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Abstract
Hedge fund replication based on factor models is encountering 

growing interest. In this paper, we investigate the implications of 

substituting standard rolling windows regressions, which appear 

ad-hoc, with more efficient methodologies like the Kalman filter. 

We show that the copycats constructed this way offer risk-return 

profiles which share several characteristics with the ones posted by 

hedge funds indices: Sharpe ratios above buy-and-hold strategies 

on standard assets, moderate correlation with standard assets, and 

limited drawdowns during equity downward trends. An interesting 

result is that the shortfall risk seems less important than with hedge 

fund indices and regressions-based trackers. We finally propose 

new breakdowns of hedge fund performance into alpha, traditional 

beta, and alternative beta.

Alternatives

1	 We would like to thank Anne-Sophie Duret for research assistance.



Hedge fund replication has become highly fashionable in recent 

years. Under this generic term, three main approaches can be 

identified:

n	 Mechanical duplication of strategies — a growing number of 

investment banks are proposing products which aim to repro-

duce in a systematic and quantitative manner a strategy fol-

lowed by hedge funds. For instance, several investable indices 

have been proposed which mark-to-market systematic short of 

put options or variance swaps. Thanks to the positive premia 

between implied and realized volatilities, this kind of strategy 

seems able to generate superior Sharpe ratios while exposed 

to the risk of huge losses when the underlying asset plunges 

[Lo (2005), Goeztmann et al. (2007)]. Other candidates include 

trend-following strategies, such as CTA/managed futures, which 

can be mimicked through lookback straddles [Fung and Hsieh 

(1997)]; merger arbitrage strategies, which can be replicated 

by passive investments in all announced mergers [Mitchell 

and Pulvino (2001)]; fixed income funds that Fung and Hsieh 

(2002) have shown to be reproducible through credit exposure 

and constant-maturity products; long-short equity which can 

be mimicked through beta-one plus small versus large caps 

exposures; convertible arbitrage [Agarwal et al. (2006)]; or, for 

Global Macro, systematic FX carry strategies. All in all, Fung 

and Hsieh (2007) estimate that 75% of net assets of the hedge 

fund universe are covered by these types of systematic strate-

gies.

n	 Replication of distribution — a very different approach has been 

advocated by Kat and Palaro (2007). They postulate that inves-

tors invest in hedge funds because of their expected returns, 

volatility, and correlation, not for their month-by-month returns. 

While this argument might be generalized to other assets, it is 

probably all the more meaningful as diversification is a major 

motivation for investing in hedge funds. In practice, the copycat 

is based on passive futures trading strategies2. The investor 

first determines the existing portfolio (for instance, an equally-

weighted mix of U.S. Treasuries and S&P 500), the futures he/

she wants to trade, and then the statistical properties in terms 

of correlation with the existing portfolio, shortfall probability, 

skewness sign, etc. The investor then receives the line-up of the 

strategy, that is the daily trading volume of each futures con-

tract he/she has to trade to replicate the fictive option so that 

in the end the fund has the desired properties. However, there is 

no indication on how long it will take for this result to materialize 

and, above all, this is based on the strong implicit assumptions 

that correlation among underlying futures is constant through 

time.

n	 Factor-based model — This approach relies on linear regressions 

of hedge fund returns on a list of market factors, being represen-

tative of long-only or spread exposures of hedge funds (equity, 

credit, and bond indices; value/growth spread, small/big caps 

spread, etc.). A large empirical literature has studied this type 

of models [Fung and Hsieh (1997, 2004), Hasanhodzic and Lo 

(2007), Jaeger and Wagner (2005), Agarwal and Naik (2004)]. 

Results appear to be mixed and quite different depending on 

strategies. While directional strategies (equity hedge, emerging 

markets, global macro) present strong exposures, pure market-

neutral/arbitrage ones naturally experience limited exposures. 

Despite these mixed results, the hedge fund industry seems to 

be largely exposed as a whole, mainly because of the dominant 

market share of long/short strategies. For example, based on 

monthly returns, the correlation of the HFR Index with the S&P 

500 index is more than 70% over the period 1990-2006. This 

evidence has led to the expression ‘alternative beta,’ which 

denotes the part of the hedge fund returns that can be attributed 

to directional investments in standard assets. One huge differ-

ence between alternative beta and traditional beta is that for 

hedge funds exposure is not passive but should integrate non-

linear effects. For instance, as they follow dynamic strategies, 

hedge funds regularly change their exposure, which gives rise 

to option-like payoffs3. To deal with these features, measures 

of option payoffs, such as long systematic position in straddles, 

have been incorporated.

These approaches differ in various dimensions. The first two seem 

more ambitious in that they hope to generate synthetic clones 

whose performance will be similar to hedge funds (gross of fees). 

The last approach simply promises to get that fraction of hedge 

fund returns that can be linked to the alternative beta, which in this 

paper denotes their time-varying exposures to the standard assets 

(exposures being either long or short). From this perspective, part 

of the hedge fund alpha is attributed to this dynamic switching 

between assets. But all the alpha cannot be reproduced as alpha 

can stem from investing in illiquid securities or ultra-high frequency 

trading and thus not reproducible through low frequency trading 

in liquid futures. Later in this article, we try to disentangle hedge 

fund returns into alpha, alternative beta, and traditional beta in a 

more precise way. While this approach appears less ambitious, it 

has clear advantages, which includes simplicity, transparency, and 

cost-effectiveness. On the contrary, as they aim to replicate compli-

cated hedge fund strategies, the first two approaches are exposed 

to operational risks, black-box criticisms, or (possibly) high trading 

costs4. Thus, if the main objective is to get higher transparency, 

lower regulatory constraints, or liquidity, one should concentrate 

on the factor-model approach. Consequently, it is not surprising 

that, to date, this methodology has been the most widespread. Still, 

most existing approaches have a deficiency in common: they are 

based on OLS regressions over rolling windows whose time-lag is 

determined in an ad-hoc fashion. More efficient econometric tech-

niques are available, such as the Kalman filter. This paper investi-

gates whether more robust alternative betas processes can be built 

using such techniques5.

An alternative approach to alternative beta

2	 See the website www.fundcreator.com for more details.

3	 In an early analysis, Merton (1981) showed that a manager pursuing a strategy of 

market timing between several assets is likely to generate similar returns to those of 

an optional position on one of the assets without nonetheless taking up a position on 

options.

4	 Even in the case of the approach of Kat and Palaro (2007), which is based on liquid 

futures, the tailor-made specification for each investor might lead the minimum 

investment size to be very high.

5	 Another promising approach has been advocated by Darolles and Mero (2007). 

Building on the methodology developed by Bai and Ng (2002, 2003), the authors esti-

mate latent factors models from a large sample of individual funds. After extracting 

the number of appropriate factors, they identify them with standard market factors.
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Kalman filter and dynamic allocation
Recovering dynamic allocation

Let Rt and Ft
(i) be respectively the return of the hedge fund strategy 

and the returns of the ith individual factors (i = 1,…m) at time t. We 

have: Rt = Si=1→m wt
(i) Ft

(i) t = 1,…,T, with wt
(i) being the weight of the 

ith individual strategy. The issue is to recover the time-varying allo-

cation wt
(i). We may solve this problem by estimating the local beta of 

the portfolio with respect to the individual strategies. The regression 

might or not include an intercept, an aspect we discuss below.

With rolling OLS

One of the most used techniques to recover dynamic allocation is 

the rolling OLS method. In this case, we assume a linear model: Rt 

= Si=1→m bt
(i) Ft

(i) + ut and the estimates ώt
(i) correspond to the OLS 

estimation of b(i) on the period [t – h,t], where h is the rolling window. 

For instance, Hasanhodzic and Lo (2007) use a 24-months lag win-

dow. Note that we may use the QP method described in Appendix A 

to impose some constraints (i.e., |b(i)| ≤ 1) or to center the residuals 

in the case no intercept is included into the regression6.

With Kalman filter

An alternative approach is to use the Kalman filter described in 

Appendix B with the model: Rt = Si=1→m bt
(i) Ft

(i) + et; bt
(1) = bt-1

(1) + 

ηt
(1) ···· bt

(m) = bt-1
(m) + ηt

(m) (1), where et ~ N(0, se2) and ηt
(i) ~ N(0, 

si
2) are uncorrelated processes. Using the notations introduced in 

the appendix, the state-space form is Zt = (Rt
(1) ···· Rt

(m)), ct = 0, Ht = 

se2, Mt = Im, dt = 0, St = Im and Qt a diagonal matrix such that:

	 s1
2	 0

Qt = 

	 0	 sm
2

…
 
 
 







We assume moreover that P0 = 0m. It means that we know exactly 

the initial allocation. We denote by θ the vector of parameters to 

be estimated by maximum likelihood with θ = (se s1 ···· sm). More 

details concerning estimation and the Kalman filter methodology 

are given in Appendix B.

Some examples

Let us consider an example to illustrate the difference between 

both methods to evaluate the exposures7. 

We suppose a strategy corresponding to a monthly dynamic alloca-

tion between MSCI USA and MSCI EMU since 1990. We assume that 

the weights are oscillating and are given by ωt
USA = 1/2[1+sin(2πt/

ϖ)] and ωt
EMU = 1 – ωt

USA. We have estimated the model (1) with the 

Kalman filter and we compare the estimates with those obtained 

with 24-months rolling OLS. When the frequency ϖ is low, the roll-

ing OLS technique is able to reproduce the dynamic allocation, but 

with delay. If the allocation frequency is higher, the rolling OLS may 

estimate weights that are very different from the true weights of 

the dynamic allocation (see Figure 1 with ϖ = 2Y).

Let us now consider a more realistic example. We assume that 

weights change by step of 25%, with ωt
USA = (w ⊗ 1)t and ωt

EMU = 

1 – ωt
USA for w = (-1, 0.5, -0.25, 1, 0.25, 0, -0.5, 1,···). The portfolio is 

100% long with the possibility of being short in one asset. Results 

are reported in Figure 2 and confirm the adaptability of the Kalman 

filter. One criticism is that state vector estimates might be too 

dependant on initial values. But in practice, this is not truly the 

case as shown in Figure 3 with the same application. Indeed, one of 

the properties of the Kalman filter is its ability to quickly adapt to 

changing conditions.

It is interesting to remark that because P0 = 0m, the estimates bt 

and bt|t-1 are homogeneous with respect to the vector of parame-

ters θ; that is they do not change if θ is scaled by a factor k. To show 

this property, we remark that if Q* = k2Q and H* = k2H, it comes that 

P*
t|t-1 = k2Pt|t-1, Ft* = k2Ft, and P*

t = k2Pt. We also have P*
t|t-1Zt

TFt
*-1 

= Pt|t-1Zt
TFt

-1, so we prove that b*
t|t-1 = bt|t-1 and b*

t = bt. Moreover, 

we may show that the state vector is invariant if we both scale Rt, 

Ft
(i), and et. It means that the parameters of interest are the ratios 

s1/se,···,sm/se. These ratios give us a direct measure of the dynamic 

property of the allocation of the individual strategies. The bigger 

these ratios, the more dynamic is the allocation. 

A comparison of OLS and Kalman filter when applied 
to hedge fund replication
We try to estimate the beta using the following six underlying expo-

sures: an equity position in the S&P 500 Index, a long/short position 

between Russell 2000 and S&P 500 indices, a long/short position 

between Eurostoxx 50 (hedged in USD) and S&P 500 indices, a long/

short position between Topix (hedged in USD) and S&P 500 indices, 

a bond position in the 10-year U.S. Treasury, and an FX position in 

the EUR/USD. These exposures have been chosen because they cor-

respond to standard exposures identified in the literature [Agarwal 

and Naik (2004), Amenc et al. (2003), Géhin and Vaissie (2006), 

Hasanhodzic and Lo (2007), Fung and Hsieh (2007), Jaeger and 

Wagner (2005)]. However, we limit ourselves to liquid futures mar-

kets. For example, we do not include any options or OTC swaps and 

exclude credit indices for which futures have been recently launched 

but are not mature enough to be included in this context. The models 

are estimated over the period 1994-2007 and are done on three well-

known indices for matter of comparisons: the Composite HFR Index, 

the HFR Funds-of-Funds index, and the CSFB-Tremont total Index. All 

of these indices are non-investable, which increase the interest for 

the exercise of replication here established. To make the backtest 

more reliable, we incorporate a lag of one month for incorporating 

the delays in the release of indices.

We have estimated the dynamic beta using the rolling OLS tech-

nique for various frequencies (12 months, 24 months, and 36 

An alternative approach to alternative beta

6	 The case with no intercept makes sense in the replication exercise below, as the 

alpha can not be replicated through investment in the factors. 

7	 See Swinkels and Van der Sluis (2005) for a more in-depth analysis in the context of 

style-based analysis.
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Figure 1 – KF estimates versus rolling OLS estimates – ϖ = 2Y

Figure 2 – KF estimates versus rolling OLS estimates – ϖ = 2Y
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months) and the Kalman filter8. Results of the estimations are 

reported in Figures 4, 5, and 6. We observe that whatever the meth-

odology used, hedge funds considered as a whole have appeared as 

long equities — as captured by the S&P9 — and long Russell against 

S&P. For other factors, exposures vary to a large extent between 

methods. Nevertheless, whichever factor and index publisher is 

considered, the variability of exposures is far lower for the Kalman 

filter. Obviously, as one is attempting to capture the dynamic beta 

of hedge funds, stability is not an objective as such. But it is not 

clear whether it is efficient to have quickly changing exposures if 

true underlying exposures are themselves highly volatile. Indeed, in 

this case, the danger is to be always ‘behind the curve.’ For exam-

ple, numerous inopportune changes in exposures are observed 

for the 12-month window, such as the large decrease in exposure 

to S&P at the end of 1997 or the sharp changes in exposures in 

2004/2005. At the other end of the spectrum, a very long window 

could lead to an unnecessarily slow reaction to changing conditions, 

as is demonstrated here by the S&P exposure during the collapse 

of the stock market bubble and the recovery period which has fol-

lowed. Without question, the Kalman filter appears to be a good 

compromise: it posts smooth changes in exposures but has been 

able to identify the reduction in exposure to equities markets, which 

seems to have characterized hedge funds in late 2000-early2001, 

quite early (even earlier than the 12-month rolling window). 

More formally, we report in Figure 7 some statistics on the simu-

lated returns of the various methodologies. It appears that while 

some window lags lead to higher average excess returns than the 

Kalman filter method, none globally dominates the latter in terms 

of risk-adjusted returns. As far as capital preservation is concerned, 

the Kalman filter also seems to be preferred as it often leads to a 

higher proportion of positive months and systematically to lower 

drawdowns. Finally, it offers a higher correlation with the underly-

ing hedge fund index. 

An alternative approach to alternative beta

8	 One should notice that the parameters of the Kalman filter are estimated over the 

whole sample. However, here, it is not the coefficients but only their variance which 

are estimated. It is not clear whether this implies look-ahead bias and in practice, we 

have found that progressive estimations of the Kalman filter are leading to very similar 

results. Readers familiar with the Kalman filter should not be surprised with this result.

9	 The aggregated exposure to the S&P index should be read as the sum of the ‘S&P’ 

exposure (as mentioned in the Figure) minus all the exposures of spreads involving 

the S&P. In fact, the exposure mentioned as ‘S&P’ recovers the total equity exposure. 

Figure 3 – Adaptative learning of the Kalman filter – ϖ = 2Y

Figure 4 – Exposures for the HFR index
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that are

Figure 5 – Exposures for the HFR FoF index

Figure 6 – Exposures for the CSFB-Tremont index
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Application to alternative beta
Building a clone

To evaluate whether factor-models replicating funds are worth 

investing in, we report in Figure 8 the backtest of the strategy over 

the period 1997-2007 (with cash reinvested at the one-month Libor 

rate). In Figure 9, we compare the risk-return profile (in terms of 

mean-variance). More statistics are given in Figure 10. 

Several comments are worth stressing. First, concerning compos-

ite indices of single funds, the trackers underperform the indices 

they are trying to replicate, despite the fairly high correlation. But 

perfect replication seems to be an unfair objective in the present 

case. It is well known that hedge fund indices are affected by vari-

ous biases, such as survivorship and self-selection biases [Fung and 

Hsieh (2004), Lhabitant (2006)]. An indication of the validity of this 

explanation is that this result does not hold for the funds-of-funds 

replication. Indeed, it is widely acknowledged that the returns of 

funds-of-funds are less affected by those biases since, for example, 

they do not cease reporting to databases when an underlying single 

fund in which they have invested collapses, even though their NAVs 

are directly impacted. Obviously, one should keep in mind that the 

difference in performance between single funds and funds-of-funds 

also reflects the additional layer of fees. By and large, it seems that 

over a full economic and market cycle (that is, the last 10 years), 

trackers have posted performances that are characteristic of hedge 

fund performance with a slight underperformance, probably due to 

the lack of alpha generation (an issue to which we return later). 

Second, an attractive feature visible in the results is that trackers 

An alternative approach to alternative beta

	
		R  olling OLS		  Kalman 
	 12 M	 24 M	 36 M	 filter

HFR Composite Index				  

Average excess return (% per year)	 5.30%	 4.98%	 4.09%	 5.28%

Standard deviation (% per year)	 7.66%	 8.07%	 8.92%	 7.45%

Sharpe ratio	 0.69	 0.62	 0.46	 0.71

Proportion of positive months	 70%	 68%	 67%	 70%

Correlation with hedge fund index	 84.8%	 85.3%	 85.7%	 91.3%

Maximum drawdown	 15.4%	 18.7%	 21.1%	 9.7%

HFR FOF Index				  

Average excess return (% per year)	 4.36%	 4.65%	 3.50%	 4.52%

Standard deviation (% per year)	 5.97%	 6.13%	 6.00%	 5.62%

Sharpe ratio	 0.73	 0.76	 0.58	 0.80

Proportion of positive months	 70%	 75%	 72%	 71%

Correlation with hedge fund index	 71.1%	 73.7%	 75.8%	 75.7%

Maximum drawdown	 11.3%	 9.5%	 7.9%	 5.2%

CSFB-Tremont Index				  

Average excess return (% per year)	 6.49%	 7.44%	 5.52%	 5.49%

Standard deviation (% per year)	 7.71%	 8.14%	 8.19%	 6.75

Sharpe ratio	 0.84	 0.91	 0.67	 0.81

Proportion of positive months	 66%	 73%	 68%	 70%

Correlation with hedge fund index	 67.1%	 70.0%	 72.9%	 73.7%

Maximum drawdown	 15.0%	 9.2%	 9.9%	 6.3%

Figure 7 – Descriptive statistics on simulated factor models

Figure 8 – Backtest of the strategy
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Average	 9.2%	 9.5%	 8.5%	 7.9%	 10.5%	 10.4%	 8.2%	 5.7%	 4.0%

Std dev	 7.5%	 6.8%	 5.7%	 6.0%	 7.3%	 7.2%	 15.3%	 7.0%	 0.5%

Figure 9 – Risk-return profile of hedge funds and standard assets

	 HFR	 HFR FOF	  CSFB-Tremont

	I ndex	 Tracker	I ndex	 Tracker	I ndex	 Tracker

Average return (% per year)	 10.5%	 9.2%	 7.9%	 8.5%	 10.4%	 9.5%

Standard deviation (% per year)	 7.3%	 7.5%	 6.0%	 5.7%	 7.2%	 6.8%

Sharpe (risk-free rate = 4%)	 0.90	 0.71	 0.66	 0.81	 0.90	 0.81

Proportion of positive months	 69.7%	 69.7%	 65.6%	 71.3%	 72.1%	 70.5%

Skewness	 -0.43	 0.03	 -0.25	 1.01	 0.18	 0.52

Excess kurtosis	 3.20	 2.42	 4.73	 5.21	 4.04	 2.40

Minimum	 -8.70%	 -7.12%	 -7.47%	 -3.57%	 -7.55%	 -4.98%

Maximum	 7.65%	 8.99%	 6.85%	 9.01%	 8.53%	 8.86%

Correlation with S&P 500	 72.0%	 69.6%	 52.9%	 55.4%	 48.7%	 61.4%

Correlation with US Treasuries	 -17.2%	 -14.5%	 -12.4%	 -5.1%	 -2.7%	 3.5%

Figure 10 – A statistical comparison of hedge fund indices and their trackers

(% per year) 	 HFR Composite 	CFS B-Tremont 	 HFR FOF 

Total performance 	 10.39% (100.0%) 	 10.30% (100.0%) 	 7.87% (100.0%) 

Cash 	 3.92% (37.7%) 	 3.92% (38.1%) 	 3.92% (49.8%) 

Traditional beta 	 2.79% (26.8%) 	 2.39% (23.2%) 	 2.02% (25.6%) 

Alternative beta	 2.49% (24.0%) 	 3.09% (30.0%) 	 2.51% (31.8%) 

Alpha	 1.19% (11.4%) 	 0.90% (8.7%) 	 -0.57% (-7.2%) 

Figure 11 – Decomposition of the total return of hedge fund indices  

(January 1997 – February 2007)

present larger skewness than the indices. This positive asymmetric 

shift is also clear when one observes the extrema, since trackers 

exhibit lower minima and higher maxima. While it is beyond the 

scope of the present paper, an explanation for this result is that, 

by construction, factor-based models with standard assets are not 

specialized in reproducing strategies similar to writing puts on the 

market [Mitchell and Pulvino (2001), Naik et al. (2004)]. This sug-

gests that one should be cautious about introducing option payoffs 

to factor-based trackers. 
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Third, we can pose the standard criticism directed at regression-

based trackers, which is that their correlation with equities is high. 

This is undeniably true but the correlation seems to simply reflect 

the indices they are tracking. Having said that, it is interesting to 

note that the correlation between the CSFB-Tremont tracker and the 

S&P 500 index is far lower than with HFR, which is totally consistent 

with the respective correlation of the indices10. We also notice that 

this correlation is also observed for the U.S. Treasuries. 

Estimating the alpha
With the previous framework, it is easy to compute the various 

components of the hedge fund performance. Obviously, the calcu-

lations can be crude at best since, and in practice one should take 

into account the impact of fees and above all the biases affecting 

the first moment (average) of hedge fund indices. Let Rt denote the 

index monthly return observed at time t. bt
(i) is the exposure to the 

i-th factor at time t as estimated through the Kalman filter and b(i) is 

its average over the whole period, b(i) = T-1St=1→T bt
(i). Our aim is to 

decompose the total performance into fixed-traditional beta, alter-

native beta, and alpha. We adopt the following breakdown: Excess 

return: Rt
* = Rt – Libort; traditional beta: Si=1→m b(i) Ft

(i); alternative 

beta: Si=1→m (bt
(i) –b(i))Ft

(i); alpha: Rt
* – Si=1→m bt

(i) Ft
(i)

In Figure 11, we report the average values obtained for each of 

these components. For the various indices, alternative beta does 

represent between a quarter and a third of the total return and 

near one-half of the excess return. In Figures 12, 13, and 14, we 

report the same calculations but for every year. It is interesting 

to observe that alternative beta has contributions to performance 

which are most of the time positive and that their contribution was 

the most important during the bear equity market (2002 and to a 

lesser extent 2001). 

Conclusion 
Hedge fund replication meets growing interest. As far as the moti-

vation is to get liquid and transparent instruments, factor-models 

appear as an attractive approach. To date, though, available 

approaches are based on rolling regressions where the window is 

fixed in an ad-hoc way. In this paper, we have shown that more effi-

cient econometric methods such as the Kalman filter can be used 

as substitutes to these regressions. They offer risk-return profiles 

which share several characteristics with the ones posted by hedge 

funds indices: Sharpe ratios above buy-and-hold strategies on stan-

dard assets, moderate correlation with standard assets, or limited 

drawdowns during equity downward trends. An interesting result is 

that the shortfall risk seems less important than with hedge fund 

indices. All in all, alternative beta appears to explain between a 

quarter and a third of the total performance of hedge funds. 

An alternative approach to alternative beta

Figure 12 – Year-by-year decomposition of the performances for the HFR index

Figure 13 – Year-by-year decomposition of the performances for the CSFB-Tremont 

index

Figure 14 – Year-by-year decomposition of the performances for the HFR FoF

10	 The higher correlation of the HFR index is often attributed to the heavier weight of 

equity-linked strategies (notably equity hedge).
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Appendix

An alternative approach to alternative beta

A – Quadratic programming form of linear regression

We consider the linear model yt = xt
Tb + et. The matrix form is Y 

= Xb + e. The residual sum of squares is equal to (Y-Xb)T (Y-Xb) = 

YTY + bT(XTX) b – 2YTXb. The OLS estimate b̂  is also the solution 

of the quadratic programming problem: b̂  = arg min 1/2 bT (XTX) b 
– (YTX) b (A1). Without any other constraints, the solution is well-

know: b̂  = (XTX)-1XTY. If we impose linear equality or inequality 

constraints, we may use a standard QP computer routine to find 

the solution. For example, we might want to impose some bounds 

on the coefficients. When there is no constant in the linear regres-

sion, the residuals are not centered. If we want to center the 

residuals, we impose the linear equality 1TXb = 1TY.

B – The state space model and the Kalman filter

A state space model is defined by a transition equation and a mea-

surement equation. In the measurement equation we postulate 

the relationship between an observable vector and a state vector, 

while the transition equation describes the generating process 

of the state variables. The state vector bt is generated by a first-

order Markov process of the form: bt = Mtbt-1 + ct + Stηt, t=1,···,T, 

where bt is the m-dimension state vector, Mt is a m×m matrix, ct is 

a m×1 vector, and St is a m×G matrix. The measurement equation 

of the state-space representation is: yt = Ztbt + dt + et, t=1,···,T, 

where yt is a N-dimension time series, Zt is a N×m matrix, and dt 

is a N×1 vector. ηt and et are assumed to be white noise processes 

of dimensions G×1 and N×1 respectively. These two last uncorre-

lated processes are Gaussian with zero mean and with respective 

covariances matrices Qt and Ht, that is: E(ηt) = 0 and var(ηt) = Qt; 

E(et) = 0 and var(et) = Ht. 

Let us consider the linear model yt = xtb + et. The model is in 

state-space form with Zt = xt, ct = dt = 0 and Qt = 0. {yt = xtbt + 

et; bt = bt-1} (A2). The state vector is constant and not stochastic. 

Others examples of SSM are structural models or models with 

unobservable variables. For example, the local level model which 

is given by: {yt = mt + et; mt = mt-1 + ηt} (A3) is in state-space form 

with Zt = 1, ct = dt = 0 and bt = mt. Note that we may use the idea 

of the stochastic trend of the local level model in the linear model 

to obtain a linear model with stochastic beta: {yt = xtbt + et; bt 

= bt-1 + ηt} (A4). In this case, the beta are time-varying and are 

unobservable variables.

One of the challenges in SSM is to estimate the state variable 

bt. It may be done using the Kalman filter. If we now consider 

bt as the optimal estimator of bt, based on all the relevant and 

available observations at time t, we have bt = Et [bt], where Et 

indicates the conditional expectation operator. The covariance 

Pt of this estimator is defined by Pt = Et [(bt – bt) (bt – bt)
T]. We 

also denote bt|t-1 = Et-1 [bt] the optimal estimator of bt based on 

all the relevant and available observations at time t-1 and Pt|t-1 

the covariance of this estimator. The Kalman filter consists of 

the following set of recursive equations: {bt|t-1 = Mtbt-1 + ct; Pt|t-1 

= MtPt-1Mt
T+ StQtSt

T; yt|t-1 = Ztbt|t-1 + dt; vt = yt – yt|t-1; Ft = ZtPt|t-

1Zt
T+ Ht; bt = bt|t-1+ Pt|t-1Zt

TFt
-1vt; Pt = (Im – Pt|t-1Zt

TFt
-1Zt)Pt|t-1}. 

It should be noted that we first need to initialize the Kalman 

filter. This may be done by assuming that the initial position is a 

Gaussian variable such that: E(b0) = a0 and var(b0) = P0. 

To obtain the estimator of bt based on all the relevant and avail-

able observations at time T, we use the following smoothing 

filter (called the Kalman smoother): Pt
* = PtMt+1

TPt+1|t
-1; bt|T = bt 

+ Pt
*(bt+1|T – bt+1|t); Pt|T = Pt + Pt

*(Pt+1|T – Pt+1|t) Pt
*T. To illustrate 

the difference between the three estimators, bt|t-1, bt, and bt|T, 

we consider the linear model example. Recursive least squares 

regression corresponds to the estimator bt whereas the ordinary 

least squares coefficients are given by bt|T. We remark also that 

the one-step forecast of the recursive least squares regression is 

exactly bt|t-1. 

Generally, the state space model contains some unknown param-

eters other than the state vector. In this case, we may estimate 

them by maximum likelihood. Let θ be the vector of parameters. 

The log-likelihood can be expressed in terms of the innovation 

process. It is then equal to: ℓt = log Lt = -N/2log2π – 1/2log|Ft| – 1/2 

vt
TFt

-1vt. For example, we have to estimate the volatility of the 

residuals et in the models (A2) and (A3), and the volatilities of the 

stochastic components ηt in the model (A3). 


