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Abstract

Nonnegative matrix factorization (NMF) is a recent tool to analyse multivariate
data. It can be compared to other decomposition methods like principal component
analysis (PCA) or independent component analysis (ICA). However, NMF differs from
them because it requires and imposes the nonnegativity of matrices. In this paper, we
use this special feature in order to identify patterns in stock market data. Indeed, we
may use NMF to estimate common factors from the dynamics of stock prices. In this
perspective, we compare NMF and clustering algorithms to identify endogenous equity
sectors.

Keywords: Nonnegative matrix factorization, principal component analysis, clustering,
sparsity.

JEL classification: G1, C5.

1 Introduction

NMF is a recent technique which knows success not only in data analysis but also in image
and audio processing. It is an alternative approach to decomposition methods like PCA
and ICA with the special feature to consider nonnegative matrices. Let A be a nonnegative
matrix m x p. We define a NMF decomposition as follows:

A~ BC

with B and C two nonnegative matrices with respective dimensions m x n and n X p.
Compared to classic decomposition algorithms, we remark that BC' is an approximation of
A. There are also different ways to obtain this approximation meaning that B and C are
not necessarily unique. Because the dimensions m, n and p may be very large, one of the
difficulty of NMF is to derive a numerical algorithm with reasonable time of computation.
In 1999, Lee and Seung develop a simple algorithm with strong performance and apply it to
pattern recognition with success. Since this seminal work, this algorithm has been improved
and there are today several ways to obtain a nonnegative matrix factorization.

Drakakis et al. (2008) apply NMF to analyse financial data. From a machine learning
point of view, NMF could be viewed as a procedure to reduce the dimensionality of data.
That’s why we could consider NMF in different fields: time series denoising, blind source
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deconvolution, pattern recognition, etc. One of the most interesting application concerns
data classification. Indeed, Drakakis et al. (2008) show a clustering example with stocks. In
this paper, we explore this field of research. The paper is organized as follows. In Section 2,
we present different NMF algorithms and compare them to PCA and ICA decomposition. In
Section 3, we apply NMF to stocks classification and compare the results with these obtained
by clustering methods. Section 4 describes other applications to financial modeling. Finally,
we conclude in Section 5.

2 Nonnegative matrix factorization

2.1 Interpretation of the NMF decomposition

We first notice that the decomposition A ~ BC is equivalent to AT ~ CTBT. It means that
the storage of the data is not important. Rows of A may represent either the observations
or the variables, but the interpretation of the B and C matrices depend on the choice of the
storage. We remark that:

n
Aij = BixCh;
k=1

Suppose that we consider a variable/observation storage. Therefore, B;j depend on the
variable ¢ whereas C} ; depend on the observation j. In this case, we may interpret B as
a matrix of weights. In factor analysis, B is called the loading matriz and C is the factor
matriz. B; i, is then the weight of the factor k for the variable ¢ and Cj, ; is the value taken
by the factor k for the observation j. If we use an observation/variable storage which is
the common way to store data in statistics, C becomes the loading matriz and B the factor
matriz.

Remark 1 In the original work of Lee and Seung, the NMF decomposition is noted V =~
WH with W a matriz of weights meaning that the data are stored in a variable/observation
order.

Let D be a nonnegative matrix such that D~! is nonnegative too. For example, D may
be a permutation of a diagonal matrix. In this case, we have:

A=~ BD'DC ~ B*C*

with B* = BD~! and C* = DC. It shows that the decomposition is not unique. Moreover,
the decomposition may be rescaled by the matrix D = diag (BTI). In this case, B* is a
nonnegative matrix such that:

m

Y Bix=

i=1

and B* is a matrix of weights.

2.2 Some algorithms

In order to find the approximate factorization, we need to define the cost function f which
quantify the quality of the factorization. The optimization program is then:

{B,C’} = argmin f (4, BC) (1)

B>0
u.c. c>0
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Lee and Seung (2001) consider two cost functions. The first one is the Frobenious norm:

P

F(A,BC) = Zm:Z( )j)2

=1 j=1

whereas the second one is Kullback-Leibler divergence:

f(A,BC) :ZZ( il (Bc’)j Ai,j+(BC)z-,j>

To solve the problem (1), Lee and Seung (2001) propose to use the multiplicative update
algorithm. Let B(;) and C(;) be the matrices at iteration t. For the Frobenious norm, we
have:

Bty = Bpn o (AC(—;)) %) (B(t)c(t)c(—;))

T T
C(t+1) = C(t) © (B(t+1)A) @ (B(t+1)B(t+1)C(t))

where ® and @ are respectively the element-wise multiplication and division operators!. A
similar algorithm may be derived for the Kullback-Leibler divergence. Under some assump-
tion, we may show that B = B and C = C() meaning that the multiplicative update
algorithm converges to the optimal solution.

For large datasets, the computational time to find the optimal solution may be large with
the previous algorithm. Since the seminal work of Lee and Seung, a lot of methods have
also been proposed to improve the multiplicative update algorithm and speed the converge.
Among these methods, we may mention the algorithm developed by Lin (2007). The idea

is to to use the alternating nonnegative least squares?:

{ By = argminf(A,BC(t))

. 2
C(t+1) = argmlnf(A,B(tH)C) @

with the constraints B(;11) > 0 and C41) > 0. To solve the previous problem, Lin (2007)
uses the projected gradient method for bound-constrained optimization. We first remark
that the two optimization problems (2) are symmetric because we may cast the first problem
in the form of the second problem:

B(t+1) = argmin f (A—r C )BT>
So, we may only focus on the following optimization problem:

C* = argminf (A, BC)
uc. C>0

1To prevent problems with denominators close to zero, Pauca et al. (2006) propose to add a small positive
number in the two previous denominators.

2We notice that the algorithm of Lee and Seung is a special case of this one where the optimality criterion
is replaced by a sufficient criterion:

{ f(AaB(t+1)C(t)) < f( t)C())
F(ABuinCusny) < f(A (t+1)C(t))
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Let us consider the case the Frobenious norm. We have:
dcf (A,BC)=2B" (BC — A)
The projected gradient method consists in the following iterating scheme:
C+ C—-adcf (A BC)

with « the length of descent. In place of finding at each iteration the optimal value of «,
Lin (2007) proposes to update « in a very simple way depending on the inequality equation:

(1—0)dcf (A BC)T (é—c) +%(C‘—C>T8%f(A,BC) (é—c) <0

with C the update of C. If this inequality equation is verified, « is increased whereas we
decrease o otherwise.

2.3 Comparing NMF method with other factor decompositions

In order to understand why NMF is different from other factor methods, we consider a
simulation study. We consider a basket of 4 financial assets. The asset prices are driven
by a multi-dimensional geometric brownian motion. The drift parameter is equal to 5%
whereas the diffusion parameter is 20%. The cross-correlation p; ; between assets ¢ and j is
equal to 20%, but p12 = 70% and ps 4 = 50%. In order to preserve the time homogeneity,
the data correspond to z; ; = In S; ; where S;; is the price of the asset i at time ¢. In Figure
1, we report the time series z;; for the 4 assets and the first factor estimated by NMF and
PCA methods. We remark that the NMF factors is not scaled in the same way than the
PCA factor. However, the correlation between the first difference is equal to 98.8%.

Figure 1: Estimating the first factor of a basket of financial assets

Asset prices
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Table 1: Loading matrix of the PCA factors

Asset ‘ F1 F2 F3 F4
#1 1 0.55 —0.47 0.19 0.66
#2 1060 -035 -0.33 —0.65
#3 0.45 0.51 0.70 —0.22
#4 | 0.37 0.63 —0.60 0.32

Table 2: Loading matrix of the NMF factors

n=1 n=2 n=3

Asset F1 F1 FQ F1 F2 F3
#1 091 | 0.8 0.68 | 086 093 0.29
#2 0.99 | 0.89 1.00 | 0.85 1.00 1.00
#3 1.00 | 1.00 0.18 | 1.00 0.05 0.69
#4 093 | 095 0.03]099 0.13 0.13

If we compare now the loading matrices of implied factors, we obtain different results
(see Tables 1 and 2). The first factor is comparable, which is not the case of the other
factors, because all the others factors of the PCA decomposition are long/short factors. By
construction, NMF factors are long-only and depend on the choice of the number of factors.
Therefore, their interpretation is more difficult. In Figure 2, we compare the dynamic of

Figure 2: Reconstruction of the asset prices
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o) 1 2 3 4 5

the first asset with the dynamic given by the NMF factors. Another interesting result is
the decomposition of the variance according to the factors. In Figure 3, we notice that
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Figure 3: Variance explained by each factor
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PCA explains more variance than NMF for a given number of factors. We may explain this
result easily because NMF may be viewed as a constrained principal component analysis
with nonnegative matrices. However, it does not mean that PCA explains more variance
than NMF from a marginal point of view. For illustration, the second NMF factor explains
more variance than the second PCA factor in Figure 3.

3 Financial applications with NMF

3.1 Factor extraction of an equity universe

In what follows, we consider the EuroStoxx 50 index. Using the composition of this index at
the end of 2010, we compute nonnegative matrix factorization on the logarithm of the stock
prices. We have represented the first NMF factor in Figure 4. We may compare it with the
logarithm of the corresponding index. Even if the decomposition is done just for one date
and does not take into account of entry/exit in the index, we notice that the first NMF factor
is highly correlated with the index®. One interesting thing is the sensibility values of the
stocks with respect to this factor. In Table 3, we indicate the stocks corresponding to the 5
smallest and largest sensibility to the NMF factor. We also indicate their corresponding rank
and sensibility in the case of PCA. We notice that NMF and PCA results are very different.
First, the range of the sensibility is more important for PCA than for NMF. Second, the
correlation between NMF and PCA rankings is low. For the first PCA factor, the largest
contribution comes from the financial and insurance sectors. This is not the case for NMF.

3The correlation between the index returns and the factor returns is equal to 97.2%. This is a little bit
higher than those for the PCA, which is equal to 96.3%.
4In order to compare results, we normalize the sensibility such that the largest value is equal to 1.
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Figure 4: Comparison between the EuroStoxx 50 and the first NMF factor
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Table 3: Sensibility of the stock prices to the first factor
NMF PCA

Name Rank Sensibility | Rank Sensibility
KONINKLIJKE 1 0.56 12 0.46
DEUTSCHE TELEKOM 2 0.56 23 0.57
FRANCE TELECOM 3 0.57 30 0.62
VIVENDI 4 0.64 31 0.64
NOKIA 5 0.65 38 0.72
IBERDROLA 46 0.92 5 0.39
ENI 47 0.94 10 0.44
VINCI 48 0.99 13 0.46
UNIBAIL-RODAMCO 49 1.00 2 0.31
PERNOD-RICARD 50 1.00 1 0.29
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If we consider now two factors, results are those given in Figure 5. In this case, we
may interpret them as a factor of bear market and a factor of bull market. Another way
to convince us about the nature of these factors is to consider the statistic §; defined as
follows®:

ﬂi = Z 2 B;: 1
We have ; € [0,1]. A large value of §; indicates a stock for which the sensibility to the
second factor is much more important than the sensibility to the first factor. If we rank the
stocks according to this statistic, we verify that high (resp. low) values of §; are associated
to stocks which have outperformed (resp. underperformed) the Eurostoxx 50 index.

In the case when the number n of factors increase, it is more and more difficult to
interpret the factors. For example, Figure 6 corresponds to the case n = 4. They are some
similarities between the third or fourth factor with some sectors (see Table 4). For the first
and second factors, we don’t find an interpretation in terms of sectors. And the endogenous
characteristic of these factors increases when n is large.

Table 4: Correlation of NMF factors with ICB sectors
Sector ‘ 0001 1000 2000 3000 4000 5000 6000 7000 8000 9000

#1 -3.5 119 -—-13.6 48 -385 -—-166 —-296 7.3 —-31.4 257
#2 0.8 6.4 13.0 —-3.1 —-24.2 2.0 6.5 —11.3 -13.0 17.0
#3 2.8 522 52.0  43.7 70.5 61.5 73.8 45.8 68.7 70.7
#4 4.7  34.0 285 14.7 59.9 36.2 38.0 37.9 53.9 24.7

We have the following correspondance between codes and sectors: 0001 = Oil & Gas, 1000 = Basic Materials,
2000 = Industrials, 3000 = Consumer Goods, 4000 = Health Care, 5000 = Consumer Services, 6000 =
Telecommunications, 7000 = Utilities, 8000 = Financials, 9000 = Technology.

3.2 Pattern recognition of asset returns

Let S;; be the price of the asset 7 at time ¢t. We define the one-period return R; ; as follows:

Ri; = t 1
b St—1,

We may decompose this return as the sum of a positive part and a negative part. We obtain:

R, ; = max (R;;,0) — max (— R ;,0)

R}, Ry,
Let R be a T'x N matrix containing the return R; ; of the asset ¢ at time t. We define the
matrices Rt and R~ in the same way by replacing the elements R;; respectively by RI p
and R, ;. We may apply the nonnegative matrix factorization to the matrices RT™ and R™.
We have:
R = R"—-R™

BtCt -BC™ (3)
In this case, the dimension of the CT and C~ matrices is K x N. We may interpret the
decomposition of R as a projection of T' periods to K patterns.

5We remind that we have rescaled the B and C matrices with D = diag (max (B)). In this case, B*
satisfies the property 0 < B, < 1.
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Figure 5: NMF with two factors
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Figure 6: NMF with four factors
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Figure 7: The case of one pattern
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Remark 2 Another way to do pattern recognition is to consider the following factorization:
( R* R~ ) = BC (4)

In this case, C is a K x 2N matriz. Decompositions (3) and (4) are very similar. But the
last one is more restrictive. Indeed, we have:

(R* R-)=B(Ct C)
This factorization is a restrictive case of the decomposition(3) with Bt = B~ .

In what follows, we consider the weekly returns of 20 stocks® by considering the period
from January 2000 to December 2010. The dimension of the R matrix is then 574 x 20
(number of periods 7' x number of stocks N). Let us consider the case of one pattern
(K = 1). In Figure 7, we have reported the C' matrix, that is the values of the pattern.
Figure 8 corresponds to the B matrix, that is the sensibility of each weekly period to the
pattern. If we compute the R? statistic associated to this pattern model, we obtain a value
closed to 50% (see Figure 9). If we consider more patterns, we may of course obtain better
R2. For example, with 12 patterns, the R? statistic is equal to 90%.

To give an example of patterns, we have reported the case K = 4 in Figure 10. We
notice that all the stocks are not always represented to define a pattern. For example, the
second pattern to describe the positive part of returns concerns mainly 5 stocks (Siemens,
Telefonica, Allianz, SAP, Deutsche Telekom). With these 4 patterns, the R? statistic is
equal to 70% for these 20 stocks and the entire period. We remark however that the R?
statistic differs between stocks (see 5). Indeed, it is equal to 90% for SAP whereas it is equal
to 43% for Danone.

6Total, Siemens, Banco Santander, Telefonica, BASF, Sanofi, BNP Paribas, Bayer, Daimler, Allianz,
ENI, E.ON, SAP, Deutsche Bank, BBVA, Unilever, ING, Schneider, Danone, Deustche Telekom.

10
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Figure 8: Sensibility to the pattern

e | K

B+
B~

Figure 9: R? (in %) of the pattern model

L " L " L " L " L " J

2 4 6 8 10 12

Number of patterns

11



Nonnegative Matrix Factorization and Clustering Applications

Figure 10: The case of 4 patterns
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Table 5: R? (in %) for each stock

8 10 12 14 16 18 20

Number of patterns
Stock 1 2 3 4 5 10 20
Total 46 46 57 59 59 83 100
Siemens 57 70 70 76 76 79 100
Banco Santander 70 73 75 76 81 90 100
Telefonica 36 54 57 66 64 73 97
BASF 64 63 69 71 T4 76 98
Sanofi 27 28 45 54 56 67 100
BNP Paribas 58 69 74 75 74 93 100
Bayer 44 44 54 56 76 97 100
Daimler 57 57 60 69 74 87 100
Allianz 62 63 66 67 68 95 100
ENI 44 48 57 61 62 83 100
E.ON 35 36 58 59 60 65 100
SAP 38 65 76 90 92 99 100
Deutsche Bank 72 7 75 75 75 91 99
BBVA 72 75 77T 78 84 91 100
Unilever 20 20 43 51 51 68 99
ING 71 82 84 8 94 97 100
Schneider Electric | 49 49 50 52 56 &7 100
Danone 26 25 40 43 42 62 100
Deutsche Telekom | 22 54 56 77 80 91 98

12
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3.3 Classification of stocks

In what follows, we consider the universe of the 100 largest stocks of the DJ Eurostoxx
Index. The study period begins at January 2000 and ends at December 2010. Let P;; be
the price of the stock ¢ for the period ¢t. We consider the matrix Ay with elements In P; ;. We
perform a NMF of the matrix Ay with several initialization methods. They are described in
Appendix B:

1. RAND corresponds to the random method;

2. NNDSVD uses the algorithm of nonnegative double singular value decomposition pro-
posed by Boutsidis and Gallopoulos (2008);

3. NNDSVD® and NNDSVD*" are two variants of NNDSVD where the zeros are re-
placed by the average value a of the matrix A or random numbers from the uniform
distribution U, q/1007;

4. KM is based on the K-means algorithm proposed by Bertin (2009);

5. CRO corresponds to the closeness to rank-one algorithm described by Kim and Choi
(2007).

3.3.1 Relationship between NMF factors and sectors

Remark 3 Let Ay be the mg X p matriz which represents the initial data. With NMF,
we estimate the factorization Ay ~ ByCy with {By,Co} = argmin f (A, BC) under the
constraints B > 0 and C > 0. Suppose now that the my X p matriz A, represents other data.
We may estimate a new NMF and obtain A1 =~ B1C1. In some application, we would like to
have the same factors for Ay and Ay, that is Cy = Cy. In this case, the second optimization
program becomes then By = argmin f (A1, BCy) u.c. B > 0. For the Frobenious norm,
this program may be easily solved with quadratic programming. The optimal solution is

Bl = [ 51 ﬂml ]T with:

1
B = argmin BT (CoCy)B—B" (CoAle:)
u.c. >0

Of course, this optimal solution is valid even if the matrix Cy is not given by NMF, but
corresponds to exogenous factors.

One may wonder if the NMF factors are linked to sectors. We use the ICB classification
with 10 sectors. Let I;; be the value of the 4 sector index. A first idea is to apply
NMF to the matrix A; with elements In I; +, but by imposing that the matrix of factors C
corresponds to the matrix Cy estimated with the stocks. Using the results of the previous
remark, the estimation of the matrix B; with By > 0 is straightforward. If we have a one-
to-one correspondance between NMF factors and ICB sectors, By must be a permutation of
a diagonal matrix. Results are reported in Appendix C.1 with n = 10 factors. We notice
that results depend on the initialization method. By construction, two methods (NNDSVD
and CRO) produce sparse factorization. For the four others, the factorization is very dense.
Except for some very specific cases, a sector is generally linked to several factors.

Another way to see if sectors could be related to NMF factors is to consider the Co
matrix with elements In I; ;. In this case, we impose exogenous factors and we could use the

13
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Table 6: Frequencies of the p; statistic

i Frequency

0% 39
10, 10%]
110%, 20%]
120%, 30%]
130%, 40%]
140%, 50%)]
] ]
] ]
] ]

S

50%, 60%
60%, 70%
70%, 80%
180%, 90%]
190%, 100%]
100%

O N B WOt O =

previous technique to estimate the B, matrix such that Ay = BoCy and By > 0. If sectors
are the natural factors, we must verify that (Bz), ; > 0 if the stock i belongs to the sector
J and (Bg)i’ ;=0 otherwise. Let S (i) = j be the mapping function between stocks and
sectors. For each stock i, we may compute the proportion of factor weights explained by the
sector S (¢) with respect to the sum of weights:

i = (B2)i,8(i)
' Z;‘L:1 (BQ)i,j

If p; = 100%, it means that the sector S (i) of the stock explains all the factor component.
If p; = 0%, it means that the sector S (i) of the stock explains nothing. In Table 6, we
have reported the distribution of the p; statistic. We notice that, among the 100 stocks,
only 11 stocks have a statistic larger than 90%. These stocks are TOTAL (Oil & Gas),
BASF (Basic Materials), SANOFI (Health Care), ARCELORMITTAL (Basic Materials),
LINDE (Basic Materials), NOKIA (Technology), KONINKLIJKE (Telecommunications),
ALCATEL-LUCENT (Technology), K+S (Basic Materials), CAP GEMINI (Technology)
and STMICROELECTRONICS (Technology). In the same time, 39 stocks are not explained
by their sectors. We have reported the 25 largest stocks with p; = 0 in Table 15 (see
Appendix C.2 page 30). In Figure 11, we have reported some of these stocks”. For each
stock, we also report its corresponding sector (green line) and the “representative" sector
which presents the largest weight in the By matrix (red line). Most of the times, we confirm
that the behavior of the stock is closer to the behavior of the representative sector than to
the behavior of the corresponding sector.

Remark 4 The previous analysis is done for a long period (11 years). If we consider a
shorter period (for example 1 or 2 years), difference between the corresponding sector and
the representative sector is more important.

7We remind that the data are the logarithm of the prices In P; ;. Moreover, we have normalized the prices
such that P; o = 100.

14
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Figure 11: Some stocks which have a behavior different of their sector index
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3.3.2 NMF classifiers

Before doing a classification based on NMF, we apply the K-means procedure directly on
the stocks returns. The results set a benchmark for the future results of NMF classifiers.
For that, we consider 10 clusters. In Table 7, we remark that the cluster #1 groups together
a large part of stocks with 8 sectors represented. This cluster has certainly no economic
signification. It contains the stocks which are difficult to classify in the other clusters.

Table 7: Number of stocks by sector/cluster

cluster

sector | #1  #2 #3 H#H4 H#5 #6 HT #8 #9 #10 | total
0001 5 5
1000 3 6 1 10
2000 4 2 1 7 1 1 16
3000 5 1 3 1 7 17
4000 4 1 5
5000 4 2 3 1 10
6000 6 6
7000 6 6
8000 4 8 3 4 19
9000 6 6
total | 35 9 8 9 19 2 3 3 8 4 100

In Figure 12, we report the frequency of each sector in each cluster. We do not notice an

15
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exact correspondence between sectors and clusters because several clusters are represented
by the same sector. Indeed, this classification highlights the Financials sector which has a
frequency of 100% for 3 of the 10 clusters (#3, #7 and #10). In addition, the clusters #2, #4
and #9, respectively represented by Technology, Telecommunication and Consumer Goods
sectors, are pointed up. It seems logical that the classification brings to light these sectors
because the studied period is strongly influenced by the dot.com and financial bubbles.
However, we notice that some clusters, strongly characterized by some sectors, only represent
a small part of them. For instance, clusters #7 and #10 represent each one less than 25%
of the Financials sector. As a consequence, some clusters represent more a subset of a
sector than the average behavior of the sector. Figure 13 confirms this idea. In some cases,
the dynamics of centroids differ from the dynamics of the most represented sectors. For
instance, the evolution in cluster #10 differs from the global evolution of the Financials
sector. Indeed, the centroid owns an evolution flatter than the evolution of the sector. So,
the cluster #10 highlights a subset of Financials stocks which has a behavior which is very
different than the Financials sector, especially during the burst of the dot.com bubble.

To conclude, this preliminary study shows the heterogeneity into sectors and points up
some special stocks whose behaviors differs from the behaviors of their sectors.

Figure 12: Results of the cluster analysis
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Let us see now if NMF classifiers can represent an alternative of the sectors classification.
Before performing the classification, we have to do two choices: the initialization method
and the order n of the factorization. In Figure 14, we see the evolution of the NMF error
with respect to the dimension n. We notice that NNDSVD and CRO methods converge
more slowly than the others. It is explained by the fact that these methods produce sparse
factorization. The other initialization methods provide similar results. However, NNDSDV“"
has the lowest euclidean error in most cases. As a result, in what follows, we choose to analyse
results with the NNDSDV®” initialization method.

16



Nonnegative Matrix Factorization and Clustering Applications

Figure 13: Centroid of some clusters
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Figure 14: Evolution of the error with respect to initialization method
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The next step consists to fix the smallest order n of the factorization which does not lead
to serious information loss. For this, we study the inertia retrieved by the NMF method and
we select the order which permits to keep more than 90% of the information. According to
Figure 15, n = 4 is sufficient to retrieve 90% of the information. But n = 5 permits to gain
3.47% supplementary information. As a consequence, we select n = 5 which represents the
number of factors resulting from NMF.

Figure 15: NMF inertia

50
100
40 |
T
»N 80
£ T
= b
£
o | <
2 30 o 80
5 <
e g
- 40
o
g 20 |
= 20
o) 0o 5 10 15 20 25 30 35 40 45 50
z n
o
>
10 |
—

We then proceed to classify stocks by applying an unsupervised algorithm to the normal-
ized matrix B*. The idea is to group stocks that are influenced by the same factors. For this,
we consider the K-means algorithm with 10 clusters. According to Table 8, we notice that
clusters are well distributed. Contrary to the previous classification, we de not observe one
cluster which owns a lot of stocks. Figure 16 indicates that these clusters do not represent
sectors. An exception is the cluster #8 which is only represented by the Industrials sector.
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Table 8: Number of stocks by sector/cluster

cluster
sector | #1 #2 #3 H#4 H#5 HO6 H#T H#8 #9 +#10 | total
0001 1 2 0 1 1 5
1000 4 1 1 2 1 1 10
2000 3 1 3 1 1 4 1 16
3000 5 3 1 4 1 1 17
4000 1 3 1 5
5000 1 2 1 2 4 10
6000 3 3 6
7000 1 4 1 6
8000 3 2 1 4 6 19
9000 1 2 1 2 6
total 17 7 14 10 10 9 4 12 10 100
Figure 16: Frequencies of sectors in each cluster

100 \ | | \ | | | \

Hfmocor ] 1 0 0 0

90 5 1000 | 1 1 | 1 [ [ |

\ | | \ | | | \

| @ 2000 \ 1 1 | 1 1 1 |

80| 2 3000 | : : l : : : l

r| @ 4000 | [ [ | [ [ [ |

70 |8 5000 | | I | | | I

—~ I | ®m 6000 \ | | \ | | | \

N \ | | \ | | | \

~— 60 B8 7000 \ | | \ | | | 1

3 (| ® 8000 | | : : l : : \ l

o 50 B 9000 1 I I 1 | | | \

g | \ | | \ | | | \

S Lo } | | } | | | }

et \ | | \ | | | \

L \ | | \ | | | \

30 l : : l : : : l

\ | | \ | | | \

20 l : : l : : : l

| \ | | \ | | | \

\ | | \ | | | \

10 | 4 1 1 | E 1 1 1 | E
\ | | \ | | | \
. R L ke kL L
# #9

#4

45

46

Cluster

19

7



Nonnegative Matrix Factorization and Clustering Applications

In Figure 17, we report the evolution of the centroid of each cluster k. It is computed as
follows:
Tp = w,;rC’*

with:
1 & , .
Wk,j = N, Zl {C@) =k} B;;
i=1

where Ny = > 1{C (i) = k} is the number of stocks in the cluster k.

Figure 17: Centroid of the clusters
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We notice that NMF classifiers permit to underline distinct behaviors. Indeed, the
centroids of clusters #5 and #8 are strongly influenced by the financial bubble whereas the
centroid of cluster #2 is influenced by the dot.com bubble. Stocks which belong to clusters
#1, #6 and #7 don’t suffer from the dot.com bubble, whereas it is not the case of stocks
which belong to clusters #3, #4 #9 and #10. We notice also that the centroids of clusters
#1, #6 and #7 are very different at the end of the study period.

To conclude, NMF classifiers are useful for pattern recognition but generally, clusters
do not have economic signification. An other drawback is the clusters dependence on the
selected initialization procedure for NMF.

4 Conclusion

Knowing its results in image recognition or audio processing, NMF seems to be a useful
decomposition method for financial applications. Imposing the non-negativity of matrices
permits to consider the factorization as a decomposition with a loading matrix and a matrix
of long-only factors. This special feature is interesting to do pattern recognition but the
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interpretation is more and more difficult with the increasing number of factors. We can also
apply a clustering algorithm on the loading matrix in order to group together stocks with
same patterns. According to our results, NMF classifiers set apart different behaviors but
the economical interpretation of clusters is difficult. A direct classification on stock returns
with the K-means procedure seems more robust and highlights some special stocks whose
behaviors differs from the behaviors of their sectors.
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A Cluster analysis

Cluster analysis is a method for the assignment of observations into groups (or clusters). It
is then an exploratory data analysis which allows to group similar observations together. As
a result, the objective of clustering methods is to maximize the pairwise proximity between
observations of a same cluster and to maximize the dissimilarity between observations which
belong to different clusters. In what follows, we are concerned by unsupervised learning
algorithms, that is segmentation methods with no information on the groups.

A.1 The K-means algorithm

It is a special case of combinatorial algorithms. This kind of algorithm does not use a
probability distribution but works directly on observed data. We consider m objects with
n attributes ; ; (i =1,...,mand j =1,...,n). We would like to build K clusters defined
by the index k (k = 1,...,K). Let C be the mapping function which permits to assign
an object to a cluster®. The principe of combinatorial algorithms is to adjust the mapping
function C in order to minimize the following loss function:

0=1Y 5 Y dwme)

k=1cC(i)=k C(s')=k

where d (z;, z;/) is the dissimilarity measure between the objects ¢ and i’. As a result, the
optimal mapping function is denoted C* = argmin L (C).

In the case of the K-means algorithm, the dissimilarity measure is the Frobenius distance:

n

d(zi, ) = Z Tij — Tir ;) 2
Jj=1
= |l _'rJ”

Therefore, the loss function becomes (Hastie et al., 2009):

K
=3 Nk D - zx

k=1 C(i)=k

where Zj, = (Z1,k, ..., Tm k) is the mean vector associated with the k"' cluster and Ny, =
> 1{C (i) = k}. Because m§ = argmin)_, q, || — m)|)?, another from of the previous
minimization problem is:

K

{C*,mi,...,mk} = argminZNk Z llx; — mkH2

k=1 C(i)=k

This problem is solved by iterations. At the iteration s, we compute the optimal means of
the clusters {mgs), .. (S)} for the given mapping function C*~1. Then, we update the

mapping function using the following rule:

(s)

E=C® (i) = argmin’ Ty —my,

We repeat these two steps until the convergence of the algorithm C* = C(®) = (=1,

8For example, C (i) = k assigns the i'? observation to the k! cluster.
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A.2 Hierarchical clustering

This algorithm creates a hierarchy of clusters which may be represented in a tree structure.
Unlike the K-means algorithm, this method depends on neither the number of clusters
nor the starting configuration assignment. The lowest assignment is the individual objects
whereas the highest corresponds to one cluster containing all the objects. We generally
distinguish two methods:

e in the agglomerative method, the algorithm starts with the individual clusters and
recursively merge the closest pair of clusters into one single cluster;

e in the divise method, the algorithm starts with the single cluster and recursively split
the cluster into two new clusters which presents the maximum dissimilarity.

In this study, we only consider the agglomerative method.

Let k and &’ be two clusters. We define the dissimilarity measure d (k, k') as a linkage
function of pairwise dissimilarities d (z;, ;) where C (i) = k and C (i) = k'

d (kv kl) =/ ({d (xiv xi’) 7C (Z) = k} ) C (7’/) = kl)
There exists different ways to define the function /£:

e Single linkage
AN . . ,
d (kK = zeinél}ek' d(zi,xq)
o Complete linkage
d(k,K')= max d(x;,x;)

z;Ek,x; €K’

o Average linkage

d(k, k) = N;Vk/ S>> dwi )

z;€kx, €k’

At each iteration, we search the clusters k& and k' which minimize the dissimilarity measure
and we merge them into one single cluster. When we have merged all the objects into only
one cluster, we obtain a tree which is called a dendrogram. It is also easy to perform a
segmentation by considering a particular level of the tree. In Figure 18, we report a dendro-
gram on simulated data using the single linkage rule. We consider 20 objects divided into
two groups. The attributes of the first (resp. second) one correspond to simulated Gaussian
variates with a mean 20% (resp. 30%) and a standard deviation 5% (resp. 10%). The
intra-group cross-correlation is set to 75% whereas the inter-group correlation is equal to 0.
We obtain very good results. In practice, hierarchical clustering may produce concentrated
segmentation as illustrated in Figure 19. We use the same simulated data as previously
except that the standard deviation for the second group is set to 25%. In this case, if we
would like to consider two clusters, we obtain a cluster with 19 elements and another cluster
with only one element (the 18" object).

B Initialization methods for NMF algorithms

We have to use starting matrices B(g) and C|g) to initialize NMF algorithms. In this section,
we present the most popular methods to define them.
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Figure 18: An example of dendrogram
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Figure 19: Bad classification
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B.1 Random method

The first idea is to consider matrices of positive random numbers. Generally, one use uniform
distribution Ujg 1) or the absolute value of Gaussian distribution [N (0, 1)].

B.2 K-means method

Bertin (2009) proposes to apply the K-means algorithm on the matrix = A", meaning that
the clustering is done on the columns of the matrix. When the n clusters are determined,
we compute the centroid matrix Z, xm:

7
Tpxm = :
=T
xn
where Ty, = (Zj.1,...,Tkm) is the mean vector associated with the k' cluster. Finally, we

have B(g) = Z,\  ,and C(g) is a matrix of positive random numbers.

B.3 SVD method

Let A be a m x p matrix. The singular value decomposition is given by:

A=usv"
where u is a m X m unitary matrix, s is a m x p diagonal matrix with nonnegative entries
and v is a p X p unitary matrix. The rank-n approximation is then:

n
A E ukakv,;r
k=1

with uy and vy, the k™ left and right singular vectors and o; = s;,; the Eth largest singular
value (o7 > ... > o,). An idea to initialize the NMF algorithm is to define By and
C(0) such that the k' column of Bo) is equal to ug,/0} and the k' row of Clo) is equal
to \/ﬁv,;r. However, This method does not work because the vectors u; and vy are not
necessarily nonnegative except for the largest singular value (k = 1) as explained in the
following remark.

Remark 5 We may show that the left singular vectors u of A are the eigenvectors of AAT,
the right singular vectors v of A are the eigenvectors of AT A and the non-zero singular
values o; are the square roots of the non-zero eigenvalues of AAT. The Perron-Frobenius
theorem implies that the first eigenvector of nonnegative irreducible matrices is nonnegative.
We deduce that the first eigenvector of the AAT or AT A matrices is nonnegative if all entries
of A are nonnegative. It proves that the singular vectors uy and vy are nonnegative.

Boutsidis and Gallopoulos (2008) propose to modify the previous factorization:
n
A Z ﬂkO'k’LN)];r
k=1

where @ and Uy are nonnegative vectors. The algorithm is called nonnegative double sin-
gular value decomposition (NNDSVD) and is a simple modification of the singular value
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decomposition by considering only the nonnegative part of the singular values. For each
singular value o, we have to decide what is the largest nonnegative part by noticing that:
T
uporvy = (—uy) op (—vg)
Let 2t be the nonnegative part of the vector . We define u;, = (—ug) " and v, = (=) ™.
It comes that:

i ug/ ull| i mt>m”
Uk =% X - / u;. || otherwise
k E
and:
_— of /vl if mt > m
Vg = Vg X h h h .
vk/ vy, otherwise

where m™* = Hui” Hv,j“ and m~ = Hu; H Hv,: H In order to preserve the inertia, the singular
vectors are scaled by the factor v, = max <\/ mt, \/m*>. The initialization of B(gy and Cg)

is then done by using 4 and ¥ in place of ug and vy.

B.4 CRO method

The CRO-based hierarchical clustering is an alternative method of the classical agglomera-
tive hierarchical clustering when the similarity distance is given by the closeness to rank-one
(CRO) measure:
_ ot

207
with o7 > 09 > ... > 0 the singular values of the matrix X. Let k1 and ks be two clusters.
The CRO measure between two clusters k; and ks of the matrix A is defined by cro (A, ,))
where Ay, 1, is the submatrix of A which contains the row vectors of the two clusters k;
and ko. Kim and Choi (2007) summarize the CRO-based hierarchical algorithm as follows.
First, we assign each row vector of A into m clusters. Then, we merge the pairs of clusters
with the largest CRO measure into one single cluster until n clusters remains.

cro (X)

When the CRO-based hierarchical clustering is applied to the matrix A, we obtain n
clusters represented by the submatrices Ay, ..., A,. Kim and Choi (2007) consider then the
rank-one SVD approximation?:

T
Ay U101V,

Q

.
A, UnTn Uy,

This decomposition leads to a very simple assignment of the matrix By and Cqy. The Eth
column of B(g) corresponds to the vector uy for the rows which belong the kth cluster and
the rest of elements of the k*" column are equal to zero (or a small number). The k* row
of C(g) corresponds to akv,;r. By construction, this initialization method produces sparse

factorization.

Remark 6 We have proved previously that the singular vector u and v associated to the
rank-one SVD approximation of a nonnegative matrix A are nonnegative. From a numerical
analysis point of view, the rank-one SVD approzimation may be usv' or (—u)s (—v)T. In
practice, we consider also |u| and |v| in place of u and v when working with the rank-one
approximation.

9We have A), = ukakv,;r where uy, and vy, are the left and right vectors associated with the largest singular
value op.
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C Results

C.1 Estimation of the B; matrix

Table 9: By matrix with sectors indexes (RAND)

NMF factors

Sector #1  #2  H#3  H#4 H#5 H6 H#T H#8  H#9  #10
0Oil & Gas 1.00 0.84 0.56 0.69 063 084 0.82 0.69 0.54 0.79
Basic Materials 0.58 1.00 0.53 0.69 0.64 0.86 1.00 0.49 0.49 1.00
Industrials 0.47 0.83 0.68 0.64 0.71 0.72 0.74 0.60 0.55 0.84
Consumer Goods 0.70 0.89 0.59 068 0.81 0.77 0.81 0.67 0.35 0.87
Health Care 0.95 0.95 0.44 0.80 0.71 0.79 0.66 1.00 0.51 0.56

Consumer Services 0.55 0.68 0.66 0.46 0.55 0.65 0.68 0.84 0.41 0.49
Telecommunications | 0.69 0.66 1.00 0.30 0.47 0.78 0.43 0.62 0.27 0.49

Utilities 097 091 0.71 072 0.65 1.00 083 042 0.63 0.65
Financials 0.89 076 0.60 1.00 1.00 0.81 0.60 0.40 1.00 0.46
Technology 054 049 096 055 045 045 0.69 053 0.57 0.63

Table 10: By matrix with sectors indexes (NNDSVD)

NMF factors
Sector #1  H#2  H#3 H4 H#5 H6 H#T H#8  H#9  H#10
0Oil & Gas 0.99 0.24 0.02 0.21 0.34 0.20 0.36
Basic Materials 0.93 0.21 0.44 0.21 0.01 0.82 0.71 0.13 0.21 1.00
Industrials 0.79 0.52 055 0.64 0.31 1.00 046 0.34 0.59 0.64
Consumer Goods 0.93 0.26 0.18 0.11 0.86 0.32 0.10 0.24 0.60
Health Care 1.00 0.35 0.02 0.13 0.14 0.41
Consumer Services 0.71 0.68 0.34 0.53 0.38 0.60 0.18 0.33 0.12
Telecommunications | 0.59 0.73 1.00 0.59 1.00 0.68 1.00 0.10
Utilities 0.92 0.33 0.64 0.41 0.30 1.00 0.56 0.30
Financials 0.88 0.47 0.49 1.00 0.11 0.50 0.51 0.67 0.43
Technology 0.59 1.00 0.63 0.97 0.65 0.23 0.70 0.73 1.00 0.16

Table 11: B; matrix with sectors indexes (NNDSVD®)

NMF factors

Sector S H2 H3 HA4 H45 H6 HT #8  #9 #10
Oil & Gas 0.83 0.99 1.00 1.00 0.67 0.97 029 034 0.70 0.07
Basic Materials 0.79 1.00 056 0.84 0.50 0.57 086 1.00 0.64 0.99
Industrials 0.90 0.75 0.54 0.65 0.55 0.49 094 091 0.64 0.95
Consumer Goods 0.86 0.86 0.60 0.88 0.45 0.60 090 0.87 0.65 0.87
Health Care 0.83 0.90 0.85 099 0.66 0.92 0.77 030 0.81 0.37

Consumer Services 0.85 033 054 047 061 069 1.00 0.72 1.00 1.00
Telecommunications | 1.00 0.35 0.57 0.42 0.33 093 069 0.52 0.78 0.71

Utilities 0.80 092 0.84 077 0.70 1.00 046 0.56 0.87 0.74
Financials 0.73 094 090 069 1.00 0.68 048 0.48 0.81 0.80
Technology 098 039 0.71 050 0.79 0.67 046 0.43 0.65 0.30
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Table 12: By matrix with sectors indexes (NNDSVD®")

NMF factors

Sector 1 #2 #3 HA 45 H6 HT H#8  #9 #10
Oil & Gas 0.94 0.38 032 025 027 0.16 083 028 0.33 1.00
Basic Materials 0.79 050 0.83 0.67 0.23 092 100 032 0.38 0.87
Industrials 0.65 0.65 0.73 0.79 057 1.00 097 056 0.55 0.64
Consumer Goods 0.82 0.46 055 036 0.36 0.78 097 036 0.42 0.56
Health Care 1.00 044 0.21 006 015 0.10 046 025 0.31 0.83

Consumer Services 0.63 0.71 049 0.51 056 050 086 0.49 0.39 0.29
Telecommunications | 0.52 0.61 096 0.59 1.00 0.29 090 0.50 0.56 0.22

Utilities 0.82 053 1.00 070 031 0.16 095 0.53 041 0.90
Financials 0.74 069 0.84 100 020 0.32 078 1.00 0.68 0.94
Technology 043 1.00 083 099 078 054 099 0.76 1.00 0.51

Table 13: By matrix with sectors indexes (KM)

NMF factors

Sector 1 H#2 H3 HA 4B H6 HT 48 #9 #10
Oil & Gas 0.93 0.98 084 0.76 0.95 0.99 087 088 0.79 0.71
Basic Materials 1.00 093 076 1.00 0.75 083 0.84 0.89 091 0.61
Industrials 0.80 0.83 0.72 0.88 0.75 0.74 0.78 0.74 0.83 0.79
Consumer Goods 0.87 1.00 0.72 0095 0.82 088 082 0.83 0.76 0.72
Health Care 0.96 0.94 082 0.77 1.00 1.00 1.00 091 0.59 0.77

Consumer Services 0.66 0.69 059 062 074 0.78 0.78 0.67 0.60 0.88
Telecommunications | 0.70 0.71 0.51 0.52 0.74 0.63 0.55 0.74 0.62 0.93

Utilities 1.00 0.89 085 0.77 084 0.86 0.86 1.00 0.95 0.67
Financials 0.81 082 1.00 078 0.81 080 097 0.85 1.00 0.65
Technology 0.57 073 058 044 0.73 070 0.76 0.55 0.64 1.00

Table 14: B; matrix with sectors indexes (CRO)

NMF factors
Sector #1 H#2  H#3 H4 H#5 H6 H#T H#8 #9910
Oil & Gas 0.22 0.93 0.34 0.09 0.67
Basic Materials 0.29 1.00 0.25 1.00 0.17
Industrials 0.75 0.05 0.60 0.30 0.71 0.80 0.20
Consumer Goods 0.92 0.20 0.15 0.59
Health Care 1.00 0.03 0.60 0.12
Consumer Services 0.46 0.76 0.07 0.35 0.41 0.26 0.21 0.23
Telecommunications | 0.04 0.27 0.75 1.00 0.78
Utilities 0.77 1.00 1.00 0.26 0.27
Financials 0.38 0.70 1.00 0.02 1.00 0.05 1.00 0.13
Technology 0.28 0.10 0.66 0.17 0.18 0.76 0.65 1.00
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