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The Markowitz optimization problem

x = (x1, . . . ,xn) is the vector of weights in the portfolio

µ = E [R] and Σ = E
[
(R−µ)(R−µ)>

]
are the vector of expected

returns and the covariance matrix of asset returns
We note µ (x) = x>µ the expected return of the portfolio and
σ (x) =

√
x>Σx the portfolio volatility

Asset allocation problems (Markowitz, 1952)
1 σ -problem:

max µ (x) s.t. σ (x)≤ σ
?

2 µ-problem:
minσ (x) s.t. µ (x)≥ µ

?
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The Markowitz solution problem

QP trick (Markowitz, 1952 and 1956)

Transform the previous problems into a QP problem:

x? (γ) = arg min
1
2
x>Σx− γx>µ

s.t. 1>n x = 1

Solving σ - and µ-problems are equivalent to QP + bisection algorithm
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Primal QP problem

Definition

A quadratic programming (QP) problem is an optimization problem with a
quadratic objective function and linear inequality constraints:

x? = arg min
1
2
x>Qx−x>R

s.t. Sx ≤ T

where x is a n×1 vector, Q is a n×n matrix and R is a n×1 vector

We have

Sx ≤ T ⇔

 Ax = B
Cx ≤ D
xmin ≤ x ≤ xmax

because:

Ax = B ⇔
{

Ax ≥ B
Ax ≤ B
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Constrained ordinary least squares

β̂
ols = arg min

1
2

RSS(β )

where:

RSS(β ) = (Y −Xβ )> (Y −Xβ )

= Y>Y + β
>
(
X>X

)
β −2β

>
(
X>Y

)
We deduce that:

β̂
ols = arg min

1
2

β
>Qβ −β

>R

s.t.

 Aβ = B
Cβ ≤ D
β min ≤ β ≤ β max

where Q = X>X and R = X>Y
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Relationship between linear regression and Markowitz
optimization

Linear regression:
Y = Xβ + ε

The solution is equal to:

β̂
ols =

(
X>X

)−1
X>Y

Markowitz optimization with empirical covariance matrix Σ̂ and
empirical expected returns µ̂:

γ1n = Rx + ε

where R is the matrix of (centered) asset returns (number of
observations × number of assets) .The solution is equal to:

x̂mvo =
(
R>R

)−1
R>γ1n

= γΣ̂−1µ̂
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Portfolio optimization with a benchmark

Let µ (x | b) = (x−b)> µ be the expected excess return and

σ (x | b) =

√
(x−b)>Σ(x−b) be the tracking error volatility, where b is

the benchmark

The objective function is:

f (x | b) =
1
2

(x−b)>Σ(x−b)− γ (x−b)> µ

∝
1
2
x>Σx− γx>

(
µ +

1
γ

Σb

)
⇒ QP problem with Q = Σ and R = γ µ̃ where µ̃ = µ + 1

γ
Σb is the

regularized vector of expected returns

Tracking error constraints ⇔ regularization of the QP problem
If b is the risk-free asset, the regularized QP solution is the capital
market line (Roncalli, 2013)
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Index sampling

The portfolio sampling problem

We have:

x? = arg min
1
2

(x−b)>Σ(x−b)

u.c.

 1>n x = 1
x ≥ 0n
∑
n
i=11{xi > 0} ≤ nx

where b is the vector of index weights
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Index sampling

Heuristic algorithm
1 We set xmax

(0) = 1n. At the iteration k , we solve the QP problem by
taking into account the upper bounds xmax

(k) :

x?(k) = arg min
1
2
(
x(k)−b

)>
Σ
(
x(k)−b

)
s.t. 1>n x(k) = 1, 0n ≤ x(k) ≤ xmax

(k)

2 We then update the upper bounds xmax
(k) by deleting the stock with the

lowest non-zero optimized weight

3 We iterate the two steps until ∑
n
i=11

{
x∗(k),i > 0

}
≤ nx

The heuristic algorithm is the fastest method (vs backward elimination,
forward selection, MIQP, etc.)
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Dual QP problem

The Lagrange function is equal to:

L (x ;λ ) =
1
2
x>Qx−x>R + λ

> (Sx−T )

We deduce that the dual problem problem is defined by:

λ
? = arg max

{
inf
x

L (x ;λ )
}

s.t. λ ≥ 0

Duality theorem

We can show that the dual program is another quadratic program:

λ
? = arg min

1
2

λ
>Q̄λ −λ

>R̄

s.t. λ ≥ 0

with Q̄ = SQ−1S> and R̄ = SQ−1R−T
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Support vector machines

x2

x1
0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

H1 H2H3

Figure: Separating hyperplane picking

Source: Roncalli (2019).
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Support vector machines
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Figure: Margins of separation

Source: Roncalli (2019).

Thierry Roncalli Portfolio Allocation: From QP to ML Optimization Algorithms 12 / 86



Quadratic programming
Large-scale optimization algorithms

Application to portfolio optimization
Conclusion

Mean-variance optimization
Primal versus dual problem
Augmented QP problem

Support vector machines
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Figure: Optimal hyperplane

Source: Roncalli (2019).
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Support vector machines

Hard margin classification

Let yi = β0 + x>i β . The maximization problem is:{
β̂0, β̂

}
= arg maxM

s.t.
{

f (xi )≥M if yi = +1
f (xi )≤−M if yi =−1

Primal QP
We can show that:{

β̂0, β̂
}

= arg min
1
2
‖β‖22

s.t. yi

(
β0 + x>i β

)
≥ 1 for i = 1, . . . ,n

and M̂ = 1/‖β‖2
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Support vector machines

Dual QP (Chervonenkis-Cortes-Vapnik)

Let α be the vector of Lagrange multipliers. We have:

α̂ = arg min
1
2

α
>Γα−α

>1n

s.t.
{

y>α = 0
α ≥ 0n

where Γi ,j = yiyjx
>
i xj . It follows that β̂ = ∑

n
i=1 α̂iyixi and:

β̂0 =
∑
n
i=11{α̂i > 0} ·

(
yi −x>i β̂

)
∑
n
i=11{α̂i > 0}

We can classify new observations by considering the following rule:

ŷ = sign
(

β̂0 + x>β̂

)
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Support vector machines

Dimension of the problem

Primal QP ⇒ (m+1,n)

Dual QP ⇒ (n,n+1)

Extension to:
Soft margin classification (binary hinge loss, squared hinge loss, ramp
loss, etc.)
LS-SVM regression
ε-SVM regression
Non-linear SVM and kernel functions

Dual QP everywhere!
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The Lasso revolution

Least absolute shrinkage and selection operator (lasso)

The lasso method consists in adding a L1 penalty function to the least
square problem:

β̂
lasso (τ) = arg min

1
2

(Y −Xβ )> (Y −Xβ )

s.t. ‖β‖1 ≤ τ

Alternatively, we have:

β̂
lasso (λ ) = arg min

1
2

(Y −Xβ )> (Y −Xβ ) + λ ‖β‖1
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Lasso regression

We have:

RSS(β ) = RSS
(

β̂
ols
)

+
(

β − β̂
ols
)>

X>X
(

β − β̂
ols
)

If we consider the equation RSS(β ) = c , we distinguish three cases:

c < RSS
(

β̂ ols
)

c = RSS
(

β̂ ols
)

c > RSS
(

β̂ ols
)

No solution One solution β̂ ols An ellipsoid

What does this result become when imposing
the lasso constraint ‖β‖1 ≤ τ?

Sparsity theorem

∃η > 0 : ∀τ < η , min
(∣∣∣β̂ lasso

j (τ)
∣∣∣)= 0
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The Lasso regression

β̂ ols

β̂ lasso (τ)

β1

β2 RSS(β1,β2) = constant

lasso path

|β1|+ |β2| ≤ τ

|β1|+ |β2| ≤ η

Figure: Interpretation of the lasso regression

Source: Roncalli (2019).
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Lasso regression

Figure: Variable selection with the lasso regression

Source: Roncalli (2019).

Lasso ordering: x3 � x1 � x2 � x4 � x5
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Factor selection in the stock market

Figure: Lasso selection (North America, 2014 – 2017)

Source: Bennani et al. (2018).

Quality � ESG �
Momentum �
Value �
Low-volatility

The ESG-Value
correlation
puzzle!
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Factor selection in the stock market

Figure: Lasso selection (Eurozone, 2014 – 2017)

Source: Bennani et al. (2018).

ESG � Value �
Momentum �
Quality �
Low-volatility

The ESG-Quality
correlation
puzzle!
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Solving the lasso regression problem

We introduce the parametrization:

β = β
+−β

−

under the constraints β + ≥ 0n and β− ≥ 0n. We deduce that:

‖β‖1 =
m

∑
j=1

∣∣∣β +
j −β

−
j

∣∣∣=
m

∑
j=1

∣∣∣β +
j

∣∣∣+ m

∑
j=1

∣∣∣β−j ∣∣∣= 1>β
+ +1>β

−

Since we have:

β =
(
Im −Im

)( β +

β−

)
the augmented QP program is specified as follows:

θ̂ = arg min
1
2

θ
>Qθ −θ

>R

s.t. θ ≥ 02m

where θ = (β +,β−), X̃ =
(
X −X

)
, Q = X̃>X̃ and R = X̃>Y + λ12m.

If we denote A =
(
Im −Im

)
, we obtain β̂ lasso (λ ) = Aθ̂
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Solving the lasso regression problem

Augmented QP program of the lasso regression

If we consider the τ-problem, we obtain another augmented QP program:

θ̂ = arg min
1
2

θ
>Qθ −θ

>R

s.t.
{

Cθ ≥ D
θ ≥ 02m

where Q = X̃>X̃ , R = X̃>Y , C =−1>2m and D =−τ. Again, we have
β̂ (τ) = Aθ̂
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Portfolio allocation with turnover management

Long-only MVO portfolios with a turnover constraint

The optimization problem becomes:

x? = arg min
1
2
x>Σx− γx>µ

s.t.

 ∑
n
i=1 xi = 1

∑
n
i=1

∣∣xi −x0i
∣∣≤ τ+

0≤ xi ≤ 1

where τ+ is the maximum turnover with respect to Portfolio x0
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Portfolio allocation with turnover management

Scherer (2007) introduces the additional variables x−i and x+
i such that:

xi = x0i + x+
i −x−i

with x−i ≥ 0 and x+
i ≥ 0. x+

i indicates then a positive weight change with
respect to the initial weight x0i whereas x−i indicates a negative weight
change. The expression of the turnover becomes:

n

∑
i=1

∣∣xi −x0i
∣∣=

n

∑
i=1

∣∣x+
i −x−i

∣∣=
n

∑
i=1

x+
i +

n

∑
i=1

x−i

because one of the variables x+
i or x−i is necessarily equal to zero

Thierry Roncalli Portfolio Allocation: From QP to ML Optimization Algorithms 26 / 86



Quadratic programming
Large-scale optimization algorithms

Application to portfolio optimization
Conclusion

Mean-variance optimization
Primal versus dual problem
Augmented QP problem

Portfolio allocation with turnover management

The γ-problem of Markowitz becomes

x? = arg min
1
2
x>Σx− γx>µ

s.t.



∑
n
i=1 xi = 1

xi = x0i + x+
i −x−i

∑
n
i=1 x

+
i + ∑

n
i=1 x

−
i ≤ τ+

0≤ xi ≤ 1
0≤ x−i ≤ 1
0≤ x+

i ≤ 1

Thierry Roncalli Portfolio Allocation: From QP to ML Optimization Algorithms 27 / 86



Quadratic programming
Large-scale optimization algorithms

Application to portfolio optimization
Conclusion

Mean-variance optimization
Primal versus dual problem
Augmented QP problem

Portfolio allocation with turnover management

We obtain an augmented QP problem of dimension 3n:

X ? = arg min
1
2
X>QX −X>R

s.t.

 AX = B
CX ≥ D
03n ≤ X ≤ 13n

where:

X =
(
x1, . . . ,xn,x

−
1 , . . . ,x

−
n ,x

+
1 , . . . ,x

+
n

)
Q =

 Σ 0n×n 0n×n
0n×n 0n×n 0n×n
0n×n 0n×n 0n×n

 , R =

 µ

0n
0n

 , A =

(
1>n 0>n 0>n
In In −In

)

B =

(
1
x0

)
, C =

(
0>n −1>n −1>n

)
and D =−τ

+
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Extension to transaction costs

Let c−i and c+
i be the bid and ask transactions costs. The γ-problem of

Markowitz becomes:

x? = arg min
1
2
x>Σx− γ

(
∑xiµi −∑x−i c

−
i −∑x+

i c+
i

)

u.c.


∑xi + ∑x−i c

−
i + ∑x+

i c+
i = 1

xi = x0i + x+
i −x−i

0≤ xi ≤ 1
0≤ x−i ≤ 1
0≤ x+

i ≤ 1
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Extension to transaction costs

We obtain an augmented QP problem of dimension 3n:

X ? = arg min
1
2
X>QX −X>R

s.t.

 AX = B
CX ≥ D
03n ≤ X ≤ 13n

where:

X =
(
x1, . . . ,xn,x

−
1 , . . . ,x

−
n ,x

+
1 , . . . ,x

+
n

)
Q =

 Σ 0n×n 0n×n
0n×n 0n×n 0n×n
0n×n 0n×n 0n×n

 , R =

 µ

−c−
−c+

 ,

A =

(
1>n (c−)

>
(c+)>

In In −In

)
and B =

(
1
x0

)
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Numerical optimization

The fall and the rise of the steepest-descent method

In the 1980s:
Conjugate gradient methods (Fletcher–Reeves, Polak–Ribiere, etc.)
Quasi-Newton methods (NR, BFGS, DFP, etc.)

In the 1990s:
Neural networks
Learning rules: Descent, Momentum/Nesterov and Adaptive learning
methods

In the 2000s:
Gradient descent: Batch gradient descent (BGD), Stochatic gradient
descent (SGD), Mini-batch gradient descent (MGD)
Coordinate descent: Cyclical coordinate descent (CCD), Random
coordinate descent (RCD)
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Numerical optimization

Machine learning problems

Non-smooth objective function
Non-unique solution
Large-scale dimension

Optimization in machine learning requires
to reinvent numerical optimization
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Coordinate descent methods

Descent method
The descent algorithm is defined by the following rule:

x (k+1) = x (k) + ∆x (k) = x (k)−ηD(k)

At the k th Iteration, the current solution x (k) is updated by going in the
opposite direction to D(k) (generally, we set D(k) = ∂x f

(
x (k)

)
)

Coordinate descent method
Coordinate descent is a modification of the descent algorithm by
minimizing the function along one coordinate at each step:

x
(k+1)
i = x

(k)
i + ∆x

(k)
i = x

(k)
i −ηD

(k)
i

⇒ The coordinate descent algorithm becomes a scalar problem
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Cyclical coordinate descent (CCD)

Choice of the variable i

1 Random coordinate descent (RCD)
We assign a random number between 1 and n to the index i
(Nesterov, 2012)

2 Cyclical coordinate descent (CCD)
We cyclically iterate through the coordinates (Tseng, 2001):

x
(k+1)
i = arg min

x
f
(
x

(k+1)
1 , . . . ,x

(k+1)
i−1 ,x ,x

(k)
i+1, . . . ,x

(k)
n

)
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An example

If we consider the following function:

f (x1,x2,x3) = (x1−1)2 + x22 −x2 + (x3−2)4 ex1−x2+3

the CCD algorithm is defined by the following iterations:

x
(k+1)
1 = x

(k)
1 −η

(
2
(
x

(k)
1 −1

)
+
(
x

(k)
3 −2

)4
ex

(k)
1 −x

(k)
2 +3

)
x

(k+1)
2 = x

(k)
2 −η

(
2x (k)

2 −1−
(
x

(k)
3 −2

)4
ex

(k+1)
1 −x(k)

2 +3
)

x
(k+1)
3 = x

(k)
3 −η

(
4
(
x

(k)
3 −2

)3
ex

(k+1)
1 −x(k+1)

2 +3
)
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An example (Cont’d)

Table: CCD algorithm (η = 0.25)

k x
(k)
1 x

(k)
2 x

(k)
3 D

(k)
1 D

(k)
2 D

(k)
3

0 1.0000 1.0000 1.0000
1 -4.0214 0.7831 1.1646 20.0855 0.8675 -0.6582
2 -1.5307 0.8834 2.2121 -9.9626 -0.4013 -4.1902
3 -0.2663 0.6949 2.1388 -5.0578 0.7540 0.2932
4 0.3661 0.5988 2.0962 -2.5297 0.3845 0.1703
5 0.6827 0.5499 2.0758 -1.2663 0.1957 0.0818
6 0.8412 0.5252 2.0638 -0.6338 0.0989 0.0480
7 0.9205 0.5127 2.0560 -0.3172 0.0498 0.0314
8 0.9602 0.5064 2.0504 -0.1588 0.0251 0.0222
9 0.9800 0.5033 2.0463 -0.0795 0.0126 0.0166
∞ 1.0000 0.5000 2.0000 0.0000 0.0000 0.0000
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Linear regression

We consider the linear regression:

Y = Xβ + ε

where Y is a n×1 vector, X is a n×m matrix and β is a m×1 vector.
The optimization problem is:

β̂ = arg min f (β ) =
1
2

(Y −Xβ )> (Y −Xβ )

Since we have ∂β f (β ) =−X> (Y −Xβ )), we deduce that:

∂ f (β )

∂ βj
= x>j (Xβ −Y )

= x>j
(
xjβj +X(−j)β(−j)−Y

)
= x>j xjβj + x>j X(−j)β(−j)−x>j Y

where xj is the n×1 vector corresponding to the j th variable and X(−j) is
the n× (m−1) matrix (without the j th variable)
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Linear regression

At the optimum, we have ∂βj
f (β ) = 0 or:

βj =
x>j Y −x>j X(−j)β(−j)

x>j xj
=

x>j
(
Y −X(−j)β(−j)

)
x>j xj

CCD algorithm for the linear regression

We have:

β
(k+1)
j =

x>j

(
Y −

j−1

∑
j ′=1

xj ′β
(k+1)
j ′ −

m

∑
j ′=j+1

xj ′β
(k)
j ′

)
x>j xj

⇒ Introducing pointwise constraints is straightforward
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Lasso regression

The objective function becomes:

f (β ) =
1
2

(Y −Xβ )> (Y −Xβ ) + λ ‖β‖1

Since the norm is separable – ‖β‖1 = ∑
m
j=1

∣∣βj

∣∣, the first-order condition is:

x>j (Xβ −Y ) + λ∂
∣∣βj

∣∣= 0

CCD algorithm for the lasso regression

We have:

β
(k+1)
j =

1
x>j xj

Sλ

(
x>j

(
Y −

j−1

∑
j ′=1

xj ′β
(k+1)
j ′ −

m

∑
j ′=j+1

xj ′β
(k)
j ′

))

where Sλ (v) is the soft-thresholding operator:

Sλ (v) = sign(v) · (|v |−λ )+
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Lasso regression

Table: Matlab code

for k = 1:nIters
for j = 1:m

x_j = X(:,j);
X_j = X;
X_j(:,j) = zeros(n,1);
if lambda > 0

v = x_j’*(Y - X_j*beta);
beta(j) = max(abs(v) - lambda,0) * sign(v) / (x_j’*x_j);

else
beta(j) = x_j’*(Y - X_j*beta) / (x_j’*x_j);

end
end

end
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Lasso regression

Figure: Convergence of the CCD algorithm (lasso regression)
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-0.5
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1 The dimension problem is (2m,2m) for QP and (1,0) for CCD!
2 CCD is faster for lasso regression than for linear regression (because

of the soft-thresholding operator)!
Suppose n = 50000 and m = 1000000 (DNA problem)
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Alternative direction method of multipliers

Definition

The alternating direction method of multipliers (ADMM) is an algorithm
introduced by Gabay and Mercier (1976) to solve problems which can be
expressed as:

{x?,z?} = arg min f (x) +g (z)

s.t. Ax +Bz = c

The algorithm is:

x (k) = arg min

{
f (x) +

ϕ

2

∥∥∥Ax +Bz (k−1)− c +u(k−1)
∥∥∥2
2

}
z (k) = arg min

{
g (z) +

ϕ

2

∥∥∥Ax (k) +Bz− c +u(k−1)
∥∥∥2
2

}
u(k) = u(k−1) +

(
Ax (k) +Bz (k)− c

)
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An example

We consider the following optimization problem:

x? = arg min f (x) s.t. x− ≤ x ≤ x+

It can be written as:

{x?,z?}= arg min f (x) +g (z) s.t. x− z = 0n

where g (z) = 1Ω (x) and Ω = {x : x− ≤ x ≤ x+}. By setting ϕ = 1
2 , the

z-step becomes:

z (k) = arg min

{
g (z) +

1
2

∥∥∥x (k)− z +u(k−1)
∥∥∥2
2

}
= proxg

(
x (k) +u(k−1)

)
where the proximal operator is the box projection:

proxg (v) = x−�1
{
v < x−

}
+ v �1

{
x− ≤ v ≤ x+

}
+ x+�1

{
v > x+

}
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An example (Cont’d)

The ADMM algorithm is then:

x (k) = arg min

{
f (x) +

1
2

∥∥∥x− z (k−1) +u(k−1)
∥∥∥2
2

}
z (k) = proxg

(
x (k) +u(k−1)

)
u(k) = u(k−1) +

(
x (k)− z (k)

)

⇒ Solving the constrained optimization problem consists in solving the
unconstrained optimization problem, applying the box projection and
iterating these steps until convergence
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The Cholesky trick

We consider the following problem:

x? = arg maxU (x)

s.t.
{

x ∈ Ω√
x>Σx ≤ σ̄

We have:

{x?,z?} = arg min f (x) +g (z)

s.t. −Lx + z = 0n

where f (x) =−U (x) +1Ω (x), g (z) = 1E (z), E =
{
z ∈ Rn : ‖z‖22 ≤ σ̄2

}
and L is the upper Cholesky decomposition matrix of Σ:

‖z‖22 = z>z = x>L>Lx = x>Σx = σ
2 (x)

⇒ The cholesky trick has been used by Gonzalvez et al. (2019) for solving
trend-following strategies using the ADMM algorithm in the context of
Bayesian learning
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Proximal operator

Definition

The proximal operator proxf (v) of the function f (x) is defined by:

proxf (v) = x? = arg minx

{
f (x) +

1
2
‖x−v‖22

}
If f (x) =− lnx , we have:

f (x) +
1
2
‖x−v‖22 =− lnx +

1
2

(x−v)2 =− lnx +
1
2
x2−xv +

1
2
v2

The first-order condition is −x−1 + x−v = 0. It follows that:

proxf (v) =
v +
√
v2 +4
2

If f (x) =−λ ∑
n
i=1 lnxi , we have (proxf (v))i =

vi +
√

v2i +4λ

2
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An example

We consider the following optimization problem:

x? = arg min f (x)−λ

n

∑
i=1

lnxi

We set z = x and g (z) =−λ ∑
n
i=1 lnxi . The ADMM algorithm becomes

x (k) = arg min

{
f (x) +

ϕ

2

∥∥∥x− z (k−1) +u(k−1)
∥∥∥2
2

}
v (k) = x (k) +u(k−1)

z (k) =
v (k) +

√
v (k)�v (k) +4λ

2

u(k) = u(k−1) +
(
x (k)− z (k)

)
If f (x) is a quadratic function, the x-step is straightforward
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Proximal operators and projections

If we assume that f (x) = 1Ω (x) where Ω is a convex set, we have:

proxf (v) = arg minx

{
1Ω (x) +

1
2
‖x−v‖22

}
= PΩ (v)

where PΩ (v) is the standard projection. Parikh and Boyd (2014) show
that:

Ω PΩ (v) Ω PΩ (v)

Ax = B v −A† (Av −B) c>x 6 d v −
(
c>v −d

)
+

‖c‖22
c

a>x = b v −
(
a>v −b

)
‖a‖22

a x− 6 x 6 x+ T (v ;x−,x+)

where T (v ;x−,x+) is the truncation operator
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Norm constraints

We have proxλ max (v) = min(v ,s?) where s? is given by:

s? =

{
s ∈ R :

n

∑
i=1

(vi − s)+ = λ

}

If f (x) is a Lp-norm function and Bp (c ,λ ) is the Lp-ball with center c
and radius λ , we have:

p proxλ f (v) PBp(0n,λ ) (v)

p = 1 Sλ (v) = (|v |−λ1)+� sign(v) v −proxλ max (|v |)� sign(v)

p = 2
(
1− 1

max(λ ,‖v‖2)

)
v v −proxλ‖·‖2 (|v |)

p = ∞ proxλ max (|v |)� sign(v) T (v ;−λ ,λ )

In the case where the center c is not equal to 0n, we have:

PBp(c,λ ) (v) = PBp(0n,λ ) (v − c) + c
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ADMM and constraints

We consider the following optimization problem:

x? = arg min f (x)

s.t. x ∈ Ω

where Ω is a complex set of constraints:

Ω = Ω1∩Ω2∩·· ·Ωm

We set z = x and g (z) = 1Ω (z). The ADMM algorithm becomes

x (k) = arg min

{
f (x) +

ϕ

2

∥∥∥x− z (k−1) +u(k−1)
∥∥∥2
2

}
v (k) = x (k) +u(k−1)

z (k) = PΩ

(
v (k)

)
u(k) = u(k−1) +

(
x (k)− z (k)

)
The question is how to compute PΩ (v)
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Dykstra’s algorithm

We consider the proximal problem x? = proxf (v) where f (x) = 1Ω (x) and:

Ω = Ω1∩Ω2∩·· ·∩Ωm

The Dykstra’s algorithm is:
1 The x-update is:

x (k) = PΩmod(k,m)

(
x (k−1) + z (k−m)

)
2 The z-update is:

z (k) = x (k−1) + z (k−m)−x (k)

where x (0) = v , z (k) = 0n for k < 0 and mod(k,m) denotes the modulo
operator taking values in {1, . . . ,m}
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Dykstra’s algorithm

Successive projections of PΩk

(
x (k−1)

)
does not work!

Successive projections of PΩk

(
x (k−1) + z (k−m)

)
does work!
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Mean-variance optimization with mixed penalties

The Markowitz portfolio optimization problem becomes:

x? = arg min
1
2
x>Σx− γx>µ +

1
2

ρ2 ‖Γ2 (x−x0)‖22 + ρp ‖Γp (x−x0)‖pp
s.t. x ∈ Ω

where p > 0.

We have the following properties:
The penalties Lp for p > 1 are used for regularization
The penalties Lp for p 6 1 are used for sparsity
The case p = 1 corresponds to the lasso regression
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Mixed penalties

Figure: Lasso regularization with a target portfolio (relative sparsity)
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Mixed penalties

Figure: Lasso regularization without a target portfolio (absolute sparsity)
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Solving the mixed penalty problem

If Ω is a set of linear constraints (Ax = B, Cx ≥ D, x− ≤ x ≤ x+), the
mixed penalty problem can be written as:

{x?,z?} = arg min f (x) +g (z)

s.t. x− z = 0

where:

f (x) =
1
2
x>Σx− γx>µ +

1
2

ρ2 ‖Γ2 (x−x0)‖22 +1Ω (x)

and:
g (z) = ρp ‖Γp (z−x0)‖pp

The ADMM algorithm is implemented as follows:
1 the x-step is a QP problem
2 the z-step is the Lp projection
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Solving the mixed penalty problem

If Ω is more complex, the mixed penalty problem can be written as:

{x?,z?} = arg min f (x) +g (z)

s.t. x− z = 0n

where:

f (x) =
1
2
x>Σx−γx>µ +

1
2

ρ2 ‖Γ2 (x−x0)‖22 ∝
1
2
x> (Σ + Λ)x−x> (γµ + Λx0)

Λ = ρ2Γ>2 Γ2 and:

g (z) = 1Ω (z) + ρp ‖Γp (z−x0)‖pp
The ADMM algorithm is implemented as follows:

1 the x-step is:

x (k) =
(

Σ + Λ +
ϕ

2
In
)−1(

γµ + Λx0 + ϕ

(
z (k−1)−u(k−1)

))
2 the z-step is given by the Dykstra’s algorithm
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Risk budgeting portfolio

We consider the following risk measure:

R (x) =−x> (µ− r) + c ·
√
x>Σx

The risk contribution of Asset i is given by:

RC i (x) = xi ·
(
−(µi − r) + c

(Σx)i√
x>Σx

)
Roncalli (2013) defines the risk budgeting (RB) portfolio as: RC i (x) = biR (x)

bi > 0, xi ≥ 0
∑
n
i=1 bi = 1, ∑

n
i=1 xi = 1

where bi is the risk budget of Asset i
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Wrong formulation of the optimization problem

Since we have:

1
bi

RC i (x) =
1
bj

RC j (x) for all i , j

the RB portfolio is the solution of the optimization problem:

xRB = arg min
n

∑
i=1

n

∑
j=1

(
1
bi

RC i (x)− 1
bj

RC j (x)

)2

s.t.
{

1>x = 1
x ≥ 0
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Right formulation of the optimization problem

Roncalli (2013) shows that:

xRB =
x? (λ )

1>x? (λ )

where x? (λ ) is the solution of the Lagrange problem

x? (λ ) = arg minR (x)−λ

n

∑
i=1

bi lnxi

s.t. x ≥ 0

where λ is an arbitrary positive scalar
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The CCD algorithm

Griveau-Billion et al. (2013) propose applying the CCD algorithm to find
the solution of the objective function:

f (x) =−x>π + c
√
x>Σx−λ

n

∑
i=1

bi lnxi

where π = µ− r . For the cycle k +1 and the i th coordinate of the CCD
algorithm, we have:

xi =
−c
(
σi ∑j 6=i xjρi ,jσj

)
+πiσ (x)+

√(
c
(
σi ∑j 6=i xjρi ,jσj

)
−πiσ (x)

)2
+4λcbiσ

2
i σ (x)

2cσ2
i

In this equation, we have the following CCD correspondence:
xi → x

(k+1)
i

xj → x
(k+1)
j if j < i

xj → x
(k)
j if j > i

x →
(
x

(k+1)
1 , . . . ,x

(k+1)
i−1 ,x

(k)
i ,x

(k)
i+1, . . . ,x

(k)
n

)
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Theory of constrained risk budgeting

We have  RC i (x) = biR (x)
x ∈S
x ∈ Ω

where S is the standard simplex and x ∈ Ω is the set of additional
constraints
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The least squares solution

Bai et al. (2016) propose to solve the following optimization program:

{x? (S ,Ω) ,θ ?} = arg min
n

∑
i=1

(
1
bi

RC i (x)−θ

)2

s.t. x ∈S ∩Ω
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The Richard-Roncalli solution

Richard and Roncalli (2019) argue that the right optimization problem is:

x? (S ,Ω) = arg minR (x)

s.t.
{

∑
n
i=1 bi lnxi ≥ κ?

x ∈S ∩Ω

where κ? is a constant to be determined. They consider the Lagrange
formulation:

x? (Ω,λ ) = arg minR (x)−λ

n

∑
i=1

bi lnxi

s.t. x ∈ Ω

The constrained risk budgeting portfolio is defined by:

x? (S ,Ω) =

{
x? (Ω,λ ?) :

n

∑
i=1

x?i (Ω,λ ?) = 1

}
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Numerical solution

We note:

L (x ;λ ) = R (x)−λ

n

∑
i=1

bi lnxi +1Ω (x)

The risk budgeting portfolio is computed by:
1 Solving x? (Ω,λ ) = arg minL (x ;λ ) for a given value of λ (x-step)
2 Finding the optimal value λ ? such that ∑

n
i=1 x

?
i (Ω,λ ?) = 1 (λ -step)
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Bisection algorithm for the λ -step

We consider two scalars aλ and bλ such that aλ < bλ and λ ? ∈ [aλ ,bλ ]
We note ελ the convergence criterion of the bisection algorithm
repeat

We calculate λ =
aλ +bλ

2
We compute x? (λ ) the solution of the minimization problem:

x? (λ ) = arg minL (x ;λ )

if ∑
n
i=1 x

?
i (λ ) < 1 then

aλ ← λ

else
bλ ← λ

end if
until

∣∣∣∣ n

∑
i=1

x?i (λ )−1
∣∣∣∣≤ ελ

return λ ?← λ and x? (S ,Ω)← x? (λ ?)
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CCD algorithm for the x-step

Thanks to Tseng (2001), CCD algorithm can solve:

arg min f (x) = f0 (x) +
n

∑
i=1

fi (xi )

where f0 is strictly convex and differentiable and the functions fi are
non-differentiable. We have:

L (x ;λ ) =−x>π + c
√
x>Σx−λ

n

∑
i=1

bi lnxi︸ ︷︷ ︸
L0(x ;λ )

+1Ω (x)

1 For separable constraints Ω =
⋂n

i=1 Ωi , the CCD algorithm consists in
adding the projection xi = PΩi

(xi ) at each iteration
2 For non-separable constraints, CCD cannot be used
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ADMM algorithm for the x-step

We exploit the separability of L (x ;λ ):

{x? (λ ) ,z? (λ )} = arg min f (x) +g (z)

s.t. x− z = 0

where:
L (x ;λ ) = R (x)−λ ∑

n

i=1 bi lnxi︸ ︷︷ ︸
f (x)

+ 1Ω (x)︸ ︷︷ ︸
g(x)

(#1)

or:
L (x ;λ ) = R (x) +1Ω (x)︸ ︷︷ ︸

f (x)

+ −λ ∑
n

i=1 bi lnxi︸ ︷︷ ︸
g(x)

(#2)

Formulation (#1) (#2)
arg min f (k) (x) NR/BFGS/CCD QP/SQP
arg ming (k) (z) Projection/Dykstra Proximal (logaithmic barrier)
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Comprehensive algorithm

Table: Computational time using our Matlab implementation (relative value)

Algorithm x-update (1) (2) (3)
ADMM Newton 2 1 1
ADMM BFGS 380 280 25
ADMM QP 220 120 110
ADMM CCD 10 9 8
CCD 1 1

(1) ϕ = 1 + classical bisection
(2) ϕ = 1 + accelerated bisection

(3) Adaptive method ϕ(k) + accelerated bisection

Python implementation: CCD and ADMM-QP are the best algorithms!
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How does the ERC property hold?

We consider a universe of five assets. Their volatilities are equal to 15%,
20%, 25%, 30% and 10%. The correlation matrix of asset returns is given
by the following matrix:

ρ =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00
0.50 0.40 0.05 0.10 1.00


We assume that the current portfolio is x0 = (25%,25%,10%,15%,30%)

We would like to obtain an ERC portfolio with the following constraints:

x0−5%≤ x ≤ x0 +5%
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How does the ERC property hold?

Table: Volatility breakdown (in %) of current and ERC portfolios

Current portfolio ERC portfolio
Asset xi MR i RC i RC ?

i xi MR i RC i RC ?
i

1 25.00 10.00 2.50 20.21 22.40 10.61 2.38 20.00
2 25.00 15.40 3.85 31.10 16.51 14.39 2.38 20.00
3 10.00 20.30 2.03 16.41 12.03 19.74 2.38 20.00
4 10.00 22.24 2.22 17.98 10.51 22.60 2.38 20.00
5 30.00 5.90 1.77 14.30 38.54 6.16 2.38 20.00

σ (x) 12.37 11.88
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How does the ERC property hold?

Table: Volatility breakdown (in %) of naive and least squares solutions

Naive solution Least squares solution
Asset xi MR i RC i RC ?

i xi MR i RC i RC ?
i

1 22.84 10.25 2.34 19.30 23.13 10.32 2.39 19.70
2 20.00 14.98 3.00 24.70 20.00 14.86 2.97 24.53
3 12.34 20.18 2.49 20.53 11.39 20.07 2.29 18.87
4 9.83 22.46 2.21 18.20 10.48 22.55 2.36 19.51
5 35.00 5.99 2.10 17.28 35.00 6.02 2.11 17.39

σ (x) 12.13 12.11
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How does the ERC property hold?

Table: Volatility breakdown (in %) of the constrained ERC portfolio

Asset xi MR i RC i RC ?
i λ

−
i λ

+
i

1 22.89 10.28 2.35 19.39 0.00 0.00
2 20.00 14.90 2.98 24.55 3.13 0.00
3 11.69 20.13 2.35 19.39 0.00 0.00
4 10.42 22.57 2.35 19.39 0.00 0.00
5 35.00 6.00 2.10 17.29 0.00 0.73

σ (x) 12.14 λ = 11.76
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Smart beta portfolios without small cap bias

We consider a CW index composed of seven stocks. The weights are equal
to 34%, 25%, 20%, 15%, 3%, 2% and 1%. We assume that the volatilities
of these stocks are equal to 15%, 16%, 17%, 18%, 19%, 20% and 21%,
whereas the correlation matrix of stock returns is given by:

ρ =



1.00
0.75 1.00
0.73 0.75 1.00
0.70 0.70 0.75 1.00
0.65 0.68 0.69 0.75 1.00
0.62 0.65 0.63 0.67 0.70 1.00
0.60 0.60 0.65 0.68 0.75 0.80 1.00
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Smart beta portfolios without small cap bias

LC-ERC (large cap ERC): Apply the ERC on the large cap universe
LS-ERC (least squares ERC): Solve the RB portfolio by adding small
cap constraints on the LS problem
C-ERC (Constrained ERC): Solve the RB portfolio by imposing the
weight constraints:{

0≤ xi if i /∈ ΩS C

xcw,i ≤ xi ≤ xcw,i if i ∈ ΩS C
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Smart beta portfolios without small cap bias

Table: Volatility breakdown (in %) of constrained ERC portfolios

Asset CW ERC LC-ERC LS-ERC C-ERC
xi RC ?

i xi RC ?
i xi RC ?

i xi RC ?
i xi RC ?

i

1 34.00 32.08 17.22 14.29 25.81 23.39 26.62 24.23 25.87 23.46
2 25.00 24.82 15.90 14.29 24.06 23.44 24.20 23.63 24.07 23.46
3 20.00 20.92 14.78 14.29 22.44 23.44 22.09 23.08 22.46 23.46
4 15.00 16.01 13.83 14.29 21.69 23.57 21.09 22.89 21.59 23.46
5 3.00 3.10 13.17 14.29 3.00 3.10 3.00 3.10 3.00 3.10
6 2.00 2.03 12.86 14.29 2.00 2.02 2.00 2.02 2.00 2.02
7 1.00 1.05 12.23 14.29 1.00 1.05 1.00 1.05 1.00 1.05

σ (x) 14.50 15.23 14.68 14.66 14.68
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Managing the portfolio turnover

The turnover of Portfolio x with respect to Portfolio x0 is equal to:

τ (x | x0) =
n

∑
i=1

∣∣xi −x0,i
∣∣= ‖x−x0‖1

Therefore, the corresponding Lagrange function is:

L (x ;λ ) = R (x)−λ

n

∑
i=1

bi lnxi +1Ω (x)

where Ω = {x ∈ R : τ (x | x0)≤ τ?} and τ? is the turnover limit. If we use
the previous algorithms, the only difficulty is calculating the proximal
operator of g (x) = 1Ω (x):

proxg (x) = proxf (x−x0) + x0

where f (x) = 1Ω′ (x) and Ω′ = {x ∈ R : ‖x‖1 ≤ τ?}. We deduce that:

proxg (x) = x−proxτ? max (|x−x0|)� sign(x−x0)

where proxλ max (v) is the proximal operator of the pointwise maximum
function (see Slide 49)
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Managing the portfolio turnover

We consider a universe of eight asset classes: (1) US 10Y Bonds, (2) Euro
10Y Bonds, (3) Investment Grade Bonds, (4) High Yield Bonds, (5) US
Equities, (6) Euro Equities, (7) Japan Equities and (8) EM Equities

Table: Volatility and correlation matrix of asset returns (in %)

σi
1 2 3 4 5 6 7 8
5.0 5.0 7.0 10.0 15.0 15.0 15.0 18.0

ρi ,j

1 100
2 80 100
3 60 40 100
4 −20 −20 50 100
5 −10 −20 30 60 100
6 −20 −10 20 60 90 100
7 −20 −20 20 50 70 60 100
8 −20 −20 30 60 70 70 70 100

Thierry Roncalli Portfolio Allocation: From QP to ML Optimization Algorithms 78 / 86



Quadratic programming
Large-scale optimization algorithms

Application to portfolio optimization
Conclusion

Mean-variance optimization
Risk budgeting optimization
Applications
Unsolved problems

Managing the portfolio turnover

We assume that the current allocation is a 50/50 asset mix policy, where
the weight of each asset class is 12.5%.

Table: Constrained RB portfolios (in %) with turnover control

Asset τ?

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00
1 12.50 14.86 17.28 19.68 22.01 24.28 26.58 26.83
2 12.50 15.14 17.72 20.32 22.99 25.72 28.42 28.68
3 12.50 12.50 12.50 12.50 12.50 12.50 11.65 11.41
4 12.50 12.50 12.50 12.50 12.50 11.50 9.90 9.80
5 12.50 11.20 9.70 8.49 7.27 6.28 5.66 5.61
6 12.50 12.02 10.36 9.02 7.69 6.63 5.95 5.90
7 12.50 12.50 11.72 10.16 8.66 7.47 6.71 6.66
8 12.50 9.28 8.22 7.33 6.39 5.62 5.14 5.11

τ (x? | x0) 0.00 10.00 20.00 30.00 40.00 50.00 60.00 61.02

The last column corresponds to the risk parity portfolio (75% of bonds)
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Unsolved problems

Cardinality constraints:

Strategy Constraints
Sampling card(xi 6= 0) = m
Short card(xi < 0) = m
Long-/short card(xi < 0) = card(xi > 0)
Stock picking card(xi > ε) = m

Scaling puzzle and the homogeneity property of the risk measure
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Conclusion

QP algorithm = universal algorithm in MVO-type asset allocation
problems
Machine learning ⇒ new optimization algorithms

Non-smooth objective function
Large-scale dimension

Ridge/Lasso regularization ⇒ basic of modern portfolio optimization
The 4 pillars are:

1 CCD
2 ADMM
3 Proximal operators
4 Dykstra’s algorithm

Applications: Robo-advisors, Smart beta portfolios, Dynamic risk
parity strategies, Turnover management, etc.
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This material, which is not a contract, is based on sources that Amundi considers to be reliable. Data, opinions and estimates may be changed without notice. 

Amundi accepts no liability whatsoever, whether direct or indirect, that may arise from the use of information contained in this material. Amundi can in no way be held 

responsible for any decision or investment made on the basis of information contained in this material. 

The information contained in this document is disclosed to you on a confidential basis and shall not be copied, reproduced, modified, translated or distributed without the prior 

written approval of Amundi, to any third person or entity in any country or jurisdiction which would subject Amundi or any of “the Funds”, to any registration requirements within 

these jurisdictions or where it might be considered as unlawful. Accordingly, this material is for distribution solely in jurisdictions where permitted and to persons who may 

receive it without breaching applicable legal or regulatory requirements. 

Not all funds, or sub-funds will be necessarily be registered or authorized in all jurisdictions or be available to all investors. 

Investment involves risk. Past performances and simulations based on these, do not guarantee future results, nor are they reliable indicators of futures performances. 

The value of an investment in the Funds, in any security or financial product may fluctuate according to market conditions and cause the value of an investment to go up or 

down. As a result, you may lose, as the case may be, the amount originally invested. 

All investors should seek the advice of their legal and/or tax counsel or their financial advisor prior to any investment decision in order to determine its suitability. 

It is your responsibility to read the legal documents in force in particular the current French prospectus for each fund, as approved by the AMF, and each investment should be 

made on the basis of such prospectus, a copy of which can be obtained upon request free of charge at the registered office of the management company. 

This material is solely for the attention of institutional, professional, qualified or sophisticated investors and distributors. It is not to be distributed to the general public, private 

customers or retail investors in any jurisdiction whatsoever nor to “US Persons”. 

Moreover, any such investor should be, in the European Union, a “Professional” investor as defined in Directive 2004/39/EC dated 21 May 2004 on markets in financial 

instruments (“MIFID”) or as the case may be in each local regulations and, as far as the offering in Switzerland is concerned, a “Qualified Investor” within the meaning of the 

provisions of the Swiss Collective Investment Schemes Ordinance of 23 June 2006 (CISA), the Swiss Collective Investment Schemes Ordinance of 22 November 2006 

(CISO) and the FINMA’s Circular 08/8 on Public Offering within the meaning of the legislation on Collective Investment Schemes of 20 November 2008. In no event may this 

material be distributed in the European Union to non “Professional” investors as defined in the MIFID or in each local regulation, or in Switzerland to investors who do not 

comply with the definition of “qualified investors” as defined in the applicable legislation and regulation. 

Amundi, French joint stock company (“Société Anonyme”) with a registered capital of € 1 086 262 605 and approved by the French Securities Regulator (Autorité des Marchés 

Financiers-AMF)  under number GP 04000036 as a portfolio management company,  

90 boulevard Pasteur, 75015 Paris-France  

437 574 452 RCS Paris. 

www.amundi.com 
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