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Abstract

Of the three main challenges of hedge fund replication, only replication of the well-
known nonlinearities of their returns remains undisputed. Recent advances in hedge fund
replication using factor models have shown that the use of Bayesian filters helps greatly
in capturing the dynamic allocation of assets of hedge fund managers, particularly in the
case of aggregates of hedge funds [33, 35]. Furthermore, from a practitioner’s perspective,
access to the alpha of the funds can be provided on top of capturing the dynamic exposures
by adopting a core/satellite approach to building the replication portfolio [35]. In this
working paper, we explore tentatively the solutions that Bayesian filters could provide to
the replication of hedge fund nonlinearities. Although, not entirely successful, our results
show promises and open new grounds for the field.

Keywords: Tracking problem, hedge fund replication, tactical asset allocation, Bayes filter,
particle filter, non-linear exposure.

JEL classification: G11, C60.
HF Replication nonlinear case — Tentative Plan

1 Introduction
Over the past decade, hedge-fund replication has encountered a growing interest both from an
academic and a practitioner perspective. Recently, Della Casa, Rechsteiner and Lehmann [10]
reported the results of an industry survey showing that, even though only 7% of the surveyed
institutions had invested in hedge fund replication products in 2007, three times as many were
considering investing in 2008. Despite this surge in interest, the practice still faces many critics.
If the launch of numerous products (indexes and mutual funds) by several investment banks
in the past year can be taken as proof of the attraction of the “clones” of hedge funds (HF) as
investment vehicles, there remain nonetheless several shortcomings which need to be addressed.
For instance, according to the same survey cited above, 13% of the potential investors do not
invest for they do not believe that replicating Hedge Funds’returns was possible; 16% deplore
the lack of track record of the products; another 16% consider the products as black boxes.
Finally, 25% of the same investors do not invest for a lack of understanding of the methodologies
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employed, while 31% of them were not interested for they see the practice as only replicating
an average performance, thus failing to give access to one of the main attractive features of
investing in one hedge fund, namely its strategy of management.

As a whole, the reasons put forth by these institutions compound different fundamental ques-
tions left unanswered by the literature. Since the seminal work of Fung and Hsieh [14], most of
the literature [1, 3, 4, 16, inter alia] has focused on assessing and explaining the characteristics
of HF returns in terms of their (possibly time-varying) exposures to some underlying factors.
Using linear factor models, these authors report the incremental progress in the explanatory
power of the different models proposed. Yet, for now, the standard rolling-windows OLS re-
gression methodology, used to capture the dynamic exposures of the underlying HF’s portfolio
has failed to show consistent out-of-sample results, stressing the difficulty of capturing the tac-
tical asset allocation (TAA) of HF’s managers. More recently, more advanced methodologies,
in particular Markov-Switching models and Kalman Filter (KF), have been introduced [5, 33]
and show superior results to the standard rolling-windows OLS approach. Using the Kalman
Filter methodology, Roncalli and Weisang [35] further argue and demonstrate that replicating
aggregates of hedge funds, e.g. funds of hedge funds, provides very satisfying results. Espe-
cially, when combined with a core/satellite approach, with a core replicating portfolio providing
the alternative beta of the target., and satellites of illiquid portfolios providing access to some
alpha.

Nonetheless, despite superior dynamic procedures and an ever expanding set of explanatory
factors, some nonlinear features of HF returns [11] as well as a substantial part of their perfor-
mance remain unexplainable, unless surmising ultrahigh frequency trading and investments in
illiquid assets or in derivative instruments by HF managers. To our knowledge, while commonly
accepted by most authors, because of practical difficulties, these explanations have not led to
a systematic assessment nor have been subject to systematic replication procedures.

In this paper, we take further the approach taken in [35]. We apply more advanced Bayesian
filters’ algorithms, known collectively as particle filters, to go beyond the linear Gaussian frame-
work of the Kalman filter. Our goal is to capture the nonlinearities documented on HF returns.
We consider what type of nonlinearities can arise, and what models can be used to explain them.

This paper is thus divided into three main sections. In section two, we provide the framework
in which this paper is inscribed, providing a formal definition of a tracking problem, and
casting Hedge Fund Replication (HFR) into a tracking problem. We also provide a brief review
of Bayesian filters and the methodologies which we use here to solve tracking problems. In
section three, we extend previous work to a non-Gaussian non-linear framework. Finally, in
section four, we provide our conclusions and the future directions we think should be pursued.

2 Framework

2.1 Hedge Fund Replication: Factor Models and the Gaussian Linear Case

Starting with the work of Fung and Hsieh [14] as an extension of Sharpe’s style regression
analysis [37] to the world of hedge funds, factor-based models were first introduced as tools
for performance analysis. The underlying assumption of Sharpe’s style regression is that there
exist, as in standard Arbitrage Pricing Theory (APT), a Return-Based Style (RBS) factor
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structure for the returns of all the assets that compose the investment world of the fund’s man-
ager [14, 37]. Factor-based models for hedge fund replication make a similar assumption but
use Asset-Based Style (ABS) factors. While RBS factors describe risk factors, and are used
to assess performance, ABS factors are directly selected with the purpose of being directly
transposable into investment strategies. ABS factors have been used to take into account dy-
namic trading strategies with possibly nonlinear pay-off profiles [1, 16]. The idea of replicating
a hedge fund’s portfolio is therefore to take long and short positions in a set of ABS factors
suitably selected so as to minimize the error with respect to the individual hedge fund or the
hedge fund index.

A generic procedure for HF replication using factor models can therefore be decomposed in two
steps. At step 1, one estimates a model of the HF returns as

rHF
k =

m∑
i=1

w(i)r
(i)
k + εk

Given the estimated positions ŵ(i) on ABS factor r(i) resulting from step 1, step 2 simply
constructs the “clone” of the hedge fund by

rClone
k =

m∑
i=1

ŵ(i)r
(i)
k

The factor-based approach is thus very intuitive and natural. There are however several caveats
to this exercise.

Contrary to the passive replication of equity indices, the replication of hedge funds returns
must take into account key unobservable determinants of hedge funds investment strategies
such as the returns from the assets in the manager’s portfolio; dynamic trading strategies; or
the use of leverage [14, 16]. Recall that hedge funds returns do not share the characteristics of
more classic investment vehicles, e.g. mutual funds, and are relatively uncorrelated to the main
asset classes — see, e.g., [14, Figures 1 and 2, page 280] and [15]. Broadly, the factor models
approach is subject to two types of difficulties. One is the in-sample explanatory power of step
1 described above being extremely low. Possible explanations for this are either an absence of
systematic risk exposure of the HF industry, or the occurrence of model specification risk due
to a faulty selection of the set of factors. Two, the out-of-sample replication is of poor quality.
This last difficulty can result, for example, from the presence of noise in the calibration process
in step 1, or from a violation of the implicit stationarity assumption of the time series in the
model.

One avenue which has been extensively illustrated along the past decade [14, 4, 20, inter
alia] was to work on the set of factors to include in the model. The underlying tenet of this
stream of literature is that both in-sample and out-of-sample poor performances of the factor
model are linked to the choice of the factors. Several rationales for different factor selections,
including economic arguments and statistical methodologies, have been tested throughout the
literature. For example, to different types of HF strategies (Convertible Arbitrage, Fixed
Income Arbitrage, Event Driven, Long/Short Equity, etc.) different sets of factors have been
proposed. Arguably, one possible reason behind the poor performance of linear factor models
is the presence of non-observable dynamic trading strategies producing nonlinear HF return
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profiles which will not be captured in a linear framework. Thus, in complement to observable
factors1, generally corresponding to asset classes, one proposed methodology [1, 16] is to build
synthetic factors corresponding to known trading strategies, including for example the writing of
options on equity indices. By construction, these synthetic factors can exhibit nonlinear returns.
This methodology thus attempts to render, by means of linear factor models, nonlinearities in
the HF returns by modeling the nonlinearities in the synthetic factors. The use of these
synthetic factors has been shown to improve the performance of the replicating factor models.
There are, however, practical and theoretical difficulties to the use of such a methodology, as
explained by Amin and Kat [6]:

“First, it is not clear how many options and which strike prices should be in-
cluded [...] Second, since only a small number of ordinary puts and calls can be
included, there is a definite limit to the range and type of non-linearities that can
be captured.”

Nonlinearities in HF returns have also been assessed in a more direct approach. Recently, factor
models including an option factor have been used to assess the nature and the extent of the
presence of nonlinearities in hedge fund returns [11]:

rHF
k =

m∑
i=1

w(i)r
(i)
k + δmax

(
r

(1)
k − s, 0

)
+ εk

where r(1)
k is an equity index, and s represents the strike (moneyness) of the option. As noticed

in [5], this methodology has so far not been implemented as a direct replication process, but
rather as an assessment tool for HF investors.

The results in [11] are interesting. For the global index, they cannot reject the null hypoth-
esis of linear returns, while at the category index level, they reject the hypothesis of linearity
of returns only for the event-driven and managed futures categories at the 5% level, and for
fixed-income arbitrage at the 10% level. Furthermore, testing fund by fund and correcting
for possible data snooping, they demonstrate that the hypothesis of linear returns can be re-
jected for only one fifth of the whole universe of hedge funds reported in the Lipper/TASS
database. Breaking down the universe into hedge-fund following arbitrage-based strategies
(convertible arbitrage, fixed-income arbitrage, and event-driven), equity-market neutral and
long-short strategies, and finally directional strategies (global macro, emerging markets, and
managed futures), their results indicate that respectively only 20%, 10 − 15%, and 20% of
these three groups exhibit significant nonlinearity with respect to the market return. As the
whole, these results suggest that looking at the indexes can be misleading. Moreover, theoreti-
cally, dynamic trading of standard assets results in nonlinear return profiles for perfect market
timers [26] suggesting that rather than nonlinear factors, one should focus on models capable of
capturing the dynamic allocation of HF managers. And, while not ruling out the necessity to
model nonlinearities in factor models in some cases, they underline the fact that linear models
are most of the time appropriate.

Besides the work on the set of factors, the literature also examined other issues whose results
can be summarized in the following way. Overall, on a general basis, linear factor models fail
the test of robustness — for a good review see [4] — giving poor out-of-sample results. It

1One set of factors often used can be found in [20].
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seems, however, that an economic selection of the factors provides significant improvement of
the out-of-sample tracking error of the clone hedge fund over other statistical methodologies.

Fairly recently, attempts to capture the dynamic nature of the HF portfolio allocation have
been explored in the literature. One method, used extensively [17, 20, 25, 21, inter alia], is to
use rolling-windows OLS where the coefficients

{
w

(i)
k

}
at time tk are estimated by running the

OLS regressions of
{
rHF
`

}k−1

`=k−L
on the set of factors

{
r

(i)
`

}k−1

`=k−L
for i = 1, . . . ,m. A common

choice for the window length L is 24 months, even though one could consider a longer time-span
trading-off the dynamic character of the coefficients for more stable and more robust estimates.

By means of an example, Roncalli and Teiletche [33] have demonstrated however that the
OLS-rolling window methodology captures poorly the dynamic allocation in comparison with
the Kalman filter (KF). The use of KF estimation however requires caution in its implementa-
tion, making the estimation of the positions

{
w

(i)
k

}
a non-trivial affair. These issues have been

explored inter alia by Roncalli and Weisang [35]. They further argue that hedge fund replica-
tion using the Kalman filter is a viable and practical investment alternative to aggregates of
hedge funds, like funds of hedge funds, if one take a core/satellite approach to the construction
of the replicating portfolio.

Markov Regime-Switching models have also been considered — see, e.g. [5]. The idea
therein is that HF managers switch from a type of portfolio exposure to another depending on
some state of the world, assumed to be discrete in nature. One possible interpretation is to
consider that the active management consists of changing the asset allocation depending on two
states of the economy (high and low). Justifying the number of states or their interpretation
is however tricky.

2.2 Method

This section exposes the framework developed in [35], and then provides a brief exposé of the
tools that we will use to explore the non Gaussian and non linear cases of hedge fund replication.

2.2.1 Definition of the tracking problem

We follow [7] and [31] in their definition of the general tracking problem. We note xk ∈ Rnx
the vector of states and zk ∈ Rnz the measurement vector at time index k. In our setting, we
assume that the evolution of xk is given by a first-order Markov model:

xk = f (tk,xk−1, νk)

where f is a non-linear function and νk a noise process. In general, the state xk is not observed
directly, but partially through the measurement vector zk. Thus, it is further assumed that
the measurement vector is linked to the target state vector through the following measurement
equation:

zk = h (tk,xk, ηk)

where h is a non-linear function, and ηk is a second noise process independent from νk. Our
goal is thus to estimate xk from the set of all available measurements z1:k = {zi, i = 1, . . . , k}.
The goal in a tracking problem is to estimate the state variable xk, the current state of the
system at time tk, using all available measurement z1:k = {z`}`=1:k.
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Remark 1 In the rest of the paper, the following system will be referred to as a tracking
problem (henceforth TP): {

xk = f (tk,xk−1, νk)
zk = h (tk,xk, ηk)

(1)

2.2.2 Link Between HF replication and Tracking Problems

Similarly to [35], we decompose the return of a hedge fund into two components

r
(HF)
k =

m∑
i=1

w
(i)
k r

(i)
k︸ ︷︷ ︸

TAA ABS factors

+
p∑

i=m+1
w

(i)
k r

(i)
k︸ ︷︷ ︸

HF ABS factors

(2)

where TAA stands for Tactical Asset Allocation. TAA is a type of investment strategies that
attempt to exploit short-term market inefficiencies by establishing positions in an assortment
of markets with a goal to profit from relative movements across those markets. These top-down
strategies focus on general movements in the market rather than on performance of individual
securities.
However, besides TAA, hedge fund managers may invest in a larger universe that encompass
TAA but also includes other alternative investment assets and strategies:

� stock picking strategies (which may be found in equity market neutral, long/short event
driven hedge funds);
� high frequency trading;
� non-linear exposures using derivatives;
� illiquid assets (corresponding to distressed securities, real estate or private equity).

The idea of HF replication, in particular to create investment vehicles, is to replicate the
first term on the RHS of (2). If we note ηk =

∑p
i=m+1w

(i)
k r

(i)
k , then HF replication can be

described as a TP: {
wk = wk−1 + νk

r
(HF)
k = r>k wk + ηk

(3)

2.2.3 Capturing Tactical Allocation with Bayesian Filters

The prior density of the weight vector (state vector) at time k is given by the Chapman-
Kolmogorov equation

p
(
wk | rHF

1:k−1

)
=
∫
p (wk | w1:k−1) p

(
wk−1 | rHF

1:k−1

)
dwk−1 (4)

where we used the fact that our model is a first-order Markov model to write p
(
wk | w1:k−1, rHF

1:k−1
)

=
p (wk | w1:k−1). This equation is known as the Bayes prediction step. It gives an estimate of
the probability density function of wk given all available information until k − 1. At time k,
as a new measurement value r(HF)

k becomes available, one can update the probability density
of wk

p
(
wk | r

(HF)
1:k

)
∝ p

(
r

(HF)
k | wk

)
p
(
wk | r

(HF)
1:k−1

)
(5)
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This equation is known as the Bayes update step. The Bayesian filter corresponds to the system
of the two recursive equations (4) and (5). In order to initialize the recurrence algorithm, we
assume the probability distribution of the initial state vector p (w0) to be known.

Using Bayesian filters, we do not only derive the probability distributions p
(
wk | r

(HF)
1:k−1

)
and

p
(
wk | r

(HF)
1:k

)
, but we may also compute the best estimates ŵk|k−1 and ŵk|k which are given

by
ŵk|k−1 = E

[
wk | r

(HF)
1:k−1

]
=
∫

wkp
(
wk | r

(HF)
1:k−1

)
dwk

and
ŵk|k = E

[
wk | r

(HF)
1:k

]
=
∫

wkp
(
wk | r

(HF)
1:k

)
dwk

Remark 2 In this paper, we used two type of Bayesian filters to solve (3): Kalman filters and
particle filters to conduct our research. All the computations done in this paper on particle filters
have been done using the public domain Gauss library PF [34] with 50000 particles whereas we
have used the Gauss library TSM [32] for Kalman filter.

Particle filters Particle filtering methods are techniques to implement recursive Bayesian
filters using Monte-Carlo simulations. The key idea is to represent the posterior density func-
tion by a set of random samples with associated weights and to compute estimates based on
these samples and weights [7, 22, 28, 29, 30, 31]. As the samples become very large Ns � 1,
this Monte-Carlo approximation becomes an equivalent representation on the functional de-
scription of the posterior pdf. To clarify ideas2, let {ws

k, ω
s
k}
Ns
s=1 denotes a set of support

points {ws
k, s = 1, . . . , Ns} and their associated weights {ωsk, s = 1, . . . , Ns} characterizing the

posterior density p
(
wk | r

(HF)
0:k

)
. The posterior density at time k can then be approximated as:

p
(
wk | r

(HF)
k

)
≈

Ns∑
s=1

ωskδ (wk −ws
k) (6)

We have thus a discrete weighted approximation to the true posterior distribution. One common
way of choosing the weights is by way of importance sampling — see for example [7, 22, 28,
31]. This principle relies on the following idea. In the general case, the probability density
p
(
wk | r

(HF)
k

)
is such that it is difficult to draw samples from it. Assume for a moment that

p (w) ∝ π (w) is a probability density from which it is difficult to draw sample from, but for
which π (w) is easy to evaluate. Hence, up to proportionality, so is p (w). Also, let ws ∼ q (w)
be samples that are easily drawn from a proposal q (·), called an importance density. Then,
similarly to 6, a weighted approximation of the density p (·) can be obtained by using:

p (w) ≈
Ns∑
s=1

ωsδ (w−ws)

where:
ωs ∝

π (ws)
q (ws)

2Note that the succinct presentation given here of particle filters is adapted to our first-order Markovian
framework.
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is the normalized weight of the s-th particle. Thus, if the samples {ws
k} were drawn from a

proposal density q
(
wk | r

(HF)
k

)
, then the weights in (6) are defined to be:

ωsk ∝
p
(
ws
k | r

(HF)
k

)
q
(
ws
k | r

(HF)
k

) (7)

The PF sequential algorithm can thus be subsumed in the following steps. At each iteration,
one has samples constituting an approximation of p

(
ws
k−1 | r

(HF)
k−1

)
and wants to approximate

p
(
ws
k | r

(HF)
k

)
with a new set of samples. If the importance density can be chosen so as to

factorize in the following way:

q
(
wk | r

(HF)
k

)
= q

(
wk | wk−1, r

(HF)
k

)
× q

(
wk−1 | r

(HF)
k−1

)
(8)

then one can obtain samples {ws
k} by drawing samples from q

(
ws
k | r

(HF)
k

)
. To derive the

weight update equation:

p
(
wk|r

(HF)
k

)
=

p
(
r

(HF)
k | wk, r

(HF)
k−1

)
× p

(
wk | r

(HF)
k−1

)
p
(
r

(HF)
k | r(HF)

k−1

)
=

p
(
r

(HF)
k | wk, r

(HF)
k−1

)
× p

(
wk | wk−1, r

(HF)
k−1

)
p
(
r

(HF)
k | r(HF)

k−1

) × p
(
wk−1 | r

(HF)
k−1

)

=
p
(
r

(HF)
k | wk

)
× p (wk | wk−1)

p
(
r

(HF)
k | r(HF)

k−1

) × p
(
wk−1 | r

(HF)
k−1

)
∝ p

(
r

(HF)
k | wk

)
× p (wk | wk−1)× p

(
wk−1 | r

(HF)
k−1

)
(9)

By substituting (8) and (9) into (7), the weight equation can be derived to be:

ωsk ∝ ωsk−1
p
(
r

(HF)
k | ws

k

)
× p

(
ws
k | ws

k−1

)
q
(
ws
k | ws

k−1, r
(HF)
k

) (10)

and the posterior density p
(
wk|r

(HF)
k

)
can be approximated using (6). We refer the reader to

[7] for a more detailed but concise exposé of the differences between the different PF algorithms:
sequential importance sampling (SIS), generic particle filter, sampling importance resampling
(SIR), auxiliary particle filter (APF), and regularized particle filter (RPF). We provide a suc-
cinct exposé of the SIS, SIR algorithms as well as the generic particle filter’s and the regularized
particle filter’s in Appendix A. One important feature of PF is that not one implementation
is better than all the others. In different contexts, different PFs may have wildly different
performances.

3 Hedge Fund Replication: the Non-Gaussian and Non-Linear
Case

As seen in [33, 35], HF replication using the KF can provide good results, making it possibly
the best method so far to estimate and implement HF clones. However, one may question the
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wisdom of using a Gaussian linear framework. Indeed, the distributions of HF returns are well
known to exhibit skewness and excess kurtosis, and nonlinear effects have been documented in
HF returns ever since the seminal paper of Fung and Hsieh in 1997 [14]. In the following section,
we relax the Gaussian and linear assumptions. Our goal here is less to provide an “off-the-shelf”
solution to the problem of replication than to examine the impact of each assumptions on the
quality of the replication. Note that some of the methods (especially those requiring particle
filters) used in the following section require some careful implementation, as well as time to
be carried out. The plan of the section is the following. We start by looking at the Gaussian
distribution assumption. In a second time, we look at the problem of nonlinear assets. Our
approach can then be decomposed into three main angles: replicating nonlinear assets; the
use of option factors that are determined in a manner exogenous to the replication procedure;
and finally, a very general and inclusive approach to the replication procedure using nonlinear
assets.

3.1 A fundamental example

We consider the example of replicating the HFRI index as in [33]. The base model considered
(6F) is 

r
(F )
k =

∑6
i=1w

(i)
k r

(i)
k + ηk

wk = wk−1 + νk
Qk = diag

(
σ2

1, . . . , σ
2
m

) (11)

The set of factors that served as a basis for this exercise is: an equity exposure in the S&P 500
index (SPX), a long/short position between Russell 2000 and S&P 500 indexes (RTY/SPX), a
long/short position between DJ Eurostoxx 50 and S&P 500 indexes (SX5E/SPX), a long/short
position between Topix and S&P 500 indexes (TPX/SPX), a bond position in the 10-years US
Treasury (UST) and a FX position in the EUR/USD.

3.2 The Gaussian distribution assumption

The Gaussian distribution is a fundamental assumption to the optimality of the use of KF for
HF replication (or for rolling OLS regression as it is). It is however well known that return
distributions of hedge funds exhibit negative skewness and positive kurtosis, rendering the use
of a Gaussian framework faltering, and requiring at least inquiring into its adequacy. Moreover,
one of the attractive features of the approach advocated by Kat [23, for a recent exposé] is to
take into account in the replication process stylized facts — such as higher moments of the
returns distribution, in particular skewness and kurtosis — in order to provide investors a more
accurate exposition to the risk-return profile of the HF industry. Given the relative success of
replicating hedge funds using the KF, it may not be necessary to introduce nonlinearities in the
factors or in the model’s structure to obtain a better replication process. A simple relaxation
of the Gaussian assumption, particularly by taking into account the third and fourth moments
of the distributions, may be enough to improve the results significantly.

To illustrate the departure from the Gaussian assumption, we reported in Figure 1 three com-
parative graphics using the results of the 6F model presented in the paragraph above. The top
graphic compares the probability density function of the tracking errors êk obtained using KF
(blue line) against a Gaussian approximation of the same density function (dashed green line).
The bottom-left graphic compares the probability density function of the HFRI index returns
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r
(RF)
k (blue line) against the probability density function of the returns of the replicating clone
rClone
k (dashed green line). The bottom-right graphic compares the probability density function
of the clone’s returns (blue line) against a Gaussian approximation of the same distribution
(dashed green line). One can make several comments on Figure 1. First, as illustrated, there is
a clear violation of the Gaussian assumption for all three of the estimated distributions. How-
ever, not all departures are of the same magnitude. It is obvious that the Clone’s distribution
is the closest to a Gaussian distribution, probably as a consequence of the KF procedure. Most
of the departure of the HFRI returns distribution seems to remain in the tracking error. Thus,
in the following, we relax the Gaussian assumption on the distribution of the tracking errors,
while keeping the rest of the model’s structure (Gaussian innovations of the state variables and
linear evolution equation).

Figure 1: Departure from the Gaussian distribution assumption

Top: kernel estimate of the density function of the tracking error êk (blue line) vs. Gaussian approximation (dashed green
line);
Bottom-left: kernel estimate of the density function of the HFRI index returns r(RF)

k
(blue line) vs. kernel estimate of

the density function of the replicating clone’s returns rClone
k (dashed green line);

Bottom-right: kernel estimate of the density function of the replicating clone’s returns rClone
k (blue line) vs. Gaussian

approximation (dashed green line).

This extended tracking problem can be formalized as:{
r

(F )
k =

∑m
i=1w

(i)
k r

(i)
k + ηk

wk = wk−1 + νk

with ηk a general noise process with distributionH. In the following, we assume thatH is a Skew
t distribution ST (µη, ση, αη, νη), obtained by perturbing a Student t distribution (for further
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details, cf. [8]). We hope to better capture the higher moments of the HFRI returns distribu-
tion. One could consider this methodology as one possible step toward incorporating some of the
“sexiest” features of Kat’s approach to the robust factor models approach. Note however that,
since the returns are not normally distributed, we must resort to using particle filters to obtain
the estimates ŵk|k−1. The unknown parameters to estimate are θ = {σ1, . . . , σm, ση, αη, νη}.
We consider two estimation methods.

(PF #1) A two-steps procedure consisting of a run of the KF algorithm to obtain ML estimates
of {σ̂i, i = 1, . . . ,m}, followed by an ML estimation of the parameters ση, αη, νη3 of the
Skew t distribution based on the tracking errors of the KF run.

(PF #2) A generalized method of moments (GMM) estimation procedure where the m+ 3 param-
eters are estimated together. The m+ 3 moments conditions are given by:

– the first moment considered is mk,1 = ek because we favor smaller tracking errors;
– the next moments are chosen to impose an orthogonality condition between the

tracking error ek and the return r(j)
k of the jth asset: mk,j+1 = ekr

(j)
k , j = 1, . . . , m;

– The last two moments take into account the skewness and kurtosis of the hedge fund
returns. They are defined as mk,m+n−1 =

(
rClone
k − r̄Clone

)n
− µn (n = 3, 4) where

µn is the empirical nth central moment of r(HF)
k .

The statistics of the resulting clones obtained4 are given in Table 1. Note that the estimation
procedure using the GMM method is unfortunately extremely long and does not always con-
verge to a solution. Compared to the KF results (LKF), notice that we obtain better results
for the performance (µ̂1Y), but the volatility of the trackers’ returns (σ̂1Y) and the standard
deviation of tracking errors (σTE) are also higher, providing only a small improvement in terms
of Sharpe ratios. The results on skewness and kurtosis are clearly disappointing as the sample
values are comparable to those obtained by the KF estimation. One possible explanation for
these poor results is that GMM makes a trade-off between the first-moment condition (maxi-
mizing πAB) and the last two moment conditions (matching skewness and kurtosis). It does not
mean however that building clones with more kurtosis and negative skewness is not possible.
Let’s consider for example a third set of estimates for the parameters of the Skew t distribution

(PF #3) The estimates are those of (PF #2) except for the parameter α̂η which is forced to -10.

As reported in Table 1, in this case, the tracker’s returns present higher kurtosis but the
tracking error’s volatility is higher too. Other possible explanations for the poor success of these

3By assumption, µη = 0.
4The estimated values for the parameters are reported in the following table:

PF #1 PF #2 PF #3
σ̂1 0.023 0.037 0.037
σ̂2 0.015 0.016 0.016
σ̂3 0.040 0.044 0.044
σ̂4 0.021 0.014 0.014
σ̂5 0.027 0.022 0.022
σ̂6 0.025 0.026 0.026
σ̂η 0.009 0.003 0.003
α̂η -1.131 -1.130 -10.00
ν̂η 3.738 3.757 3.757
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methods are the Gaussian dynamics of the state variables or the lack of non-linear exposures in
the tracker. It is for now difficult to test for the first hypothesis as the number of parameters
to estimate would grow significantly — it would be a 6-variate Skew t distribution on the state
vector — and the execution time of the procedure would be absurdly long. As for the second
hypothesis, we address it in the rest of this section on HF replication in the non-Gaussian
non-linear case.

Table 1: Results with a Skew t distribution ST (0, ση, αη, νη)
The different statistics reported are µ̂1Y the annualized performance; σ̂1Y the yearly volatility;
s the sharpe ratio; γ1 the skewness; γ2 the excess kurtosis; πAB the proportion of the HF index
performance explained by the tracker and σTE the yearly tracking error. ρ, τ and % are respectively
the linear correlation, the Kendall tau and the Spearman rho between the monthly returns of the
HF index and the tracker. All statistics are expressed in percents.

µ̂1Y σ̂1Y s γ1 γ2
HF 9.94 7.06 0.77 -0.57 2.76
LKF 7.55 6.91 0.45 -0.02 2.25
PF #1 7.76 7.44 0.45 -0.03 2.02
PF #2 7.57 7.28 0.43 -0.11 1.93
PF #3 6.90 7.99 0.31 -0.57 2.88

πAB σTE ρ τ %

LKF 75.93 3.52 87.35 67.10 84.96
PF #1 78.09 4.03 84.71 63.49 81.94
PF #2 76.13 4.25 82.51 61.60 80.20
PF #3 69.43 5.11 77.62 54.75 73.55

3.3 Taking into account non-linear assets

Considering non-linear assets as factors in the replication model does not change the structure
of the TP system. It suffices to notice that by considering a universe of factors composed of
respectively m1 and m2 linear and nonlinear assets, the TP can still be written as:

r
(F )
k =

m1∑
i=1

w
(i)
k r

(i)
k +

m1+m2∑
i=m1+1

w
(i)
k r

(i)
k + ηk

wk = wk−1 + νk,

and even though some factors are “nonlinear” assets, the exposures w(i)
k are still linear and

the TP system may be solved in the same way as in the previous section. The difficulty
however with non-linear assets is to price the corresponding strategy. There are often only two
possibilities:

1. Build ourselves the non-linear strategy. In this case, we have to calibrate the different
parameters of the model, compute the backtest and use the backtest of the strategy as
the non-linear factor.

2. Use custom indexes provided by investment banks like JP Morgan, Goldman Sachs, etc.
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The second solution is often easier to implement because the first method assumes that we have
the capacities to trade the strategy. It may however introduce biases because the performance
of the index taken as factor depends on the proprietary strategy and on the market data of the
index provider.

One must say that this methodology is certainly not new, and has been used, under one form
or another by various authors [1, 2, 16, inter alia], with a relative success in increasing the
explanatory power of the replication model. However, considering the difficulty of pricing such
nonlinear assets, the question of whether the inclusion of a nonlinear asset can susceptibly
provide a better replication methodology is of particular value. Indeed, the argument has been
made that the component of HF returns due to non-linear assets in their portfolios can be
partially replicated using the alternative beta methodology presented above since options may
be replicated by delta hedging, i.e. taking linear positions in standard assets. We examine
this claim in the following section before considering the introduction of option factors in the
model.

3.3.1 Replicating non-linear assets

As argued above, since options may be replicated by delta hedging, the component of HF returns
due to non-linear assets could theoretically be partially replicated by alternative beta. The
argument however is more relevant as a marketing strategy for brokers of HF replicators than
truly robust. To illustrate our claim, we provide below an example of the replication of a non-
linear asset whose underlying strategy is well known using a Kalman filter and the methodology
presented above. We consider the replication of the CBOE S&P 500 BuyWrite index more
commonly known under the name BXM. The description of the BXM is the following5:

The BXM is a passive total return index based on buying an S&P 500 stock
index portfolio, and selling the near-term S&P 500 Index call option, generally on
the third Friday of each month. The SPX call written will have about one month
remaining to expiration, with an exercise price just above the prevailing index level
(i.e., slightly out of the money). The SPX call is held until expiration and cash
settled, at which time a new one-month, near-the-money call is written.

One may wonder if the replication of this non-linear asset with linear exposures on the S&P
500 index provides satisfying results, which would support the alternative beta argument for
nonlinear asset replication. We consider 4 replicating portfolios (trackers):

1. A long position on the SPX index.

2. An alternative beta (AB) tracker using a monthly rebalacing method.

3. A portfolio consisting of a position of 57.9% on SPX futures and a position of 100%
in cash. The 57.9% figure corresponds to the average value of the dynamic alternative
beta. This tracker provides the traditional beta (TB) tracker as a benchmark for the AB
trackers.

4. Finally, we consider an alternative beta (AB) tracker using a daily rebalacing method.
This replicating portfolio uses the same methodology as the second tracker presented but
at a higher frequency for purpose of comparing the two.

5This definition is taken from the website of the Chicago Board Options Exchange (CBOE) at http://www.
cboe.com/micro/bxm/introduction.aspx.
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The results of the replicating portfolios are reported in Figure 2 and Table 2. Notice that the
use of a monthly rebalancing dynamic portfolio does not provide better results than using a
constant beta portfolio. In order to improve the results, we have to use a higher frequency, a
daily rebalancing period in our example. What happens? Let’s call δk the delta of the hedging
portfolio of the written call. The estimated weight ŵk at time k may be approximated by
1− δk−1 where δk−1 is the delta at time k− 1. When one writes the call ATM option with one
month of remaining to expiration, ŵk is close to 50%. During the life of the option, the change
in δk, and thus in ŵk, is relatively smooth and at the expiration date of the option, δk is equal
to 1 or 0 depending if one exercises the option or not. If the frequency is daily, the estimated
weight ŵk will reflect this behavior varying smoothly everyday. If the frequency is monthly, δk
is independent from δk−1. In this case, it is more difficult to replicate the BXM index and that
explains that the monthly AB tracker has a comparable volatility of tracking errors than the
TB tracker (with fixed weights ŵk = 0.579).

Figure 2: Tracking the BXM index

Now, there are several lessons to learn from this example. First, and it seems to provide support
to the claim hereby tested, it is true that one can replicate option-based strategy by means of
a dynamic alternative beta replication procedure. However, one must not forget that at best,
in most cases, HF returns are only available on a monthly basis. As such, as we have seen,
nonlinearities are not amenable to be replicated using only linear positions in standard assets.
This explains why, even if its implementation is sometimes questionable because of its inherent
difficulty, we believe that the presence of nonlinearities, when attested, often calls for the use
of nonlinear asset factors. Before exploring this avenue in the rest of this section, there is one
more comment to make which will be useful in the last section of this paper when we consider
the access to the alpha of the HF strategy. Recall that we defined in section ?? the alternative
alpha as the unexplained residual of the replicated strategy. Recall also that when we examined
above the Gaussian assumption, most of the departure was captured by the distribution of the
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Table 2: Statistics of BXM trackers

µ̂1Y σ̂1Y s γ1 γ2
BXM 8.69 9.92 0.43 -1.17 3.53
SPX 8.18 14.29 0.26 -0.58 0.62
AB (monthly) 6.90 8.55 0.29 -0.49 1.09
TB 6.75 8.15 0.29 -0.57 0.59
AB (daily ) 7.75 9.91 0.34 -0.75 2.11

πAB σTE ρ τ %

SPX 94.09 7.44 87.21 64.86 82.91
AB (monthly) 79.40 5.10 85.81 63.79 82.06
TB 77.69 4.88 87.20 64.96 83.02
AB (daily ) 89.22 3.40 94.13 69.29 85.46

tracking error. The point here is simply that, it appears if there are non-linear assets in the
HF portfolio, a substantial part of the introduced nonlinearities will remain uncaptured and
will appear in the alternative alpha. It thus prompts the thought that some of the alpha’s
performance is not accessible because its replication requires trading at high frequencies.

3.3.2 Using option factors with exogenous strikes

We now consider the linear factors (henceforth LF) model to which we add one non-linear asset
factor. The tracking problem becomes: r

(HF)
k =

m∑
i=1

w
(i)
k r

(i)
k + w

(m+1)
k r

(m+1)
k (sk) + ηk

wk = wk−1 + νk

where r(m+1)
k (sk) is the return of a systematic one-month option selling6 strategy on S&P

500 and sk is the (exogenous) strike of the option at time k. Different values of the strike
(moneyness) were implemented by taking the arbitrary values 95%, 100%, 105%. Note that,
in this case, the TP system remains linear with respect to the state vector and we may solve it
using Kalman filter. To price the option strategy, we used the Bloomberg’s implied volatility
data7. Results are reported in Table 3. It is interesting to note that even if we find non-linear
factors (henceforth NLF) trackers with higher performance and Sharpe ratios than LF’s, we
do not obtain better results in terms of the volatility of the tracking error and the correlation
between the HF index and the clone is not higher than the LF tracker.

Agarwal and Naik [2] find evidence that some hedge fund strategies exhibit the non-linear
payoff structure described above. Diez de los Rios and Garcia [11] further find that there is
statistical support for rejecting linearity only for a few categories (emerging markets, short bias
and managed futures). If we consider the HFRI Macro and Relative Value indices, considering
the results and the improvement in the proportion of HF returns explained, one may consider,
in a first approach, that they exhibit this non-linear structure. However, these results are

6It is not necessary to consider an option buying strategy because we do not constrain the weights w(m+1)
k to

be positive. So, a negative weight on the selling strategy is equivalent to a long position on the buying strategy.
7The corresponding Bloomberg’s functions are HIST_CALL_IMP_VOL and HIST_PUT_IMP_VOL.
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Table 3: Results of replicating the HFRI index using call or put options

sk µ̂1Y σ̂1Y s γ1 γ2
HF 9.94 7.06 0.77 -0.57 2.76
LKF 7.55 6.91 0.45 -0.02 2.25

95% 7.61 6.93 0.46 -0.21 2.91
Call 100% 7.92 6.94 0.50 -0.22 2.92

105% 8.14 6.88 0.54 -0.06 2.40
95% 7.77 6.98 0.48 -0.22 3.35

Put 100% 8.15 6.97 0.53 -0.20 3.29
105% 8.27 6.92 0.55 -0.04 2.60

πAB σTE ρ τ %

LKF 75.93 3.52 87.35 67.10 84.96
95% 76.62 3.55 87.12 65.48 83.56

Call 100% 79.74 3.58 86.95 65.53 83.61
105% 81.90 3.55 87.07 66.81 84.57
95% 78.20 3.49 87.68 66.61 84.33

Put 100% 81.98 3.53 87.40 66.60 84.22
105% 83.21 3.48 87.62 67.68 85.21

Table 4: Results of replicating the HFRI Macro index using call or put options

sk µ̂1Y σ̂1Y s γ1 γ2
HF 9.53 6.95 0.72 0.10 0.95
LKF 6.67 5.97 0.38 0.36 2.06

95% 6.70 5.39 0.43 0.03 1.07
Call 100% 6.85 5.58 0.44 0.20 1.06

105% 7.47 5.68 0.54 0.03 1.45
95% 6.81 5.77 0.42 -0.13 2.17

Put 100% 7.22 5.81 0.48 -0.11 1.83
105% 7.99 5.95 0.60 -0.06 1.43

πAB σTE ρ τ %

LKF 69.97 5.71 61.82 44.21 62.28
95% 70.26 5.69 60.13 43.00 60.35

Call 100% 71.86 5.69 60.71 43.35 60.57
105% 78.31 5.55 63.14 43.95 61.89
95% 71.42 5.61 62.54 43.74 61.65

Put 100% 75.73 5.59 63.07 43.86 61.63
105% 83.79 5.45 65.40 45.47 63.30
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Table 5: Results of replicating the HFRI Relative Value index using call or put options

sk µ̂1Y σ̂1Y s γ1 γ2
HF 8.50 3.62 1.11 -2.76 15.22
LKF 5.77 2.75 0.52 0.16 1.18

95% 6.44 2.97 0.69 -0.48 3.29
Call 100% 6.71 3.02 0.77 -0.46 3.69

105% 7.13 2.97 0.92 0.12 1.97
95% 6.75 4.28 0.55 -6.49 66.57

Put 100% 6.97 3.07 0.84 -0.84 6.06
105% 6.81 2.85 0.85 0.24 1.80

πAB σTE ρ τ %

LKF 67.94 3.07 56.46 40.48 55.74
95% 75.76 3.01 59.68 38.38 53.10

Call 100% 78.99 3.05 58.74 37.10 51.05
105% 83.88 3.20 54.06 38.58 53.30
95% 79.49 3.38 64.42 38.94 54.77

Put 100% 82.00 3.03 59.74 37.60 52.40
105% 80.13 3.15 54.63 39.26 54.44

highly dependent on the quality of the data. If we take into account a spread (explained by the
volatility skew and the bid/ask effect) between the published implied volatility and the traded
volatility, the results are less favorable. Figure 5 presents the impact of the trading spread on
the replication performance of the HFRI Macro index with selling put options at 105%. It is
obvious that at this strike, the impact of the skew is very high and that we have to consider
a high spread. In this case, the difference between the LKF model and the NLF model is not
so important. This suggests that HF replication including nonlinear assets as an investment
vehicle still remains difficult to implement as any replicating portfolio would be confronted to
implementation noise and distortions.

So far, we have considered that the non-linear assets included in the replication model were
priced independently of the strategy followed by the HF fund manager. In the next section,
we relax this assumption by considering that the parameters of the nonlinear strategy are
dependent on the HF manager’s decisions. One word of caution must be given here. We
do necessarily hope that the results of the following section will be directly applicable in a
systematic replication procedure, but we do hope however that it will give us further insight
into the risk structure of the replicating strategy as well as the manager’s outlook on available
investments.

3.3.3 Using option factors with endogenous strikes

One of the drawbacks of the previous model is that the strikes of the options are exogenous, and
thus do not depend on the decisions of the manager. From the point of view of pure replication
of the performance and the strategy of a HF manager, it could be seen as an obvious deficiency.
Indeed, a HF manager can adapt option strikes to his or her tactical bets and macroeconomic
views. To our knowledge, there exist few academic works dealing with this problem directly,
and when they do, strikes are considered constant over the period of study. In the spirit of the
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Figure 3: Impact of the trading spread on the replication performance of the HFRI Macro
index with selling ATM put options

alternative beta methodology presented previously, it is more realistic to assume that the option
strikes are time-varying, and are part of the manager’s general strategy. Thus, we propose in
this section to consider option factors with endogenous strikes.

Before considering this difficult exercise, we must point out one necessary assumption that
we need to make in our context. One could content that the argument above in favor of the
use of endogenous strikes is dubious when applied to an aggregate of HF, as in the case of
indices for example, for the idiosyncratic tactical bets of a particular manager are lost in the
aggregation process. We must therefore make the assumption that the aggregation process
results in an average strike reflective of the entire position of the underlying aggregate. This is
not dissimilar to the argument we made earlier about the better fitness of replication methods
to replicate aggregates over single HF. While the nonlinear character of the underlying panel
of option exposures with different parameters (e.g. call and put, selling or buying positions,
in-the-money or out-of-the-money strikes) does not easily lead to aggregation within the same
class of nonlinear factors, for liquidity and trading reasons, we think it plausible that the time-
varying strikes of a limited number of option factors on general asset classes can provide a good
proxy for replication.

They are two possible ways to estimate these strikes. One possibility is to consider an economet-
ric method to estimate the option strikes separately from the tracking problem. For example,
we may first consider a macroeconomic model to estimate the strikes, then build the option
factors using the time varying estimated strikes and finally estimate the linear exposures using
the Kalman filter. In this case, the option strikes are endogenous in the sense that they have
been estimated, but they are also exogenous in the sense that their estimation is independent
from the TP system. Another possibility is to consider that the option strike belongs to the
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state vector of a nonlinear TP system. Thus, we obtain:

(
wk

sk

)
=
(

wk−1
sk−1

)
+
(
νk
εk

)

r
(HF)
k =

m∑
i=1

w
(i)
k r

(i)
k + w

(m+1)
k r

(m+1)
k (sk) + ηk

(12)

where the measurement equation is nonlinear with respect to the strike state variable sk. As in
the non-Gaussian case, the nonlinearity of the system prevents us to use the KF, and we must
resort to using PF. One of the difficulties is to estimate the unknown parameters of (12). As
in the previous sections, we assume that ηk ∼ N

(
0, σ2

η

)
and:(

νk
εk

)
∼ N

((
0
0

)
,

(
Q 0
0 σ2

s

))

with Q = diag
(
σ2

1, . . . , σm, σ
2
m+1

)
. The vector of unkown parameters to estimate is then θ =

{σ1, . . . , σm, σm+1, σs, ση}.

The estimation of parameters in the context of nonlinear TP is not a trivial problem, and
the literature while expanding is still relatively scarce (see for example [12, 9, 36, 27, 38]).
Because of the nonlinearities included in the TP, general methods are overwhelmingly based on
an extension of the Expectation-Maximization principle using discrete approximations of the
different densities by means of particles. Moreover, the examples generally considered consist of
a small number of parameters to estimate and small number of particles. For example, Wills,
Schön and Ninness [38] consider estimating the parameters of a stochastic volatility model,
comprising only 3 parameters and using 50 particles over 10000 time periods. In our case
however, we have m+ 3 parameters (ie. 9 parameters if we use six linear factors) and a period
of 177 observations. Moreover, the number of particles we need to use to satisfyingly duplicate
the results of the KF in a linear framework is very high (generally more than 10000). Thus, with
one additional nonlinear factor and three more parameters we cannot expect satisfying results
for a lesser number of particles. We tried the ML methods described in the cited papers above.
However, the task is still extremely difficult. The optimization step remains time-consuming
and sensitive to the specified initial values and the number of particles. For this reason, we
preferred the use a grid-based method to estimate the parameters, although it didn’t solve
all the implementation problems. For instance, let’s note di the number of discretized values
used for the parameter θi. A grid-based estimation requires that we run the PF algorithm d
times with d =

∏m+3
i=1 di. Running a PF with 50000 particles takes about 30 seconds on our

computers. So, with di = 5 and m = 6, it would take a little less than 2 years (678 days) to
run until the end. This curse of dimensionality required of us to proceed yet again differently,
and we decided to follow a two-step procedure:

1. the parameters ση and σi for i = 1, . . . ,m are estimated using the method of maximum
likelihood considering the linear factor model;

2. the last two parameters σm+1 and σs are estimated using the grid-based method condition-
ally on the previous estimates. If f denotes the statistic of interest in the maximization
(or minimization) of and if Ω denotes the set of grid points, we have:

{σ̂m+1, σ̂s} = arg max f (σm+1, σs | σ̂1, . . . , σ̂m, σ̂η) u.c. (σm+1, σs) ∈ Ω.
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This approach is obviously biased compared to a full estimation of all the parameters.
However, with respect to the linear factor model, it provides consistent results which could
help explain the remaining alpha.

In what follows, we present two examples using the HFRI index and the HFRI Relative Value
index. Both examples considered a put option on the S&P500 index. In the second step of
our procedure, we chose to minimize the volatility σTE of the tracking errors. In Figure 4, we
report the statistic of interest for the HFRI index with respect to σm+1 and σs. Notice that
the surface does not present an obvious minimum. Moreover, we remark that the volatility
of the tracking error is above 3.52% which is the corresponding statistic for the linear model.
Thus, using endogenous strikes does not improve the volatility of the tracking errors. For the
HFRI Relative Value index, we obtain more convincing results. First, notice that the surface
in Figure 5 presents a more convex function profile. And we estimate that the minimum is
reached for σm+1 = 2.5% and σs = 1%.

We reported the exposures w(i)
k and the strike sk of the put option in Figure 6. In the case of

a fixed strike, notice that the exposure on the put option is very volatile. This is not the case
when the strike is endogenous. The results suggest that HF managers are globally selling ITM
put options. However, one major difficulty which is not taken into account here is the effect of
the volatility’s smile, and possible liquidity limitations.

Figure 4: Grid approach applied to the HFRI index

4 Conclusion
In this paper, we presented a formal framework for hedge fund replication by introducing the
notion of tracking problems which may be solved using Bayesian filters. We extended the
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Figure 5: Grid approach applied to the HFRI RV index

Figure 6: Exposures and option strikes for the HFRI RV index
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methodology of [35] to non-Gaussian nonlinear cases using particle filters. These advanced
tracking techniques were used first to capture some stylized facts of HF returns, like negative
skewness and excess kurtosis. They further enabled us to estimate endogenous option strikes
in an attempt to capture non-linear exposures. The results obtained using particle filters are
to some extent disappointing. First, it seems that matching higher moments of HF returns
implies a necessary trade-off with higher volatility of the tracking errors of the HF clone.
Second, consistent with some recent findings in the literature, we found little evidence of the
presence of nonlinearities in the distribution of the returns of the overall hedge fund strategies.

Nevertheless, we believe these results to be very interesting. From the academics’ point of
view, introducing particle filters opens a door for a better understanding of HF returns and
the underlying risks of the HF strategies. If it already has direct implications from a risk
management perspective, we also surmise that particles filters are one of the main avenues
toward a better monitoring of for now unaccounted risks, as they are contained in the higher
moments of the returns’ distribution — we have yet to explore the use of ML estimation
procedures for particle filters in the nonlinear context.
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A Numerical Algorithms for implementation of Particle Filters
In this appendix, we provide, in pseudo code, the algorithms for the particle filters implemented
for the purpose of this study. In Appendix ??, we presented the algorithm, known under the
name Sequential Importance Sampling (SIS), which forms the basis for most sequential Monte
Carlo filters developed over the past decade [7]. We start by providing its pseudo code in
Algorithm 1, before exposing the more advanced algorithms we used: a generic Particle Filter
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(GPF), a Sampling Importance Resampling (SIR) algorithm, and a regularized Particle Filter
(RPF).

Algorithm 1 SIS Particle Filter
procedure SIS_Particle_Filter(z1:T ,Ns) . Runs a SIS Particle Filter{

xi0, wi0
}
i=1:Ns ∼ p0(.) . Initialization

k ← 1
while k < T do{

xik, wik
}
i=1:Ns ← SIS_Step(xik−1, wik−1, zk)

k ← k + 1
end while
return

{
xi1:T , w

i
1:T
}
i=1:Ns

end procedure

procedure SIS_step(xik−1, wik−1, zk) . Propagates the sample from state k − 1 to state k
for i = 1 : Ns do

Draw xik ∼ q
(
xk | xik−1, zk

)
Assign the particle a weight, wik, according to 10

end for
return

{
xik, wik

}
i=1:Ns

end procedure

The SIS algorithm is thus a very simple algorithm, easy to implement. However, it commonly
suffers from a degeneracy phenomenon, where after only a few iterations, all but one particle
will have negligible weights. This degeneracy problems implies that a large computational effort
will be devoted to updating particles whose contribution to the approximation of the filtering
density p (xk | z1:k) is quasi null. In order to alleviate this problem, more advanced algorithm
have been devised. One way to deal with degeneracy is to carefully choose the importance
density function q

(
xk | xik−1, zk

)
. We leave to the reader to consult [7] for a discussion of the

importance of the choice of the importance density. Another simple idea is to resample the
particles when a certain measure of degeneracy becomes too large (or too small). For example,
one could calculate the effective sample size Neff defined as:

Neff = Ns

1 + σ
(
w∗ik
)2

where w∗ik = p
(
xik | z1:k

)
/q
(
xik | xik−1, zk

)
is referred to as the “true weight.” As this cannot

be valued exactly, this quantity can be estimated using:

N̂eff = 1∑Ns
i=1

(
wik
)2 (A-1)

We provide in Algorithm 2 and in Algorithm 3 respectively the resampling algorithm we used
and the generic Particle Filter which is deduced from the SIS algorithm by adding this resam-
pling step to avoid degeneracy.
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Algorithm 2 Resampling Algorithm
procedure Resample(

{
xik, wik

}
i=1:Ns)

c1 ← 0 . Initialise the CDF
for i = 2 : Ns do . Construct the CDF

ci ← ci−1 + wik
end for

i← 1 . Start at the bottom of the CDF
u1 ∼ U

[
0, N−1

s

]
. Draw a starting point

for j = 1 : Ns do
uj ← u1 +N−1

s (j − 1) . Move along the CDF
while uj > ci do

i← i+ 1
end while
xj∗k = xik . Assign sample
wjk = N−1

s . Assign weight
parentj ← i . Assign parent

end for
return

{
xj∗k , w

j
k, parentj

}
j=1:Ns

end procedure

In many particle filters implementations, one uses the prior density p
(
xk | xik−1

)
as the impor-

tance density q
(
xk | xik−1, zk

)
for even though it is often suboptimal, it simplifies the weights

update equation 10 into:
wik ∝ wik−1 × p

(
zk | xik

)
Furthermore, if resampling is applied at every step — this particular implementation is called
the Sampling Importance Resampling (SIR) of which we give the algorithm in pseudo code in
Algorithm 4 — then we have wik−1 = 1/Ns ∀i, and so:

wik ∝ p
(
zk | xik

)
(A-2)

The weights given in A-2 are normalized before the resampling stage.

The regularized Particle Filter is based on the same idea as the Generic Particle Filter, with
the same resampling condition, but the resampling step provides an entirely new sample based
on a continuous approximation of the posterior filtering density p (xk | zk), such that we have
the following approximation:

p̂ (xk | zk) =
Ns∑
i=1

wikKh

(
xk − xik

)
(A-3)

where:
Kh (x) = 1

hnx
K

(x
h

)
is the re-scaled Kernel density K (·), h > 0 is the Kernel bandwidth, nx is the dimension of the
state vector x, and wik, i = 1, . . . , Ns are normalized weights. The Kernel K (·) and bandwidth
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Algorithm 3 Generic Particle Filter
procedure Generic_Particle_Filter(z1:T ,Ns) . Runs a Generic Particle Filter{

xi0, wi0
}
i=1:Ns ∼ p0(.) . Initialization

k ← 1
while k < T do{

xik, wik
}
i=1:Ns ← PF_Step(xik−1, wik−1, zk)

k ← k + 1
end while
return

{
xi1:T , w

i
1:T
}
i=1:Ns

end procedure

procedure PF_Step(xik−1, wik−1, zk)
for i = 1 : Ns do

Draw xik ∼ q
(
xk | xik−1, zk

)
Assign the particle a weight, wik, according to 10

end for
t←

∑Ns
i=1w

i
k . Calculate total weight

for i = 1 : Ns do
wik ← t−1wik

end for
Calculate N̂eff using A-1
if N̂eff < Ns then{

xik, wik,−
}
i=1:Ns ← Resample(

{
xik, wik

}
i=1:Ns)

end if
end procedure

h should be chosen to minimize the Mean Integrated Square Error (MISE), between the true
posterior density and the corresponding regularized empirical representation in A-3, defined as:

MISE (p̂) = E
[∫

[p̂ (xk | zk)− p (xk | zk)]2 dxk
]

One can show that in the case where all the samples have the same weight, the optimal choice
of the Kernel is the Epanechnikov Kernel:

Kopt =


nx+2
2cnx

(
1− ‖x‖2

)
if ‖x‖< 1,

0 otherwise

where cnx is the volume of the unit hypersphere in Rnx . Furthermore, when the underlying
density is Gaussian with a unit covariance matrix, the optimal choice for the bandwidth is:

hopt = AN
− 1
nx+4

s

A =
[
8c−1
nx (nx + 4)

(
2
√
π
)nx]− 1

nx+4

We can now provide the algorithm for the regularized Particle Filter in Algorithm 5.

We also illustrate these algorithms by reproducing the example given in Appendix ?? using
Ns = 1000 particles. Note that the parameters of the distributions in the particle filters were
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estimated using the Kalman filter. The results (sample means) are reported in Figure 7 with,
from top to bottom and left to right, the SIS, the generic PF, the SIR and the RPF runs.

Figure 7: Solving example ?? using particle filers — Ns = 1000.
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Algorithm 4 SIR Particle Filter
procedure SIR_Particle_Filter(z1:T ,Ns) . Runs a SIR Particle Filter{

xi0, wi0
}
i=1:Ns ∼ p0(.) . Initialization

k ← 1
while k < T do{

xik, wik
}
i=1:Ns ← SIR_Step(xik−1, wik−1, zk)

k ← k + 1
end while
return

{
xi1:T , w

i
1:T
}
i=1:Ns

end procedure

procedure SIR_Step(xik−1, wik−1, zk)
for i = 1 : Ns do

Draw xik ∼ p(xk | xik−1)
wik ← p(zk | xik)

end for
t←

∑Ns
i=1w

i
k . Calculate total weight

for i = 1 : Ns do
wik ← t−1wik

end for{
xik, wik,−

}
i=1:Ns ← Resample(

{
xik, wik

}
i=1:Ns) . Systematic resampling

end procedure
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Algorithm 5 Regularized Particle Filter
procedure Regularized_Particle_Filter(z1:T ,Ns) . Runs a Regularized Particle
Filter{

xi0, wi0
}
i=1:Ns ∼ p0(.) . Initialization

k ← 1
while k < T do{

xik, wik
}
i=1:Ns ← RPF_Step(xik−1, wik−1, zk)

k ← k + 1
end while
return

{
xi1:T , w

i
1:T
}
i=1:Ns

end procedure

procedure RPF_Step(xik−1, wik−1, zk)
for i = 1 : Ns do

Draw xik ∼ q
(
xk | xik−1, zk

)
Assign the particle a weight, wik, according to 10

end for
t←

∑Ns
i=1w

i
k . Calculate total weight

for i = 1 : Ns do
wik ← t−1wik

end for
Calculate N̂eff using A-1
if N̂eff < Ns then

Compute the empirical covariance matrix Sk of
{
xik, wik

}
i=1:Ns

Compute Dk ← Chol(Sk) . Cholesky decomposition of Sk: DkD>k = Sk{
xik, wik,−

}
i=1:Ns ← Resample(

{
xik, wik

}
i=1:Ns)

for i = 1 : Ns do
Draw εi ∼ Kopt from the Epanechnikov Kernel
xi∗k ← xik + hoptDkε

i

end for

return
{
xi∗k , wik

}
i=1:Ns

else
return

{
xik, wik

}
i=1:Ns

end if
end procedure

30


	Introduction
	Framework
	Hedge Fund Replication: Factor Models and the Gaussian Linear Case
	Method
	Definition of the tracking problem
	Link Between HF replication and Tracking Problems
	Capturing Tactical Allocation with Bayesian Filters


	Hedge Fund Replication: the Non-Gaussian and Non-Linear Case
	A fundamental example
	The Gaussian distribution assumption
	Taking into account non-linear assets
	Replicating non-linear assets
	Using option factors with exogenous strikes
	Using option factors with endogenous strikes


	Conclusion
	References
	Numerical Algorithms for implementation of Particle Filters

