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Abstract
In this paper, the authors consider non uniform grids to solve PDE in finance. The origin of the problem

comes of the fact that computing value-at-risk every day is time-consuming when several options are priced
with �nite di�erence methods. One of solution is then to use smaller discretization points. In this case,
non uniform grids can then be used to solve PDE with better accuracy than uniform grids. First a solution
algorithm is derived and consistency and stability issues are considererd. Then di�erent applications to
option pricing are presented. Finally, the problem of stability is studied.

1 Introduction
Probability theory, �nance and numerical analysis are the main tools when pricing contingent claims. Funda-
mental theorems based on no-arbitrage assumptions of asset pricing provide us with a powerful methodology,
called the martingale approach, to price any �nancial product. Indeed, a price could be expressed as an ex-
pectation of the discounted payo� under a suitable probability measure (e.m.m.). Thanks to the Feynman-Kac
theorem this price could be equally explicited as the solution of a particular backward partial di�erential equa-
tion (PDE). Thus, the famous Black-Scholes formula has been derived by solving a one-dimensional parabolic
PDE analogous to the heat equation. Since this breakthrough, PDEs have been playing an ever-increasing role
in �nance. Indeed, although options could be priced using only the probabilistic approch via Monte-Carlo and
lattice methods, it is often faster and more accurate to look for a solution of the di�erential problem. Solving
the PDE may be all the more legitimate as one may be interested in the computation of hedging ratios such as
the delta or the gamma.

This paper focuses on how to solve that di�erential problem using a general �nite di�erence method. The
�nite di�erence method is usually implemented with uniform mesh. But, as it is mentionned in Tavella and
Randall [2000], it may be useful to adapt the grid to the payo� of the option. It means that when the price of
an option may be more sensitive in a precise area, it seems legitimate to concentrate the mesh in that area. Such
an approach needs to get an intuitive idea of the �ideal� mesh since one may propose ex-ante the distribution of
the discretization points of the grid. It appears that for pricing �nancial products, one could easily guess where
the mesh has to focus on.

This paper is organized as follows. In section two, we present the general algorithm of the �nite di�erence
method for non uniform grids. We may also give some arguments about the consistency and the stability of
that numerical algorithm. Section three allows to deal with the case where the grids are also non uniform
in time. Section four may present some concrete applications of that algorithm to the pricing of options. In

∗Views expressed in this paper are the authors' and not those of the Crédit Lyonnais.
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particular, we will propose di�erent kinds of grid generations and observe their main advantages and drawbacks
when payo�s vary. Finally in section �ve, one may draw some attention to the case where using non uniform
grids could lead to stability problems.

2 Solving partial di�erential equations with �nite di�erence methods
and non uniform grids

We consider the linear parabolic equation

∂ u (t, x)
∂ t

+ c (t, x) u (t, x) = Atu (t, x) + d (t, x) (1)

where At is the general di�erential operator

Atu (t, x) = a (t, x)
∂2 u (t, x)

∂ x2
+ b (t, x)

∂ u (t, x)
∂ x

(2)

The main idea is to solve the equation (1) for (t, x) ∈ T×X. For convenient computation, we take T = [t−, t+]
and X = [x−, x+]. In this case, we use the method of �nite di�erence, well-adapted for 2-order parabolic
equations in x.

2.1 The �nite di�erence method
We introduce a non uniform �nite-di�erence mesh for t and x. Let M and N be be the number of discretisation
points for t and x respectively. We note um

i be the approximate solution to (1) at the grid point (tm, xi)
and u (tm, xi) the exact solution of the partial di�erential equation at this point1. We use also the notation
hi = xi − xi−1 and km = tm − tm−1.

2.1.1 Discretisation scheme for the space
If we consider the central di�erence method to approximate the derivatives, we have

∂ u (tm, xi)
∂ x

' um
i+1 − um

i−1

xi+1 − xi−1
(3)

For the second derivative, we suppose that

∂2 u (t, x)
∂ x2

' h+
i

(
um

i+1 − um
i

)− h−i
(
um

i − um
i−1

)
(4)

For example, we have

u (tm, xi+1) = u (tm, xi) + hi+1
∂ u (tm, xi)

∂ x
+

1
2
h2

i+1

∂2 u (tm, xi)
∂ x2

+ O
(
h3

i+1

)

u (tm, xi−1) = u (tm, xi)− hi
∂ u (tm, xi)

∂ x
+

1
2
h2

i

∂2 u (tm, xi)
∂ x2

+ O
(
h3

i

)
(5)

1Nevertheless, u (tm, xi) will also denote the approximation solution when we will study the consistency and stability of the
algorithm.
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It comes that2

∂2 u (tm, xi)
∂ x2

= 2
hi

(
um

i+1 − um
i

)
+ hi+1

(
um

i−1 − um
i

)

hih2
i+1 + hi+1h2

i

= 2
hi

(
um

i+1 − um
i

)− hi+1

(
um

i − um
i−1

)

hihi+1 (hi+1 + hi)
(8)

and we have

h+
i =

2
hi+1 (hi+1 + hi)

h−i =
2

hi (hi+1 + hi)
(9)

The equation (1) becomes
∂ u (t, x)

∂ t
+ cm

i um
i = Am

i + dm
i (10)

with
Am

i = am
i

[
h+

i

(
um

i+1 − um
i

)− h−i
(
um

i − um
i−1

)]
+ bm

i

um
i+1 − um

i−1

xi+1 − xi−1
(11)

We obtain �nally
∂ u (t, x)

∂ t
= Bm

i (12)

with
Bm

i = Am
i + dm

i − cm
i um

i (13)

2.1.2 Discretisation scheme for the time
The most classical method to solve the equation (1) is to use the Euler scheme. We have

∂ u (t, x)
∂ t

' um
i − um−1

i

km
(14)

We remark also that the equation (1) becomes

um
i − um−1

i

km
+ cm

i um
i = Atu (t, x) + dm

i (15)

2Another approximation could be de�ned from (5). We have

∂2 u (tm, xi)

∂ x2
' 2

um
i+1 − 2um

i + um
i−1 −

�
hi+1−hi

hi+1+hi

��
um

i+1 − um
i−1

�

h2
i+1 + h2

i

= 4
hi

�
um

i+1 − um
i

�
− hi+1

�
um

i − um
i−1

�
�
h2

i+1 + h2
i

�
(hi+1 + hi)

(6)

In this case, we have

h+
i = 4

hi�
h2

i+1 + h2
i

�
(hi+1 + hi)

h−i = 4
hi+1�

h2
i+1 + h2

i

�
(hi+1 + hi)

(7)
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However, the function Atu (t, x) depends both on the time t and the space x. That's why we could not employ
the traditional Euler algorithm

um
i = um−1

i + km [Atu (t, x) + dm
i − cm

i um
i ] (16)

In this case, we then replace the function Atu (t, x) by its numerical approximation Am
i . So, we have

um
i = um−1

i + km [Am
i + dm

i − cm
i um

i ]
= um−1

i + kmBm
i (17)

2.1.3 The θ-scheme method
In the previous paragraph, we have used the single-sided forward di�erence to approximate the derivative ∂ u(t,x)

∂ t .
There exists another algorithm, like the Richardson extrapolation. The θ-scheme method is a combination of
left-sided and right-sided di�erences. Let θ ∈ [0, 1]. We have

um
i = um−1

i + km

[
(1− θ)Bm−1

i + θBm
i

]
(18)

Using the expression of Bm
i , we obtain

um−1
i−1

[
am−1

i (1− θ) kmh−i − bm−1
i (1− θ)

km

hi+1 + hi

]

+um−1
i

[
1− am−1

i (1− θ) km

(
h+

i + h−i
)− cm−1

i (1− θ) km

]

+um−1
i+1

[
am−1

i (1− θ) kmh+
i + bm−1

i (1− θ)
km

hi+1 + hi

]

+um
i−1

[
am

i θkmh−i − bm
i θ

km

hi+1 + hi

]

+um
i

[−1− am
i θkm

(
h+

i + h−i
)− cm

i θkm

]

+um
i+1

[
am

i θkmh+
i + bm

i θ
km

hi+1 + hi

]
= − [

dm−1
i (1− θ) km + dm

i θkm

]
(19)

2.2 The di�erent numerical algorithms
We note now

αm
i = am

i h−i −
bm
i

hi+1 + hi

βm
i = am

i

(
h+

i + h−i
)

+ cm
i

γm
i = am

i h+
i +

bm
i

hi+1 + hi
(20)

2.2.1 The explicit scheme
This scheme corresponds to θ = 0. We have then

um
i = αm−1

i kmum−1
i−1 +

(
1− βm−1

i km

)
um−1

i + γm−1
i kmum−1

i+1 + dm−1
i km (21)

We obtain the numerical solution by iterations from the initial condition and by using Dirichlet conditions.

2.2.2 The completely implicit scheme
This scheme corresponds to θ = 1. We have then

αm
i kmum

i−1 + (−1− βm
i km)um

i + γm
i kmum

i+1 = − (
um−1

i + dm
i km

)
(22)

We obtain the numerical solution by solving the linear system (22) and using Neumann conditions.
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2.2.3 The mixed schemes
We have then θ ∈ ]0, 1[. For example, the well-famous Crank-Nicholson scheme corresponds to θ = 1

2 . We
introduce the following notations

ςm
i = (1− θ) kmαm−1

i

τm
i = 1− (1− θ) kmβm−1

i

υm
i = (1− θ) kmγm−1

i

φm
i = θkmαm

i

ϕm
i = −1− θkmβm

i

χm
i = θkmγm

i

ψm
i = (1− θ) dm−1

i km + θdm
i km (23)

To obtain the numerical solution, we have to solve the linear system

φm
i um

i−1 + ϕm
i um

i + χm
i um

i+1 = − [
ςm
i um−1

i−1 + τm
i um−1

i + υm
i um−1

i+1 + ψm
i

]
(24)

The corresponding matrix form is

Λmum = − [Ξm−1um−1 + Ψm] + εm (25)

with

um =




um
1

um
2
...

um
i
...

um
N−3

um
N−2




(26)

The Υm and Φm matrices are de�ned in the following manner

Λm =




ϕm
1 χm

1 0
φm

2 ϕm
2 χm

2 0
. . . . . . . . . . . . . . .

0 φm
i ϕm

i χm
i 0

. . . . . . . . . . . .
0 φm

N−2 ϕm
N−2




(27)

Ξm =




τm
1 υm

1 0
ςm
2 τm

2 υm
2 0

. . . . . . . . . . . . . . .
0 ςm

i τm
i υm

i 0
. . . . . . . . . . . .

0 ςm
N−2 τm

N−2




(28)
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εm is the residual absortion vector (Kurpiel and Roncalli [1999])

εm =




− (
φm

1 um
0 + ςm−1

1 um−1
0

)
0
...
0
...
0

− (
χm

N−2u
m
N−1 + υm−1

N−2um−1
N−1

)




(29)

2.3 Integrating the boundary conditions
A new form of the system of equations (25) is

Λmum = vm + εm (30)

with
vm = − [Ξm−1um−1 + Ψm]

The use of boundary conditions (Dirichlet or/and Neumann)3

u
(
t−, x

)
= u(t−) (x)

u
(
t, x−

)
= u(x−) (t)

∨ ∂ u (t, x)
∂ x

∣∣∣∣
x=x−

= u′(x−) (t)

u
(
t, x+

)
= u(x+) (t)

∨ ∂ u (t, x)
∂ x

∣∣∣∣
x=x+

= u′(x+) (t) (31)

leads us to modify4 the equation (30)
Λ?

mum = v?
m (32)

with

Λ?
m ←− Λm

v?
m ←− vm

(v?
m)1 ←− −ςm−1

1 um−1
0

(v?
m)N−1 ←− −υm−1

N−2um−1
N−1

• Conditions on x−

� Dirichlet: u (t, x−) = ux− (t)
(v?

m)1 ←− −φm
1 ux− (tm)

� Neumann: ∂ u(t,x)
∂ x

∣∣∣
x=x−

= u′x− (t)

(Λ?
m)1,1 ←− φm

1

(v?
m)1 ←− φm

1 u′x− (tm)h1

3We introduce the following notations: W corresponds to the xor operator (aW b means that only one expression is true � a or b)
and V is the and operator (with a

V
b, both the two expressions a and b are satis�ed).

4← is an accumulator like the C assignment operator + =, i.e. we have

a ← b ⇐⇒ a = a + b
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• Conditions on x+

� Dirichlet: u (t, x+) = ux+ (t)
(v?

m)N−2 ←− −χm
N−2ux+ (tm)

� Neumann: ∂ u(t,x)
∂ x

∣∣∣
x=x+

= u′x+ (t)

(Λ?
m)N−2,N−2 ←− χm

N−2

(v?
m)N−2 ←− −χm

N−2u
′
x+ (tm) hN−1

2.4 Consistency and stability
In this paragraph, we give some results about the consistency and stability of the θ-scheme with non uniform
grids.

2.4.1 Consistency of numerical approximations
We consider a regular solution of the problem. We are going to show that the numerical approximations in time
and space are both consitent. For the �rst derivative, their order is one. Nevertheless, for the second derivative
in space, the order is one and not two like for uniform grids.

• With our numerical scheme, we obtain

u (tm + km+1, xi) = u (tm, xi) + km+1
∂ u (tm, xi)

∂ t
+

1
2
k2

m+1

∂2 u (t, xi)
∂ t2

(33)

where t ∈ [tm, tm + km+1]. It comes that
∣∣∣∣
u (tm + km+1, xi)− u (tm, xi)

km+1
− ∂ u (tm, xi)

∂ t

∣∣∣∣ ≤
1
2
km+1

∣∣∣∣
∂2 u (t, xi)

∂ t2

∣∣∣∣ (34)

Let us denote C1 = maxt∈[t−,t+]

∣∣∣∂2 u(t,xi)
∂ t2

∣∣∣ and k = max km+1. We �nally have
∣∣∣∣
u (tm + km+1, xi)− u (tm, xi)

km+1
− ∂ u (tm, xi)

∂ t

∣∣∣∣ ≤
1
2
C1k (35)

• For the �rst derivative in space, we obtain:
∣∣∣∣
u (tm, xi + hi+1)− u (tm, xi − hi)

hi+1 + hi
− ∂ u (tm, xi)

∂ x

∣∣∣∣ ≤
1

2 (hi+1 + hi)

∣∣∣∣∣h
2
i+1

∂2 u
(
tm, x(+)

)

∂ x2
− h2

i

∂2 u
(
tm, x(−)

)

∂ x2

∣∣∣∣∣
(36)

where x(−) ∈ [xi − hi, xi] and x(+) ∈ [xi, xi + hi+1]. We introduce the notation h = hi ∨ hi+1. It comes
that ∣∣∣∣∣h

2
i+1

∂2 u
(
tm, x(+)

)

∂ x2
− h2

i

∂2 u
(
tm, x(−)

)

∂ x2

∣∣∣∣∣ ≤ 2C2h
2 (37)

where C2 = maxx∈[x(−),x(+)]

∣∣∣∂2 u(t,x)
∂ x2

∣∣∣. We �nally obtain
∣∣∣∣
u (tm, xi + hi+1)− u (tm, xi − hi)

hi+1 + hi
− ∂ u (tm, xi)

∂ x

∣∣∣∣ ≤ C2h (38)
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• With a similar analysis, we are going to study consistency for the second derivative in space. By using
Taylor formula, we obtain

u (tm, xi + hi+1) = u (tm, xi) + hi+1
∂ u (tm, xi)

∂ x
+

1
2
h2

i+1

∂2 u (tm, xi)
∂ x2

+
1
6
h3

i+1

∂3 u
(
tm, x(+)

)

∂ x3

u (tm, xi − hi) = u (tm, xi)− hi
∂ u (tm, xi)

∂ x
+

1
2
h2

i

∂2 u (tm, xi)
∂ x2

− 1
6
h3

i

∂3 u
(
tm, x(−)

)

∂ x3
(39)

where5 x(−) ∈ [xi − hi, xi] and x(+) ∈ [xi, xi + hi+1]. We consider the discretisation scheme (9) for the space.
It comes that

h+
i [u (tm, xi+1)− u (tm, xi)] − h−i [u (tm, xi)− u (tm, xi−1)] =

∂2 u (tm, xi)
∂ x2

+
1

3 (hi+1 + hi)

[
h2

i+1

∂3 u
(
t, x(+)

)

∂ x3
− h2

i

∂3 u
(
t, x(−)

)

∂ x3

]
(40)

We have ∣∣∣∣∣h
2
i+1

∂3 u
(
t, x(+)

)

∂ x3
− h2

i

∂3 u
(
t, x(−)

)

∂ x3

∣∣∣∣∣ ≤ 2h2 max
x∈[x(−),x(+)]

∣∣∣∣
∂3 u (t, x)

∂ x3

∣∣∣∣ (41)

Let us denote C3 = maxx∈[x(−),x(+)]

∣∣∣∂3 u(t,x)
∂ x3

∣∣∣. We have
∣∣∣∣h+

i [u (tm, xi+1)− u (tm, xi)]− h−i [u (tm, xi)− u (tm, xi−1)]− ∂2 u (tm, xi)
∂ x2

∣∣∣∣ ≤
2
3
C3h (42)

2.4.2 Consistency of the θ−scheme
We can now study the consitency for the θ−scheme. As for the previous paragraph, we consider a regular
solution of the problem and we apply it to our scheme. By Taylor formula, we obtain

u (tm + km+1, xi)− u (tm, xi)
km+1

− ∂ u (tm, xi)
∂ t

=
1
2
km+1

∂2 u (tm, xi)
∂ t2

+ O
(
k2

m+1

)
(43)

Because of the order one of the numerical approximation of the second derivative in space, we have

h+
i [u (tm, xi+1)− u (tm, xi)]− h−i [u (tm, xi)− u (tm, xi−1)] =

∂2 u (tm, xi)
∂ x2

+ O (h) (44)

We recall that
um+1

i = um
i + km+1

[
θBm+1

i + (1− θ)Bm
i

]
(45)

Using equations (43) and (44), it comes that

∂ u (tm, xi)
∂ t

+
1
2
km+1

∂2 u (tm, xi)
∂ t2

+ O
(
k2

m+1

)− θBm+1
i − (1− θ)Bm

i = 0 (46)

with6

Bm
i = a (tm, xi)

(
∂2 u (tm, xi)

∂ x2
+ O (h)

)
+ b (tm, xi)

(
∂ u (tm, xi)

∂ x
+ O (h)

)
+ (47)

d (tm, xi)− c (tm, xi)u (tm, xi) (48)
5Note that x(−) and x(+) take di�erent values from the previous ones.
6because we have shown previously that the order of the numerical approximation of the �rst and second derivative in space is

both one.
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After collecting terms and using the fact that u is the solution of the linear parabolic equation (1), we have7

1
2
km+1

∂2 u (tm, xi)
∂ t2

+ θ
(
B̃m

i − B̃m+1
i

)
+ O

(
k2

m+1

)− a (tm, xi) O (h)− b (tm, xi) O (h)

−θO (h) [a (tm+1, xi)− a (tm, xi) + b (tm+1, xi)− b (tm, xi)] = 0 (49)

In the case where the functions a, b, c and d have no time dependence, we obtain

1
2
km+1

∂2 u (tm, xi)
∂ t2

− θ∆B̃m+1
i + O

(
k2

m+1

)− a (xi) O (h)− b (xi)O (h) = 0 (50)

with

∆B̃m+1
i = a (xi)

(
∂2 u (tm+1, xi)

∂ x2
− ∂2 u (tm, xi)

∂ x2

)
+ b (xi)

(
∂ u (tm+1, xi)

∂ x
− ∂ u (tm, xi)

∂ x

)

−c (xi) (u (tm+1, xi)− u (tm, xi)) (51)

Using the Taylor formula to �rst order8 gives us

1
2
km+1

[
∂2 u (tm, xi)

∂ t2
− 2θ

(
a (xi)

∂3 u (tm, xi)
∂t ∂x2

+ b (xi)
∂2 u (tm, xi)

∂t ∂x
− c (xi)

∂ u (tm, xi)
∂t

)]

−θ
[
a (xi)O

(
k2

m+1

)
+ b (xi)O

(
k2

m+1

)− c (xi)O
(
k2

m+1

)]
+ O

(
k2

m+1

)− a (xi)O (h)− b (xi) O (h) = 0
(53)

If we derive in time the linear parabolic equation (1), we have

∂2 u (t, x)
∂t2

−
[
a (x)

∂3 u (t, x)
∂t ∂x2

+ b (x)
∂2 u (t, x)
∂ t ∂ x

− c (x)
∂ u (t, x)

∂t

]
= 0 (54)

We conclude that in the case where θ = 1
2 and the functions a, b, c and d have no time dependance, the scheme

is consistent and its order is two in time and one in space:
∣∣um+1

i − um
i − km+1

[
θBm+1

i + (1− θ)Bm
i

]∣∣ ≤ O
(
k2

m+1

)
+ O (h) (55)

7We use the notation
B̃m

i = Bm
i − a (tm, xi) O (h)− b (tm, xi) O (h)

8that is we use the following approximations

∂2 u (tm+1, xi)

∂ x2
− ∂2 u (tm, xi)

∂ x2
= km+1

∂3 u (tm, xi)

∂t ∂x2
+ O

�
k2

m+1

�

∂ u (tm+1, xi)

∂ x
− ∂ u (tm, xi)

∂ x
= km+1

∂2 u (tm, xi)

∂t ∂x
+ O

�
k2

m+1

�

u (tm+1, xi)− u (tm, xi) = km+1
∂ u (tm, xi)

∂t
+ O

�
k2

m+1

�
(52)
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2.4.3 Stability of the numerical algorithm
We begin to recall the principal theorem of stability in the case of non uniform grids:
Theorem 1 (Thomée [1990]) The stability property is veri�ed if

k → 0
∧

h → 0
∧

r → 0 (56)

where r = kh−2 denotes the mesh ratio.
Remark 2 This is the more general result on stability. But for speci�c examples, we can obtain more precise
results. For example, in the case of the Heat equation, the θ-scheme is unconditionally stable if θ ≥ 1

2 . If
θ < 1

2 , the stability condition becomes r ≤ 1
2(1−2θ) .

In this paragraph, we show how non uniform grids modify these results. In particular, we try to exhibit
some su�cient conditions for the numerical algorithms to be stable in the particular case of the Heat equations.
Thus, we consider the following Dirichlet problem

∂ u (t, x)
∂ t

=
∂2 u (t, x)

∂ x2

u (0, x) = u0 (x)
u (t, x−) = u (t, x+) = 0

The discretization method presented above leads to the θ-scheme system presented in the equation (18), i.e
A (θ)um = A (θ − 1)um−1 (57)

where

um =




um
1

um
2
...

um
i
...

um
N−3

um
N−2




(58)

and Am (θ) = Id + θkm ×H ×B with

H =




1
h1h2

0

0
. . . . . .
. . . . . . . . .

. . . 1
hihi+1

. . .
. . . . . . 0

0 1
hN−2hN−1




(59)

B =




2 −2h1
h1+h2

0

−2h3
h2+h3

2 −2h2
h2+h3

. . .

0
. . . . . . . . . . . .
. . . −2hi+1

hi+hi+1
2 −2hi

hi+hi+1
0

. . . . . . . . . −2hN−2
hN−3+hN−2

0 −2hN

hN−2+hN−1
2




(60)
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This last matrix could be decomposed as follows

B = B̃ + L (61)

where

B̃ =




2 −1 0

−1 2 −1
. . .

0
. . . . . . . . . . . .
. . . −1 2 −1 0

. . . . . . . . . −1
0 −1 2




(62)

is the usual matrix of the uniform grids case and

L =




0 α1 0

−α2 0
. . .

0
. . . . . . . . . . . .
. . . . . . 0 0

. . . . . . . . . αN−2

0 −αN−1 0




(63)

with
αi =

hi+1 − hi

hi + hi+1
(64)

Thus, for instance, in the case of a spatial mesh given by

xi = f

(
i

N

)
(65)

with an increasing function f ∈ C2 ([0, 1] , [x−, x+]) we have

αi =
Ci

N
(66)

with
|Ci| ≤

supx∈[0,1] |f ′′ (x)|
2 infx∈[0,1] f ′ (x)

(67)

Moreover, we know that in the following expression

A (θ) =
(
Id + θkm ×H × B̃

)

︸ ︷︷ ︸
C(θ)

+ θkm ×H × L︸ ︷︷ ︸
ε(θ)

(68)

all the eigenvalues λi of the the �rst matrix C (θ) could be written in the following way

λi = 1 + θkmν2
i (69)

because the eigenvalues of the matrix B̃ are known to be 4 sin2
(

iπ
N−1

)
for i ∈ {1, ..., N − 2} , and the matrix H

is diagonal de�nite positive so that the eigenvalues of the matrix H × B̃ are positive and could be written as
ν2

i . Thus, the matrix C (θ) is always inversible and

‖A (θ)− C (θ)‖∞ = ‖ε (θ)‖∞ ≤ 2km max
i

∣∣∣∣
1

hihi+1

∣∣∣∣ max
i

∣∣∣∣
hi+1 − hi

hi + hi+1

∣∣∣∣ (70)
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It means that
∀θ, ∃k0 (θ) | ∀km < k0 (θ) A (θ) is inversible

So, ∀km < k0 (θ)
um = A (θ)−1

A (θ − 1)um−1 (71)
and ∥∥∥A (θ)−1

A (θ − 1)
∥∥∥
∞
≤ ‖A (θ − 1)‖∞

‖A (θ)‖∞
≤ ‖C (θ − 1)‖∞ + ‖ε (θ − 1)‖∞

‖C (θ)‖∞ − ‖ε (θ)‖∞
(72)

Using (69) the biggest eigenvalue of the matrix C (θ) is a 1 + θkmν2
i∗ and the biggest eigenvalue of the matrix

C (θ − 1) is a 1 + (θ − 1) kmν2
i∗ with the same i∗. So, since they also get the same eigenvector we have

‖C (θ − 1)‖∞
‖C (θ)‖∞

=
∥∥∥C (θ)−1

C (θ − 1)
∥∥∥
∞

=
∣∣∣∣
1 + (θ − 1) kmν2

i∗

1 + θkmν2
i∗

∣∣∣∣

and for θ ≥ 1
2

−1 <
1 + (θ − 1) kmν2

i∗

1 + θkmν2
i∗

< 1

So ‖C(θ−1)‖∞
‖C(θ)‖∞ < 1 and since ‖ε (θ − 1)‖∞ and ‖ε (θ)‖∞ are respectiveley negligible with respect to‖C (θ − 1)‖∞

and ‖C (θ)‖∞ when ‖ε (θ)‖∞ tends to 0, we could conclude that
∥∥∥A (θ)−1

A (θ − 1)
∥∥∥
∞
≤ 1 when ‖ε (θ)‖∞ is

very small,so that the θ-scheme becomes stable. Finally, we have the following results :

Proposition 3 In the case of the Heat equation, for a θ-scheme where θ ≥ 1
2 , the numerical algorithm presented

above is stable (so is convergent) as soon as

2km max
i

∣∣∣∣
1

hihi+1

∣∣∣∣ max
i

∣∣∣∣
hi+1 − hi

hi + hi+1

∣∣∣∣ (73)

is small enough.

Remark 4 Using the de�nitions k = max km, h = maxhi, r = max km/ (hihi+1), we retry a stability condition9
similar this of the theorem 1.

9Because we deduce from the equation (70) that
‖ε (θ)‖∞ → 0 (74)
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3 The case of temporal non uniform grids
In the previous analysis, the grid can be non uniform in space, in time or both in space and time. In �gure
1, we have represented some examples of non uniform grids. Nevertheless, the grid in x is the same for every
value of tm. In this section, we present a modi�cation of the algorithm in order to use temporal non uniform
grids. This type of grids corresponds to �gure 2. In this case, we have to introduce a new notation x

(m)
i which

is the i-th point of the grid at time t = tm. The i-th point x
(m)
i is not necessarily the i-th point x

(m+1)
i at time

t = tm+1. Moreover, the number of discretisation points and the boundaries could change with tm.

Figure 1: Examples of non-uniform grids

We just present the main ideas to modify the previous algorithm, but we invite the reader to consult
the GAUSS code to understand the modi�cations in a more deaper way. Figure 3 presents the graphical
representation of temporal non uniform grids. The problem is that some points (or all points) of the grid x

(m)
i

could not coincide with the points of the grid x
(m+1)
i . But solving the equation system (24) for x

(m+1)
i requires

the numerical solution of u
(
tm, x

(m+1)
i

)
and not of u

(
tm, x

(m)
i

)
. The idea is then to `estimate' the values of

u
(
tm, x

(m+1)
i

)
knowing these of u

(
tm, x

(m)
i

)
. If we suppose that the solution is regular, this can be achieved

by an interpolation method. In our GAUSS code, we have choosen a cubic interpolation method. The numerical
solution at tm is then obtained by solving the following linear system

Λmum = − [Ξm−1ũm−1 + Ψm] + εm (75)

where ũm−1 is not the numerical solution um−1 obtained at the previous iteration, but the interpolated values
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Figure 2: Examples of temporal non-uniform grids

Figure 3: The problem of temporal non-uniform grids
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of um−1 for the vector x = x(m)of dimension N (m). Here is the iterative process:

u0 −→ ũ0 −→ u1 −→ ũ1 −→ u2 −→ ũ2 −→ . . .
↓ ↓ ↓ ↓ ↓ ↓

x(0) x(1) x(1) x(2) x(2) x(3)

N (0) N (1) N (1) N (2) N (2) N (3)

4 Some options pricing examples
In this section, we are going to study some particular cases of option pricing where we will compare the results
obtained with uniform grids and non uniform grids.

4.1 Non uniform grids generation
To create non uniform grids, we can use di�erent methods to generate the points. We present now three grid
generation methods:

1. We note G1 (x−, x+, N) the uniform grid, that is

X := {xi} =
{

x− :
(x+ − x−)

N − 1
: x+

}
(76)

2. In the second grid G2 (F, x−, x+, N), we consider a probability density function F (x). As in a sampling
procedure, the points {xi} correspond to N realizations of the random variable with distribution F. If we
consider a deterministic sampling, we have

F (xi)− F (xi−1) =
1
N

(77)

3. The third G3 (x?, α, x−, x+, N) use a transformation which places the points around a target x?. For
example, Tavella and Randall [2000] suggest the following transformation:

xi = x? + α sinh
(
c2

i

N
+ c1

(
1− i

N

))
(78)

where

c1 = sinh−1

(
x− − x?

α

)

c2 = sinh−1

(
x+ − x?

α

)
(79)

As explained by Tavella and Randall [2000], �this transformation maps the interval [0, 1] to the interval
[x−, x+] and grid points are therefore concentrated near the critical point x?�. α is a parameter which
determines the uniformity of the grid. If α is small, we obtain a highly non uniform grids whereas the
grid is uniform for a high value of α

Note that we can generate others non uniform grids by pointwise compound methods. Here are some
examples:

G4 = a1G1

(
x−, x+, N

)
+ a2G2

(
F, x−, x+, N

)
+ a3G3

(
x?, α, x−, x+, N

)

G5 = a1G3

(
x?

1, α1, x
−, x+, N

)
+ a2G3

(
x?

2, α2, x
−, x+, N

)

G6 =
√

G1 (x−, x+, N) G3 (x?, α, x−, x+, N) (80)
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4.2 European options
We introduce some notations. S (t) denotes the price of the underlying asset at time t. We assume that the
price S (t) is a geometric brownian motion under the risk-neutral probability Q

{
dS (t) = bS (t) dt + σS (t) dW (t)
S (t0) = S0

(81)

with W (t) a Q-Wiener process, b the cost-of-carry parameter and σ the volatility. Let us denote C (t0, S0) the
value of an European call option with strike K and maturity T . C (t0, S0) is given by the formula of Black
and Scholes [1973]. We may show that the price is the solution of the following PDE

{
1
2σ2S2 ∂2

S C (t, S) + bS ∂S C (t, S) + ∂t C (t, S)− rC (t, S) = 0
C (T, S) = (S −K)+

(82)

We have solved this equation with three grids:

1. The �rst grid is a uniform grid;

2. The second grid is based on the inversion of the delta greek coe�cient10;

3. The third one corresponds to the Tavella-Randall grids with x? = K and α = 2.

The parameters take the following numerical values: K = 100, T = 0.25, σ = 0.2, r = 0.05 and b = 0. For the
grid generation, we set x− = 50, x+ = 150, N = 151 and M = 251. We have represented the grids in �gure
4. Figure 5 presents the numerical errors. We remark that the non uniform grids give better results for this
numerical example.

4.3 American options
The pricing of American options is a problem of stopping time. The exercise of an American option at time τ
procures for the holder a payo� % (τ, S (τ)). The payo� function % is continuous and nonnegative. The option
is issued at time t0 = 0 and the expiration date is T . The no arbitrage argument imply that the price of an
American option C (t, S (t)) veri�es at each time t

C (t, S (t)) ≥ % (t, S (t)) (83)

The stopping region is therefore de�ned as

D = {(t, S (t)) ∈ [0, T ]×RS | C (t, S (t)) = % (t, S (t))} (84)

The continuation region is the complement of D in [0, T ]×RS

C = {(t, S (t)) ∈ [0, T ]×RS | C (t, S (t)) > % (t, S (t))} (85)

The stopping boundary is the frontier ∂C ⊂ D of C expressed in terms of the underlying asset. The optimal
stopping time is the �rst time the underlying asset reaches the stopping boundary. It is thus de�ned by

τ∗ = inf {τ ∈ [t, T ] | C (τ, S (τ)) = % (τ, S (τ))}
= inf {τ ∈ [t, T ] | (τ, S (τ)) ∈ D} (86)

The American call price is the solution of a variational inequalities problem:
{ [

1
2σ2S2 ∂2

S C (t, S) + bS ∂S C (t, S) + ∂t C (t, S)− rC (t, S)
]
(C (t, S)− % (τ, S)) ≤ 0

C (T, S) = % (τ, S) = (S −K)+
(87)

10Note that the delta of the call option scaled by e(b−r)τ is a probability distribution.
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Figure 4: Grids of the European call example

Figure 5: Numerical errors for the European call example
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We consider the previous example with the same parameters11 and we use a fourth grid which is a slight
modi�cation of the third grid � x? is not equal to the strike, but corresponds to the value 110. Figure 6
represents the stopping region D = {(t, S (t)) ∈ [0, T ]×RS | S (t) = S?}. We remark that non uniform grids
give a more smoothed stopping frontier.

Figure 6: Stopping region of the American call example

4.4 Binary and Barrier options
We consider now the case of exotic options, and in particular binary and barrier options. We use the previous
example of the European option, but we change now the payo� function. In the case of the Binary option, the
payo� is χ[S(T )≥K]. We have used the Tavella-Rendall grids with x? = K and di�erent values of α. When α is
equal to 200, the grid is almost uniform.

We then consider an Up-and-Out call option (UOC) with a barrier L equal to 110 and same parameters. For
the non uniform grid, we use the previous Tavella-Rendall grid but with x? = L. We consider also a temporal
non uniform grid de�ned as follows G = G3 (x? (t) , α (t) , x−, x+, N) with

• x? (t) = L and α (t) = 200 for t ∈ [
0, 1

3T
]
;

• x? (t) = L and α (t) = 20 for t ∈ [
1
3T, 2

3T
]
;

• and x? (t) = K and α (t) = 2 for t ∈ [
2
3T, T

]
.

11However, we set x− = 50, x+ = 200, N = 251 and M = 501.
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Thanks to formulas provided by Rubinstein and Reiner [1991], we have computed the absolute error for
the price and the greeks. Figure 8 corresponds to the binary option, whereas the errors for the barrier option
are shown in �gure 7. We remark that non uniform grids may give better results than uniform grids. Moreover,
it appears in the case of the barrier option that using a temporal grid can improve the results.

Figure 7: Numerical errors for the Binary call example

5 When non uniform grids do not work?
We have shown that we could obtain better results with a non uniform grids. However, if we analyse the stability
equation, we remark that the expression of the mesh ratio is

r1 = max
km

h2
i

(88)

In the case of uniform grids with mesh spacings k and h, r2 is equal to kh−2. With the same number of
discretization points, it comes necessarily that r1 > r2. And in some cases, the non uniform mesh ratio can be
very large. We can then face to some stability problems. We have illustrated them in �gures 9 and 10. In �gure
9, we use the previous example of pricing an European call option both with a uniform grid and a non uniform
grid based on the Tavella-Randall method and just modify the number N of points in space. We observe a
problem when the price S is close to the strike K in the case of the non uniform grids. This stability problem
has a big impact on the computation of the greeks. It can be explained by the fact that kmh−2

i is very large in
this region when N is important. Figure 10 represents the evolution of the mesh ratio with respect to N if the
other parameters are given12. The di�erence between uniform and non uniform mesh ratios can be very huge.

12We have taken t− = 0, t+ = 1, M = 51, x− = 50 and x+ = 150. The grid is the Tavella-Rendall's one with x? = 100.
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Figure 8: Numerical errors for the Barrier call example

Figure 9: Numerical errors when we increase the discretization number for the space
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Figure 10: Mesh ratio of uniform grids versus non-uniform grids

6 Conclusion
In this paper, we have proposed the use of non uniform grids to solve PDE problems in finance. We have derived
the θ-scheme algorithm and we have considered its stability and consistency. Moreover, we have povided some
examples who show the interest of such methods. However, we must be careful with these methods when the
number of discretization points is high because they may produce signi�cant errors.

The main advantage of non uniform grids in financeis that we can obtain better results when the number of
discretization points is low. It is very interesting in value-at-risk applications. To compute VaR with derivatives,
we have to revalue the mark-to-market of the portfolio. Because it is time consuming (when the valuation is
done by solving PDEs) and we do not neet greeks, we can use a number of discretization points smaller than
the one used by the trader. Non uniform grids can then be useful for that.

In this paper, we have used `naive' non uniform grids. However, it would be interesting to determine `optimal'
grids. For example, in the case of Barrier options, we can concentrate grid points near the strike K or the barrier
L or the price of the asset S0. We can also construct the grid by mixtures of the three grids. We have

a1G3

(
K, α1, S

−, S+, N
)

+ a2G3

(
L,α2, S

−, S+, N
)

+ a3G3

(
S0, α3, S

−, S+, N
)

(89)

with a1 + a2 + a3 = 1. It would be interesting to have an idea about the optimal values of a1, a2 and a3 and
α1, α2 and α3 of which minimize the criterion (u (t0, S0)− C (t0, S0))

2 where C (t0, S0) is the true value. And
we can complicate the problem by assuming that the a's and α's are time-dependent. Another example is the
Dupire model which is computational intensive. Solving the PDE of Dupire [1994] requires to calibrate the
volatility surface σ2 (τ,K) in each points of the grid. Because the time of computation can then be long13, we

13In fact, it never exceeds few seconds, which is a �long� time when we have to revalue a portfolio with thousands of products.
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can suggest to use a non uniform grid. The problem is what grid to use. Perhaps, the `optimal' grid is not
necessarily the same as for the Rubinstein-Reiner model.

Because the grids are determined ex ante, it would be also interesting to have a �rational� procedure which
generates the grid depending on the payo� function. We leave this development for later works.
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A Cubic spline interpolation
We follow the presentation of Shikin and Plis [1995]. Let the interval [a, b] with the grid $ de�ned by

a = x0 < x1 < · · · < xn = b (90)
De�nition 5 A cubic spline S$ (x) on $ is a real function with the properties:

1. S$ (x) ∈ C2 [a, b];
2. S$ (x) is a polynomial of order 3 on every segment $i = [xi, xi+1]

S$ (x) = Si (x) = αi + βi (x− xi) + γi (x− xi)
2 + δi (x− xi)

3 (91)

In the interpolation problem, we assume that the cubic spline's graph passes through the points (xi, yi). We
could show that (Stoer and Bulirsch [1993])

αi = yi

βi =
(

yi+1 − yi

hi+1

)
− hi+1

(S ′′i+1 (xi+1) + 2S ′′i (xi)
6

)

γi =
1
2
S ′′i (xi)

δi =
S ′′i+1 (xi+1)− S ′′i (xi)

6hi+1
(92)
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with hi = xi − xi+1. In order to determine the coe�cients of the polynomials, we need two more restrictions,
which are generally based on boundary conditions. For example, we could use these two end conditions:

• End conditions of the �rst type { S ′$ (x0) = y′0
S ′$ (xn) = y′n

(93)

• End conditions of the second type
{ S ′′$ (x0) = 0
S ′′$ (xn) = 0 (94)

Let us de�ne the following scalars

λi =
hi+1

hi+1 + hi

µi = 1− λi

νi =
6

hi+1 + hi

(
yi+1 − yi

hi+1
− yi − yi−1

hi

)
(95)

The cubic spline interpolation requires also to solve the system of the form




2z0 + λ?
0z1 = ν?

0

µizi−1 + 2zi + λizi+1 = νi i = 1, 2, . . . , n− 1
µ?

nzn−1 + 2zn = ν?
n

with zi := S ′′i (xi). In the case of the second type, we have λ?
0 = ν?

0 = µ?
n = ν?

n = 0. For the �rst case, we
have λ?

0 = µ?
n = 1, ν?

0 = 6h−1
1

(
h−1

1 (y1 − y0)− y′0
)
and ν?

n = 6h−1
n

(
y′n − h−1

n (yn − yn−1)
)
. Solving the previous

system lead us to �nd the values of αi, βi, γi and δi thanks to the equations (92).

B GAUSS implementation
PDE is a GAUSS implementation of the methods described in this paper. The library and its manual (Bodeau,
Riboulet and Roncalli [2000]) can be downloaded at the following url:

http://www.thierry-roncalli.com/#gauss_l10
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