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1 Introduction

The Basel Committee recently agreed to eliminate the separate floor capital requirement that had been
proposed for the Advanced Measurement Approaches (AMA). As a result there is no more regulatory
limit to the reduction of the capital charge which is obtained by using AMA in comparison with other
methodologies (such as Basic Indicator Approach and Standard Approach). This represents a strong
incentive for banks to develop internal models (via a Loss Distribution Approach or LDA) in order to
get a correct grasp of their true risks and to compute more accurate capital requirements than with
other one-size-fits-all methods.

Contrary to other methods which compute capital charges as a proportion of some exposure indicators
(e.g. gross income), LDA takes its inspiration from credit risk or market risk internal models where
frequency and severity distributions are compounded in order to evaluate the 99.9% quantile of the
total loss amount. In practice, as the compounding process does not result in closed-form expressions,
Monte-Carlo simulations are necessary for computing these quantiles. Most practionners will agree
on the idea that this is not the most difficult part of the process as Monte Carlo technology is now
a standard skill among quantitative analysts. On the contrary, the calibration of loss distributions is
the most demanding task because of the shortage of good-quality data.

First, risk managers do not have access to many data since most banks have started collecting data
only recently. Therefore, internal loss data must be supplemented by external data from public and/or
pooled industry databases. Unfortunately, incorporating external data is rather dangerous and re-
quires careful methodology to avoid the now widely-recognised pitfalls regarding data heterogeneity,
scaling problems and lack of comparability between too heterogeneous data. Our experience at Crédit
Lyonnais has taught us that incorporating external data directly into internal databases leads to
totally flawed results.

As a matter of fact, the main problem lies in the data generating processes which underlies the way
data have been collected. In almost all cases, loss data have gone through a truncation process by
which data are recorded only when their amounts are higher some (possibly ill-defined) threshold. As
far as internal data are concerned, these thresholds are defined by the global risk management policy.
In practice, banks’ internal thresholds are set in order to balance two conflicting wishes: collecting
as many data as possible while reducing costs by collecting only significant losses. In the same spirit,
industry-pooled databases try to enforce an explicit threshold. Finally, public database also pretend
that they record losses only above some threshold (generally much higher than for industry-pooled
data). Whichever type of databases (internal, industry-pooled, public) we talk about, they are all
truncated with various cut-offs and then can not be compared with one another nor pooled together
without any care. Furthermore, one may suspect actual thresholds to be rather different from stated
thresholds:

• (Internal data) Even though thresholds have been imposed by the global risk management,
they cannot always be made enforceable at business units level since small business units or
under-staffed units may be unable to comply.

• (Industry-pooled data) As no enforcement process does really exist, nothing ensures that con-
tributors actually comply with stated thresholds.

• (Public data) It is even worse for public database since they are fed with publicly-released losses
with no guarantee that all losses are recorded in an homogeneous way and according to the same
threshold.

As a result, we have come to the conclusion that stated thresholds can not be taken for granted and
should be considered as unknown parameters which have to be estimated. Secondly, actual thresholds
are likely to be higher than stated thresholds for the very same reasons as given above. Therefore,
loss data - especially industry-pooled and public data - may be severely biased towards high losses,
resulting in over-estimated capital charges. This issue is generally addressed by saying that, in short,
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internal data must be used for calibrating the main body of the severity distribution while external
data should be related to the tail of the distribution. As far as our knowledge, this methodology has
not yet received a rigorous description and has more to do with art than statistics. On the contrary,
we have tried to build a sound methodology based on maximum-likelihood principles. Our main idea is
to consider than the main source of heterogeneity comes from the different thresholds which underly
data generating processes. As a consequence, thresholds should be taken into account explicitly in
the calibration process in the form of additional parameters which have to be estimated along with
other parameters of the loss distribution. Provided that thresholds are carefully managed, internal
and external data are made comparable and the most part of heterogeneity is then eliminated. It is
also worth mentionning that, since our methodology relies on maximum-likelihood principles, we can
prove (in particular to our supervisors) that it is statistically sound and provides unbiased capital
charges.

The paper is organized as follows. We first provide a classification of the different bias which come
from the data generating process from which operational risk loss data are drawn. According to this
classification, we then propose a rigorous statistical treatment to correct all biases. Finally we provide
a real-life experiment to show how our methodology can be applied. In particular, we show that, if
thresholds are ignored (as commercial softwares often do), then capital requirements are considerably
over-estimated by up to 50 % or even more !

2 A typology of operational risk loss data

In this section, we discuss how external databases are built, which is a good starting point for assessing
to what extent operational risk databases are biased. Two types of external databases are encountered
in practice.

• The first type corresponds to databases which record publicly-released losses. In short these
databases are made up of losses that are far too important or emblematic to be concealed away
from public eyes. The first version of OpVar R© Database pioneered by PwC is a typical example
of these first-generation external databases.

• More recent is the development of databases based on a consortium of banks. It works as an
agreement among a set of banks which commit to feed a database with their own internal losses,
provided that some confidentiality principles are respected. In return banks which are involved
in the project are of course allowed to use these data to supplement their own internal data.
Gold of BBA (British Bankers’ Association) is an example of consortium-based data.

The two types of database differ by the way losses are supposed to be truncated. In the first case, as
only publicly-released losses are recorded, the truncation threshold is expected to be much higher than
in the consortium-based data. For example, the OpVar R© Database declares to record losses greater
than USD 1 million while consortium-based data pretend to record all losses greater than USD 25.000
for ORX database (or USD 10.000 by 2003, see Peemöller [7]).

Furthermore public databases, as we name the first type of external databases, and industry-pooled
databases differ not only by their stated threshold but also by the level of confidence one can place
on it. For example, nothing ensures that the threshold declared by a industry-pooled database is
the actual threshold as banks are not necessarily able to uncover all losses above this threshold even
though they pretend to be so1. Rather one may suspect that banks do not have always the ability to
meet this requirement yet. As a result, stated thresholds must be seen more like a long-term target
than a strong commitment.

As said before, the same argument applies to internal databases in a lesser but significant extent.
Business units inside a bank are supposed to report their losses according to some guidelines defined

1The ORX project seems more ambitious and proposes reporting control and verification. In particular, the financial
institution must prove its capability to collect and to deliver data if it wants to be a member of the ORX consortium.
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by the global risk management. In practice, business units do not always have the resources necessary
to comply. As a result, internal database suffer from truncation bias as well.

As an example, following is the kind of data risk managers have to deal with:

• dataset 1 from business unit 1 which declares to report – and does report effectively – loss
amounts above (say) 10.000 euros;

• dataset 2 from business unit 2 which is in the same position as business unit 1 but with a
threshold of 20.000;

• dataset 3 from business unit 3 which pretends to report above 10.000 euros but whose quality
of reporting channels does not ensure it really does;

• industry-pooled database which is fed by many contributors with different and unknown thresh-
olds, or with thresholds that are suspected to be different from the stated threshold;

• etc.

Risk managers and quantitative analysts have to use such heterogeneous data generating processes.
Unfortunately, as it will become obvious in the sequel, calibration is dramatically distorted and capital
charges are severely over-estimated if these data are pooled together without any care.

3 How to make data comparable ?

Our starting point says that the sample loss distribution is fundamentally different from the true loss
distribution. In statistical terms, the sample distribution has more to do with conditional distributions,
i.e. probability distribution conditionnally to losses higher than some thresholds. This is where
maximum likelihood appears.

Maximum likelihood is an asymptotically efficient method provided that the likelihood is correctly
specified, i.e. the sample distribution has been derived correctly. We note f (·; θ) the (true) loss distri-
bution where θ is a parameter caracterizing this distribution. In the case of a log-normal distribution,
θ is no more than the mean and the variance of the logarithm of the losses.

Since data are recorded above a threshold that we shall denote by H, the sample loss distribution
f∗ (·; θ) is equal to the true loss distribution conditionnally to the loss exceeding H, that is:

f∗ (ζ; θ) := f (ζ; θ | H = h) = 1 {ζ ≥ h} · f (ζ; θ)∫ +∞
h

f (x; θ) dx

Three cases may be encountered in practice:

• Threshold H is known for sure, i.e. actual threshold equals stated threshold. This is the ideal
case but also the less likely one. As we discuss before, it is safer to consider that stated and
actual thresholds may differ. As a result, H should be considered as unknown and calibrated
along with θ.

• Threshold H is unknown.

• There are more than one threshold. The multi-threshold case corresponds exactly to industry-
pooled data since there are a priori as many thresholds as contributors are involved. In the
limiting case of a public database, the number of contributors should be considered as almost
infinite, meaning that H follows a continuous distribution.
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As a result, in the multi-threshold case, the additional parameters are not only the thresholds
h1, . . . , hn where n is the number of contributors, but also the weights p1, ..., pn of each contrib-
utor (i.e. the number of loss data it has provided relatively to the total number of loss data). Finally,
the likelihood must be based on the sample probability distribution:

f∗ (ζ; θ, (hi) , (pi)) ≡ f (ζ; θ | H1 = h1) ∝ p1 + . . . + f (ζ; θ | Hn = hn) ∝ pn

Therefore, the total set of parameters is now:

θ, h1, . . . , hn, p1, . . . , pn

Let us mention that most commercial softwares do not take into account the thresholds. With our
notation, these softwares consider that n = 0 and that the sample distributions of the different
datasets are identically equal to the true distribution. As far as our knowledge, one commercial
software considers the case of n = 1 (with obviously p1 = 1). Its methodology is very close to what
Frachot and Roncalli [6] have proposed. In short, θ is calibrated with different h, which provides
the h 7→ θ (h) curve. H is then graphically determined like the inflexion point of the curve. It can be
mathematically proved that this rule of thumb gives a correct answer when n is actually equal to 1.
This methodology has however two pitfalls. First it is biased when more than one threshold are at
stake (i.e. industry-pooled data). Secondly, even in the single-threshold case, it leads to severe loss
of accuracy since all loss data lower than the inflexion point have to be dropped from the calibration
process. As a result, the unbiasedness property is obtained at the expense of a loss of accuracy.

The multi-threshold case which is the most likely in practice is much harder to treat correctly. It
requires high-level optimization algorithms we have imported from our past experience in internal
market risk and credit risk models. The point is that we now have a tool which deals with the general
case as exemplified in the following section.

4 Real-life capital computations

Calibration procedures are applied to a real-life example. Our tested procedures cover the whole
spectrum ranging from “naive” calibration (i.e. ignoring any potential thresholds) to full-information
maximum likelihood as just described.

4.1 Data description

As it is out of question to provide information about Crédit Lyonnais loss data, we have simulated
several datasets and the different calibration procedures are applied on these datasets. Let us suppose
we have to compute the capital requirement for one risk-type (say for example ‘External Fraud’). Data
come from 3 different sources whose data generating process is the following:

• Dataset 1 (from business unit 1): losses are truncated above 10 k euros. Reporting processes
have been fully audited concluding that business unit 1 complies with its stated threshold.

• Dataset 2 (from business unit 2): same but with a threshold equal to 15 k euros.

• Dataset 3 (from industry-pooled database): losses are supposed to be reported above 10 k euros
but, in practice, contributors are not at the same level of compliance. So there are as many
(unknown) thresholds as contributors. Moreover, since losses are anonymized, losses cannot be
linked to any specific contributor. External data are thus drawn from a mixture of different data
generating processes.

Simulations are specified in the following way:

• The true loss distribution is log-normal LN (
m,σ2

)
with m = 8 and σ = 2. All losses are

independently drawn from this probability distribution. The mean loss is thus equal to 22 k
euros.
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• The number of losses are respectively 2000 for dataset 1, 2500 for dataset 2 and 5000 for dataset
3.

• Dataset 3 is made of 3 contributors. Contributors’ actual thresholds are h1 = 10 k euros (1000
losses), h2 = 20 k euros (1500 losses), h3 = 50 k euros (2500 losses).

Following are some preliminary statistics. The true mean, variance and quantiles are given in brackets
when relevant.

Actual threshold Nbr Losses Sample µ Actual µ Sample σ Actual σ
Dataset 1 10 k euros 2000 10.39 8.00 0.97 2.00
Dataset 2 15 k euros 2500 10.75 8.00 0.95 2.00
Dataset 3 10, 20, 50 k euros 5000 11.25 8.00 1.00 2.00

We see that truncation implies that the sample mean loss (resp. variance) is much higher (lower) than
for the true distribution. This gives an example of how different the sample and the true distributions
may be. Let us now compute the Capital-At-Risk that we would obtain if we used the sample µ and σ
corresponding to each dataset. Computations are performed under the assumption that the frequency
distribution follows a Poisson distribution with a mean of 500 events per year.

CaR (99.9%). Actual CaR (99.9%)
Dataset 1 32.9 Mn euros 37.8 Mn euros
Dataset 2 45.9 Mn euros 37.8 Mn euros
Dataset 3 80.1 Mn euros 37.8 Mn euros

It is obvious that capital charge computations are totally flawed and may be dramatically over-
estimated.

4.2 Calibration procedures

Considering these “real-life” datasets, we then test the following procedures:

• Procedure 1: merge the 3 datasets together, which gives one single merged dataset. Apply
maximum likelihood ignoring any threshold effect, exactly as most commercial softwares would
do.

• Procedure 2: merge the 3 datasets together again. Apply maximum likelihood principle under
the assumption that all datasets share the same threshold (n = 1). The implicit threshold is
calibrated as in Baud, Frachot and Roncalli [4]. We solve (using obvious notations):

θ̂ = arg max
∑

i∈dataset 1 ln f∗ (ζi; θ, h, p = 1)+∑
i∈dataset 2 ln f∗ (ζi; θ, h, p = 1)+∑
i∈dataset 3 ln f∗ (ζi; θ, h, p = 1)+

for h ranging from 0 to 100 k euros. h is then estimated graphically as the inflexion point, that
is the threshold above which the estimate θ̂ stabilizes.

• Procedure 3: merge the 3 datasets together again. Apply maximum likelihood principle in
the general case where the number of relevant thresholds is unknown. The maximum likelihood
program is written as:

(
θ̂, ĥ1, . . . , ĥn, p̂1, . . . , p̂n

)
= arg max

∑
i∈dataset 1 ln f∗ (ζi; θ, (hi) , (pi))+∑
i∈dataset 2 ln f∗ (ζi; θ, (hi) , (pi))+∑
i∈dataset 3 ln f∗ (ζi; θ, (hi) , (pi))+
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• Procedure 4: do not merge the 3 datasets. Apply maximum likelihood by using the exact
conditionnal distribution for datasets 1 and 2. This implicitely assumes that risk managers
know the exact threshold for the two internal datasets. The maximum likelihood program is
written as:

(
θ̂, ĥ1, . . . , ĥn, p̂1, . . . , p̂n

)
= arg max

∑
i∈dataset 1 ln f∗ (ζi; θ, hi = 10000) +∑
i∈dataset 2 ln f∗ (ζi; θ, h = 20000)+∑
i∈dataset 3 ln f∗ (ζi; θ, (hi) , (pi))+

Procedure 1 poses no problem with standard statistical package we may find in commercial soft-
wares. As said before, Procedure 2 is being developped by one software. As far as our knowledge,
Procedures 3 and 4 have been implemented only at Crédit Lyonnais.

4.3 Empirical results

Procedure 1 ignores all thresholds and truncation biases. The parameters of the loss distribution
are estimated as:

µ̂ = 10.94 and σ̂ = 1.04

which have to be compared with the true parameters, µ = 8 and σ = 2. It is clear that Procedure 1
is totally flawed although there still exist consultants who propose this procedure in their commercial
offers. Regarding capital charge2, the procedure gives a 99.9% capital-at-risk of 61.8 Mn euros while
the true capital charge is 37.8 Mn euros, that is a more than 50% over-estimation !

Procedure 2 assumes one single threshold which is calibrated graphically. We can locate the threshold
at approximately h = 50 which corresponds to the highest threshold in our data. Parameters are found
to be equal to:

µ̂ = 8.41 and σ̂ = 1.90

This is not so bad but it requires to drop almost one half of available data (i.e. all data less than 50 k
euros). In particular, it implies a severe loss of accuracy. If we had performed our computations with
a less favorable context (fewer internal data, higher thresholds for external data), the results would
have been strongly inaccurate.

Procedure 3 considers the general case. Our procedure finds 4 thresholds:

h1 h2 h3 h4 p1 p2 p3 p4

Calibrated 10.02 15.00 20.09 49.61 32.9% 30.3% 11.4% 25.3%
Actual 10 15 20 50 31.6% 26.3% 15.8% 26.3%

where the actual weights are obtained as follows:

Total number of losses = 2000 + 2500 + 5000 = 9500

p1 =
2000 + 1000

9500
= 31.6%

p2 =
2500
9500

= 26.3%

p3 =
1500
9500

= 15.8%

p4 =
2500
9500

= 26.3%

From maximum likelihood properties, procedure 3 gives a consistent estimate of the thresholds and
their associated weights. In our sample, the main parameters are estimated as:

µ̂ = 8.49 and σ̂ = 1.88
2We remaind that the frequency distribution is taken as a Poisson process whose mean eaquals 500 events per year.
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Finally, regarding capital requirements, we obtain:

CaR = 40.0 Mn euros

which is much closer to the true capital-at-risk (37.8 Mn euros).

Procedure 4 is more demanding in terms of information since it requires to know that datasets 1 and
2 do not result from a mixture of different distributions with different thresholds, contrary to dataset
3. Instead, each of both datasets is associated to one single threshold. This is a valuable information,
which in turn should improve the accuracy of our estimates. We obtain

µ̂ = 7.95 and σ̂ = 2.00

and

h1 h2 h3 p1 p2 p3

Calibrated 10.03 19.9 50.1 16.9% 31.0% 50.1%
Actual 10 20 50 20% 30% 50%

Capital charge is then equal to:
CaR = 36.8 Mn euros

Even though one cannot conclude with only one trial, our results confirm that due to maximum
likelihood properties, Procedure 4 estimators seem more accurate than with any other procedure.
However one cannot recommend Procedure 4 because it relies on the idea that business units com-
ply perfectly to the stated thresholds, which at least should be confirmed by statistical tests. As a
conclusion, Procedure 3 is less efficient but it is able to deal with any data, no matter they fall into
the single-threshold or multi-thresholds category.

5 Future development

Previous calculations have been performed with the tool we have developed. All previous methodolo-
gies have been implemented for log-normal, exponential and Weibull distributions. It is remarkable
that it permits us to achieve the previous calculations in few minutes through a very user-friendly
Excel-based interface. Following are the further minor developments that will be added soon.

Our methodology is fully efficient for uncovering parameters of the true loss distribution. It is a direct
consequence of maximum likelihood properties and then are likely to be accepted by supervisors.
However, we are aware from our past experience that capital-at-risk calculations are quite sensitive
to these parameters. Therefore, supervisors will certainly demand banks to be able to bound their
capital-at-risk estimates into a confidence interval. This point is already mentionned in the last Basel
II paper [2].

Theoretically, this task is quite complicated because here confidence interval should aggregate three
sources of uncertainty: from parameters µ, σ, from parameters h and p, and from the fact that capital-
at-risk are computed by Monte Carlo simulations. This latter source of uncertainty is unimportant
since it can be reduced to almost zero provided that a sufficient number of simulations are drawn.
It takes computing time but time is not at stake for capital charge calculations. The uncertainty
surrounding thresholds’ estimates and their weights is probably not a cause of concern because capital-
at-risk does not seem to be very sensitive to small errors on these parameters (provided that parameters
µ, σ have been consistenly estimated, i.e. procedure 3 or 4 have been performed). Nonetheless, this
point remains to be proved theoretically but it would be rather difficult as a rapid inspection of the
log likelihood reveals that it is not differentiable with respect to these parameters. As far as we are
aware, the derivation of interval confidence for such kind of parameters (with respect to which the
log-likelihood behaves badly) results from quite recent and complex econometric papers. Our intuition
is that it is not worth investigating this point any further. Finally, the main source of uncertainty
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probably comes from parameters µ, σ. Contrary to thresholds parameters, the derivation of confidence
intervals is easy and requires simply the second derivative of the log-likelihood (with respect to µ, σ)
which is a by-product of the estimation process.

A second issue would be worth being investigated. It concerns the implementation of rigorous sta-
tistical tests to decide whether some weights are equal to zero and then should be removed from the
estimation process. In practice, we increase the number of possible thresholds n as long as the log-
likelihood keeps growing. However it is quite easy to implement a statistical test giving the optimal n
above which no (statistically) significant increase of the likelihood is to be expected. Contrary to the
computation of confidence interval, it does need neither the second derivative nor the first one. The
so-called likelihood ratio test should provide the answer with minimum computations.

6 Concluding Remarks

Intense reflections are being conducted at the moment regarding the way to pool heteregenous data
coming from both banks’ internal systems and industry-pooled databases. We propose here a sound
methodology. As it relies on maximum likelihood principle, it is thus statistically rigorous and should
be accepted by supervisors. We believe that it solves the most part of data heterogeneity and scaling
issues.
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de Matemática Financiera”, Instituto MEFF – Risklab, Madrid (http://gro.creditlyonnais.fr)

[4] Baud, N., A. Frachot, and T. Roncalli [2002], Internal data, external data, consortium
data: how to mix them for measuring operational risk, Crédit Lyonnais, Groupe de Recherche
Opérationnelle, Working Paper (http://gro.creditlyonnais.fr)

[5] Frachot, A., P. Georges and T. Roncalli [2001], Loss Distribution Approach for
operational risk, Crédit Lyonnais, Groupe de Recherche Opérationnelle, Working Paper
(http://gro.creditlyonnais.fr)

[6] Frachot, A. and T. Roncalli [2002], Mixing internal and external data for manag-
ing operational risk, Crédit Lyonnais, Groupe de Recherche Opérationnelle, Working Paper
(http://gro.creditlyonnais.fr)
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