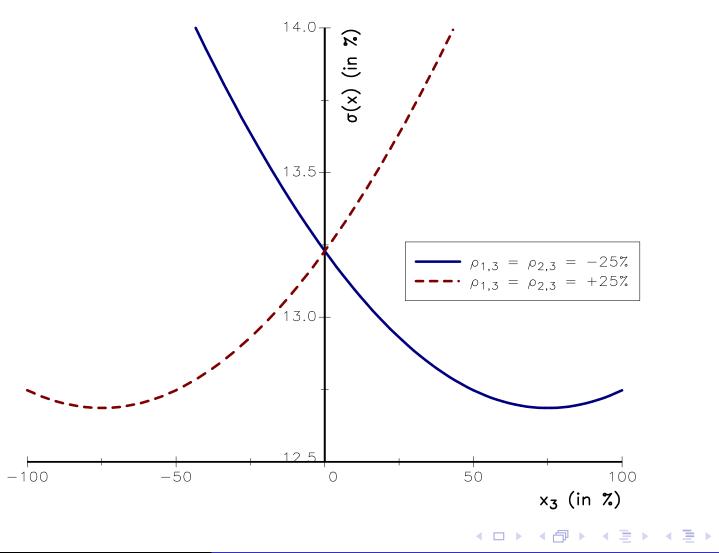
$\rho_{1,3} = \rho_{2,3}$	S	olution	1	2	3	$\sigma(x)$
		×i	20.00%	40.00%	40.00%	
	\mathscr{S}_1	$\partial_{x_i} \sigma(x)$	16.58%	8.29%	0.00%	6.63%
		RC,	50.00%	50.00%	0.00%	
		×i	33.33%	66.67%	0.00%	
-25%	\mathscr{S}_2	$\partial_{x_i} \sigma(x)$	17.32%	8.66%	-1.44%	11.55%
		RCi	50.00%	50.00%	0.00%	
		×i	19.23%	38.46%	42.31%	
	\mathscr{S}'_1	$\partial_{x_i} \sigma(x)$	16.42%	8.21%	0.15%	6.38%
		RCi	49.50%	49.50%	1.00%	
		Xi	33.33%	66.67%	0.00%	
25%	\mathscr{S}_1	$\partial_{x_i} \sigma(x)$	17.32%	8.66%	1.44%	11.55%
		RCi	50.00%	50.00%	0.00%	

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Definition Main properties Some popular RB portfolios RB portfolios vs optimized portfolios

Existence and uniqueness

Figure: Evolution of the volatility with respect to the weights $(50\%, 50\%, x_3)$



 $\mathcal{A} \mathcal{A} \mathcal{A}$

E.

Definition Main properties Some popular RB portfolios RB portfolios vs optimized portfolios

Existence and uniqueness Characterization of the solutions

Let \mathcal{N} be the set of assets such that $b_i = 0$. The solution \mathcal{S}_1 satisfies the following relationships:

$$\begin{cases} \operatorname{RC}_{i} = x_{i} \cdot \partial_{x_{i}} \sigma(x) = b_{i} & \text{if } i \notin \mathcal{N} \\ \begin{cases} x_{i} = 0 \text{ and } \partial_{x_{i}} \sigma(x) > 0 & (i) \\ \text{or } & \text{if } i \in \mathcal{N} \\ x_{i} > 0 \text{ and } \partial_{x_{i}} \sigma(x) = 0 & (ii) \end{cases} \end{cases}$$

The conditions (*i*) and (*ii*) are mutually exclusive for one asset $i \in \mathcal{N}$, but not necessarily for all the assets $i \in \mathcal{N}$.

Let $\mathcal{N} = \mathcal{N}_1 \sqcup \mathcal{N}_2$ where \mathcal{N}_1 is the set of assets verifying the condition (*i*) and \mathcal{N}_2 is the set of assets verifying the condition (*ii*). The number of solutions is equal to 2^m where $m = |\mathcal{N}_1|$ is the cardinality of \mathcal{N}_1 .

< D > < P > < P > < P > < P >

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Э.

Definition Main properties Some popular RB portfolios RB portfolios vs optimized portfolios

Optimality of risk budgeting portfolios

If the RB portfolio is optimal (in the Markowitz sense), the ex-ante performance contributions are equal to the risk budgets:

Black-Litterman Approach

Budgeting the risk = budgeting the performance (in an ex-ante point of view)

Let $\tilde{\mu}_i$ be the market price of the expected return. We have:

$$x_i \cdot \tilde{\mu}_i \propto x_i \cdot \frac{\partial \sigma(x)}{\partial x}$$

In the ERC portfolio, the (ex-ante) performance contributions are equal. The ERC portfolio is then the less concentrated portfolio in terms of risk contributions, but also in terms of performance contributions.

(日) (同) (三) (三)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Э.

Definition Main properties Some popular RB portfolios RB portfolios vs optimized portfolios

Optimality of risk budgeting portfolios

We consider the quadratic utility function $\mathscr{U}(x) = x^{\top} \mu - \frac{1}{2} \phi x^{\top} \Sigma x$ of Markowitz. The portfolio x is optimal if the vector of expected returns satisfies this relationship:

$$\partial_{x} \mathscr{U}(x) = 0 \Leftrightarrow \tilde{\mu} = rac{1}{\phi} \Sigma x$$

If the RB portfolio is optimal, the performance contribution PC_i of the asset *i* is then proportional to its risk contribution (or risk budget):

$$PC_{i} = x_{i}\tilde{\mu}_{i}$$

$$= \frac{1}{\phi}x_{i}(\Sigma x)_{i}$$

$$= \frac{\sqrt{x^{\top}\Sigma x}}{\phi} \cdot \frac{x_{i}(\Sigma x)_{i}}{\sqrt{x^{\top}\Sigma x}}$$

$$\propto RC$$

$$\propto b_{i}$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Some applications

Definition Main properties Some popular RB portfolios RB portfolios vs optimized portfolios

Optimality of risk budgeting portfolios

$$\sigma = \begin{pmatrix} 10\% \\ 20\% \\ 30\% \\ 40\% \end{pmatrix} \quad \text{and} \quad \rho = \begin{pmatrix} 1.0 \\ 0.8 & 1.0 \\ 0.2 & 0.2 & 1.0 \\ 0.2 & 0.2 & 0.5 & 1.0 \end{pmatrix}$$

Example 1

Example 2

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶

bi	×i	$\partial_{x_i} \sigma(x)$	RC _i	$ ilde{\mu}_i$	PCi	bi	×i	$\partial_{x_i} \sigma(x)$	RC _i	$ ilde{\mu}_i$	PCi
20.0	40.9	7.1	20.0	5.2	20.0	 10.0	35.9	5.3	10.0	5.0	10.0
25.0	25.1	14.5	25.0	10.5	25.0	10.0	17.9	10.5	10.0	9.9	10.0
40.0	25.3	23.0	40.0	16.7	40.0	10.0	10.2	18.6	10.0	17.5	10.0
15.0	8.7	25.0	15.0	18.2	15.0	70.0	36.0	36.7	70.0	34.7	70.0

 $\mathcal{A} \mathcal{A} \mathcal{A}$

=

Definition Main properties Some popular RB portfolios RB portfolios vs optimized portfolios

Generalization to other convex risk measures

If the risk measure is coherent and satisfies the Euler principle (convexity property), the following properties are verified:

- Existence and uniqueness
- Output Setup 2 Location between the minimum risk portfolio and the weight budgeting portfolio
- Optimality

▲□▶ ▲□▶ ▲□▶ ▲□▶

3

Definition Main properties Some popular RB portfolios RB portfolios vs optimized portfolios

Some heuristic portfolios as RB portfolios

The EW, MV, MDP and ERC portfolios could be interpreted as (endogenous) RB portfolios.

	EW	MV	MDP	ERC
b _i PC _i	eta_i	Xi	$x_i \sigma_i$	<u>1</u> n

MV and MDP portfolios are two limit portfolios (explaining that the weights of some assets could be equal to zero).

<ロト <同ト < 三ト < 三ト

 $\mathcal{A} \mathcal{A} \mathcal{A}$

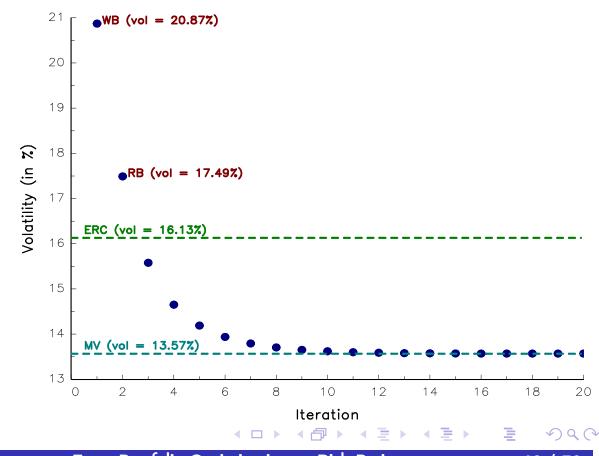
Definition Main properties Some popular RB portfolios RB portfolios vs optimized portfolios

Some heuristic portfolios as RB portfolios

MV portfolio as a limit portfolio

Let us consider an iterated portfolio $(x_1^{(t)}, \ldots, x_n^{(t)})$ where *t* represents the iteration. The portfolio is defined such that the risk budget $b_i^{(t)}$ of the asset *i* at iteration t corresponds to the weight $x_i^{(t-1)}$ at iteration t-1. If the portfolio $\left(x_1^{(t)},\ldots,x_n^{(t)}\right)$ admits a limit when $t \rightarrow \infty$, it is equal to the minimum variance portfolio.

Figure: Illustration with the example of Slide 33



Definition Main properties Some popular RB portfolios RB portfolios vs optimized portfolios

RB portfolios vs optimized portfolios

With the example of Slide 9, the optimal portfolio is (38.3%, 20.2%, 41.5%) for a volatility of 15%. The corresponding risk contributions are 49.0%, 25.8% and 25.2%.

- MVO: the objective is to target a volatility of 15%.
- **2** RB: the objective is to target the budgets (49.0%, 25.8%, 25.2%).

M/bat is the	ρ σ ₂			70%	90%	18%	90% 18%	
What is the	μ_1							9%
sensitivity to		X 1	38.3%	38.3%	44.6%	13.7%	0.0%	56.4%
the input	MVO	X2	20.2%	25.9%	8.9%	56.1%	65.8%	0.0%
•		X 3	41.5%	35.8%	46.5%	30.2%	34.2%	43.6%
parameters?		X 1	38.3%	37.7%	38.9%	37.1%	37.7%	38.3%
	RB	×2	20.2%	20.4%	20.0%	22.8%	22.6%	20.2%
		X 3	41.5%	41.9%	41.1%	40.1%	39.7%	41.5%

 \Rightarrow RB portfolios are less sensitive to specification errors than optimized portfolios.

< 口 > < 同 > < 三 > < 三 > < 三 > <

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Risk-based indexation Risk-balanced allocation

Some applications

- Risk-based indexation
 - Equity indexation
 - Bond indexation
- Risk-balanced allocation
 - Strategic asset allocation
 - Risk parity funds

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Ξ

Risk-based indexation Risk-balanced allocation

Equity indexation Pros and cons of market-cap indexation

Pros of market-cap indexation

- A convenient and **recognized approach** to participate to broad equity markets.
- Management simplicity: low turnover & transaction costs.

Cons of market-cap indexation

 Trend-following strategy: momentum bias leads to bubble risk exposure as weight of best performers ever increases.

 \Rightarrow Mid 2007, financial stocks represent 40% of the Eurostoxx 50 index.

• Growth biais as high valuation multiples stocks weight more than low-multiple stocks with equivalent realised earnings.

 \Rightarrow Mid 2000, the 8 stocks of the technology/telecom sectors represent 35% of the Eurostoxx 50 index.

 \Rightarrow 2¹/2 years later after the dot.com bubble, these two sectors represent 12%.

• Concentrated portfolios.

- \Rightarrow The top 100 market caps of the S&P 500 account for around 70%.
- Lack of risk diversification and high drawdown risk: no portfolio construction rules leads to concentration issues (e.g. sectors, stocks).

90 Q

Risk-based indexation Risk-balanced allocation

Equity indexation Alternative-weighted indexation

Alternative-weighted indexation aims at building passive indexes where the weights are not based on market capitalization.

Two sets of responses:

- Fundamental indexation \Rightarrow promising alpha
 - Dividend yield indexation
 - **8** RAFI indexation
- **2** Risk-based indexation \Rightarrow promising diversification
 - Equally weighted (1/n)
 - Olinimum-variance portfolio
 - 8 ERC portfolio
 - MDP/MSR portfolio

<ロ > < 同 > < 三 > < 三 > < 三 > <

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Risk-based indexation Risk-balanced allocation

Equity indexation Application to the Eurostoxx 50 index

						MV	MDP	MV	MDP							MV	MDP	MV	MDP
	CW	MV	ERC	MDP	1/n	10%	10%	5%	5%		CW	MV	ERC	MDP	1/n	10%	10%	5%	5%
TOTAL	6.1		2.1		2			5.0		RWE AG (NEU)	1.7	2.7	2.7		2	7.0		5.0	
BANCO SANTANDER	5.8		1.3		2					ING GROEP NV	1.6		0.8	0.4	2				
TELEFONICA SA	5.0	31.2	3.5		2	10.0		5.0	5.0	DANONE	1.6	1.9	3.4	1.8	2	8.7	3.3	5.0	5.0
SANOFI-AVENTIS	3.6	12.1	4.5	15.5	2	10.0	10.0	5.0	5.0	IBERDROLA SA	1.6		2.5		2	5.1		5.0	1.2
E.ON AG	3.6		2.1		2				1.4	ENEL	1.6		2.1		2			5.0	2.9
BNP PARIBAS	3.4		1.1		2					VIVENDI SA	1.6	2.8	3.1	4.5	2	10.0	5.9	5.0	5.0
SIEMENS AG	3.2		1.5		2					ANHEUSER-BUSCH INB	1.6	0.2	2.7	10.9	2	2.1	10.0	5.0	5.0
BBVA(BILB-VIZ-ARG)	2.9		1.4		2					ASSIC GENERALI SPA	1.6		1.8		2				
BAYER AG	2.9		2.6	3.7	2	2.2	5.0	5.0	5.0	AIR LIQUIDE(L')	1.4		2.1		2			5.0	
ENI	2.7		2.1		2					MUENCHENER RUECKVE	1.3		2.1	2.1	2		3.1	5.0	5.0
GDF SUEZ	2.5		2.6	4.5	2		5.4	5.0	5.0	SCHNEIDER ELECTRIC	1.3		1.5		2				
BASF SE	2.5		1.5		2					CARREFOUR	1.3	1.0	2.7	1.3	2	3.7	2.5	5.0	5.0
ALLIANZ SE	2.4		1.4		2					VINCI	1.3		1.6		2				
UNICREDIT SPA	2.3		1.1		2					LVMH MOET HENNESSY	1.2		1.8		2				
SOC GENERALE	2.2		1.2	3.9	2		3.7		5.0	PHILIPS ELEC(KON)	1.2		1.4		2				
UNILEVER NV	2.2	11.4	3.7	10.8	2	10.0	10.0	5.0	5.0	L'OREAL	1.1	0.8	2.8		2	5.5		5.0	5.0
FRANCE TELECOM	2.1	14.9	4.1	10.2	2	10.0	10.0	5.0	5.0	CIE DE ST-GOBAIN	1.0		1.1		2				
ΝΟΚΙΑ ΟΥΙ	2.1		1.8	4.5	2		4.8		5.0	REPSOL YPF SA	0.9		2.0		2			5.0	
DAIMLER AG	2.1		1.3		2					CRH	0.8		1.7	5.1	2		5.2		5.0
DEUTSCHE BANK AG	1.9		1.0		2					CREDIT AGRICOLE SA	0.8		1.1		2				
DEUTSCHE TELEKOM	1.9		3.2	2.6	2	5.7	3.7	5.0	5.0	DEUTSCHE BOERSE AG	0.7		1.5		2				1.9
INTESA SANPAOLO	1.9		1.3		2					TELECOM ITALIA SPA	0.7		2.0		2				2.5
АХА	1.8		1.0		2					ALSTOM	0.6		1.5		2				
ARCELORMITTAL	1.8		1.0		2					AEGON NV	0.4		0.7		2				
SAP AG	1.8	21.0	3.4	11.2	2	10.0	10.0	5.0	5.0	VOLKSWAGEN AG	0.2		1.8	7.1	2		7.4		5.0
										Total of components	50	11	50	17	50	14	16	20	23

Table: Composition in % (January 2010)

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶

590

Ξ

Risk-based indexation Risk-balanced allocation

Equity indexation Measuring the concentration of an equity portfolio

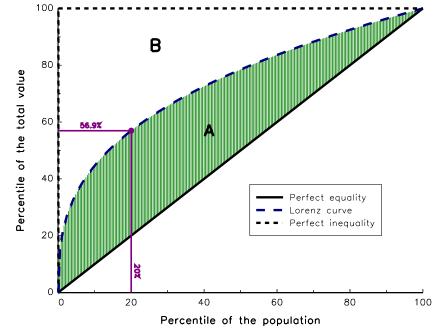
• The Lorenz curve $\mathscr{L}(x)$

It is a graphical representation of the concentration. It represents the cumulative weight of the first x% most representative stocks.

 The Gini coefficient
 It is a dispersion measure based on the Lorenz curve:

$$G = \frac{A}{A+B} = 2\int_0^1 \mathscr{L}(x) \, \mathrm{d}x - 1$$

G takes the value 1 for a perfectly concentrated portfolio and 0 for the equally-weighted portfolio.



• The risk concentration of a portfolio is analyzed using Lorenz curve and Gini coefficient applied to risk contributions.

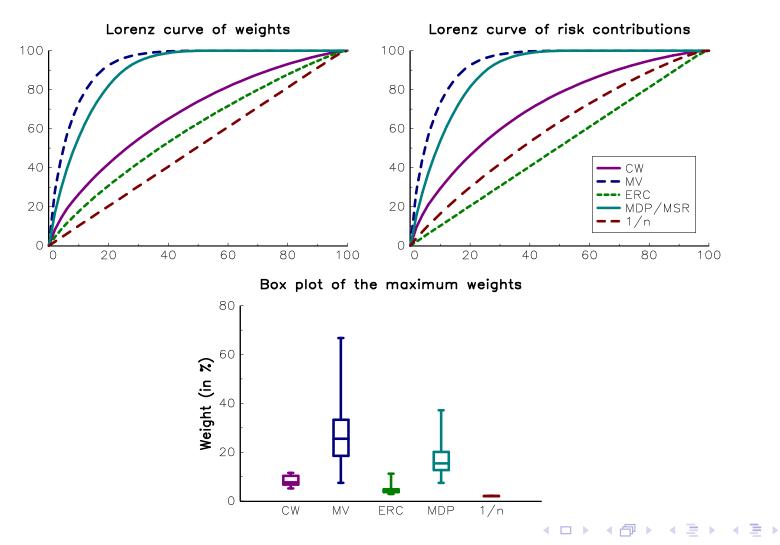
52 / 76

 $\nabla \circ \circ$

Risk-based indexation Risk-balanced allocation

Equity indexation Concentration of the Eurostoxx 50 index

Figure: Weight and risk concentration (January 1993-December 2009)



Thierry Roncalli

53 / 76

 $\mathcal{A} \mathcal{A} \mathcal{A}$

臣

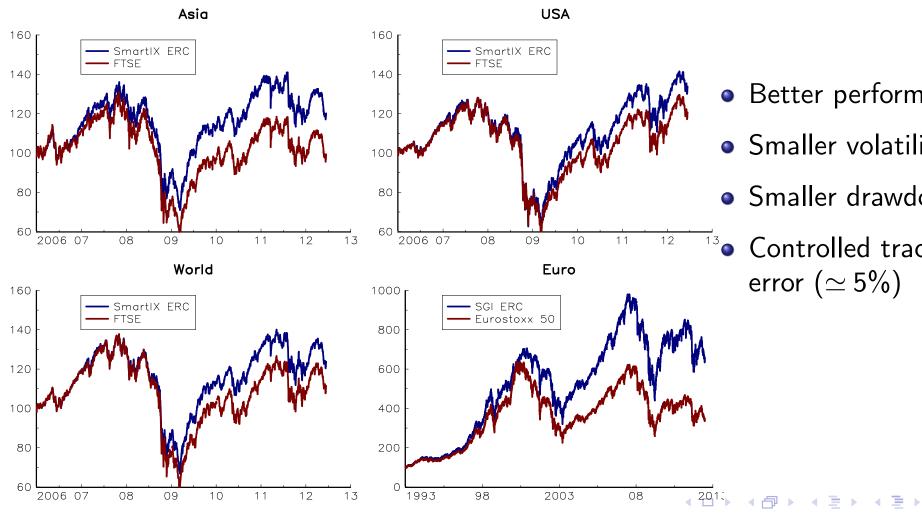
Risk-based indexation Risk-balanced allocation

From Portfolio Optimization to Risk Parity

Equity indexation Examples

Thierry Ron<u>calli</u>

Figure: Performance of some ERC indexes



- Better performance
- Smaller volatility
- Smaller drawdown
- ¹³ Controlled tracking error ($\simeq 5\%$)

E

 $\mathcal{A} \mathcal{A} \mathcal{A}$

54 / 76

Risk-based indexation Risk-balanced allocation

Bond indexation Time to rethink the bond portfolios management

Two main problems:

- Benchmarks = debt-weighted indexation (the weights are based on the notional amount of the debt)
- ② Fund management driven by the search of yield with little consideration for **credit risk** (carry position \neq arbitrage position)
- \Rightarrow Time to rethink bond indexes? (Toloui, 2010)

We need to develop a framework to measure the credit risk of bond portfolios with two goals:

- managing the credit risk of bond portfolios;
- Obuilding alternative-weighted indexes.

For the application, we consider the euro government bond portfolios. The benchmark is the Citigroup EGBI index.

▲□▶ ▲□▶ ▲□▶ ▲□▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Risk-based indexation Risk-balanced allocation

Bond indexation Defining the credit risk measure of a bond portfolio

- Volatility of price returns \neq a good measure of credit risk
- Correlation of price returns \neq a good measure of contagion
- A better measure is the asset swap spread, but it is an OTC data. That's why we use the CDS spread.

Our credit risk measure $\mathscr{R}(w)$ is the (integrated) volatility of the CDS basket which would perfectly hedge the credit risk of the bond portfolio⁶.

Remark

 $\mathscr{R}(w)$ depends on 3 "CDS" parameters $S_i(t)$ (the level of the CDS), σ_i^S (the volatility of the CDS) and $\Gamma_{i,j}$ (the cross-correlation between CDS) and two "portfolio" parameters w_i (the weight) and D_i (the duration).

⁶We use a SABR model for the dynamics of CDS spreads $\rightarrow 4 = 2$ $\rightarrow 4 = 2$ $\rightarrow 3 = 2$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Bond indexation

Weighting schemes

Debt weighting

It is defined by^a:

 $w_i = \frac{\text{DEBT}_i}{\sum_{i=1}^n \text{DEBT}_i}$

^aTwo forms of debt-weighting are considered : DEBT (with the 11 countries) and DEBT* (without Greece after July 2010). This last one corresponds to the weighting scheme of the EGBI index. Risk-based indexation Risk-balanced allocation

Alternative weighting

Fundamental indexation
 The GDP-weighting is defined by:

 $w_i = \frac{\text{GDP}_i}{\sum_{i=1}^n \text{GDP}_i}$

Risk-based indexation The DEBT-RB and GDP-RB weightings are defined by:

$$b_{i} = \frac{\text{DEBT}_{i}}{\sum_{i=1}^{n} \text{DEBT}_{i}}$$
$$b_{i} = \frac{\text{GDP}_{i}}{\sum_{i=1}^{n} \text{GDP}_{i}}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶

From Portfolio Optimization to Risk Parity

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Risk-based indexation Risk-balanced allocation

Bond indexation Some results for the EGBI index

Country	July	-08	July	-09	July	-10	July	-11	Marc	h-12	June	e-12
Country	Weights	RC										
Austria	4.1%	1.7%	3.6%	7.7%	4.1%	2.3%	4.3%	1.5%	4.2%	3.0%	4.3%	2.6%
Belgium	6.2%	6.1%	6.5%	5.1%	6.3%	5.7%	6.4%	6.5%	6.3%	6.6%	6.2%	6.1%
Finland	1.2%	0.4%	1.3%	0.5%	1.3%	0.2%	1.6%	0.2%	1.6%	0.3%	1.6%	0.3%
France	20.5%	9.8%	20.4%	13.2%	22.2%	15.1%	23.1%	13.3%	23.2%	19.0%	23.2%	17.6%
Germany	24.4%	6.1%	22.3%	13.0%	22.9%	6.0%	22.1%	5.3%	22.4%	7.3%	22.4%	7.0%
Greece	4.9%	11.4%	5.4%	8.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Ireland	1.0%	1.3%	1.5%	4.3%	2.1%	3.3%	1.4%	5.4%	1.7%	2.3%	1.7%	2.0%
Italy	22.1%	45.2%	22.4%	29.5%	23.4%	38.7%	23.1%	38.5%	22.1%	39.7%	21.8%	42.0%
Netherlands	5.3%	1.7%	5.3%	4.1%	6.1%	1.6%	6.2%	1.2%	6.2%	2.6%	6.5%	2.5%
Portugal	2.4%	3.9%	2.3%	2.3%	2.1%	6.3%	1.6%	6.6%	1.4%	3.0%	1.7%	2.6%
Spain	7.8%	12.4%	9.1%	11.8%	9.6%	20.9%	10.3%	21.3%	10.8%	16.2%	10.7%	17.2%
Sovereign Risk Measure	0.70	0%	2.5	9%	6.12	2%	4.02	2%	8.62	2%	12.1	16%

Figure: EGBI weights and risk contributions

 \Rightarrow Small changes in weights but large changes in risk contributions.

 \Rightarrow The sovereign credit risk measure has highly increased (the largest value 12.5% is obtained in November 25th 2011).

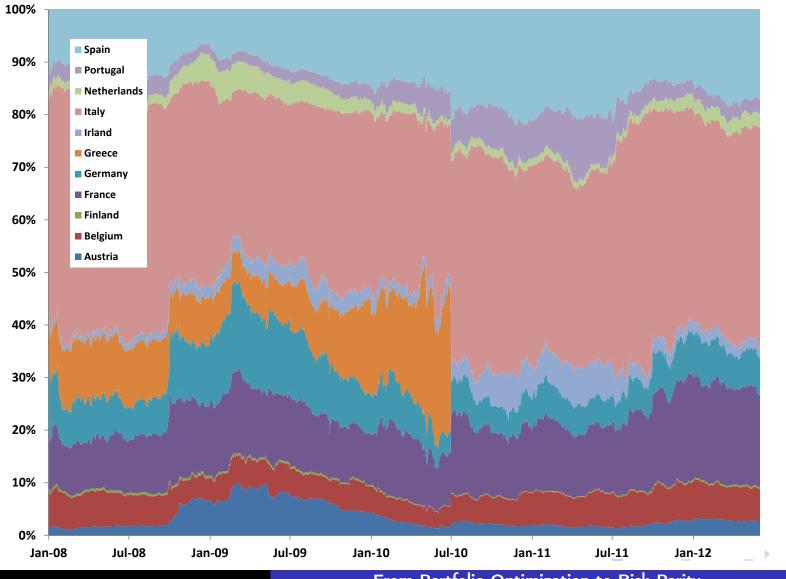
<ロト < 同ト < 三ト < 三ト

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Э.

Risk-based indexation Risk-balanced allocation

Bond indexation Evolution of the risk contributions in the EGBI index



Thierry Roncalli

From Portfolio Optimization to Risk Parity

E.

SQ (?

59 / 76

Risk-based indexation Risk-balanced allocation

Bond indexation GDP-RB indexation

Figure: Weights and risk contributions of the GDP-RB indexation

Country	Jul	y-08	Jul	y-09	Jul	y-10	Jul	y-11	Mar	ch-12	Jun	e-12
Country	RC	Weights										
Austria	3.1%	3.9%	3.1%	1.2%	3.1%	2.9%	3.2%	4.2%	3.4%	2.8%	3.4%	3.2%
Belgium	3.8%	2.1%	3.8%	4.1%	3.9%	2.2%	4.0%	1.9%	4.0%	2.4%	4.0%	2.4%
Finland	2.0%	3.2%	1.9%	4.4%	2.0%	6.3%	2.1%	6.0%	2.1%	5.7%	2.1%	5.5%
France	21.2%	22.0%	21.5%	25.6%	21.4%	15.5%	21.5%	16.5%	21.7%	16.4%	21.7%	16.3%
Germany	27.4%	47.8%	27.2%	35.5%	27.7%	50.0%	27.9%	48.7%	27.8%	49.9%	27.8%	51.0%
Greece	2.6%	0.7%	2.7%	1.4%	2.6%	0.2%	2.4%	0.2%	2.4%	0.3%	2.4%	0.1%
Ireland	2.0%	0.8%	1.9%	0.6%	1.8%	0.6%	1.7%	0.2%	1.7%	0.8%	1.7%	0.9%
Italy	17.4%	5.3%	17.3%	11.2%	17.2%	6.0%	17.0%	5.2%	17.1%	6.4%	17.1%	6.2%
Netherlands	6.5%	9.2%	6.5%	6.7%	6.5%	12.8%	6.6%	14.0%	6.5%	9.5%	6.5%	8.8%
Portugal	1.9%	0.7%	1.9%	1.6%	1.9%	0.4%	1.9%	0.2%	1.9%	0.6%	1.9%	0.8%
Spain	12.0%	4.2%	12.0%	7.7%	11.8%	3.1%	11.8%	2.9%	11.6%	5.1%	11.6%	4.9%
Sovereign Risk Measure	0.3	39%	2.2	10%	3.2	25%	1.9	91%	5.4	13%	7.4	13%

 \Rightarrow RB indexation is very different from WB indexation, in terms of weights, RC and credit risk measures.

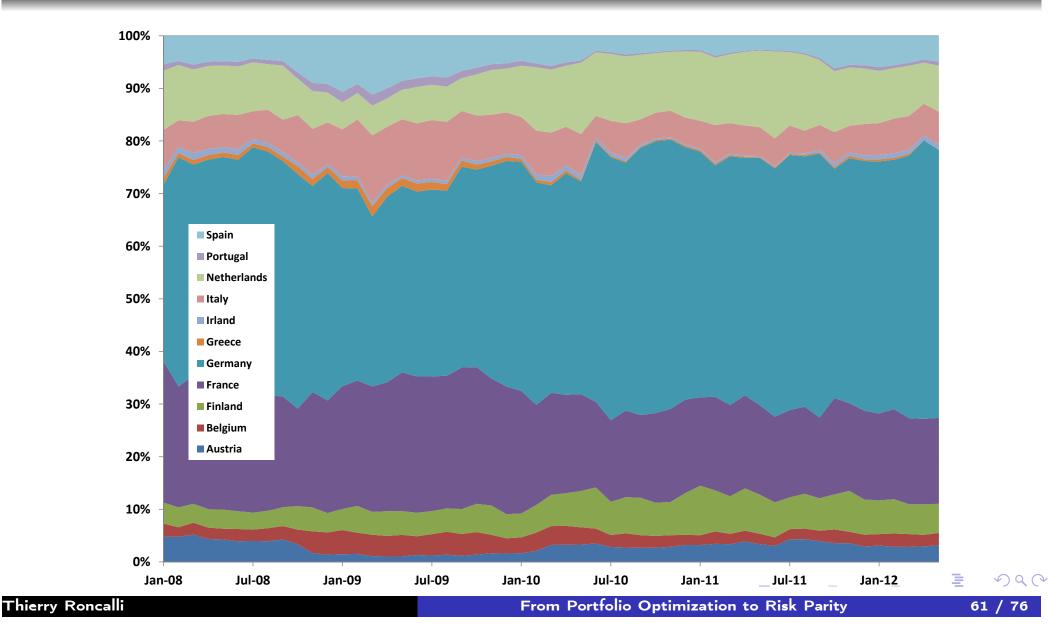
 \Rightarrow The dynamics of the GDP-RB is relatively smooth.

< A

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Risk-based indexation Risk-balanced allocation

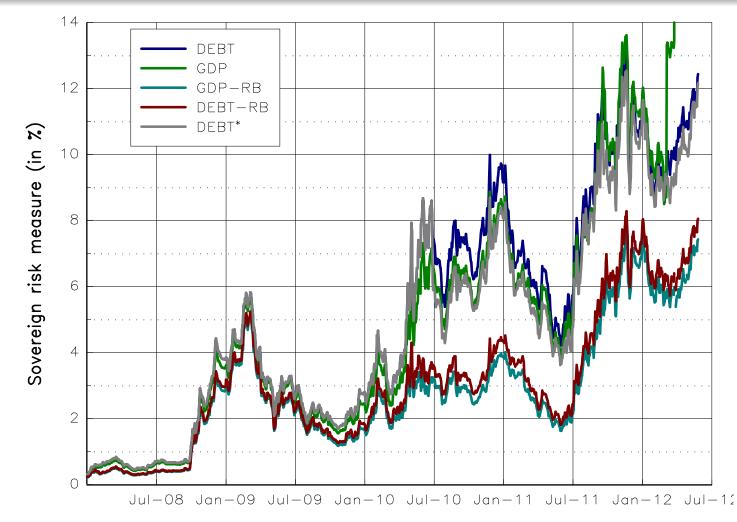
Bond indexation Evolution of weights for the GDP-RB indexation



Risk-based indexation Risk-balanced allocation

Bond indexation

Evolution of the risk measure

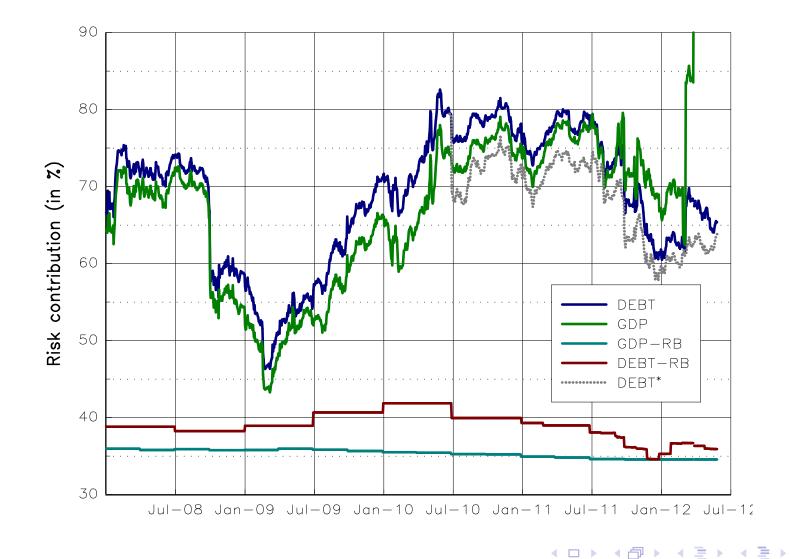


Thierry Roncalli

SQ (?

Risk-based indexation Risk-balanced allocation

Bond indexation Evolution of the GIIPS risk contribution



 $\mathcal{A} \mathcal{A} \mathcal{A}$

E

Risk-based indexation Risk-balanced allocation

Bond indexation

Performance simulations

 \Rightarrow RB indexation / WB indexation = better performance, same volatility and smaller drawdowns.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Risk-based indexation Risk-balanced allocation

Strategic asset allocation

Investment policy of long-term investors

Definition

Strategic asset allocation (SAA) is the choice of equities, bonds, and alternative assets that the investor wishes to hold for the long-run, usually from 10 to 50 years. Combined with tactical asset allocation (TAA) and constraints on liabilities, it defines the investment policy of pension funds.

Process of SAA:

- Universe definition of assets
- Expected returns, risks and correlations for the asset classes which compose the universe
- Portfolio optimization to target a given level of performance (subject to investor's constraints)

イロト イヨト イヨト

 $\mathcal{A} \mathcal{A} \mathcal{A}$

E.

Risk-based indexation Risk-balanced allocation

Strategic asset allocation An example (input parameters)

9 asset classes : US Bonds 10Y (1), EURO Bonds 10Y (2), Investment Grade Bonds (3), High Yield Bonds (4), US Equities (5), Euro Equities (6), Japan Equities (7), EM Equities (8) and Commodities (9).

	μ_i	σi	(1)	(2)	(3)	(4)	$ ho_{i,j}$ (5)	(6)	(7)	(8)	(9)
(1)	4.2	5.0	100								
(2)	3.8	5.0	80	100			I			l	
(3)	5.3	7.0	60	40	100		1			I	
(4)	10.4	10.0	-20	-20	50	100	1				
$\overline{(5)}$	9.2	15.0	$\overline{}$ $-\overline{10}$		30	60	100			!]
(6)	8.6	15.0	-20	-10	20	60	90	100		I	
(7)	5.3	15.0	-20	-20	20	50	70	60	100		
(8)	11.0	18.0	-20	-20	30	60	70	70	70	100	
$\overline{(9)}$	8.8	30.0		0	10	20	7 20	20	30	30	$\overline{100}$

Table: Expected returns, risks and correlations (in %)

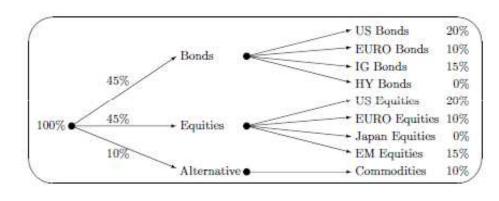
66 / 76

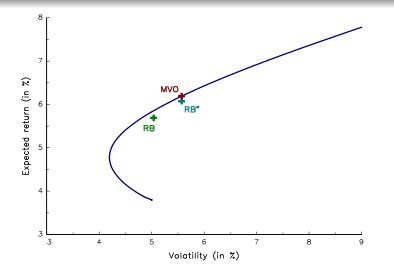
 $\mathcal{A} \mathcal{A} \mathcal{A}$

Risk-based indexation Risk-balanced allocation

Strategic asset allocation

Risk budgeting policy of the pension fund





Asset class	R	В	R	B*	MVO			
Assel Class	×i	RC _i	×i	RC _i	Xi	RC _i		
(1)	36.8%	20.0%	45.9%	18.1%	66.7%	25.5%		
(2)	21.8%	10.0%	8.3%	2.4%	0.0%	0.0%		
(3)	14.7%	15.0%	13.5%	11.8%	0.0%	0.0%		
$(5)^{}$	10.2%	20.0%	10.8%	21.4%	7.8%	15.1%		
(6)	5.5%	10.0%	6.2%	11.1%	4.4%	7.6%		
(8)	7.0%	15.0%	11.0%	24.9%	19.7%	49.2%		
(9)	3.9%	10.0%	⁻ 4.3% ⁻	10.3%	1.5%	2.7%		

Risk-based indexation Risk-balanced allocation

Risk parity funds Justification of diversified funds

Investor Profiles

- Moderate (medium risk)
- Onservative (low risk)
- Aggressive (high risk)

Fund Profiles

- Defensive (80% bonds and 20% equities)
- Balanced (50% bonds and 50% equities)
- Oynamic (20% bonds and 80% equities)

Relationship with portfolio theory?

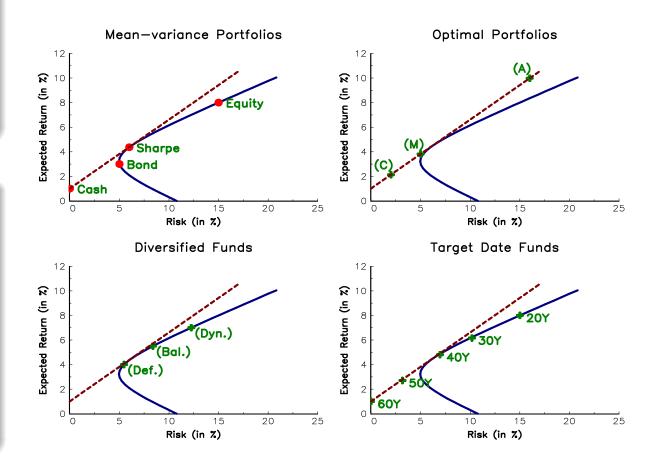


Figure: The asset allocation puzzle

68 / 76

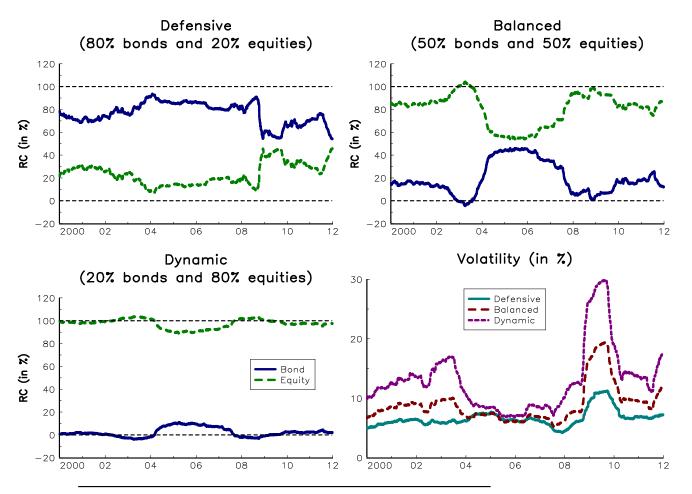
 $\mathcal{A} \mathcal{A} \mathcal{A}$

臣

Risk-based indexation Risk-balanced allocation

Risk parity funds What type of diversification is offered by diversified funds?

Figure: Risk contribution of diversified funds^a



^aBacktest with CG WGBI Index and MSCI World

Diversified funds =

Marketing idea?

- Deleverage of an equity exposure
- Diversification in weights \neq Risk diversification
- No mapping between fund profiles and volatility profiles

▲□▶ ▲□▶ ▲□▶ ▲□▶

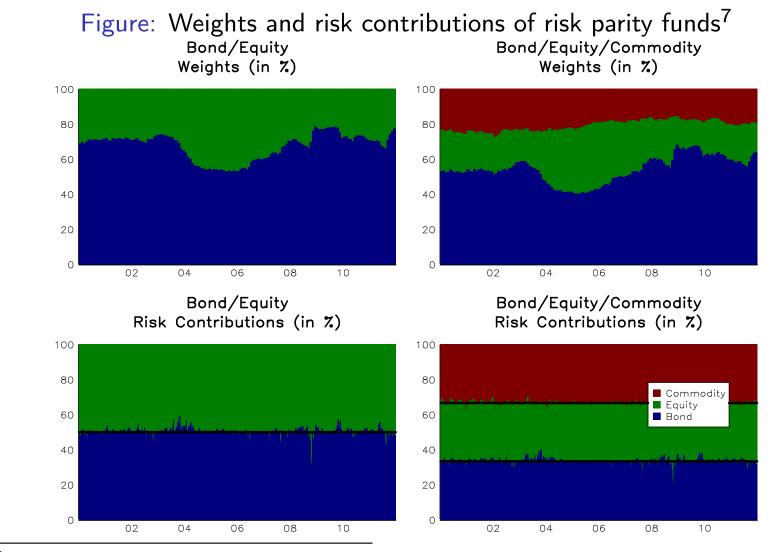
 No mapping between fund profiles and investor profiles

 $\mathcal{A} \subset \mathcal{A}$

王

Risk-based indexation Risk-balanced allocation

Risk parity funds Illustration of diversification



⁷Backtest with CG WGBI Index, MSCI World and DJ UBS Commodity Index

From Portfolio Optimization to Risk Parity

70 / 76

 $\mathcal{A} \mathcal{A} \mathcal{A}$

臣

Risk-based indexation Risk-balanced allocation

Risk parity funds

Some examples

- AQR Capital Management (AQR Risk Parity)
- Aquila Capital
- Bridgewater (All Weather fund)
- First Quadrant
- Invesco (Invesco Balanced-Risk Allocation Fund)
- Lyxor Asset Management (ARMA fund)
- LODH
- PanAgora Asset Management
- Putnam Investments (Putnam Dynamic Risk Allocation)
- Wegelin Asset Management

< ロ > < 同 > < 三 > < 三 > < 三 > <

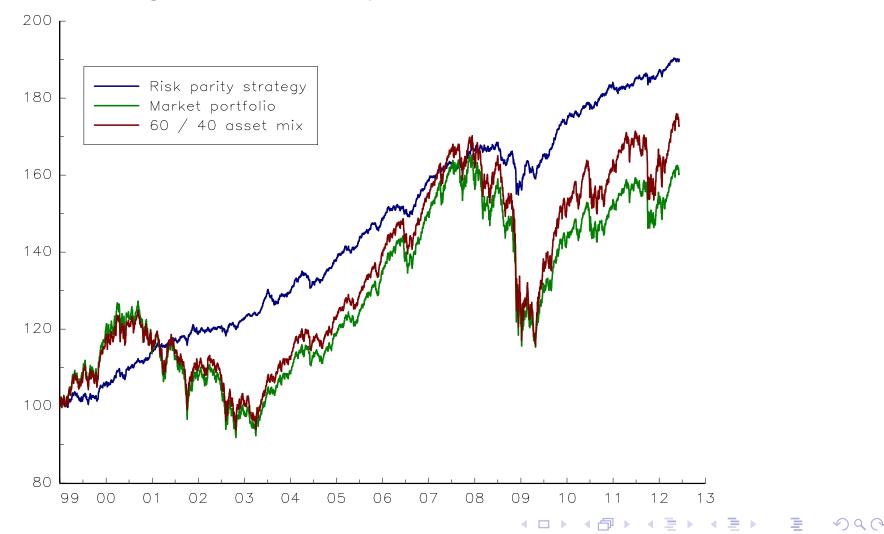
 $\mathcal{A} \mathcal{A} \mathcal{A}$

Э.

Risk-based indexation Risk-balanced allocation

Risk parity funds Backtests (with equities and IG bonds)

Figure: With a developed countries universe



Conclusion

Risk-based indexation Risk-balanced allocation

- Portfolio optimization leads to concentrated portfolios in terms of weights and risk.
- The use of weights constraints to diversify is equivalent to a discretionary shrinkage method.
- The risk parity approach is a better method to diversify portfolios.
- Risk parity strategies already implemented in:
 - Equity indexation (e.g. the SmartIX ERC indexes sponsored by Lyxor and calculated by FTSE)
 - Bond indexation (e.g. the RB EGBI index sponsored by Lyxor and calculated by Citigroup)
 - Commodity allocation (e.g. the Lyxor Commodity Active Fund)
 - Global asset allocation (e.g. the All Weather Strategy of Bridgewater or the IBRA fund of Invesco)

<ロ > < 同 > < 三 > < 三 > < 三 > <

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Risk-based indexation Risk-balanced allocation

For Further Reading I

B. Bruder, T. Roncalli.

Managing Risk Exposures using the Risk Budgeting Approach. SSRN, www.ssrn.com/abstract=2009778, January 2012.

B. Bruder, P. Hereil, T. Roncalli.

Managing Sovereign Credit Risk in Bond Portfolios. SSRN, www.ssrn.com/abstract=1957050, October 2011.

B. Bruder, P. Hereil, T. Roncalli.Managing Sovereign Credit Risk.*Journal of Indexes Europe*, 1(4), November 2011.

 V. DeMiguel, L. Garlappi, F.J. Nogales, E. Uppal.
 A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms.
 Management Science, 55(5), May 2009.

イロト イヨト イヨト

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Risk-based indexation Risk-balanced allocation

For Further Reading II

- P. Demey, S. Maillard, T. Roncalli.
 - Risk-Based Indexation.

SSRN, www.ssrn.com/abstract=1582998, March 2010.

J. Jagannathan, T. Ma.

Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps.

Journal of Finance, 58(4), 2003.

O. Ledoit and M. Wolf.

Improved Estimation of the Covariance Matrix of Stock Returns With an Application to Portfolio Selection.

Journal of Empirical Finance, 10(5), 2003.

S. Maillard, T. Roncalli, J. Teiletche. The Properties of Equally Weighted Risk Contribution Portfolios. *Journal of Portfolio Management*, 36(4), Summer 2010.

< □ > < □ > < □ > < □ > < □ > .

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Ξ.

Risk-based indexation **Risk-balanced** allocation

For Further Reading III

A. Meucci. Risk and Asset Allocation. Springer, 2005.

R. Michaud.

The Markowitz Optimization Enigma: Is Optimized Optimal? Financial Analysts Journal, 45(1), 1989.

B. Scherer (2007).

Portfolio Construction & Risk Budgeting. Third edition, Risk Books.

R. Tibshirani.

Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society B, 58(1), 1996.

<ロ > < 同 > < 同 > < 三 > < 三 > <

 $\mathcal{A} \mathcal{A} \mathcal{A}$