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Abstract

Portfolio construction and risk budgeting are the focus of many studies by aca-
demics and practitioners. In particular, diversification has spawn much interest and
has been defined very differently. In this paper, we analyze a method to achieve port-
folio diversification based on the decomposition of the portfolio’s risk into risk factor
contributions. First, we expose the relationship between risk factor and asset contri-
butions. Secondly, we formulate the diversification problem in terms of risk factors as
an optimization program. Finally, we illustrate our methodology with some real life
examples and backtests, which are: budgeting the risk of Fama-French equity factors,
maximizing the diversification of an hedge fund portfolio and building a strategic asset
allocation based on economic factors.

Keywords: risk parity, risk budgeting, factor model, ERC portfolio, diversification, con-
centration, Fama-French model, hedge fund allocation, strategic asset allocation.

JEL classification: G11, C58, C60.

1 Introduction
While Markowitz’s insights on diversification live on, practical limitations to direct imple-
mentations of his original approach have recently lead to the rise of heuristic approaches.
Approaches such as equally-weighted, minimum variance, most diversified portfolio, equally-
weighted risk contributions, risk budgeting or diversified risk parity strategies have be-
come attractive to academic and practitioners alike (see e.g. Meucci, 2007; Choueifaty and
Coignard, 2008; Meucci, 2009; Maillard et al., 2010; Bruder and Roncalli, 2012; Lohre et
al., 2012) for they provide elegant and systematic methodologies to tackle the construction
of diversified portfolios.

While explicitly pursuing diversification, portfolios constructed with the methodologies
cited above may well lead to solutions with unfortunately hidden risk concentration. Meucci
(2009)’s work on diversification across principal component factors provided a clue to re-
solving this unfortunate problem by focusing on underlying risk factors. In this paper, we
build on this idea and combine it with the risk-budgeting approach of Bruder and Roncalli

∗We thank Karl Eychenne for their helpful comments.
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(2012) to develop a risk-budgeting methodology focused on risk factors. When used with
the objective of maximizing risk diversification, our approach is tantamount to diversifying
across the ‘true’ sources of risk and often leads to a solution with equally-weighted risk factor
contributions. Hence, we dubbed it the ‘risk factor parity’ approach.

This methodology is however more versatile. In this paper, we make explicit the relations
between any risk factor and asset contributions to portfolio risk. And, in particular, we show
that the equally-weighted risk factor contributions approach is equivalent to a risk-budgeting
solution on the assets of the portfolio with a specific risk budgets profile. We also examine
different optimization programs to obtain the desired outcome.

The plan of this paper is thus as follows. Section 2 provides a couple of motivating ex-
amples. In Section 3, we derive the relations between asset and risk factors contributions to
overall risk, and provide some illustrations. In Section 4, we consider two types of portfolio
construction methodologies, first by matching risk contributions and second by minimizing
a concentration index. Finally, Section 5 provides three applications of our portfolio con-
struction methodologies: one in the context of risk budgeting on equity risk factors, a second
on portfolios of hedge funds, and finally an application to strategic allocation.

2 Motivations

2.1 On the importance of the asset universe
Let’s consider a universe of 4 assets with equal volatilities and a uniform correlation ρ. In this
case, the equally-weighted risk contribution (ERC) portfolio x(4) corresponds to the equally-
weighted portfolio. Let’s add to this universe a fifth asset with equal volatility. We assume
that this asset is perfectly correlated with the fourth asset. In that case, the composition of
the ERC portfolio x(5) depends on the value of the correlation coefficient ρ. For example, if
the cross-correlation ρ between the first four assets is zero, the ERC portfolio’s composition
is given by x

(5)
i = 22.65% for the three first assets, while x

(5)
i = 16.02% for the two last

assets.

Such a solution could be confusing to a professional since in reality there are only four
and not five assets in our universe1. A financial professional would expect the sum of the
exposures to the fourth and fifth assets to equal the exposure to each of the first three assets,
i.e x

(5)
4 + x

(5)
4 = 25%. And, the weights of the assets four and five are therefore equal to

the weight of the fourth asset in the 4-assets universe divided by 2 – x
(5)
5 = x

(5)
4 = x

(4)
4 /2 =

12.5%. However, this solution is reached only when the correlation coefficient ρ is at its
lowest value2 as shown in Figure 1.

This example shows that the asset universe is an important factor when considering risk
parity portfolios. Of course, this is a toy example, but similar issues arise in practice. Let’s
consider multi-asset classes universes. If the universe includes 5 equity indices and 5 bond
indices, then the ERC portfolio will be well balanced between equity and bond in terms of
risk. Conversely, if the universe includes 7 equity indices and 3 bond indices, the equity
risk of the ERC portfolio represents then 70% of the portfolio’s total risk, a solution very
unbalanced between equity and bond risks.

1The fourth and fifth assets are in fact the same since ρ4,5 = 1. This problem is also known as the
duplication invariance problem (Choueifaty et al., 2011).

2ρ is then equal to −33.33%
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Figure 1: Weights of the ERC portfolio with respect to ρ

2.2 Which risk would you like to diversify?

We consider a set of m primary assets (A′
1, . . . ,A′

m) with a covariance matrix Ω. We now
define n synthetic assets (A1, . . . ,An) which are composed of the primary assets. We denote
W = (wi,j) the weight matrix such that wi,j is the weight of the primary asset A′

j in the
synthetic asset Ai. Indeed, the synthetic assets could be interpreted as portfolios of the
primary assets. For example, A′

j may represent a stock whereas Ai may be an index. By
construction, we have

∑n
i=1 wi,j = 1. It comes that the covariance matrix of the synthetic

assets Σ is equal to WΩW⊤.

We now consider a portfolio x = (x1, . . . , xn) defined with respect to the synthetic assets.
The volatility of this portfolio is then σ (x) =

√
x⊤Σx. We deduce that the risk contribution

of the synthetic asset i is:

RC (Ai) = xi
(Σx)i√
x⊤Σx

We could also defined the portfolio with respect to the primary assets. In this case, the
composition is y = (y1, . . . , ym) where yj =

∑n
i=1 xiwi,j . In a matrix form, we have y =

W⊤x. In a similar way, we may compute the risk contribution of the primary assets j:

RC
(
A′

j

)
= yj

(Ωy)j√
y⊤Ωy

Let’s consider an example with 6 primary assets. The volatility of these assets is respec-
tively 20%, 30%, 25%, 15%, 10% and 30%. We assume that the assets are not correlated.
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We consider three equally-weighted synthetic assets with:

W =

 1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/2 1/2


First, let’s consider portfolio #1 with synthetic assets’ weights of 36%, 38% and 26% respec-
tively. The risk contributions of these positions to the volatility of portfolio #1 is provided
in Table 1a. Notice that this portfolio is very close to the ERC portfolio. It is well-balanced
in terms of risk with respect to the synthetic assets. However, if we analyze this portfolio
in terms of primary assets (cf. Table 1b), about 80% of the risk of the portfolio is then
concentrated on the third and fourth primary assets. We have here a paradoxical situation.
Depending on the analysis, this portfolio is either well diversified or is a risk concentrated
portfolio. Let’s now consider portfolio #2 with synthetic weights 48%, 50% and 2%. The
risk contributions for this portfolio are provided in Table 2. In this case, the portfolio is not
very well balanced in terms of risk, because the two first assets represent more than 97%
of the risk of the portfolio, whereas the risk contribution of the third asset is less than 3%
(cf. Table 2a). This portfolio is thus far from the ERC portfolio. However, an analysis in
terms of the primary assets, shows that this portfolio is less concentrated than the previous
one (cf. Table 2b). The average risk contribution is 16.67%. Notice that primary assets
which have a risk contribution above (resp. below) this level in the first portfolio have a risk
contribution that decreases (resp. increases) in the second portfolio. In Figure 2, we have
reported the Lorenz curve of the risk contributions of these two portfolios with respect to
the primary and synthetic assets. We verify that the second portfolio is less concentrated
in terms of primary risk.

Table 1: Risk decomposition of portfolio #1

(a) Along synthetic assets A1, . . . , An

σ (x) = 10.19% xi MR (Ai) RC (Ai) RC⋆ (Ai)

A1 36.00% 9.44% 3.40% 33.33%
A2 38.00% 8.90% 3.38% 33.17%
A3 26.00% 13.13% 3.41% 33.50%

(b) Along primary assets A′
1, . . . , A′

m

σ (y) = 10.19% yi MR (A′
i) RC (A′

i) RC⋆ (A′
i)

A′
1 9.00% 3.53% 0.32% 3.12%

A′
2 9.00% 7.95% 0.72% 7.02%

A′
3 31.50% 19.31% 6.08% 59.69%

A′
4 31.50% 6.95% 2.19% 21.49%

A′
5 9.50% 0.93% 0.09% 0.87%

A′
6 9.50% 8.39% 0.80% 7.82%

This second example shows the importance of the risk factors. If we replace ‘primary
assets’ by risk factors and ’synthetic assets’ by ‘investment assets’, it highlights what the
underlying risks we would like to manage are. For example, a commodity fund manager is
perhaps less interested in the financial risks represented by individual commodities (like gas
oil, cocoa, corn, gold, etc.) and more interested in economic risks like energy, inflation, etc.
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Table 2: Decomposition of portfolio #2

(a) Along synthetic assets A1, . . . , An

σ (x) = 9.47% xi MR (Ai) RC (Ai) RC⋆ (Ai)

A1 48.00% 9.84% 4.73% 49.91%
A2 50.00% 9.03% 4.51% 47.67%
A3 2.00% 11.45% 0.23% 2.42%

(b) Along primary assets A′
1, . . . , A′

m

σ (y) = 9.47% yi MR (A′
i) RC (A′

i) RC⋆ (A′
i)

A′
1 12.00% 5.07% 0.61% 6.43%

A′
2 12.00% 11.41% 1.37% 14.46%

A′
3 25.50% 16.84% 4.29% 45.35%

A′
4 25.50% 6.06% 1.55% 16.33%

A′
5 12.50% 1.32% 0.17% 1.74%

A′
6 12.50% 11.88% 1.49% 15.69%

Figure 2: Lorenz curve of risk contributions
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Remark 1. This second example is also related to the first example3. In the first example,
the right way to diversity is not to use the ERC portfolio, but different risk budgets b =
(25%, 25%, 25%, 12.5%, 12.5%). In this case, we verify that we obtain the desired solution.
The central question is then how to define properly these risk budgets.

3 Computing the risk decomposition with risk factors

3.1 The linear factor model
We consider a set of n assets {A1, . . . , An} and a set of m risk factors {F1, . . . , Fm}.
We denote by Rt the (n× 1) vector of asset returns at time step t and Σ its associated
covariance matrix; and Ft the (m× 1) vector of factor returns at t and Ω its associated
covariance matrix. We assume the following linear factor model:

Rt = AFt + εt (1)

with Ft and εt two uncorrelated random vectors. εt is an i.i.d. (n × 1) centered random
vector of variance D. A is the (n×m) ‘loadings’ matrix. Using (1), it is easy to deduce the
following second-order relationship:

Σ = AΩA⊤ +D

At the portfolio level, we denote the portfolio’s asset exposures by the (n× 1) vector x
and the portfolio’s risk factors exposures by the (m× 1) vector y. These vectors are related
through the P&L function Πt of the portfolio at time t:

Πt = x⊤Rt = x⊤AFt + x⊤εt = y⊤Ft + ηt

with4 y = A⊤x and ηt = x⊤εt. Let’s note B = A⊤ and B+ the Moore-Penrose inverse of
B. We have therefore

x = B+y + e

where e = (In −B+B)x is a (n× 1) vector in the kernel of B.

3.2 Defining the marginal risk contribution of factors
Let’s consider a convex risk measure R. We have R (x) = R (y, e). We notice that the
idiosyncratic variable e that represents the specific risks of each asset position in the portfolio
is a function of the portfolio composition x. Thus, the marginal risk contribution dR (x) /dxi

of the ith asset exposure is given as a function of the marginal risk contribution dR (y, e) /dy
of the factor exposures and the marginal risk contribution of the specific or idiosyncratic
risk of asset i dR (y, e) /de by5:

∂R (x)

∂ xi
=

(
∂R (y, e)

∂ y
B

)
i

+

(
∂R (y, e)

∂ e

(
In −B+B

))
i

3In the first example, the problem comes from the fact that we have 5 assets, but only 4 factors.
4By definition, we have cov (Ft, ηt) = 0.
5We have:

dR (x)

dx
=

∂R (y, e)

∂ y

dy

dx
+

∂R (y, e)

∂ e

de

dx
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This decomposition is not very convenient however since it decomposes the (n× 1) vector x
into a (m× 1) vector y and a (n× 1) error vector e. Another route is to write the following
decomposition (Meucci, 2007):

x =
(
B+ B̃+

)( y
ỹ

)
= B̄⊤ȳ (2)

where B̃+ is any n × (n−m) matrix that spans the left nullspace of B+. In this case, we
could state the following theorem:

Theorem 1. The marginal risk contribution of assets are related to the marginal risk con-
tribution of factors in the following way:

∂R (x)

∂ x
=

∂R (x)

∂ y
B +

∂R (x)

∂ ỹ
B̃

We deduce that the marginal risk contribution of the jth factor exposure is given by:

∂R (x)

∂ yj
=

(
A+ ∂R (x)

∂ x⊤

)
j

For the additional factors, we have:

∂R (x)

∂ ỹj
=

(
B̃
∂R (x)

∂ x⊤

)
j

Proof. See Appendix A.2 page 29.

3.3 Euler decomposition of the risk measure
It is easy to verify that for any convex risk measure that verifies the Euler decomposition
R = ∂x R (x) · x =

∑n
i=1 xi · ∂xi R (x), the Euler decomposition is verified in the new

coordinate system (y, ỹ):

R (x) =
∂R (x)

∂ y
y +

∂R (x)

∂ ỹ
ỹ

Let’s note RC (Fj) = yj · ∂yj R (x) the risk contribution of the factor j with respect to
the risk R. Using Theorem 1, we find that the sum of the risk contributions of the factor
exposures is simply expressed as:

m∑
j=1

RC (Fj) = y⊤
∂R (x)

∂ y⊤
= x⊤(AA+)

∂R (x)

∂ x⊤ (3)

where AA+ = (B+B)
⊤ is the orthogonal projector onto the range of B = A⊤. We notice

then that we do not retrieve all the risk measure if we only consider the risk contributions
of the factors:

m∑
j=1

RC (Fj) ≤ R (x)

The difference is due to the additional factors:

R (x)−
m∑
j=1

RC (Fj) =
n−m∑
j=1

RC
(
F̃j

)
= x⊤(B̃⊤B̃)

∂R (x)

∂ x⊤

= x⊤(In −AA+)
∂R (x)

∂ x⊤
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If we consider the volatility of the portfolio, we obtain this result:

Theorem 2. When the risk measure R (x) is the volatility of the portfolio σ (x) =
√
x⊤Σx,

the risk contribution of the jth factor is:

RC (Fj) =

(
A⊤x

)
j
· (A+Σx)j

σ (x)

For the risk factors F̃t, the results become:

RC
(
F̃j

)
=

(
B̃x

)
j
·
(
B̃Σx

)
j

σ (x)

Proof. See Appendix A.3 page 30.

Remark 2. Theorems 1 and 2 are valid if the number of assets n is larger than the number
of factors m. In the case where n ≤ m, we obtain the same results, but the additional factors
F̃j vanish.

Remark 3. Using the previous results, we could define the risk contribution of the asset i
with respect to the risk factors. We have:

RC (Ai) =
∂R (x)

∂ y
Bei

(
e⊤i B

+y + e⊤i B̃
+ỹ

)
+

∂R (x)

∂ ỹ
B̃ei

(
e⊤i B

+y + e⊤i B̃
+ỹ

)
In the case ỹ = 0, this formula reduces to:

RC (Ai) =

(
∂R (x)

∂ y
B +

∂R (x)

∂ ỹ
B̃

)
EiB

+y

where Ei is a null matrix of dimension (n× n) except for the entry (i, i) which takes the
value one.

3.4 Some illustrations
3.4.1 The case n ≥ m

Let us consider an example with 4 assets and 3 factors. The loadings matrix is:

A =


0.9 0 0.5
1.1 0.5 0
1.2 0.3 0.2
0.8 0.1 0.7


The three factors are uncorrelated and their volatilities are equal to 20%, 10% and 10%.
We consider a diagonal matrix D with specific volatilities 10%, 15%, 10% and 15%. The
corresponding correlation matrix of asset returns is (in %):

ρ =


100.0
69.0 100.0
79.5 76.4 100.0
66.2 57.2 66.3 100.0


and their volatilities are respectively 21.19%, 27.09%, 26.25% and 23.04%. The risk decom-
position of the equally-weighted portfolio is given in Table 3. We notice that the equally-
weighted portfolio produces a risk-balanced portfolio in terms of assets’ risk contributions,
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but not in terms of factors’ risk contributions. Indeed, the first factor represents more than
80% of the risk. In the next section, we present a method in order to obtain portfolios which
are more balanced with respect to factors.

Table 3: Risk decomposition of the equally-weighted portfolio

(a) Along assets A1, . . . ,An

σ (x) = 21.40% xi MR (Ai) RC (Ai) RC⋆ (Ai)

A1 25.00% 18.81% 4.70% 21.97%
A2 25.00% 23.72% 5.93% 27.71%
A3 25.00% 24.24% 6.06% 28.32%
A4 25.00% 18.83% 4.71% 22.00%

(b) Along factors F1, . . . ,Fm and F̃1, . . . , F̃n−m

σ (y) = 27.45% yi MR (Fi) RC (Fi) RC⋆ (Fi)

F1 100.00% 17.22% 17.22% 80.49%
F2 22.50% 9.07% 2.04% 9.53%
F3 35.00% 6.06% 2.12% 9.91%

F̃1 2.75% 0.52% 0.01% 0.07%

The case n ≥ m corresponds also to our example in Section 2.1. We have 4 factors6 with:

A =

[
I4
e⊤4

]
Ω is the covariance matrix of the first four assets while D is a matrix of zeros. If we use
the framework developed in this section, we retrieve all the results. In particular, if we
consider the ERC portfolio, we find that the three first factors have a contribution equal
to 20% whereas the fourth factor has a contribution of 40%. In Table 4, we have reported
the risk decomposition of the ERC portfolio with respect to the risk factors when the cross-
correlation between the four first factors is equal to 0%. If we use another value for the
correlation, results are different in terms of factor’ weights and risk contributions. But the
relative risk contributions RC⋆ (Fi) remain the same.

Table 4: Risk decomposition of the ERC portfolio with respect to risk factors

σ (y) = 10.13% yi MR (Fi) RC (Fi) RC⋆ (Fi)

F1 22.65% 8.94% 2.03% 20.00%
F2 22.65% 8.94% 2.03% 20.00%
F3 22.65% 8.94% 2.03% 20.00%
F4 32.04% 12.65% 4.05% 40.00%

F̃1 0.00% 0.00% 0.00% 0.00%

6These 4 factors are implicitly the first four assets.
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3.4.2 The case n < m

This case corresponds to the example with primary and synthetic assets in Section 2.2.
Indeed, the primary assets represent the risk factors. The loading matrix A is then equal
to the weight matrix W , the covariance matrix of the factors is the covariance matrix of
the primary assets whereas D is a matrix of zeros. In Table 5, we have reported the risk
decomposition of the portfolio #1. We notice that the weight of the factor Fj is equal
to the weight of the primary asset A′

j , but we don’t obtain the same risk decomposition:
RC (Fi) ̸= RC (A′

i). The main reason is that the risk decomposition is not unique when
m > n. We face then an identification problem, which is a well-known problem in statistics.
If we analyze the loading matrix A, we conclude that there is in fact three factors, because
the primary assets A′

1 and A′
2 (resp. A′

5 and A′
6) influence together only the first synthetic

asset A′
1 (resp. the second synthetic asset A′

2). In a same way, we notice a perfect symmetry
between the primary assets A′

3 and A′
4. This is why we deduce that the risk contributions

of the factors satisfies this following system of equations: RC (A′
1) +RC (A′

2) = RC (F1) +RC (F2)
RC (A′

3) +RC (A′
4) = RC (F3) +RC (F4)

RC (A′
5) +RC (A′

6) = RC (F5) +RC (F6)

It explains that only combination of factors could be identified, and not the factors them-
selves.

Table 5: Risk decomposition of the portfolio #1 with respect to risk factors

σ (y) = 10.13% yi MR (Fi) RC (Fi) RC⋆ (Fi)

F1 9.00% 5.74% 0.52% 5.07%
F2 9.00% 5.74% 0.52% 5.07%
F3 31.50% 13.13% 4.14% 40.59%
F4 31.50% 13.13% 4.14% 40.59%
F5 9.50% 4.66% 0.44% 4.34%
F6 9.50% 4.66% 0.44% 4.34%

4 Portfolio construction with factor risk budgeting

In this section, we consider two types of portfolio construction. In the first one, the allocation
problem consists in matching some risk budgets with respect to risk factors. We show that
the solution may not exist. This is why we consider a second approach which minimizes the
risk concentration between the factors.

4.1 Matching the risk budgets

We would like to build a risk budgeting portfolio such that the risk contributions match a
set of given risk budgets {b1, . . . , bm}:

RC (Fj) = bjR (x) (4)
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This general problem can be formulated as a quadratic problem in a fashion similar to
Bruder and Roncalli (2012):

(y⋆, ŷ⋆) = argmin

m∑
j=1

(RC (Fj)− bjR (y, ỹ))
2 (5)

u.c.
{

1⊤B+y + 1⊤B̃+ỹ = 1

0 ≼ B+y + B̃+ỹ ≼ 1

where ≼ denotes element-wise inequalities. If there is a solution to the optimization problem
(5) and if the objective function is equal to zero at the optimum, it implies that it is also
the solution of the matching problem (4). This problem (5) is however difficult to solve
analytically as it involves PDE as its first-order conditions7. The following paragraphs
examine a related set of problems in which cases one can find an equivalent optimization
problem in a more convenient form.

4.1.1 Non-negative risk factor allocation constraint

Bruder and Roncalli (2012) show that a problem of the form:

x⋆ = argminR (x) (6)

u.c.

 RC (Ai) = biR (x)
1⊤x = 1
x ≽ 0

can be solved by considering the alternative problem:

z⋆ = argminR (z) (7)

u.c.
{ ∑n

i=1 bi ln zi ≥ c
z ≽ 0

There exists then a unique unnormalized solution z⋆ and posing x⋆ = z⋆/
(
1⊤z⋆

)
provides

the optimal portfolio’s asset exposures.

Similarly, using the decomposition of the portfolio asset exposures x into factor risk
exposure y given by Equation (2), the optimization problem with risk factor budgeting
constraints can be formulated as:

(y⋆, ỹ⋆) = argminR (y, ỹ) (8)

u.c.
{ ∑m

j=1 bj ln yj ≥ c

y ≽ 0

We notice however that this problem induces a positivity constraint8 on the risk factor y.

The separation principle Note that ỹ is related to the idiosyncratic (or specific) risk of
the portfolio. Indeed, we have:

x⊤εt = ηt = e⊤Rt = ỹ⊤F̃t

7Nevertheless, we could solve it numerically using the SQP algorithm.
8If yj ≤ 0, we could replace the factor Fj by a new factor F ′

j = −Fj meaning that y′j ≥ 0. This is why
we could always impose that yj ≥ 0.
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Since we focus in this paper on portfolio building controlling for the risk budgets associated
with the risk factors, we will consider for now that we have an unconstrained minimization
problem on the variable ỹ, and will focus instead on solving the constrained optimization
problem on y. Furthermore, it is always possible to solve a problem of the form (8) in two
steps as long as the constraints on y and ỹ are separate. We obtain:

y⋆ = argmin R̃ (y) (9)

u.c.
{ ∑m

j=1 bj ln yj ≥ c

y ≽ 0

where R̃ (y) = inf ỹ R (y, ỹ). The solution will be of the form (y⋆, φ (y⋆)) where ỹ⋆ = φ (y⋆)
is solution to the first step of the optimization problem. The optimal portfolio allocation x⋆

is then recovered simply as:
x⋆ = B+y⋆ + B̃+φ (y⋆)

By construction, we also have9:

∂ R̃
∂ y

(y) =
∂R
∂ y

(y, φ(y)) and
∂R
∂ ỹ

(y, φ(y)) = 0

Application to the volatility risk measure For instance, if we measure the risk using
the P&L volatility R (y, ỹ) = σ (y, ỹ), the problem is now equivalent to a quadratic opti-
mization problem with constraints on y only. Let us denote Ω̄ the covariance matrix between
factors. We have:

Ω̄ = cov
(
Ft, F̃t

)
=

 (B+)
⊤
ΣB+ (B+)

⊤
ΣB̃+(

B̃+
)⊤

ΣB+
(
B̃+

)⊤
ΣB̃+


=

(
Ω Γ⊤

Γ Ω̃

)
Hence, we solve the augmented quadratic problem:

min y⊤Ωy + ỹ⊤Ω̃ỹ + 2ỹ⊤Γ⊤y

u.c.
{ ∑m

j=1 bj ln yj ≥ c

y ≽ 0

in two steps, by first minimizing with respect to ỹ, and then with respect to y. The solution
of the first step is given by ỹ = φ (y) = −Ω̃−1Γ⊤y. The problem is thus reduced to:

min y⊤Sy

u.c.
{ ∑m

j=1 bj ln yj ≥ c

y ≽ 0

with S = Ω−ΓΩ̃−1Γ⊤ the Schur complement of Ω̃. Because we have Γ⊤ = (B+)
⊤
ΣB̃+, we

deduce that the optimal portfolio asset allocation is thus given by:

x⋆ = B+y⋆ + B̃+φ (y⋆)

=
(
B+ − B̃+Ω̃−1

(
B+

)⊤
ΣB̃+

)
y⋆

9The second equality results from the definition of φ as an infimum. The key to the first equality is being
able to apply the chain rule, i.e. φ being regular enough to be differentiable. If φ is a strict minimum and
if R is differentiable, then an application of the implicit function theorem to ∂ỹ R(y, ỹ) = 0 shows that φ is
differentiable.
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Remark 4. So long as the factors Ft and F̃t are uncorrelated (Γ = 0), a solution of the
form (y⋆, 0) exists. In this case, the optimization problem could also be solved separately
on each of the orthogonal spaces: colA, as a constrained problem in y of the form (7), and
kerA, as an unconstrained minimization problem. The (un-normalized) asset allocation is
given by x⋆ = B+y⋆.

4.1.2 Adding long-only constraints

Additionally, if we want to consider long-only allocations x, we must also include the fol-
lowing constraint:

x = B+y + B̃+ỹ ≽ 0

The corresponding optimization problem is modified as follows:

(y⋆, ỹ⋆) = argminR (y, ỹ) (10)

u.c.


∑m

j=1 bj ln yj ≥ c

y ≽ 0

B+y + B̃+ỹ ≽ 0

We can again apply the separation principle10 as in Section 4.1.1 and obtain this formulation:

(y⋆, ỹ⋆) = argmin R̃ (y) (11)

u.c.


∑m

j=1 bj ln yj ≥ c

y ≽ 0

B+y + B̃+φ (y) ≽ 0

which is a convex optimization problem with a unique solution (if it exists) if, and only if,
φ is convex. It is easy to see that this condition is verified if we choose R to be the P&L
volatility. It is also true if R is additively separable between y and ỹ, in which case φ (y) is
constant. This later situation should normally arise for some classic risk measures11 if the
factors Ft and F̃t are uncorrelated12 (which depends only on the choice of B̃+).

Remark 5. The solution may not exist even if φ is convex.

Remark 6. An analysis presented in Appendix A.4 in the case where R is the P&L volatility
shows that the solution to formulation (9) will be solution to (11) as long as there exists
λ = (λx, λy) ≽ 0 such that:(

A+ −
(
B̃+

)⊤
ΣΩ̃−1

(
B̃+

)⊤
)
λx + λy = 0

According to this analysis, this condition is likely to be verified for some non trivial λ ∈
Rn+m

+ . In such case, there exists ζ > 0 such that 0 ≤ min yj ≤ ζ.

10In general, the separation principle cannot be applied in cases where the constraints on (y, ỹ) are not
separate. However, in this case, if φ is a strict minimum of R, which is the case for the P&L volatility,
then the two problems (10) and (11) are equivalent. Indeed, if y⋆ is solution to (11), then (y⋆, φ(y⋆)) is
obviously a feasible point for (10). Conversely, if (y⋆⋆, ỹ⋆⋆) is solution to (10), then R being convex, any
local optimum has to be a global optimum. Therefore, we must have:

R̃(y⋆⋆) = R (y⋆⋆, ỹ⋆⋆) = R (y⋆⋆, φ(y⋆⋆)) .

And, since φ is a strict minimum, (y⋆⋆, ỹ⋆⋆) = (y⋆⋆, φ(y⋆⋆)) and thus, B+y⋆⋆ + B̃+φ(y⋆⋆) ≽ 0.
11It is for example the case of value-at-risk and expected shortfall considering elliptic distributions or

kernel estimation.
12See Appendix A.2 in Meucci (2007).
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4.1.3 An illustration

We consider the example with 4 assets and 3 factors presented in Section 3.4.1 page 8. We
have seen that the equally-weighted portfolio concentrates the risk on the first factor. We
would like to build a portfolio with more balanced risk across the factors. For instance, if b =
(49%, 25%, 25%), we obtain the results given in Table 6. We notice that the corresponding
portfolio presents positive weights.

Table 6: Matching the risk budgets (49%, 25%, 25%)

(a) Optimal solution (y⋆, ỹ⋆)

σ (y) = 21.27% yi MR (Fi) RC (Fi) RC⋆ (Fi)

F1 93.38% 11.16% 10.42% 49.00%
F2 24.02% 22.14% 5.32% 25.00%
F3 39.67% 13.41% 5.32% 25.00%

F̃1 16.39% 1.30% 0.21% 1.00%

(b) Corresponding portfolio x⋆

σ (x) = 21.27% xi MR (Ai) RC (Ai) RC⋆ (Ai)

A1 15.08% 17.44% 2.63% 12.36%
A2 38.38% 23.94% 9.19% 43.18%
A3 0.89% 21.82% 0.20% 0.92%
A4 45.65% 20.29% 9.26% 43.54%

We suppose now that b = (19%, 40%, 40%). Results are reported in Table 7. We then
obtain a long/short portfolio with a short position in the first asset. In Table 8, we report
the solution to the optimization problem (5) if we impose that the weights of the portfolio
are positive. At the optimum, the objective function is not equal to zero, meaning that there
is no solution to the matching problem (4).

Table 7: Matching the risk budgets (19%, 40%, 40%)

(a) Optimal solution (y⋆, ỹ⋆)

σ (y) = 23.41% yi MR (Fi) RC (Fi) RC⋆ (Fi)

F1 92.90% 4.79% 4.45% 19.00%
F2 28.55% 32.79% 9.36% 40.00%
F3 45.21% 20.71% 9.36% 40.00%

F̃1 −23.57% −0.99% 0.23% 1.00%

(b) Corresponding portfolio x⋆

σ (x) = 23.41% xi MR (Ai) RC (Ai) RC⋆ (Ai)

A1 −26.19% 14.13% −3.70% −15.81%
A2 32.69% 21.21% 6.94% 29.63%
A3 14.28% 20.41% 2.91% 12.45%
A4 79.22% 21.79% 17.26% 73.73%
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Table 8: Imposing the long-only constraint with b = (19%, 40%, 40%)

(a) Optimal solution (y⋆, ỹ⋆)

σ (y) = 21.82% yi MR (Fi) RC (Fi) RC⋆ (Fi)

F1 89.85% 6.89% 6.19% 28.37%
F2 23.13% 28.67% 6.63% 30.40%
F3 47.02% 19.12% 8.99% 41.20%

F̃1 2.53% 0.26% 0.01% 0.03%

(b) Corresponding portfolio x⋆

σ (x) = 21.82% xi MR (Ai) RC (Ai) RC⋆ (Ai)

A1 0.00% 15.90% 0.00% 0.00%
A2 32.83% 22.03% 7.23% 33.15%
A3 0.00% 20.51% 0.00% 0.00%
A4 67.17% 21.72% 14.59% 66.85%

Remark 7. The existence problem of long-only portfolios could be easily illustrated with a
portfolio of bonds. It is commonly argued that the three factors of the yield curve are the
general level of interest rates, the slope of the yield curve and its convexity. Building a bond
portfolio, for instance, where the slope and convexity factors have the same magnitude than
the level factor is not possible if we impose that the weights are positive. In the long-only
case, risk contributions of the slope and convexity factors are then bounded. We do not face
this problem if the long-only constraint vanishes.

4.2 Minimizing the risk concentration between the risk factors
In the previous section, we have shown that the solution to the matching problem (4) does
not necessarily exist. Of course, we could always optimize the problem (5) and consider the
optimal solution without verifying that the objective function is equal to zero. In this case,
we obtain the portfolio for which the risk contributions are the closest to the risk budgets
in the sense of the L2 absolute norm13. We consider now a related problem:

RC (Fj) ≃ RC (Fk)

The idea is to find a portfolio which is well balanced in terms of risk contributions with
respect to the common factors. A first idea is to set bj = bk and to use use the previous
framework. Another way is to minimize the concentration between the risk contributions
(RC (F1) , . . . ,RC (Fm)).

4.2.1 Concentration indexes

Let p ∈ Rn
+ such that 1⊤p = 1. p is then a probability distribution. A probability distri-

bution p+ is perfectly concentrated if there exists one observation i0 such that p+i0 = 1 and

13If we prefer to use a L2 relative norm, we could replace the objective function as follows:

(y⋆, ỹ⋆) = argmin
y

m∑
j=1

m∑
k=1

(
RC (Fj)

bj
−

RC (Fk)

bk

)2
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p+i = 0 if i ̸= i0. As the opposite, a probability distribution p− such that p−i = 1/n for all
i = 1, . . . , n has no concentration. A concentration index is a mapping function C (p) such
that C (p) increases with concentration and verifies C (p−) ≤ C (p) ≤ C (p+). Eventually, this
index could be normalized such that C (p−) = 0 and C (p+) = 1.

In our context, the vector p represents the risk contributions of the portfolio. C (p) will
then measure the risk concentration of the portfolio with respect to the risk factors. The
most popular methods to measure the concentration are the Herfindahl index and the Gini
index. Another interesting statistic is the Shannon entropy which measures diversity, that
is opposite of the concentration. Their definition is given below.

The Herfindahl index The Herfindahl index associated to p is defined as:

H (p) =
n∑

i=1

p2i

This index takes the value 1 for a probability distribution p+ and 1/n for a distribution with
uniform probabilities. To scale the statistics onto [0, 1], we consider the normalized index
H⋆ (p) defined as follows:

H⋆ (p) =
nH (p)− 1

n− 1

The Gini index The Gini index measures the distance between the Lorenz curve of p
and the Lorenz curve of p−. Its analytical expression is:

G (p) =
2
∑n

i=1 ipi:n
n
∑n

i=1 pi:n
− n+ 1

n

with {p1:n, . . . , pn:n} the ordered statistics of {p1, . . . , pn}. We verify that G (p−) = 0 and
G (p+) = 1− 1/n.

The Shannon entropy It is defined as follows:

I (p) = −
n∑

i=1

pi ln pi

When the Shannon entropy is used to measure the diversity, we prefer to consider the
statistic I⋆ (p) = exp (I (p)). We notice that I⋆ (p−) = n and I⋆ (p+) = 1.

Remark 8. The entropy measure I⋆ is sometimes interpreted as the degree of diversifica-
tion, because it represents the true number of bets of the portfolio (Meucci, 2009). Another
equivalent measure is the inverse of the Herfindal index.

4.2.2 An illustration

We continue our example by minimizing the risk concentration between the three risk factors.
Results are given in Table 9. We notice that this portfolio satisfies H⋆ = 0, G = 0 and I⋆ = 3
if we consider the risk contributions of the three factors as the statistics of interest p. In
this case, these three criteria are equivalent. If we impose now some constraints, the optimal
portfolios will differ. For instance, if we assume that the weights are larger than 10%, we
obtain the optimal portfolios given in Table 10. In this case, the weights depend on the
criterion and the three optimization problems are not equivalent. Therefore, the Gini index
puts more weight on the fourth asset than the Herfindahl index or the entropy measure.
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Table 9: The lowest risk concentrated portfolio

(a) Optimal solution (y⋆, ỹ⋆)

σ (y) = 21.88% yi MR (Fi) RC (Fi) RC⋆ (Fi)

F1 91.97% 7.91% 7.28% 33.26%
F2 25.78% 28.23% 7.28% 33.26%
F3 42.22% 17.24% 7.28% 33.26%

F̃1 6.74% 0.70% 0.05% 0.21%

(b) Corresponding portfolio x⋆

σ (x) = 21.88% xi MR (Ai) RC (Ai) RC⋆ (Ai)

A1 0.30% 16.11% 0.05% 0.22%
A2 39.37% 23.13% 9.11% 41.63%
A3 0.31% 20.93% 0.07% 0.30%
A4 60.01% 21.09% 12.66% 57.85%

Table 10: Optimal portfolios with xi ≥ 10%

Criterion H (x) G (x) I (x)

x1 10.00% 10.00% 10.00%
x2 22.08% 18.24% 24.91%
x3 10.00% 10.00% 10.00%
x4 57.92% 61.76% 55.09%
H⋆ 0.0436 0.0490 0.0453
G 0.1570 0.1476 0.1639
I⋆ 2.8636 2.8416 2.8643

4.3 Solving some invariance problems

In this paragraph, we show that optimized risk parity portfolios with risk factors solve two
important invariance problems.

4.3.1 The duplication invariance property

Let us come back to the first problem that has motivated this research. Choueifaty et al.
(2011) show that the ERC portfolio does not verify the duplication invariance property,
meaning that the ERC portfolio changes if we duplicate one asset.

Let Σ(n) be the covariance matrix of the n assets. We consider the RB portfolio x(n)

corresponding to the risk budgets b(n). We suppose now that we duplicate the last asset. In
this case, the covariance matrix of the n+ 1 assets is:

Σ(n+1) =

(
Σ(n) Σ(n)en

e⊤nΣ
(n) 1

)
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We associate the factor model with Ω = Σ(n), D = 0 and:

A =

[
In
e⊤n

]
We consider the portfolio x(n+1) such that the risk contribution of the factors match the
risk budgets b(n). It is then easy to show that the matching portfolio verifies y⋆ = x(n) in
terms of factor weights. We have then x

(n+1)
i = x

(n)
i if i < n and x

(n+1)
n + x

(n+1)
n+1 = x

(n)
n .

This result shows that an ERC portfolio verifies the duplication invariance property if the
risk budgets are expressed with respect to factors and not to assets.

4.3.2 The polico invariance property

Choueifaty et al. (2011) suggest that a diversified portfolio should verify another desirable
property called the polico invariance property:

“The addition of a positive linear combination of assets already belonging to the
universe should not impact the portfolio’s weights to the original assets, as they
were already available in the original universe. We abbreviate ‘positive linear
combination’ to read Polico.”

We use the previous framework and introduce an asset n+ 1 which is a linear (normalized)
combination α of the first n assets. In this case, the covariance matrix of the n+1 assets is:

Σ(n+1) =

(
Σ(n) Σ(n)α

α⊤Σ(n) α⊤Σ(n)α

)
We associate the factor model with Ω = Σ(n), D = 0 and:

A =

[
In
α⊤

]
We consider the portfolio x(n+1) such that the risk contribution of the factors match the
risk budgets b(n). It is then easy to show that the factor weights of the matching portfolio
satisfy:

y⋆ =

[
A+x(n)

0

]
We have then x(n+1) = Ay⋆, which implies that x

(n)
i = x

(n+1)
i + αix

(n+1)
n+1 if i ≤ n. This

result shows that a RB portfolio (and so an ERC portfolio) verifies the polico invariance
property if the risk budgets are expressed with respect to factors and not to assets.

Remark 9. This result is related to our example with primary and synthetic assets.

5 Applications

In this section, we consider different applications. The first one concerns the risk budgeting
of equity factors. In the second application, we build portfolios of hedge funds with a better
diversification between the principal component factors. Finally, we compare the risk parity
approach based on risk factors and asset classes in a strategic asset allocation perspective.
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5.1 Budgeting the Fama-French-Carhart factors

Let Ri be the return of the ith asset and Rf be the risk-free rate. In the capital asset pricing
model (CAPM) of Sharpe (1964), we have:

E [Ri] = Rf + βi (E [RMKT]−Rf )

where RMKT is the return of the market portfolio and βi is the measure of the systematic
risk defined by:

βi =
cov (Ri, RMKT)

var (RMKT)

This model is also called the one-factor pricing model, because the stock return is entirely
explained by one common risk factor represented by the market. According to Fama and
French (2004), this model is the centerpiece of MBA investment courses and is widely used
in finance by practitioners despite a large body of evidence in the academic literature of the
invalidation of this model:

“The attraction of the CAPM is that it offers powerful and intuitively pleasing
predictions about how to measure risk and the relation between expected return
and risk. Unfortunately, the empirical record of the model is poor – poor enough
to invalidate the way it is used in applications. ” (Fama and French, 2004, p. 25)

In 1992, Fama and French studied several factors to explain average returns (size, E/P,
leverage and book-to-market equity). In 1993, Fama and French extended their empirical
work and proposed a three factor-model:

E [Ri]−Rf = βMKT
i (E [RMKT]−Rf ) + βSMB

i E [RSMB] + βHML
i E [RHML]

where Rsmb is the return of small stocks minus the return of large stocks and Rhml is the
return of stocks with high book-to-market values minus the return of stocks with low book-
to-market values. In a key paper, Carhart (1997) uses a four-factor model, adding a one-year
momentum factor to the Fama-French three-factor model. Over the years, this model has
become the standard model in the asset management industry.

We consider a universe of 6 equity indexes: MSCI USA large growth (LG), MSCI USA
large value (LV), MSCI USA mid growth (MG), MSCI USA mid value (MV), MSCI USA
small growth (SG) and MSCI USA small value (SV). We specify the factor model as follows:

Ri
t − (Rf,t +RMKT,t) = βSMB

i RSMB,t + βHML
i RHML,t + βMOM

i RMOM,t + εi,t

where i represents one of the previous equity indexes. We estimate the different parameters
of the model by using maximum likelihood. If we assume that the specific factors are
uncorrelated and if we consider a one-year rolling observations, we obtain the following
figures at the end of June 2011:

Â =


−0.09 −0.32 −0.03
−0.22 0.24 −0.14
0.18 −0.24 0.22
0.16 0.29 −0.07
0.67 −0.07 0.18
0.62 0.31 −0.10

 , D̂ = diag


4.68
4.10
12.03
9.93
5.70
5.21

× 10−4
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and:

Ω̂ =

 77.26 1.25 34.09
1.25 33.18 −9.35

34.09 −9.35 58.02

× 10−4

We consider three sets of risk budgets with respect to the factors SMB, HML and MOM:

1. With b = (25%, 25%, 25%), we build a portfolio very well balanced between the three
common factors;

2. With b = (10%, 60%, 10%), the HML factor represents 60% of the portfolio risk whereas
the risk contribution of the two other common factors is only 20%;

3. With b = (10%, 10%, 60%), the MOM factor is the main contributor of the portfolio
risk.

Moreover, for each set of risk budgets, we estimated the unconstrained portfolio and the long-
only portfolio14. Results are given in Table 11. With the risk budgets (25%, 25%, 25%), we
find two portfolios which match perfectly these figures. The main weighted assets are the LG,
LV, MV and SV indexes. With the second set of risk budgets, we notice that the exposure
on the value indexes (LV, MV and SV) increases whereas the exposure in the growth indexes
(LG, MG, and SG) decreases. It is coherent with the Fama-French model, because HML is
a typical value versus growth factor. If we were to build a portfolio with more risk on the
momentum factor, the main weighted assets would be the large and small value indexes. We
notice also that it is not possible to find a long-only portfolio that matches the risk budgets
(10%, 10%, 60%).

Table 11: RB portfolios with Fama-French-Carhart factors (June 2011)

#1 #1⋆ #2 #2⋆ #3 #3⋆

xSMB 11.51% 10.64% 11.90% 10.25% 6.96% 5.03%
xHML 14.63% 13.73% 29.30% 25.32% 10.92% 7.94%
xMOM −9.19% −8.72% −11.13% −9.88% −10.76% −9.01%

RC (FSMB) 25.00% 25.00% 10.00% 10.00% 10.00% 6.49%
RC (FHML) 25.00% 25.00% 60.00% 60.00% 10.00% 4.78%
RC (FMOM) 25.00% 25.00% 10.00% 10.00% 60.00% 53.21%∑3
j=1 RC

(
F̃j

)
25.00% 25.00% 20.00% 20.00% 20.00% 35.52%

xLG 24.93% 23.15% 1.56% 3.20% 33.93% 31.92%
xLV 25.10% 29.09% 33.61% 37.55% 33.60% 37.45%
xMG −5.07% 0.00% −6.00% 0.00% −9.26% 0.00%
xMV 30.21% 22.44% 50.37% 38.43% 14.71% 5.84%
xSG 2.35% 0.00% 0.97% 0.00% 2.43% 0.00%
xSV 22.49% 25.32% 19.48% 20.83% 24.60% 24.78%

Remark 10. The previous results are sensitive to the study date. For instance, if we
choose the end of June 2012, we obtain different figures as reported in Table 12. The main
differences come from the weight of the mid-cap indexes, whereas the most coherent results
are for the large-cap indexes.

14This case is represented by a star ⋆.
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Table 12: RB portfolios with Fama-French-Carhart factors (June 2012)

#1 #1⋆ #2 #2⋆ #3 #3⋆

xSMB 7.94% 7.94% 6.18% 6.18% 4.99% 5.03%
xHML −8.01% −8.01% −17.57% −17.57% 10.58% 10.71%
xMOM 1.56% 1.56% 0.97% 0.97% 2.95% 2.97%

RC (FSMB) 25.00% 25.00% 10.00% 10.00% 10.00% 10.00%
RC (FHML) 25.00% 25.00% 60.00% 60.00% 10.00% 10.00%
RC (FMOM) 25.00% 25.00% 10.00% 10.00% 60.00% 60.00%∑3
j=1 RC

(
F̃j

)
25.00% 25.00% 20.00% 20.00% 20.00% 20.00%

xLG 42.32% 42.32% 47.45% 47.45% 34.93% 34.54%
xLV 23.31% 23.31% 17.50% 17.50% 39.94% 40.15%
xMG 8.25% 8.25% 14.67% 14.67% −1.75% 0.00%
xMV 4.24% 4.24% 3.01% 3.01% 2.11% 0.58%
xSG 11.17% 11.17% 11.40% 11.40% 6.45% 4.82%
xSV 10.70% 10.70% 5.97% 5.97% 18.33% 19.91%

5.2 Diversifying a portfolio of hedge funds
We consider the Dow Jones Credit Suisse AllHedge index. This index is composed of 10
subindexes: (1) convertible arbitrage, (2) dedicated short bias, (3) emerging markets, (4)
equity market neutral, (5) event driven, (6) fixed income arbitrage, (7) global macro, (8)
long/short equity, (9) managed futures and (10) multi-strategy. For the global index and all
subindexes, we could obtain the monthly NAV from the web site www.hedgeindex.com.

We consider a volatility risk measure and statistical factors based on the principal com-
ponent analysis of the two-year covariance matrix of asset returns. We do not try to interpret
the PCA factors. We could build factors, which are perhaps more pertinent to analyse the
hedge fund industry. Nevertheless, PCA is frequently used to classify dynamic strategies
(Fung and Hsieh, 1997). The use of PCA holds great interest for our application, because it
produces independent factors. We could then easily characterize the degree of diversification
of the portfolio by using concentration indexes.

We compare three portfolios: the asset-weighted portfolio15, the ERC portfolio and the
factor-weighted portfolio. For the latter, the weights are computed such that the risk budget
assigned to each of the first four PCA factors is equal to 25%. Each portfolio is rebalanced
at the end of each month.

The risk decomposition with respect to the PCA factors is given in Figure 3. Most of the
risk is concentrated on the first PCA factor for the asset-weighted portfolio. For the ERC
portfolio, we obtain a more diversified allocation than the asset-weighted portfolio, but the
ERC weights’ ranges for a specific factor are large. It is not the case with the factor-weighted
portfolio. Most of the times, we succeed in targeting the assigned budgets. The correspond-
ing weights are given in Figure 4. We notice of course that the ERC-weighted portfolio
or factor-weighted portfolio induce more turnover. The simulation of the performance is
reported in Figure 5.

15The data for assets are no longer publicly available from the web site www.hedgeindex.com. Therefore,
we consider them as constant and use an estimate of the average holdings.
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Figure 3: Risk decomposition of the portfolios in terms of factors

Figure 4: Weights of the portfolios
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Figure 5: Performance simulation of the portfolios

In Table 13, we report for each portfolio statistics of performance and risk and measures
of concentration using the risk contributions with respect to PCA factors16. We notice
that the ERC-weighted portfolio and factor-weighted portfolio have smaller risks (volatility,
drawdown and kurtosis) than the asset-weighted portfolio. Moreover, the factor-weighted
portfolio improves significantly the risk diversification of the ERC portfolio. According to
the Herfindahl index, the ERC portfolio plays less than three independent factors, whereas
the factor-weighted portfolio is exposed to four independent factors.

Table 13: Statistics of hedge fund portfolios (Sep. 2009 - Aug. 2012)

Asset-weighted ERC-weighted Factor-weighted

µ̂1Y (in %) 0.86 0.23 0.64
σ̂1Y (in %) 7.93 4.85 4.58

MDD (in %) −27.08 −18.22 −15.30
γ1 −2.04 −1.84 −0.60
γ2 6.24 6.88 1.68
H⋆ 0.72 0.30 0.14
N ⋆ 1.40 2.96 4.16
G 0.83 0.67 0.52
I⋆ 1.75 3.81 4.34

16µ̂1Y is the annualized performance, σ̂1Y is the the yearly volatility and MDD is the maximum drawdown
observed for the entire period. These statistics are expressed in %. Skewness and excess kurtosis correspond
to γ1 and γ2. The concentration measures are computed using the risk contributions of the first four PCA
factors: H⋆ is the normalized Herfindahl index, N ⋆ = H−1 is the effective number of independent factors,
G is the Gini index and I⋆ is the diversity measure based on the Shannon entropy.
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5.3 Building a strategic asset allocation

Strategic asset allocation (SAA) is the choice of equities, bonds, and alternative assets that
an investor wishes to hold in the long-run, usually from 10 to 50 years. Combined with
tactical asset allocation (TAA) and constraints on liabilities, it defines the long-term in-
vestment policy of pension funds. By construction, SAA requires long-term assumptions
involving asset risk/return characteristics as a key input. It could be done using macroe-
conomic models and forecasts of structural factors such as population growth, productivity
and inflation (Eychenne et al., 2011). Using these inputs, one may obtain a SAA portfolio
using a mean-variance optimization procedure. However, due to the uncertainty of these
inputs and the instability of mean-variance portfolios, many institutional investors prefer to
use these long-run figures as a selection criterion for the asset classes they would like to have
in their strategic portfolio and define the corresponding risk budgets.

This approach has been largely studied by Bruder and Roncalli (2012), who present, for
instance, an example of the risk budgeting policy of a pension fund. Another example of
such approach is the SAA policy adopted by Danish pension fund ATP. Indeed, the fund
ATP defines its SAA using a risk parity approach. According17 to Henrik Gade Jepsen, CIO
of ATP:

“Like many risk practitioners, ATP follows a portfolio construction methodol-
ogy that focuses on fundamental economic risks, and on the relative volatility
contribution from its five risk classes. [...] The strategic risk allocation is 35%
equity risk, 25% inflation risk, 20% interest rate risk, 10% credit risk and 10%
commodity risk”.

These risk budgets are then transformed into asset classes’ weights. At the end of Q1 2012,
the asset allocation of ATP was also 52% in fixed-income, 15% in credit, 15% in equities,
16% in inflation and 3% in commodities18.

In this paragraph, we explore a similar approach by combining the risk budgeting ap-
proach to define the asset allocation, and the economic approach to define the factors. This
approach has been already proposed by Kaya et al. (2011) who use two economic factors:
growth and inflation. As explained by Eychenne et al. (2011), these factors are the two
main pillars of strategic asset allocation models. Using their long-run path, we could then
define the long-run path for short rates, bonds, equities, high yield, etc. This approach is
adequately suited for pension funds with liabilities which are indexed on some economic
factors like inflation.

Following Eychenne et al. (2011), we consider 7 economic factors grouped into four
categories:

1. activity: gdp & industrial production;

2. inflation: consumer prices & commodity prices;

3. interest rate: real interest rate & slope of the yield curve;

4. currency: real effective exchange rate.

17Source: Investment & Pensions Europe, June 2012, Special Report Risk Parity.
18Source: FTfm, June 10, 2012.
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We collect quarterly data from Datastream. We estimate a model using YoY relative vari-
ations for the study period Q1 1999 – Q2 2012. We consider 13 asset classes classified as
follows: equity (US, Euro, UK and Japan), sovereign bonds (US, Euro, UK and Japan),
corporate bonds (US, Euro), High yield (US, Euro) and TIPS (US). We then build four
portfolios (cf. Table 14). The first portfolio is a balanced stock/bond asset mix, the sec-
ond portfolio represents a defensive allocation with only 20% invested in equities, and the
third portfolio represents an aggressive allocation with 80% invested in equities. The fourth
portfolio is calibrated such that activity, inflation, interest rates and currency represent re-
spectively 34%, 20%, 40% and 5%. In this scenario, the overall weight on equities sums to
49%, while the weight on bonds sums to 51% with a large position on corporate bonds.

Table 14: Weights of the four SAA portfolios

Equity Sovereign Bonds Corp. Bonds High Yield TIPS

US Euro UK Japan US Euro UK Japan US Euro US Euro US

#1 20% 20% 5% 5% 10% 5% 5% 5% 5% 5% 5% 5% 5%
#2 10% 10% 20% 15% 5% 5% 5% 5% 5% 5% 15%
#3 30% 30% 10% 10% 10% 10%
#4a 19.0% 21.7% 6.2% 2.3% 5.9% 24.1% 10.7% 2.6% 7.5%

aWeights are estimated using the risk budgets of factors.

In Table 15, we report the risk contributions of these allocations with respect to our
four categories and an additional grouping representing specific risk not explained by the
economic factors. We obtain results coherent with financial and economic theories. For
example, activity explains a large part of the risk of the aggressive portfolio (#3). The
defensive portfolio (#2) concentrates most of the risk on interest rates. Holding a portfolio
more exposed to inflation risk implies de-leveraging the exposure on sovereign bonds and
TIPS (cf. Portfolio #4). We believe these results to be very appealing to pension funds.
And, it explains why some are exploring this route in order to aline their strategic asset
allocation with their liability constraints.

Table 15: Risk contributions of SAA portfolios with respect to economic factors

Factor #1 #2 #3 #4

Activity 36.91% 19.18% 51.20% 34.00%
Inflation 12.26% 4.98% 9.31% 20.00%

Interest rate 42.80% 58.66% 32.92% 40.00%
Currency 7.26% 13.04% 5.10% 5.00%

Specific factors 0.77% 4.14% 1.47% 1.00%
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6 Conclusion
This paper generalizes the risk parity approach of Bruder and Roncalli (2012) to consider risk
factors instead of assets. It appears that the problem becomes trickier as multiple solutions
can exist, and the existence of the RB portfolio is not guaranteed when we impose long-only
constraints. We propose therefore to formulate the diversification problem in terms of risk
factors as an optimization program.

We illustrate our methodology with real life examples. Our first application deals with
risk budgeting of the Fama-French equity factors. Commonly, one uses regression models to
measure the exposure of an equity portfolio with respect to these factors. The problem with
such approach is that the real signification of the estimated beta coefficients remains unclear.
Thus, we propose to replace the regression approach by a risk contribution approach which
is more intuitive to portfolio managers. Our second application considers diversifying a
hedge fund portfolio. Using PCA factors as the underlying sources of ’true’ risk, we obtain
some interesting results. Yet, we are cautious to claim better performance as the portfolio
construction is very sensitive to these PCA factors, which are not always stable through
time.

Finally, our last application studies the strategic asset allocation problem of pension
funds that face liability constraints. The underlying idea is to build a portfolio in order to
hedge some risk factors, like activity, inflation, interest rate or currency. Our preliminary
results are promising. They open a door toward rethinking the long-term investment policy
of pension funds.
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A Technical results

A.1 Notations and relations

Variable Dimension Expression

A (n×m) B⊤

B (m× n) A⊤

A+ (m× n)
(
B⊤)+ = (B+)

⊤

B+ (n×m)
(
A⊤)+ = (A+)

⊤

B̃+ (n× r) ker
(
(B+)

⊤
)
= ker (A+)

(B+)
⊤
=

(
B⊤)+ = A+

(B+)
⊤
B̃+ = A+B̃+ = 0(

B̃+
)⊤

(r × n) ker
(
A⊤)⊤ = B̃

r = m− n

B̃ (r × n)
(
B̃+

)+ (
I −B+A⊤) = ker (B)

⊤
= ker

(
A⊤)⊤

B̃⊤B̃ = In −AA+

x (n× 1) B+y + B̃+ỹ
y (m× 1) A⊤x

ỹ (r × 1)
(
B̃+

)+

(x−B+y) = B̃x

Πt (1× 1) x⊤Rt = x⊤AFt + x⊤εt = y⊤Ft + ỹ⊤F̃t

Ft (m× 1) (B+)
⊤
Rt

F̃t (r × 1)
(
B̃+

)⊤
Rt(

Ft

F̃t

)
(n× 1) B̄Rt

B̄ (n× n)

 (B+)
⊤(

B̃+
)⊤


B̄⊤ (n× n)

(
B+ B̃+

)
(
B̄⊤)−1

(n× n)

(
B

B̃

)
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A.2 Decomposition of the marginal risk contribution
We consider the following decomposition19:

x =
(
B+ B̃+

)(y
ỹ

)
= B̄⊤ȳ (12)

where B̃+ = col (B+) is any n× (n−m) matrix that spans the left nullspace of B+ which is
also the left nullspace of A. Using results of Meucci (2007), B̄⊤ is invertible by construction
and we have: (

Ft

F̃t

)
= B̄Rt

We have therefore Πt = y⊤Ft + ỹ⊤F̃t. Using Equation (12) and the chain rule of calculus,
it comes that:

∂R (x)

∂ x
=

∂R (y, ỹ)

∂ y

∂y

∂x
+

∂R (y, ỹ)

∂ ỹ

∂ ỹ

∂ x

=
∂R (y, ỹ)

∂ y
B +

∂R (y, ỹ)

∂ ỹ
B̃

=
∂R (ȳ)

∂ ȳ

(
B̄⊤)−1

(13)

with: (
B̄⊤)−1

=

(
B

B̃

)
for some (n−m)× n matrix B̃. Thus, we deduce:

∂R (x)

∂ x
=

∂R (x)

∂ y
B +

∂R (x)

∂ ỹ
B̃

Using Equation (13), it comes that:

∂R (ȳ)

∂ ȳ
=

∂R (x)

∂ x
B̄⊤

If we consider the risk factors Ft, we have:

∂R (x)

∂ y
=

∂R (x)

∂ x
B+

Since (B+)
⊤

=
(
B⊤)+ = A+ by property of the Moore-Penrose inverse, we finally obtain

that:
∂R (x)

∂ y⊤
=

(
B+

)⊤ ∂R (x)

∂ x⊤ = A+ ∂R (x)

∂ x⊤

For the risk factors F̃t, the results become:

∂R (x)

∂ ỹ
=

∂R (x)

∂ x
B̃+

and:
∂R (x)

∂ ỹ⊤
=

(
B̃+

)⊤ ∂R (x)

∂ x⊤ = B̃
∂R (x)

∂ x⊤

19We assume implicitly that the number of assets is larger than the number of factors (n > m).
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A.3 Computing the risk contribution of factors

We assume that the risk measure R (x) is the volatility of the portfolio σ (x) =
√
x⊤Σx. We

obtain the following expression:

R2 (x) =
(
B+y + B̃+ỹ

)⊤
Σ
(
B+y + B̃+ỹ

)
= y⊤

(
B+

)⊤
ΣB+y + ỹ⊤

(
B̃+

)⊤
ΣB+y + y⊤

(
B+

)⊤
ΣB̃+ỹ + ỹ⊤

(
B̃+

)⊤
ΣB̃+ỹ

= y⊤
(
B+

)⊤
ΣB+y + ỹ⊤

(
B̃+

)⊤
ΣB̃+ỹ + 2y⊤

(
B+

)⊤
ΣB̃+ỹ

It comes that:

R (x) = y⊤
(B+)

⊤
ΣB+y

σ (x)
+ ỹ⊤

(
B̃+

)⊤
ΣB̃+ỹ

σ (x)
+ 2

y⊤ (B+)
⊤
ΣB̃+ỹ

σ (x)

=
m∑
j=1

RC (Fj) +
n−m∑
j=1

RC
(
F̃j

)

A first idea is to assume that Ft and F̃t are uncorrelated, and to identify the risk contribution
of the jth factor as:

RC (Fj) =
yj ·

(
(B+)

⊤
ΣB+y

)
j

σ (x)

But the problem is that even if (B+)
⊤
B̃+ = 0m×(n−m), (B+)

⊤
ΣB̃+ ̸= 0m×(n−m). A second

idea it to apply directly Theorem 1. In this case, we have:

RC (Fj) =

(
A⊤x

)
j
· (A+Σx)j

σ (x)

and:

RC
(
F̃j

)
=

(
B̃x

)
j
·
(
B̃Σx

)
j

σ (x)

A.4 Analysis of the optimisation problem (11) when R is the volatil-
ity risk measure

Recall that φ (y) = −Ω̃−1Γ⊤y if R is the volatility risk measure. The positivity constraint
on x in terms of y can then be written as:

(
B+ − B̃+Ω̃−1

(
B+

)⊤
ΣB̃+

)
y ≽ 0
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The Lagrangian function of the problem (11) is:

L (y, λc, λy, λx) = R(y)− λc

 m∑
j=1

bj ln yj − c

−

λ⊤
y y − λ⊤

x

(
B+y + B̃+φ (y)

)
= R(y)− λc

 m∑
j=1

bj ln yj − c

−

(
λ⊤
y + λ⊤

x

(
B+ − B̃+Ω̃−1

(
B+

)⊤
ΣB̃+

))
y

The associated Karush-Kuhn-Tucker (KKT) conditions are then:
(
λ⊤
y + λ⊤

x

(
B+ − B̃+Ω̃−1 (B+)

⊤
ΣB̃+

))
y = 0

min
(
λc,

∑m
j=1 bj ln yj − c

)
= 0

λ ≽ 0

with λ = (λx, λy). Since, for any convex optimization problem with differentiable objective
and constraints functions, any point that satisfy the KKT conditions are primal and dual
optimal, and have zero duality gap (Boyd & Vandenberghe, 2004), we conclude that y ≻ 0
and: (

λ⊤
y + λ⊤

x

(
B+ − B̃+Ω̃−1

(
B+

)⊤
ΣB̃+

))
= 0

Indeed, if the above equality is not verified then the Lagrange dual function is −∞ and the
primal problem has no solution because of strong duality. The first order conditions are
given by:

yj
∂R(y)

∂ yj
= λcbj

We verify as in Bruder & Roncalli (2012) that the risk contributions of each factor Fj are
indeed proportional to the levels bj .

A.4.1 Feasibility of linear inequality constraints

Boyd and Vandenberghe (2004) provide the condition to the feasibility of a set of linear
inequalities Mx ≼ N . They show that the system of linear inequalities is feasible if, and
only if, the following system is not feasible:

λ ≽ 0
M⊤λ = 0
N⊤λ < 0

Similar conditions are also given for the set of strict linear inequalities Mx ≺ N as:
λ ≽ 0
λ ̸= 0
M⊤λ = 0
N⊤λ ≤ 0
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Using the above result, the conditions for the set of inequalities y ≽ 0 and x ≽ 0 to be
feasible is obtained if the following alternative system is not feasible:

λ ≽ 0(
A+ −

(
B̃+

)⊤
ΣΩ̃−1

(
B̃+

)⊤
)
λx + λy = 0

0⊤λx + 0⊤λy < 0

The alternative system above is however never feasible (because of the last inequality20).
And there always exists a (possibly trivial) solution y satisfying y ≽ 0 and x ≽ 0. Note that
the set of strict inequalities for y ≻ 0 and x ≻ 0 is however never satisfied for a solution of
the optimization problem (11).

A.4.2 Existence of a non trivial solution to the set y ≽ 0 and x ≽ 0

The existence of a (non trivial) solution can be investigated by examining the following
system:

∃ ζ > 0 s.t.

{
y ≽ ζ1(
B+ − B̃+Ω̃−1 (B+)

⊤
ΣB̃+

)
y ≽ 0

It’s easy to see that its alternative system given by:
(
A+ −

(
B̃+

)⊤
ΣΩ̃−1

(
B̃+

)⊤
)
λx + λy = 0

λ ≽ 0
λy ̸= 0

(14)

does not depend on ζ. Thus, a sufficient condition for the system y ≻ 0 and x ≽ 0 to be
feasible is that there does not exist (λx, λy) ∈ Rn

+×Rm
+∗ such that the system (14) is feasible.

However, if y⋆ is solution to the optimization problem (11), then there exist (λx, λy) such
that: 

(
A+ −

(
B̃+

)⊤
ΣΩ̃−1

(
B̃+

)⊤
)
λx + λy = 0

(λx, λy) ≽ 0

Using the results above, there are two possible scenarios:

1. λy = 0 and λx ∈ ker

(
A+ −

(
B̃+

)⊤
ΣΩ̃−1

(
B̃+

)⊤
)

;

2. λy ̸= 0 and there exists ζ > 0 such that 0 ≤ min yj ≤ ζ.

Since the intersection of ker
(
A+ −

(
B̃+

)⊤
ΣΩ̃−1

(
B̃+

)⊤
Im

)
and {λ ∈ Rn+m | λ ≽ 0} is

likely to be larger than the singleton {0}, there could be several extrema of the Lagrangian
function that verify the second scenario.

20This inequality is derived from the fact that the alternative system is feasible only if the lagrangian dual
function of the set of equalities is strictly positive (Boyd and Vandenberghe, 2004).
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