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1 Introduction

According to the last proposals by the Basel Committee [1], banks are allowed to use the Advanced
Measurement Approaches (AMA) option for the computation of their capital charge covering opera-
tional risks. Among these methods, the Loss Distribution Approach (LDA) is the most sophisticated
one (see Frachot, Georges and Roncalli [2001] for an extensive presentation of this method). It
is also expected to be the most risk sensitive as long as internal data are used in the calibration process
and then LDA is more closely related to the actual riskiness of each bank. However it is now widely
recognized that calibration on internal data only does not suffice to provide accurate capital charge.
In other words, internal data should be supplemented with external data. The goal of this paper is to
address issues regarding the optimal way to mix internal and external data regarding frequency and
severity.

As a matter of fact, frequency and severity data must be treated differently as they raise rather
different issues. Considering one specific bank, its internal frequency data likely convey information
on its specific riskiness and the soundness of its risk management practices. For example, a bank whose
past frequencies of events are particularly good with respect to its exposition should be charged a lower
capital requirement than for an average bank. Unfortunately nothing ensures that this lower-than-
average frequency does result from an outstanding risk management policy rather than from a “lucky”
business history. If lower-than-average past frequencies happened by chance, charging a lower-than-
average capital charge would be misleading. Comparing internal and external data is then a way to
separate what could be attributed to a sound risk management practice (which should be rewarded
by lower-than-average capital charge) and what comes from a lucky course of business (which has
no reason to last in the future). As the last QIS exercise has highlighted the strong heterogeneity of
capital allocations among banks, it is all the more important to decide whether a better-than-average
track record of past frequencies results from sound risk management practices or should be suspected
to result from a lucky course of business. We here propose a rigorous way to tackle this issue through
a statistical model refered as Credibility Theory in the insurance literature.

In the same spirit, internal data on severity should be mixed with external data but for different
reasons. We assume here that internal severity data do not convey any information on internal risk
management practices. In this paper internal severity databases should be supplemented with external
severity data in order to give a non-zero likelihood to rare events which could be missing in internal
databases. Unfortunately mixing internal and external data altogether may provide unacceptable
results as external databases are strongly biased toward high-severity events. A rigorous statistical
treatment is developped in the sequel to make internal and external data comparable and to make
sure that merging both databases results in unbiased estimates of the severity distribution.
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2 Mixing internal and external frequency data

Mixing internal and external frequency data can be relied on the credibility theory which is at the
root of insurance theory. This theory tells how one should charge a fair premium to each policyholder
considering the fact that policyholders do not have experienced the same history of claims. Achieving
a fair pricing requires to compute how to relate a past history of claims either to a lucky (or unlucky)
history or to an intrinsically lower (or greater) riskiness. According to the credibility theory, one must
consider that policyholder riskiness is a priori unobserved but is partially revealed by the track record
of the policyholder. Then the past information recorded on one specific policyholder is viewed as a
means to reduce the a priori uncertainty attached to the policyholder riskiness. As a result, there is
a discrepancy between the a priori probability distribution of riskiness (before any observation) and
the a posteriori probability distribution obtained by conditioning with respect to past information.
This discrepancy between the two distributions is the basic foundation for a fair pricing. This idea is
developped in the context of the banking industry.

2.1 Computing the expected frequency of events

Considering one specific bank, let us focus on one business line and one type of events and note Nt
the number of corresponding events at year t. Internal historical data (regarding frequency data) is
represented by N t, that is the information set consisting of past number of events {Nt, Nt−1, . . . }.
Now define EI the exposition indicator (i.e. gross income) and make the standard assumption that
Nt is Poisson distributed with parameter λ×EI, where λ is a parameter measuring the (unobserved)
riskiness of the bank. The key point is that supervisors should consider that the expected number of
events for year t is E

[

Nt | N t−1

]

and not E [Nt]. The latter term relates to the “pure premium” if we
use insurance terminology while E

[

Nt | N t−1

]

is the expected number of events conditionally to the
track record of the bank. As an example, let us assume that the bank has experienced lower-than-
average Ns for s < t; this track record likely conveys information that this bank is intrinsically less
risky than its competitors. As a result, E

[

Nt | N t−1

]

will be lower than an expectation which would
ignore this information, that is E [Nt].

Regarding risk, banks differ from one another through parameter λ (and of course EI). Following
credibility theory, we assume that λ is an unobservable random variable which ranges from low-risk
banks (λ close to 0) to high-risk banks. In short, each bank has a specific unobserved riskiness λ
and the internal data N t−1 conveys information on λ. Let us go one step further assuming that λ is
distributed according to a Gamma law Γ (a, b) among the banking industry1:

f (λ) =
λa−1e−λ/b

baΓ(a)

This means that all banks are not similar in terms of risk management and best practices but their
respective riskinesses are unobserved. The choice of the Gamma distribution is rather arbitrary but
has many appealing features. First, this class of distributions is large and flexible enough to capture
the kind of heterogeneity one might expect. Secondly, this class of distributions permits easy and
nice calculations and provides closed-form formulas. In particular, one can compute the unconditional
expectation

π0
t = E [Nt]

= Eλ [E [Nt | λ]]

= EI×E [λ]
1Γ (.) is the traditional Gamma function defined as:

Γ (x) =
Z +∞

0
ux−1e−u du
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as well as conditional expectation

πt = E
[

Nt | N t−1

]

= E
[

E
[

Nt | λ, N t−1

]

| N t−1

]

= EI×E
[

λ | N t−1

]

As shown in Appendix A, computations can be made explicit:

π0
t = a× b× EI

πt = ω × π0
t + (1− ω)×

[

1
t

t
∑

k=1

Nt−k

]

As a result, the expected number of events that relates best to the actual riskiness of this bank
is a weighted linear combination between the unconditional expectation (which corresponds to the
industry-wide expected number of events) and the historical average number of events experienced by
the bank during its past course of business. ω is a parameter depending on the exposition indicator
EI and the parameters a and b:

ω =
1

1 + t× b× EI

As a consequence, the expected number of events to be considered is close to the average historical
number of events experienced by the bank, if one of the two following conditions is satisfied:

• the length of track record is important, i.e. t is large;

• the exposure indicator EI is large.

The interpretation is straightforward: when a bank has a long history of frequencies of events and/or is
highly exposed to operational risks, then supervisors should be confident enough to weigh significantly
bank’s internal data to assess its riskiness.

2.2 Computing the probability distribution of future frequency

In practice, the expected number of events conditionnally to past experience does not suffice to
compute a capital charge. As a matter of fact the entire conditional distribution of Nt is required.
This distribution results from a classical result (see Klugman, Panjer and Willmot [1998]):

Pr
{

Nt = n | N t−1

}

=
Γ (ã + n)
Γ (ã) n!

(

1 + b̃
)−ã

(

b̃

1 + b̃

)n

(1)

where

ã = a +
t

∑

k=1

Nt−k

and

b̃ =
b× EI

1 + t× b× EI

It means that the probability that a bank whose track record amount to N t−1 experiences n losses at
time t is given by equation (1). This distribution must be compared with the unconditional distribution
(in other words the industry-wide frequency distribution):

Pr {Nt = n} =
Γ (a + n)
Γ (a) n!

(

1 + b0)−a
(

b0

1 + b0

)n

(2)
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which gives the a priori probability that one bank (whose track record is unknown) experiences n
losses at time t. Note that b0 = b× EI.

As a result, the a priori and a posteriori distributions are mathematically similar except that the
“internal” parameters ã and b̃ (caracterizing the actual riskiness of the bank) are adjusted from their
industry-wide counterparts a and b by taking into account past experiences.

2.3 Calibration

Parameters a and b have to be estimated on frequency data experienced by the banking industry.
Let us assume that a future QIS-type exercise provides a set of observations of frequency data

{

N i
t

}

where i denotes the ith bank. Then, a maximum likelihood procedure can be easily achieved with the
distribution of (unconditional) numbers of events given by (2):

(a, b) = arg max
∑

i

ln Γ
(

a + N i
t

)

− ln Γ (a)−
(

a + N i
t

)

ln
(

1 + b× EIi
)

+ N i
t ln b

As a summary the optimal combination of internal and external data when dealing with frequency
data is as follows:

• estimate the overall riskiness of the banking industry as reflected by (industry-wide) parameters
a and b;

• adjust parameters a and b to take into account internal past frequencies (i.e. ã and b̃);

• use equation (1) to obtain the probability distribution corresponding to a specific bank i whose
past frequencies amount to N i

t−1. If bank i has no historical data on its own frequencies, use
(1) with ã = a and b̃ = b0, that is equation (2).

Even though the maximum likelihood approach is the most efficient strategy, alternative calibration
procedures could be adopted in the extent that they are simpler to implement. For example, let us
assume that the average ratio N/ EI (i.e. the number of events relative to the exposition) is known in
an industry-wide basis as well as its dispersion: these two numbers would be sufficient to obtain some
first estimates of parameters a and b by solving the two equations relating E [N/ EI] et var [N/ EI]
with a and b.

3 Mixing internal and external severity data

Mixing internal and external severity data is an almost impossible task because no one knows which
data generating process external severity data are drawn from. As a matter of fact, external severity
data are biased toward high severity events as only large losses are publicly released. Merging internal
and external data together gives spurious results which tend to be over-pessimistic regarding the
actual severity distribution.

In other words, as the threshold above which external data are publicly released is unknown, the
true generating process of external data is also unknown making the mixing process an impossible
(and misleading) task. One can not conclude however that external databases are useless for our
purpose. Indeed, it only means that the threshold should be added to the set of parameters one has
to calibrate. Let us assume that the true loss probability distribution is denoted ` (x; θ) where θ is
a set of parameters defining the entire severity distribution. Then internal data follow this severity
distribution while external data are drawn from the same distribution but truncated by a (unknown)
threshold H. If ξj (respectively ξ∗j ) denotes an internal (resp. external) single loss record, then:

ξj ∼ ` (·; θ)
ξ?

j ∼ `|H (·; θ)
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where `|H (.; θ) is the loss density conditionally to these losses being above threshold H:

`|H (x; θ) =
` (x; θ)

∫ +∞
H ` (v; θ) dv

If one adopts a maximum likelihood procedure, the following program has to be solved:

(θ,H) = arg max
∑

j∈J
ln `

(

ξj ; θ
)

+
∑

j∈J ∗
ln `|H

(

ξ∗j ; θ
)

(3)

which should provide a non-zero threshold H as soon as external data are biased toward high severity
losses. Contrary to what consultancy firms often propose, merging internal and external data should
be performed under the condition that both data types are made comparable in nature. Threshold
H is exactly the parameter which ensures this comparability.

Developing program (3) shows that maximizing a conventional likelihood which ignores truncation is
totally misleading. Ignoring truncation is equivalent to work with the following incorrect log-likelihood
function:

L (θ, 0) =
∑

j∈J

ln `
(

ξj ; θ
)

+
∑

j∈J ∗
ln `

(

ξ∗j ; θ
)

meaning that the threshold is incorrectly set to zero:

L (θ,H) = L (θ, 0)− n∗ ln
∫ +∞

H
` (v; θ) dv

where n∗ is the number of external losses — n∗ = cardJ ∗. In the same spirit it can be adapted to
other methods of calibration like the General Method of Moments, Indirect Inference, etc. In all cases,
one must consider that the generating process of external data is truncated above a threshold which
has to be calibrated itself along with the parameters of the severity distribution.

4 Computing capital requirements

Bringing together the results of the previous sections, we are now able to compute the capital to be
charged to a bank when both internal and external data (or benchmarks) are available.

Let us define the time-t total loss amount experienced by one specific bank:

Zt =
Nt
∑

j=1

ξj

where
{

ξj

}

is the set of losses experienced at year t. As usual, we shall assume that ξj are independent
and identically distributed, and independent from the number of events Nt. From regulatory purposes,
the capital charge CaR should be rigorousely defined as:

Pr
{

Zt ≤ CaR | N t−1

}

≥ α (4)

where α is for example equal to 99.9%. This actual capital charge may be significantly different from
the one we would compute while ignoring past internal data. The latter that we call CaRbmk (where
bmk stands for benchmark) is thus defined as:

Pr (Zt ≤ CaRbmk) ≥ α (5)

where the information set has been dropped. Consequently, CaR for a specific bank may be lower
or greater than CaRbmk depending on whether the bank has experienced (significantly) lower-than-
average or greater-than-average number of events. Finally, assuming that parameters a and b have
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been consistently estimated as well as the parameters of the severity distribution, capital charge for
one bank whose exposition indicator is CaR and whose past experience amounts to N t−1 should be
equal to the solution of:

α =
+∞
∑

n=0

Pr
{

Nt = n | N t−1

}

× Fn? (CaR)

where Fn? denotes the cumulative probability function of
∑n

j=1 ξj . In short, the capital charge of a
specific bank whose exposition indicator is EI can be expressed as:

CaR = CaRbmk (EI)×W
(

EI, N t−1

)

where W
(

EI, N t−1

)

is a (non-explicit) function of the exposition indicator and past frequencies of
events, with W

(

EI, N t−1

)

= 1 when N t−1 = ∅.

5 Concluding remarks

The Loss Distribution Approach has many appealing features since it is expected to be much more
risk-sensitive than any other methods taken into consideration by the last proposals by the Basel
Committee. Thus this approach is expected to provide significantly lower capital charges for banks
whose track record is particularly good relatively to their exposures and compared with industry-wide
benchmarks.

Unfortunately LDA when calibrated only on internal data is far from being satisfactory from a regu-
latory perspective as it could likely underestimate the necessary capital charge. This happens for two
reasons. First if a bank has experienced a lower-than-average number of events, it will benefit from
a lower-than-average capital charge even though its good track record happened by chance and does
not result from better-than-average risk management practices. As a consequence, LDA is acceptable
as long as internal frequency data are tempered by industry-wide references. As such, it immediately
raises the issue of how to cope with both internal frequency data and external benchmarks. This
paper proposes a solution based on credibility theory which is widely used in the insurance industry
to tackle analogous problems. As a result, we show how to make the statistical adjustment to temper
the information conveyed by internal frequency data with the use of external references.

Similarly if the calibration of severity parameters ignores external data, then the severity distribution
will likely be biased towards low-severity losses since internal losses are typically lower than those
recorded in industry-wide databases. Again from a regulatory perspective LDA cannot be accepted
unless both internal and external data are merged and the merged database is used in the calibration
process. Here again it raises the issue regarding the best way to merge these data. Obviously it
cannot be done without any care since if internal databases are directly fuelled with external data,
severity distributions will be strongly biased towards high-severity losses. This paper proposes also a
statistical adjustment to make internal and external databases comparable with one another in order
to permit a safe and unbiased merging.
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A Computation of the conditionnal expected number of events

The expected number of events conditionnally to past information is equal to:

πt = E
[

Nt | N t−1

]

= E
[

E
[

Nt | λ, N t−1

]

| N t−1

]

= E
[

λ× EI | N t−1

]

Thus one has to compute the probability distribution of λ×EI conditionnally to N t−1. This is a rather
classical calculus one can find in Klugman, Panjer and Willmot [1998]: the conditionnal law is
still a Gamma distribution but with different parameters. Denoting fλ×EI

(

· | N t−1

)

the conditionnal
probability density function (called also the posterior distribution):

fλ×EI
(

λ | N t−1

)

=
λã−1e−λ/b̃

Γ(ã)b̃ã

with

ã = a +
t

∑

k=1

Nt−k

and

b̃ =
b× EI

1 + t× b× EI

As a result, the conditionnal expected number of events is equal to:

πt = ã× b̃

= ω × π0
t + (1− ω)×

[

1
t

t
∑

k=1

Nt−k

]

with

π0
t = a× b× EI

and

ω =
1

1 + t× b× EI
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