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Abstract

Portfolio optimization emerged with the seminal paper of Markowitz (1952). The
original mean-variance framework is appealing because it is very efficient from a com-
putational point of view. However, it also has one well-established failing since it can
lead to portfolios that are not optimal from a financial point of view (Michaud, 1989).
Nevertheless, very few models have succeeded in providing a real alternative solution
to the Markowitz model. The main reason lies in the fact that most academic portfolio
optimization models are intractable in real life although they present solid theoretical
properties. By intractable we mean that they can be implemented for an investment
universe with a small number of assets using a lot of computational resources and skills,
but they are unable to manage a universe with dozens or hundreds of assets. However,
the emergence and the rapid development of robo-advisors means that we need to re-
think portfolio optimization and go beyond the traditional mean-variance optimization
approach.

Another industry and branch of science has faced similar issues concerning large-
scale optimization problems. Machine learning and applied statistics have long been
associated with linear and logistic regression models. Again, the reason was the inability
of optimization algorithms to solve high-dimensional industrial problems. Nevertheless,
the end of the 1990s marked an important turning point with the development and the
rediscovery of several methods that have since produced impressive results. The goal of
this paper is to show how portfolio allocation can benefit from the development of these
large-scale optimization algorithms. Not all of these algorithms are useful in our case,
but four of them are essential when solving complex portfolio optimization problems.
These four algorithms are the coordinate descent, the alternating direction method of
multipliers, the proximal gradient method and the Dykstra’s algorithm. This paper
reviews them and shows how they can be implemented in portfolio allocation.

Keywords: Portfolio allocation, mean-variance optimization, risk budgeting optimization,
quadratic programming, coordinate descent, alternating direction method of multipliers,
proximal gradient method, Dykstra’s algorithm.
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1 Introduction
The contribution of Harry Markowitz to economics is considerable. The mean-variance op-
timization framework marks the beginning of portfolio allocation in finance. In addition to
the seminal paper of 1952, Harry Markowitz proposed an algorithm for solving quadratic
programming problems in 1956. At that time, very few people were aware of this optimiza-
tion framework. We can cite Mann (1943) and Martin (1955), but it is widely accepted that
Harry Markowitz is the “father of quadratic programming” (Cottle and Infanger, 2010). This
is not the first time that economists are participating in the development of mathematics1,
but this is certainly the first time that mathematicians will explore a field of research, whose
main application during the first years of research is exclusively an economic problem2.

The success of mean-variance optimization (MVO) is due to the appealing properties
of the quadratic utility function, but it should also be assessed in light of the success of
quadratic programming (QP). Because it is easy to solve QP problems and because QP
problems are available in mathematical software, solving MVO problems is straightforward
and does not require a specific skill. This is why the mean-variance optimization is a
universal method which is used by all portfolio managers. However, this approach has been
widely criticized by academics and professionals. Indeed, mean-variance optimization is
very sensitive to input parameters and produces corner solutions. Moreover, the concept
of mean-variance diversification is confused with the concept of hedging (Bourgeron et al.,
2018). These different issues make the practice of mean-variance optimization less attractive
than the theory (Michaud, 1989). In fact, solving MVO allocation problems requires the
right weight constraints to be specified in order to obtain acceptable solutions. It follows that
designing the constraints is the most important component of mean-variance optimization.
In this case, MVO appears to be a trial-and-error process, not a systematic solution.

The success of the MVO framework is also explained by the fact that there are very few
competing portfolio allocation models that can be implemented from an industrial point of
view. There are generally two reasons for this. The first one is that some models use input
parameters that are difficult to estimate or understand, making these models definitively
unusable. The second reason is that other models use a more complex objective function
than the simple quadratic utility function. In this case, the computational complexity makes
these models less attractive than the standard MVO model. Among these models, some of
them are based on the mean-variance objective function, but introduce regularization penalty
functions in order to improve the robustness of the portfolio allocation. Again, these models
have little chance of being used if they cannot be cast into a QP problem. However, new
optimization algorithms have emerged for solving large-scale machine learning problems.
The purpose of this article is to present these new mathematical methods and show that
they can be easily applied to portfolio allocation in order to go beyond the MVO/QP model.

This survey article is based on several previous research papers ([8], [37], [61] and [62])
and extensively uses four leading references (Beck, 2017; Boyd et al., 2010; Combettes and
Pesquet, 2011; Tibshirani, 2017). It is organized as follows. In section two, we present the
mean-variance approach and how it is related to the QP framework. The third section is
dedicated to large-scale optimization algorithms that have been used in machine learning:
coordinate descent, alternating direction method of multipliers, proximal gradient and Dyk-
stra’s algorithm. Section four shows how these algorithms can be implemented in order
to solve portfolio optimization problems and build a more robust asset allocation. Finally,
section five offers some concluding remarks.

1For example, Leonid Kantorovich made major contributions to the success of linear programming.
2If we consider the first publications on quadratic programming, most of them were published in Econo-

metrica or illustrated the Markowitz problem (see [1], [2], [4], [24], [26], [30], [40], [72] and [73]).
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2 The quadratic programming world of portfolio opti-
mization

2.1 Quadratic programming

2.1.1 Primal formulation

A quadratic programming (QP) problem is an optimization problem with a quadratic ob-
jective function and linear inequality constraints:

x? = arg min
x

1
2x
>Qx− x>R (1)

s.t. Sx ≤ T

where x is a n × 1 vector, Q is a n × n matrix and R is a n × 1 vector. We note that the
system of constraints Sx ≤ T allows us to specify linear equality constraints3 Ax = B or box
constraints x− ≤ x ≤ x+. Most numerical packages then consider the following formulation:

x? = arg min
x

1
2x
>Qx− x>R (2)

s.t.

 Ax = B
Cx ≤ D
x− ≤ x ≤ x+

because the problem (2) is equivalent to the canonical problem (1) with the following system
of linear inequalities: 

−A
A
C
−In
In

x ≤

−B
B
D
−x−
x+


If the space Ω defined by Sx ≤ T is non-empty and if Q is a symmetric positive definite
matrix, the solution exists because the function f (x) = 1

2x
>Qx − x>R is convex. In the

general case where Q is a square matrix, the solution may not exist.

2.1.2 Dual formulation

The Lagrange function is equal to:

L (x;λ) = 1
2x
>Qx− x>R+ λ> (Sx− T )

We deduce that the dual problem is defined by:

λ? = arg max
λ

{
inf
x
L (x;λ)

}
s.t. λ ≥ 0

3This is equivalent to impose that Ax ≥ B and Ax ≤ B.
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We note that ∂x L (x;λ) = Qx − R + S>λ. The solution to the equation ∂x L (x;λ) = 0 is
then x = Q−1 (R− S>λ). We finally obtain:

inf
x
L (x;λ) = 1

2
(
R> − λ>S

)
Q−1 (R− S>λ)− (R> − λ>S)Q−1R+

λ>
(
SQ−1 (R− S>λ)− T )

= 1
2R
>Q−1R− λ>SQ−1R+ 1

2λ
>SQ−1S>λ−R>Q−1R+

2λ>SQ−1R− λ>SQ−1S>λ− λ>T

= −1
2λ
>SQ−1S>λ+ λ>

(
SQ−1R− T

)
− 1

2R
>Q−1R

We deduce that the dual program is another quadratic programming problem:

λ? = arg min
λ

1
2λ
>Q̄λ− λ>R̄ (3)

s.t. λ ≥ 0

where Q̄ = SQ−1S> and R̄ = SQ−1R− T .

Remark 1 This duality property is very important for some machine learning methods. For
example, this is the case of support vector machines and kernel methods that extensively use
the duality for defining the solution (Cortes and Vapnik, 1995).

2.1.3 Numerical algorithms

There is a substantial literature on the methods for solving quadratic programming problems
(Gould and Toint, 2000). The research begins in the 1950s with different key contributions:
Frank and Wolfe (1956), Markowitz (1956), Beale (1959) and Wolfe (1959). Nowadays,
QP problems are generally solved using three approaches: active set methods, gradient
projection methods and interior point methods. All these algorithms are implemented in
standard mathematical programming languages (Matlab, Matematica, Python, Gauss, R,
etc.). This explains the success of QP problems since 2000s, because they can be easily and
rapidly solved.

2.2 Mean-variance optimized portfolios
The concept of portfolio allocation has a long history and dates back to the seminal work of
Markowitz (1952). In his paper, Markowitz defined precisely what portfolio selection means:
“the investor does (or should) consider expected return a desirable thing and variance of
return an undesirable thing”. Indeed, Markowitz showed that an efficient portfolio is the
portfolio that maximizes the expected return for a given level of risk (corresponding to the
variance of portfolio return) or a portfolio that minimizes the risk for a given level of expected
return. Even if this framework has been extended to many other allocation problems (index
sampling, turnover management, etc.), the mean-variance model remains the optimization
approach that is the most widely used in finance.

2.2.1 The Markowitz framework

We consider a universe of n assets. Let x = (x1, . . . , xn) be the vector of weights in the
portfolio. We assume that the portfolio is fully invested meaning that

∑n
i=1 xi = 1>n x = 1.

We denote R = (R1, . . . ,Rn) as the vector of asset returns where Ri is the return of asset
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i. The return of the portfolio is then equal to R (x) =
∑n
i=1 xiRi = x>R. Let µ = E [R]

and Σ = E
[
(R− µ) (R− µ)>

]
be the vector of expected returns and the covariance matrix

of asset returns. The expected return of the portfolio is equal to:

µ (x) = E [R (x)] = x>µ

whereas its variance is equal to:

σ2 (x) = E
[
(R (x)− µ (x)) (R (x)− µ (x))>

]
= x>Σx

Markowitz (1952) formulated the investor’s financial problem as follows:

1. Maximizing the expected return of the portfolio under a volatility constraint (σ-
problem):

max µ (x) s.t. σ (x) ≤ σ? (4)

2. Or minimizing the volatility of the portfolio under a return constraint (µ-problem):

min σ (x) s.t. µ (x) ≥ µ? (5)

Markowitz’s bright idea was to consider a quadratic utility function:

U (x) = x>µ− φ

2x
>Σx

where φ ≥ 0 is the risk aversion. Since maximizing U (x) is equivalent to minimizing −U (x),
the Markowitz problems (4) and (5) can be cast into a QP problem4:

x? (γ) = arg min
x

1
2x
>Σx− γx>µ (6)

s.t. 1>n x = 1

where γ = φ−1. Therefore, solving the µ-problem or the σ-problem is equivalent to finding
the optimal value of γ such that µ (x? (γ)) = µ? or σ (x? (γ)) = σ?. We know that the
functions µ (x? (γ)) and σ (x? (γ)) are increasing with respect to γ and are bounded. The
optimal value of γ can then be easily computed using the bisection algorithm. It is obvious
that a large part of the success of the Markowitz framework lies on the QP trick. Indeed,
Problem (6) corresponds to the QP problem (2) where Q = Σ, R = γµ, A = 1>n and B = 1.
Moreover, it is easy to include bounds on the weights, inequalities between asset classes, etc.

2.2.2 Solving complex MVO problems

The previous framework can be extended to other portfolio allocation problems. However,
from a numerical point of view, the underlying idea is to always find an equivalent QP
formulation (Roncalli, 2013).

Portfolio optimization with a benchmark We now consider a benchmark b. We note
µ (x | b) = (x− b)> µ as the expected excess return and σ (x | b) =

√
(x− b)>Σ (x− b)

as the tracking error volatility of Portfolio x with respect to Benchmark b. The objective
4This transformation is called the QP trick.
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function corresponds to a trade-off between minimizing the tracking error volatility and
maximizing the expected excess return (or the alpha):

f (x | b) = 1
2σ

2 (x | b)− γµ (x | b)

We can show that the equivalent QP problem is5:

x? (γ) = arg min
x

1
2x
>Σx− γx>µ̃

where µ̃ = µ + γ−1Σb is the regularized vector of expected returns. Therefore, portfolio
allocation with a benchmark can be viewed as a regularization of the MVO problem and is
solved using a QP numerical algorithm.

Index sampling The goal of index sampling is to replicate an index portfolio with a
smaller number of assets than the index (or the benchmark) b. From a mathematical point
of view, index sampling could be written as follows:

x? = arg min
x

1
2 (x− b)>Σ (x− b) (7)

s.t.

 1>n x = 1
x ≥ 0n∑n
i=1 1 {xi > 0} ≤ nx

The idea is to minimize the volatility of the tracking error such that the number of stocks
nx in the portfolio is smaller than the number of stocks nb in the benchmark. For example,
one would like to replicate the S&P 500 index with only 50 stocks and not the entire 500
stocks that compose this index. Professionals generally solve Problem (7) with the following
heuristic algorithm:

1. We set x+
(0) = 1n. At the iteration k + 1, we solve the QP problem:

x? = arg min
x

1
2 (x− b)>Σ (x− b)

s.t.
{

1>n x = 1
0n ≤ x ≤ x+

(k)

2. We then update the upper bound x+
(k) of the QP problem by deleting the asset i? with

the lowest non-zero optimized weight6:

x+
(k+1),i ← x+

(k),i if i 6= i? and x+
(k+1),i? ← 0

3. We iterate the two steps until
∑n
i=1 1 {x?i > 0} = nx.

The purpose of the heuristic algorithm is to delete one asset at each iteration in order to
obtain an invested portfolio, which is exactly composed of nx assets and has a low tracking
error volatility. Again, we notice that solving the index sampling problem is equivalent to
solving (nb − nx) QP problems.

5See Appendix A.1 on page 51.
6We have i? =

{
i : arg inf x?

i

∣∣x?
i > 0

}
.
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Turnover management If we note x̄ as the current portfolio and x as the new portfolio,
the turnover of Portfolio x with respect to Portfolio x̄ is the sum of purchases and sales:

τ (x | x̄) =
n∑
i=1

(xi − x̄i)+ +
n∑
i=1

(x̄i − xi)+ =
n∑
i=1
|xi − x̄i|

Adding a turnover constraint in long-only MVO portfolios leads to the following problem:

x? = arg min
x

1
2x
>Σx− γx>µ

s.t.


∑n
i=1 xi = 1∑n
i=1 |xi − x̄i| ≤ τ+

0 ≤ xi ≤ 1

where τ+ is the maximum turnover with respect to the current portfolio x̄. Scherer (2007)
introduces the additional variables x−i and x+

i such that:

xi = x̄i + x+
i − x

−
i

with x−i ≥ 0 indicates a negative weight change with respect to the initial weight x̄i and
x+
i ≥ 0 indicates a positive weight change. The expression of the turnover becomes:

n∑
i=1
|xi − x̄i| =

n∑
i=1

∣∣x+
i − x

−
i

∣∣ =
n∑
i=1

x+
i +

n∑
i=1

x−i

because one of the variables x+
i or x−i is necessarily equal to zero due to the minimization

problem. The γ-problem of Markowitz becomes:

x? = arg min
x

1
2x
>Σx− γx>µ

s.t.


∑n
i=1 xi = 1

xi = x̄i + x+
i − x

−
i∑n

i=1 x
+
i +

∑n
i=1 x

−
i ≤ τ+

0 ≤ xi, x−i , x
+
i ≤ 1

We obtain an augmented QP problem of dimension 3n (see Appendix A.2 on page 51).

Transaction costs The previous analysis assumes that there is no transaction cost ccc (x | x̄)
when we rebalance the portfolio from the current portfolio x̄ to the new optimized portfolio
x. If we note c−i and c+i as the bid and ask transaction costs, we have:

ccc (x | x̄) =
n∑
i=1

x−i c
−
i +

n∑
i=1

x+
i c

+
i

The net expected return of Portfolio x is then equal to µ (x)− ccc (x | x̄). It follows that the
γ-problem of Markowitz becomes7:

x? = arg min
x

1
2x
>Σx− γ

(
n∑
i=1

xiµi −
n∑
i=1

x−i c
−
i −

n∑
i=1

x+
i c

+
i

)

s.t.


∑n
i=1 xi +

∑n
i=1 x

−
i c
−
i +

∑n
i=1 x

+
i c

+
i = 1

xi = x̄i + x+
i − x

−
i

0 ≤ xi, x−i , x
+
i ≤ 1

Once again, we obtain a QP problem (see Appendix A.3 on page 52).
7The equality constraint 1>n x = 1 becomes 1>n x+ccc (x | x̄) = 1 because the rebalancing process has to be

financed.
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2.3 Issues with QP optimization
The concurrent model of the Markowitz framework is the risk budgeting approach (Qian,
2005; Maillard et al., 2010; Roncalli, 2013). The goal is to define a convex risk measure R (x)
and to allocate the risk according to some specified risk budgets RB = (RB1, . . . ,RBn)
where RBi > 0. This approach exploits the Euler decomposition property of the risk
measure:

R (x) =
n∑
i=1

xi
∂R (x)
∂ xi

By noting RCi (x) = xi ·∂xi R (x) as the risk contribution of Asset i with respect to portfolio
x, the risk budgeting (RB) portfolio is defined by the following set of equations:

x? = {x ∈ [0, 1]n : RCi (x) = RBi}

Roncalli (2013) showed that it is equivalent to solving the following non-linear optimization
problem8:

x? = arg min
x
R (x)− λ

n∑
i=1
RBi · ln xi (8)

s.t. xi > 0

where λ > 0 is an arbitrary positive constant. Generally, the most frequently used risk
measures are the volatility risk measure (Maillard et al., 2010):

R (x) =
√
x>Σx

and the standard deviation-based risk measure (Roncalli, 2015):

R (x) = −x> (µ− r) + ξ
√
x>Σx

where r is the risk-free rate and ξ is a positive scalar. In particular, this last one encompasses
the Gaussian value-at-risk — ξ = Φ−1 (α) — and the Gaussian expected shortfall — ξ =
(1− α)−1

φ
(
Φ−1 (α)

)
.

The risk budgeting approach has displaced the MVO approach in many fields of asset
management, in particular in the case of factor investing and alternative risk premia. Nev-
ertheless, we notice that Problem (8) is a not a quadratic programming problem, but a
logarithmic barrier problem. Therefore, the risk budgeting framework opens a new world
of portfolio optimization that is not necessarily QP! That is all the more true since MVO
portfolios face robustness issues (Bourgeron et al., 2018). Regularization of portfolio allo-
cation has then become the industry standard. Indeed, it is frequent to add a `1-norm or
`2-norm penalty functions to the MVO objective function. This type of penalty is, how-
ever, tractable in a quadratic programming setting. With the development of robo-advisors,
non-linear penalty functions have emerged, in particular the logarithmic barrier penalty
function. And these regularization techniques result in a non-quadratic programming world
of portfolio optimization.

The success of this non-QP financial world will depend on how quickly and easily these
complex optimization problems can be solved. Griveau-Billon at al. (2013), Bourgeron et al.
(2018), and Richard and Roncalli (2019) have already proposed numerical algorithms that
are doing the work in some special cases. The next section reviews the candidate algorithms
that may compete with QP numerical algorithms.

8In fact, the solution x? must be rescaled after the optimization step.
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3 Machine learning optimization algorithms
The machine learning industry has experienced a similar trajectory to portfolio optimization.
Before the 1990s, statistical learning focused mainly on models that were easy to solve from
a numerical point of view. For instance, the linear (and the ridge) regression has an analyt-
ical solution, we can solve logistic regression with the Newton-Raphson algorithm whereas
supervised and unsupervised classification models9 consist in performing a singular value
decomposition or a generalized eigenvalue decomposition. The 1990s saw the emergence of
three models that have deeply changed the machine learning approach: neural networks,
support vector machines and lasso regression.

Neural networks have been extensively studied since the seminal work of Rosenblatt
(1958). However, the first industrial application dates back to the publication of LeCun et
al. (1989) on handwritten zip code recognition. At the beginning of 1990s, a fresh craze
then emerged with the writing of many handbooks that were appropriate for students, the
most popular of which was Bishop (1995). With neural networks, two main issues arise
concerning calibration: the large number of parameters to estimate and the absence of a
global maximum. The traditional numerical optimization algorithms10 that were popular
in the 1980s cannot be applied to neural networks. New optimization approaches are then
proposed. First, researchers have considered more complex learning rules than the steepest
descent (Jacobs, 1988), for example the momentum method of Polyak (1964) or the Nesterov
accelerated gradient approach (Nesterov, 1983). Second, the descent method is generally not
performed on the full sample of observations, but on a subset of observations that changes at
each iteration. This is the underlying idea behind batch gradient descent (BGD), stochastic
descent gradient (SGD) and mini-batch gradient descent (MGD). We notice that adaptive
learning methods and batch optimization techniques have marked the revival of the gradient
descend method.

The development of support vector machines is another important step in the develop-
ment of machine learning techniques. Like neural networks, they can be seen as an extension
of the perceptron. However, they present nice theoretical properties and a strong geometri-
cal framework. Once SVMs have been first developed for linear classification, they have been
extended for non-linear classification and regression. A support vector machine consists in
separating hyperplanes and finding the optimal separation by maximizing the margin. The
original problem called the hard margin classification can be formulated as a quadratic pro-
gramming problem. However, the dual problem, which is also a QP problem, is generally
preferred to the primal problem for solving SVM classification, because of the sparse prop-
erty of the solution (Cortes and Vapnik, 1995). Over the years, the original hard margin
classification has been extended to other problems: soft margin classification with binary
hinge loss, soft margin classification with squared hinge loss, least squares SVM regression,
ε-SVM regression, kernel machines (Vapnik, 1998). All these statistical problems share the
same calibration framework. The primal problem can be cast into a QP problem, implying
that the corresponding dual problem is also a QP problem. Again, we notice that the success
and the prominence of statistical methods are related to the efficiency of the optimization
algorithms, and it is obvious that support vector machines have substantially benefited from
the QP formulation. From an industrial point of view, support vector machines present how-
ever some limitations. Indeed, if the dimension of the primal QP problem is the number p
of features (or parameters), the dimension of the dual QP problem is the number n of obser-

9e.g. principal component analysis (PCA), linear/quadratic discriminant analysis (LDA/QDA), Fisher
classification method, etc.

10For example, we can cite the quasi-Newton BFGS (Broyden-Fletcher-Goldfarb-Shanno) and DFP
(Davidon-Fletcher-Powell) methods, and the Fletcher-Reeves and Polak-Ribiere conjugate gradient methods.
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vations. It is becoming absolutely impossible to solve the dual problem when the number of
observations is larger than 100 000 and sometimes as high as several millions. This implies
that new algorithms that are more appropriate for large-scale optimization problems need
to be developed.

Lasso regression is the third disruptive approach that put machine learning in the spot-
light in the 1990s. Like the ridge regression, lasso regression is a regularized linear regression
where the `2-norm penalty is replaced by the `1-norm penalty (Tibshirani, 1996). Since the
`1 regularization forces the solution to be sparse, it has been first largely used for variable
selection, and then for pattern recognition and robust estimation of linear models. For find-
ing the lasso solution, the technique of augmented QP problems is widely used since it is
easy to implement. The extension of the lasso-ridge regularization to the other `p norms
is straightforward, but these approaches have never been popular. The main reason is that
existing numerical algorithms are not sufficient to make these models tractable.

Therefore, the success of a quantitative model may be explained by two conditions.
First, the model must be obviously appealing. Second, the model must be solved by an
efficient numerical algorithm that is easy to implement or available in mathematical pro-
gramming software. As shown previously, quadratic programming and gradient descent
methods have been key for many statistical and financial models. In what follows, we con-
sider four algorithms and techniques that have been popularized by their use in machine
learning: coordinate descent, alternating direction method of multipliers, proximal opera-
tors and Dykstra’s algorithm. In particular, we illustrate how they can be used for solving
complex optimization problems.

3.1 Coordinate descent
3.1.1 Definition

We consider the following unconstrained minimization problem:

x? = arg min
x
f (x) (9)

where x ∈ Rn and f (x) is a continuous, smooth and convex function. A popular method to
find the solution x? is to consider the descent algorithm, which is defined by the following
rule:

x(k+1) = x(k) + ∆x(k) = x(k) − ηD(k)

where x(k) is the approximated solution of Problem (9) at the kth Iteration, η > 0 is a
scalar that determines the step size and D(k) is the direction. We notice that the current
solution x(k) is updated by going in the opposite direction to D(k) in order to obtain x(k+1).
In the case of the gradient descent, the direction is equal to the gradient vector of f (x) at
the current point: D(k) = ∇f

(
x(k)). Coordinate descent (CD) is a variant of the gradient

descent and minimizes the function along one coordinate at each step:

x
(k+1)
i = x

(k)
i + ∆x(k)

i = x
(k)
i − ηD

(k)
i

where D
(k)
i = ∇if

(
x(k)) is the ith element of the gradient vector. At each iteration, a

coordinate i is then chosen via a certain rule, while the other coordinates are assumed to be
fixed. Coordinate descent is an appealing algorithm, because it transforms a vector-valued
problem into a scalar-valued problem that is easier to implement. Algorithm (1) summarizes
the CD algorithm. The convergence criterion can be a predefined number of iterations or
an error rule between two iterations. The step size η can be either a given parameter or
computed with a line search, implying that the parameter η(k) changes at each iteration.

10
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Algorithm 1 Coordinate descent algorithm (gradient formulation)
The goal is to find the solution x? = arg min f (x)
We initialize the vector x(0) and we note η the step size
Set k ← 0
repeat

Choose a coordinate i ∈ {1, n}
x

(k+1)
i ← x

(k)
i − η∇if

(
x(k))

x
(k+1)
j ← x

(k)
j if j 6= i

k ← k + 1
until convergence
return x? ← x(k)

Another formulation of the coordinate descent method is given in Algorithm (2). The
underlying idea is to replace the descent approximation by the exact problem. Indeed, the
objective of the descend step is to minimize the scalar-valued problem:

x?i = arg min
κ
f
(
x

(k)
1 , . . . , x

(k)
i−1,κ, x

(k)
i+1, . . . , x

(k)
n

)
(10)

Algorithm 2 Coordinate descent algorithm (exact formulation)
The goal is to find the solution x? = arg min f (x)
We initialize the vector x(0)

Set k ← 0
repeat

Choose a coordinate i ∈ {1, n}
x

(k+1)
i = arg minκ f

(
x

(k)
1 , . . . , x

(k)
i−1,κ, x

(k)
i+1, . . . , x

(k)
n

)
x

(k+1)
j ← x

(k)
j if j 6= i

k ← k + 1
until convergence
return x? ← x(k)

Coordinate descent is efficient in large-scale optimization problems, in particular when
there is a solution to the scalar-valued problem (10). Furthermore, convergence is guaranteed
when f (x) is convex and differentiable (Luo and Tseng, 1992; Luo and Tseng, 1993).

Remark 2 Coordinate descent methods have been introduced in several handbooks on nu-
merical optimization in the 1980s and 1990s (Wright, 1985). However, the most important
step is the contribution of Tseng (2001), who studied the block-coordinate descent method
and extended CD algorithms in the case of a non-differentiable and non-convex function
f (x).

3.1.2 Cyclic or random coordinates?

There are several options for choosing the coordinate of the kth iteration. A natural choice
could be to choose the coordinate which minimizes the function:

i? = arg inf
{
f?i : i ∈ {1, n} , f?i = min

κ
f
(

(1− ei)x(k) + eiκ
)}

However, it is obvious that choosing the optimal coordinate i? would require the gradient
along each coordinate to be calculated. This causes the coordinate descent to be no longer

11
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efficient, since a classic gradient descent would then be of equivalent cost at each iteration
and would converge faster because it requires fewer iterations.

The simplest way to implement the CD algorithm is to consider cyclic coordinates,
meaning that we cyclically iterate through the coordinates (Tseng, 2001):

i = kmodn

This ensures that all the coordinates are selected during one cycle {k − n+ 1, . . . , k} in the
same order. This approach, called cyclical coordinate descent (CCD), is the most popular
and used method, even if it is difficult to estimate the rate of convergence.

The second way is to consider random coordinates. Let πi be the probability of choosing
the coordinate i at the iteration k. The simplest approach is to consider uniform probabil-
ities: πi = 1/n. A better approach consists in pre-specifying probabilities according to the
Lipschitz constants11:

πi = Lαi∑n
j=1 L

α
j

(11)

Nesterov (2012) considers three schemes: α = 0, α = 1 and α = ∞ — in this last case,
we have i = arg max {L1, . . . ,Ln}. From a theoretical point of view, the random coordi-
nate descent (RCD) method based on the probability distribution (11) leads to a faster
convergence, since coordinates that have a large Lipschitz constant Li are more likely to
be chosen. However, it requires additional calculus to compute the Lipschitz constants and
CCD is often preferred from a practical point of view. In what follows, we only use the
CCD algorithm described below. In Algorithm (3), the variable k represents the number
of cycles whereas the number of iterations is equal to k · n. For the coordinate i, the lower
coordinates j < i correspond to the current cycle k + 1 while the upper coordinates j > i
correspond to the previous cycle k.

Algorithm 3 Cyclical coordinate descent algorithm
The goal is to find the solution x? = arg min f (x)
We initialize the vector x(0)

Set k ← 0
repeat

for i = 1 : n do
x

(k+1)
i = arg minκ f

(
x

(k+1)
1 , . . . , x

(k+1)
i−1 ,κ, x(k)

i+1, . . . , x
(k)
n

)
end for
k ← k + 1

until convergence
return x? ← x(k)

3.1.3 Application to the λ-problem of the lasso regression

We consider the linear regression:
Y = Xβ + ε (12)

where Y is the n×1 vector, X is the n×p design matrix, β is the p×1 vector of coefficients
and ε is the n× 1 vector of residuals. In this model, n is the number of observations and p

11Nesterov (2012) assumes that f (x) is convex, differentiable and Lipschitz-smooth for each coordinate:

‖∇if (x+ eih)−∇if (x)‖ ≤ Li ‖h‖

where h ∈ R.
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is the number of parameters (or the number of explanatory variables). The objective of the
ordinary least squares is to minimize the residual sum of squares:

β̂ = arg min
β

1
2 RSS (β)

where RSS (β) =
∑n
i=1 ε

2
i . Since we have:

RSS (β) = (Y −Xβ)> (Y −Xβ)

we obtain:
∂ f (β)
∂ βj

= −x>j (Y −Xβ)

where xj is the n× 1 design vector corresponding to the jth explanatory variable. Because
we can write:

Xβ = X(−j)β(−j) + xjβj

where X(−j) and β(−j) are the design matrix and the beta vector by excluding the jth

explanatory variable, it follows that:

∂ f (β)
∂ βj

= x>j
(
X(−j)β(−j) + xjβj − Y

)
= x>j X(−j)β(−j) + x>j xjβj − x>j Y

At the optimum, we have ∂βj
f (β) = 0 or:

βj =
x>j
(
Y −X(−j)β(−j)

)
x>j xj

(13)

The implementation of the coordinate descent algorithm is straightforward. It suffices to
iterate Equation (13) through the coordinates.

The lasso regression problem is a variant of the OLS regression by adding a `1-norm
regularization (Tibshirani, 1996):

β̂ (λ) = arg min
β

1
2 (Y −Xβ)> (Y −Xβ) + λ ‖β‖1 (14)

In this formulation, the residual sum of squares of the linear regression is penalized by a
term that will force a sparse selection of the coordinates. Since the objective function is the
sum of two convex norms, the convergence is guaranteed for the lasso problem. Because
‖β‖1 =

∑n
j=1 |βj |, the first order condition becomes:

0 = ∇if (β)
= x>j xjβj − x>j

(
Y −X(−j)β(−j)

)
+ λ∂ |βj |

In Appendix A.5, we show that the solution is given by:

βj =
S
(
x>j
(
Y −X(−j)β(−j)

)
;λ
)

x>j xj
(15)

where S (v;λ) is the soft-thresholding operator:

S (v;λ) = sign (v) · (|v| − λ)+

13
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Figure 1: CCD algorithm applied to the lasso optimization problem
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It follows that the lasso CD algorithm is a variation of the linear regression CD algorithm by
applying the soft-threshold operator to the residuals x>j

(
Y −X(−j)β(−j)

)
at each iteration.

Let us consider an experiment with n = 10 0000 and p = 50. The design matrix X
is built using the uniform distribution while the residuals are simulated using a Gaussian
distribution and a standard deviation of 20%. The beta coefficients are distributed uniformly
between −3 and +3 except four coefficients that take a larger value. We then standardize
the data of X and Y because the practice of the lasso regression is to consider comparable
beta coefficients. By considering uniform numbers between −1 and +1 for initializing the
coordinates, results of the CCD algorithm are given in Figure 1. We notice that the CCD
algorithm converges quickly after three complete cycles. In the case of a large-scale problem
when p � 1 000, it has been shown that CCD may be faster for the lasso regression than
for the OLS regression because of the soft-thresholding operator. Indeed, we can initialize
the algorithm with the null vector 0p. If λ is large, a lot of optimal coordinates are equal
to zero and a few cycles are needed to find the optimal values of non-zero coefficients.

3.1.4 Application to the box-constrained QP problem

Coordinate descent can also be applied to the box-constrained QP problem:

x? = arg min
x

1
2x
>Qx− x>R s.t. x− ≤ x ≤ x+ (16)

In Appendix A.6 on page 53, we show that the coordinate update of the CCD algorithm is
equal to:

x
(k+1)
i = T

Ri − 1
2
∑
j<i x

(k+1)
j (Qi,j +Qj,i)−

1
2
∑
j>i x

(k)
j (Qi,j +Qj,i)

Qi,i
;x−i , x

+
i
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where T (v;x−, x+) is the truncation operator:

T
(
v;x−, x+) = v � 1

{
x− < v < x+}+ (17)

x− � 1
{
v ≤ x−

}
+

x+ � 1
{
v ≥ x+}

Generally, we assume that Q is a symmetric matrix, implying that the CCD update reduces
to:

x
(k+1)
i = T

(
Ri −

∑
j<i x

(k+1)
j Qi,j −

∑
j>i x

(k)
j Qi,j

Qi,i
;x−i , x

+
i

)

Remark 3 CCD can be applied to Problem (16) because the box constraint x− ≤ x ≤ x+ is
pointwise12.

Figure 2: CCD algorithm applied to the box-constrained QP problem

0 250 500 750

-6

-3

0

4

8

0 250 500 750

-6

-3

0

4

8

0 10 20 30 40 50

-0.5

0

0.5

1

0 2 4 6 8 10

-0.5

0

0.5

1

We consider the following example:

Q =


5.76 5.11 3.47 5.13 6.82
5.11 7.98 5.38 4.30 8.70
3.47 5.38 4.01 2.83 5.91
5.13 4.30 2.83 4.70 5.84
6.82 8.70 5.91 5.84 10.18

 and R =


0.65
0.72
0.46
0.59
1.26


In Figure 2, we have reported the solution obtained with the CCD algorithm. The top
panels correspond to the QP problem without any constraints, whereas the bottom panel
corresponds to the QP problem with the box constraint −0.5 ≤ xi ≤ 1. We notice that

12See the discussion on page 24.
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we need more than 500 cycles for the convergence of the CCD algorithm in the case of the
unconstrained QP problem, whereas CCD finds the solution of the constrained QP problem
using less than 50 cycles. We also observe that the convergence speed is highly dependent
on the starting values. In the case of the box-constrained QP problem, we need 40 cyclical
iterations if the starting value is the vector x(0) = 05, whereas less than 10 cyclical iterations
are sufficient if we consider the unit vector x(0) = 15.

3.2 Alternating direction method of multipliers
3.2.1 Definition

The alternating direction method of multipliers (ADMM) is an algorithm introduced by
Gabay and Mercier (1976) to solve optimization problems which can be expressed as:

{x?, y?} = arg min
(x,y)

fx (x) + fy (y) (18)

s.t. Ax+By = c

where A ∈ Rp×n, B ∈ Rp×m, c ∈ Rp, and the functions fx : Rn → R ∪ {+∞} and
fy : Rm → R ∪ {+∞} are proper closed convex functions. Boyd et al. (2011) show that the
ADMM algorithm consists of the following three steps:

1. The x-update is:

x(k+1) = arg min
x

{
fx (x) + ϕ

2

∥∥∥Ax+By(k) − c+ u(k)
∥∥∥2

2

}
(19)

2. The y-update is:

y(k+1) = arg min
y

{
fy (y) + ϕ

2

∥∥∥Ax(k+1) +By − c+ u(k)
∥∥∥2

2

}
(20)

3. The u-update is:
u(k+1) = u(k) +

(
Ax(k+1) +By(k+1) − c

)
(21)

In this approach, u(k) is the dual variable of the primal residual r = Ax + By − c and ϕ
is the `2-norm penalty variable. The parameter ϕ can be constant or may change at each
iteration13. The ADMM algorithm benefits from the dual ascent principle and the method
of multipliers. The difference with the latter is that the x- and y-updates are performed
in an alternating way. Therefore, it is more flexible because the updates are equivalent to
computing proximal operators for fx and fy independently. In practice, ADMM may be
slow to converge with high accuracy, but is fast to converge if we consider modest accuracy.
This is why ADMM is a good candidate for solving large-scale machine learning problems,
where high accuracy does not necessarily lead to a better solution.

Remark 4 In this paper, we use the notations f (k+1)
x (x) and f

(k+1)
y (y) when referring to

the objective functions that are defined in the x- and y-updates. Algorithm (4) summarizes
the different ADMM steps.

13See Appendix A.7 on page 56 for a discussion about the convergence of the ADMM algorithm.
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Algorithm 4 ADMM algorithm
The goal is to compute the solution (x?, y?)
We initialize the vectors x(0) and y(0) and we choose a value for the parameter ϕ
We set u(0) = 0n
k ← 0
repeat
x(k+1) = arg minx

{
f

(k+1)
x (x) = fx (x) + ϕ

2
∥∥Ax+By(k) − c+ u(k)

∥∥2
2

}
y(k+1) = arg miny

{
f

(k+1)
y (y) = fy (y) + ϕ

2
∥∥Ax(k+1) +By − c+ u(k)

∥∥2
2

}
u(k+1) = u(k) +

(
Ax(k+1) +By(k+1) − c

)
k ← k + 1

until convergence
return x? ← x(k) and y? ← y(k)

3.2.2 ADMM tricks

The appeal of ADMM is that it can separate a complex problem into two sub-problems that
are easier to solve. However, most of the time, the optimization problem is not formulated
using a separable objective function. The question is then how to formulate the initial
problem as a separable problem. We now list some tricks that show how ADMM may be
used in practice.

First trick We consider a problem of the form x? = arg minx g (x). The idea is then
to write g (x) as a separable function g (x) = g1 (x) + g2 (x) and to consider the following
equivalent ADMM problem:

{x?, y?} = arg min
(x,y)

fx (x) + fy (y) (22)

s.t. x = y

where fx (x) = g1 (x) and fy (y) = g2 (y). Usually, the smooth part of g (x) will correspond
to g1 (x) while the non-smooth part will be included in g2 (x). The underlying idea is that
the x-update is straightforward, whereas the y-update deals with the tricky part of g (x).

Second trick If we want to minimize the function g (x) where x ∈ Ω is a set of constraints,
the optimization problem can be cast into the ADMM form (22) where fx (x) = g (x),
fy (y) = 1Ω (y) and 1Ω (x) is the convex indicator function of Ω:

1Ω (x) =
{

0 if x ∈ Ω
+∞ if x /∈ Ω (23)

For example, if we want to solve the QP problem (2) given on page 3, we have:

fx (x) = 1
2x
>Qx− x>R

and:
Ω =

{
x ∈ Rn : Ax = B,Cx ≤ D,x− ≤ x ≤ x+}
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Third trick We can combine the first and second tricks. For instance, if we consider the
following optimization problem:

x? = arg min
x
g1 (x) + g2 (x)

s.t. x ∈ Ω1 ∩ Ω2

the equivalent ADMM form is:

{x?, y?} = arg min
(x,y)

(g1 (x) + 1Ω1 (x))︸ ︷︷ ︸
fx(x)

+ (g2 (y) + 1Ω2 (y))︸ ︷︷ ︸
fy(y)

s.t. x = y

Let us consider a variant of the QP problem where we add a non-linear constraint h (x) = 0.
In this case, we can write the set of constraints as Ω = Ω1 ∩ Ω2 where:

Ω1 =
{
x ∈ Rn : Ax = B,Cx ≤ D,x− ≤ x ≤ x+}

and:
Ω2 = {x ∈ Rn : h (x) = 0}

Fourth trick Finally, if we want to minimize the function g (x) = g (x,Ax+ b) = g1 (x) +
g2 (Ax+ b), we can write:

{x?, y?} = arg min
(x,y)

g1 (x) + g2 (y)

s.t. y = Ax+ b

For instance, this trick can be used for a QP problem with a non-linear part:

g (x) = 1
2x
>Qx− x>R+ h (x)

If we assume that Q is a symmetric positive-definite matrix, we set x = Ly where L is the
lower Cholesky matrix such that LL> = Q. It follows that the ADMM form is equal to14:

{x?, y?} = arg min
(x,y)

1
2x
>x︸ ︷︷ ︸

fx(x)

+ h (y)− y>R︸ ︷︷ ︸
fy(y)

s.t. x− Ly = 0n
We notice that the x-update is straightforward because it corresponds to a standard QP
problem. If we add a set Ω of constraints, we specify:

fy (y) = h (y)− y>R+ 1Ω (y)

Remark 5 In the previous cases, we have seen that when the function g (x) may contain a
QP problem, it is convenient to isolate this QP problem into the x-update:

x(k+1) = arg min
x

{
1
2x
>Qx− x>R+ 1Ω (x) + ϕ

2

∥∥∥x− y(k) + u(k)
∥∥∥2

2

}
Since we have:

ϕ

2

∥∥∥x− y(k) + u(k)
∥∥∥2

2
= ϕ

2 x
>x− ϕx>

(
y(k) − u(k)

)
+ ϕ

2

(
y(k) − u(k)

)> (
y(k) − u(k)

)
we deduce that the x-update is a standard QP problem where:

f (k+1)
x (x) = 1

2x
> (Q+ ϕIn)x− x>

(
R+ ϕ

(
y(k) − u(k)

))
+ 1Ω (x) (24)

14This Cholesky trick has been used by Gonzalvez et al. (2019) to solve trend-following strategies using
the ADMM algorithm in the context of Bayesian learning.
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3.2.3 Application to the λ-problem of the lasso regression

The λ-problem of the lasso regression (14) has the following ADMM formulation:

{
β?, β̄?

}
= arg min 1

2(Y −Xβ)>(Y −Xβ) + λ‖β̄‖1

s.t. β − β̄ = 0p

Since the x-step corresponds to a QP problem15, we use the results given in Remark 5 to
find the value of β(k+1):

β(k+1) = (Q+ ϕIp)−1
(
R+ ϕ

(
β̄(k) − u(k)

))
=

(
X>X + ϕIp

)−1 (
X>Y + ϕ

(
β̄(k) − u(k)

))
The y-step is:

β̄(k+1) = arg min
β̄

{
λ‖β̄‖1 + ϕ

2

∥∥∥β(k+1) − β̄ + u(k)
∥∥∥2

2

}
= arg min

{
1
2

∥∥∥β̄ − (β(k+1) + u(k)
)∥∥∥2

2
+ λ

ϕ
‖β̄‖1

}
We recognize the soft-thresholding problem with v = β(k+1) + u(k). Finally, the ADMM
algorithm is made up of the following steps (Boyd et al., 2011): β(k+1) =

(
X>X + ϕIp

)−1 (
X>Y + ϕ

(
β̄(k) − u(k))))

β̄(k+1) = S
(
β(k+1) + u(k);ϕ−1λ

)
u(k+1) = u(k) +

(
β(k+1) − β̄(k+1))

We consider the example of the lasso regression with λ = 900 on page 14. By setting
ϕ = λ and by initialing the algorithm with the OLS estimates, we obtain the convergence
given in Figure 3. We notice that the ADMM algorithm converges more slowly than the
CCD algorithm for this example. In practice, we generally observe that the convergence is
poor for low and very high values of ϕ. However, finding an optimal value of ϕ is difficult.
A better approach involves using a varying parameter ϕ(k) such as the method described on
page 56.

3.3 Proximal operators
The x- and y-update steps of the ADMM algorithm require a `2-norm penalized optimization
problem to be solved. Proximal operators are special cases of this type of problem when the
matrices A or B correspond to the identity matrix In or its opposite −In.

3.3.1 Definition

Let f : Rn → R ∪ {+∞} be a proper closed convex function. The proximal operator
proxf (v) : Rn → Rn is defined by:

proxf (v) = x? = arg min
x

{
fv (x) = f (x) + 1

2 ‖x− v‖
2
2

}
(25)

15We have Q = X>X and R = X>Y .
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Figure 3: ADMM algorithm applied to the lasso optimization problem
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Since the function fv (x) = f (x) + 1
2 ‖x− v‖

2
2 is strongly convex, it has a unique minimum

for every v ∈ Rn (Parikh and Boyd, 2014). By construction, the proximal operator defines
a point x? which is a trade-off between minimizing f (x) and being close to v.

In many situations, we need to calculate the proximal of the scaled function λf (x) where
λ > 0. In this case, we use the notation proxλf (v) and we have:

proxλf (v) = arg min
x

{
λf (x) + 1

2 ‖x− v‖
2
2

}
= arg min

x

{
f (x) + 1

2λ ‖x− v‖
2
2

}
For instance, if we consider the y-update of the ADMM algorithm with B = −In, we have:

y(k+1) = arg min
y

{
fy (y) + ϕ

2

∥∥∥y − v(k+1)
y

∥∥∥2

2

}
= arg min

y

{
ϕ−1fy (y) + 1

2

∥∥∥y − v(k+1)
y

∥∥∥2

2

}
= proxϕ−1fy

(
v(k+1)
y

)
where v(k)

y = Ax(k+1) − c + u(k). ADMM is then given by Algorithm (5). The interest of
this mathematical formulation is to write the ADMM algorithm in a convenient form such
that the x-update corresponds to the tricky part of the optimization while the y-update is
reduced to an analytical formula.
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Algorithm 5 ADMM algorithm in the case Ax− y = c

The goal is to compute the solution (x?, y?)
We initialize the vectors x(0) and y(0) and we choose a value for the parameter ϕ
We set u(0) = 0n
k ← 0
repeat
x(k+1) = arg minx

{
f

(k+1)
x (x) = fx (x) + ϕ

2
∥∥Ax− y(k) − c+ u(k)

∥∥2
2

}
v

(k+1)
y = Ax(k+1) − c+ u(k)

y(k+1) = proxϕ−1fy

(
v

(k+1)
y

)
u(k+1) = u(k) +

(
Ax(k+1) − y(k+1) − c

)
k ← k + 1

until convergence
return x? ← x(k) and y? ← y(k)

3.3.2 Proximal operators and generalized projections

In the case where f (x) = 1Ω (x) is the indicator function, the proximal operator is then the
Euclidean projection onto Ω:

proxf (v) = arg min
x

{
1Ω (x) + 1

2 ‖x− v‖
2
2

}
= arg min

x∈Ω

{
‖x− v‖22

}
= PΩ (v)

where PΩ (v) is the standard projection of v onto Ω. Parikh and Boyd (2014) interpret then
proximal operators as a generalization of the Euclidean projection.

Let us consider the constrained optimization problem x? = arg min f (x) subject to x ∈
Ω. Using the second ADMM trick, we have fx (x) = f (x), fy (y) = 1Ω (y) and x− y = 0n.
Therefore, we can use Algorithm (5) since the v- and y-steps become v(k+1)

y = x(k+1) + u(k)

and16 y(k+1) = PΩ

(
v

(k+1)
y

)
.

Here, we give the results of Parikh and Boyd (2014) for some simple polyhedra:

Notation Ω PΩ (v)
Affineset [A,B] Ax = B v −A† (Av −B)

Hyperplane [a, b] a>x = b v −
(
a>v − b

)
‖a‖22

a

Halfspace [c, d] c>x ≤ d v −
(
c>v − d

)
+

‖c‖22
c

Box [x−, x+] x− ≤ x ≤ x+ T (v;x−, x+)

where A† is the Moore-Penrose pseudo-inverse of A, and T (v;x−, x+) is the truncation
operator.

16We notice that the parameter ϕ has no impact on the y-update because ϕ−1fy (y) = fy (y) = 1Ω (y).
We then deduce that:

proxϕ−1fy

(
v

(k+1)
y

)
= proxfy

(
v

(k+1)
y

)
= PΩ

(
v

(k+1)
y

)
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3.3.3 Main properties

There are many properties that are useful for finding the analytical expression of the proximal
operator. In what follows, we consider three main properties, but the reader may refer
to Combettes and Pesquet (2011), Parikh and Boyd (2014) and Beck (2017) for a more
exhaustive list.

Separable sum Let us assume that f (x) =
∑n
i=1 fi (xi) is fully separable, then the prox-

imal of f (v) is the vector of the proximal operators applied to each scalar-valued function
fi (xi):

proxf (v) =

 proxf1 (v1)
...

proxfn
(vn)


For example, if f (x) = λ ‖x‖1, we have f (x) = λ

∑n
i=1 |xi| and fi (xi) = λ |xi|. We

deduce that the proximal operator of f (x) is the vector formulation of the soft-thresholding
operator:

proxλ‖x‖1 (v) =

 sign (v1) · (|v1| − λ)+
...

sign (vn) · (|vn| − λ)+

 = sign (v)� (|v| − λ1n)+

This result has been used to solve the λ-problem of the lasso regression on page 19.
If we consider the scalar-valued logarithmic barrier function f (x) = −λ ln x, we have:

fv (x) = −λ ln x+ 1
2 (x− v)2

= −λ ln x+ 1
2x

2 − xv + 1
2v

2

The first-order condition is −λx−1 + x− v = 0. We obtain two roots with opposite signs:

x? = v ±
√
v2 + 4λ
2

Since the logarithmic function is defined for x > 0, we deduce that the proximal operator is
the positive root. In the case of the vector-valued logarithmic barrier f (x) = −λ

∑n
i=1 ln xi,

it follows that:
proxf (v) = v +

√
v � v + 4λ

2

Moreau decomposition An important property of the proximal operator is the Moreau
decomposition theorem:

proxf (v) + proxf∗ (v) = v

where f∗ is the convex conjugate of f . This result is used extensively to find the proximal
of norms, the max function, the sum-of-k-largest-values function, etc. (Beck, 2017).

In the case of the pointwise maximum function f (x) = max x, we can show that:

proxλmax x (v) = min (v, s?)

where s? is the solution of the following equation (see Appendix A.8.1 on page 57):

s? =
{
s ∈ R :

n∑
i=1

(vi − s)+ = λ

}
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If we assume that f (x) = ‖x‖p, we obtain:

p proxλf (v)
p = 1 S (v;λ) = sign (v)� (|v| − λ1n)+

p = 2
(

1− λ

max (λ, ‖v‖2)

)
v

p =∞ sign (v)� proxλmax x (|v|)

If f (x) is a `q-norm function, then f∗ (x) = 1Bp
(x) where Bp is the `p unit ball and

p−1 + q−1 = 1. Since we have proxf∗ (v) = PBp
(v), we deduce that:

proxf (v) + PBp
(v) = v

More generally, we have:
proxλf (v) + λPBp

( v
λ

)
= v

It follows that the projection onto the `p ball can be deduced from the proximal operator of
the `q-norm function. Let Bp (c, λ) =

{
x ∈ Rn : ‖x− c‖p ≤ λ

}
be the `p ball with center c

and radius λ. We obtain:

p PBp(0n,λ) (v) q

p = 1 v − sign (v)� proxλmax x (|v|) q =∞
p = 2 v − proxλ‖x‖2 (v) q = 2
p =∞ T (v;−λ, λ) q = 1

Scaling and translation Let us define g (x) = f (ax+ b) where a 6= 0. We have17:

proxg (v) =
proxa2f (av + b)− b

a

We can use this property when the center c of the `p ball is not equal to 0n. Since we
have proxg (v) = proxf (v − c)+ c where g (x) = f (x− c) and the equivalence Bp (0n, λ) =
{x ∈ Rn : f (x) ≤ λ} where f (x) = ‖x‖p, we deduce that:

PBp(c,λ) (v) = PBp(0n,λ) (v − c) + c

3.3.4 Application to the τ-problem of the lasso regression

We have previously presented the lasso regression problem by considering the Lagrange
formulation (λ-problem). We now consider the original τ -problem:

β̂ (τ) = arg min
β

1
2 (Y −Xβ)> (Y −Xβ)

s.t. ‖β‖1 ≤ τ

The ADMM formulation is:{
β?, β̄?

}
= arg min

(β,β̄)
1
2 (Y −Xβ)> (Y −Xβ) + 1Ω

(
β̄
)

s.t. β = β̄

17The proof can be found in Beck (2017) on page 138. We have reported it in Appendix A.8.3 on page 58.
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where Ω = B1 (0n, τ) is the centered `1 ball with radius τ . We notice that the x-update is:

β(k+1) = arg min
β

{
1
2 (Y −Xβ)> (Y −Xβ) + ϕ

2

∥∥∥β − β̄(k) + u(k)
∥∥∥2

2

}
=

(
X>X + ϕIp

)−1 (
X>Y + ϕ

(
β̄(k) − u(k)

))
where v(k+1)

x = β̄(k) − u(k). For the y-update, we deduce that:

β̄(k+1) = arg min
β̄

{
1Ω
(
β̄
)

+ ϕ

2

∥∥∥β(k+1) − β̄ + u(k)
∥∥∥2

2

}
= proxfy

(
β(k+1) + u(k)

)
= PΩ

(
v(k+1)
y

)
= v(k+1)

y − sign
(
v(k+1)
y

)
� proxτ max x

(∥∥∥v(k+1)
y

∥∥∥)
where v(k+1)

y = β(k+1) + u(k). Finally, the u-update is defined by u(k+1) = u(k) + β(k+1) −
β̄(k+1).

Remark 6 The ADMM algorithm is similar for λ- and τ -problems since the only difference
concerns the y-step. For the λ-problem, we apply the soft-thresholding operator while we use
the `1 projection in the case of the τ -problem. However, our experience shows that the τ -
problem is easier to solve with the ADMM algorithm from a practical point of view. The
reason is that the y-update of the τ -problem is independent of the penalization parameter ϕ.
This is not the case for the λ-problem, because the soft-thresholding depends on the value
taken by ϕ−1λ.

3.3.5 Application to the CD algorithm with pointwise constraints

We consider the following constrained minimization problem:

x? = arg min
x
f (x) s.t. x ∈ Ω

where the set Ω of constraints is fully separable:

1Ω (x) =
n∑
i=1

1Ωi (xi)

The scalar-valued problem of the CD algorithm becomes:

x?i = arg min
κ
f (x1, . . . , xi−1,κ, xi+1, . . . , xn) + λ

n∑
i=1

1Ωi
(xi)

Nesterov (2012) and Wright (2015) propose the following coordinate update:

x?i = arg min
κ

(κ − xi) gi + 1
2η (κ − xi)2 + λ · 1Ωi

(κ)

where gi = ∇if (x) is the first-derivative of the function with respect to xi, η > 0 controls the
quadratic penalization term and λ is a positive scalar. The objective function is equivalent
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to:

(∗) = (κ − xi) gi + 1
2η (κ − xi)2 + λ · 1Ωi (κ)

= 1
2η

(
(κ − xi)2 + 2 (κ − xi) ηgi

)
+ λ · 1Ωi

(κ)

= 1
2η (κ − xi + ηgi)2 + λ · 1Ωi

(κ)− η

2g
2
i

By taking λ = η−1, we deduce that:

x?i = arg min
κ

1Ωi
(κ) + 1

2 ‖κ − (xi − ηgi)‖2

= proxψ (xi − ηgi)
= PΩi

(xi − ηgi)

where ψ (κ) = 1Ωi (κ). Extending the CD algorithm in the case of pointwise constraints is
then equivalent to implement a standard CD algorithm and apply the projection onto the
ith coordinate at each iteration18. For instance, this algorithm is particularly efficient when
we consider box constraints.

3.4 Dykstra’s algorithm
We now consider the proximal optimization problem where the function f (x) is the convex
sum of basic functions fj (x):

x? = arg min
x


m∑
j=1

fj (x) + 1
2 ‖x− v‖

2
2


and the proximal of each basic function is known.

3.4.1 The m = 2 case

In the previous section, we listed some analytical solutions of the proximal problem when
the function f (x) is basic. For instance, we know the proximal solution of the `1-norm
function f1 (x) = λ1 ‖x‖1 or the proximal solution of the logarithmic barrier function f2 (x) =
λ2
∑n
i=1 ln xi. However, we don’t know how to compute the proximal operator of f (x) =

f1 (x) + f2 (x):

x? = arg min
x
f1 (x) + f2 (x) + 1

2 ‖x− v‖
2
2

= proxf (v)

Nevertheless, an elegant solution is provided by the Dykstra’s algorithm (Dykstra, 1983;
Bauschke and Borwein, 1994; Combettes and Pesquet, 2011), which is defined by the fol-
lowing iterations: 

x(k+1) = proxf1

(
y(k) + p(k))

p(k+1) = y(k) + p(k) − x(k+1)

y(k+1) = proxf2

(
x(k+1) + q(k))

q(k+1) = x(k+1) + q(k) − y(k+1)

(26)

18This method corresponds to the proximal gradient algorithm.
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where x(0) = y(0) = v and p(0) = q(0) = 0n. This algorithm is obviously related to the
Douglas-Rachford splitting framework19 where x(k) and p(k) are the variable and the residual
associated to f1 (x), and y(k) and q(k) are the variable and the residual associated to f2 (x).
Algorithm (26) can be reformulated by introducing the intermediary step k + 1

2 :
x(k+ 1

2 ) = proxf1

(
x(k) + p(k))

p(k+1) = p(k) −∆1/2x
(k+ 1

2 )

x(k+1) = proxf2

(
x(k+ 1

2 ) + q(k)
)

q(k+1) = q(k) −∆1/2x
(k+1)

(27)

where ∆hx
(k) = x(k)−x(k−h). Figure 4 illustrates the splitting method used by the Dykstra’s

algorithm and clearly shows the relationship with the Douglas-Rachford algorithm.

Figure 4: Splitting method of the Dykstra’s algorithm

x(k−1) x(k) x(k+1) x(k+2)x(k− 1
2) x(k+ 1

2) x(k+ 3
2)

f1 (x) f1 (x) f1 (x)f2 (x) f2 (x) f2 (x)

p(k) p(k+1) p(k+2)

q(k) q(k+1) q(k+2)

Residual of f1 (x)

Residual of f2 (x)

3.4.2 The m > 2 case

The case m > 2 is a generalization of the previous algorithm by considering m residuals:

1. The x-update is:
x(k+1) = proxfj(k)

(
x(k) + z(k+1−m)

)
2. The z-update is:

z(k+1) = x(k) + z(k+1−m) − x(k+1)

where x(0) = v, z(k) = 0n for k < 0 and j (k) = mod (k + 1,m) denotes the modulo operator
taking values in {1, . . . ,m}. The variable x(k) is updated at each iteration while the residual
z(k) is updated every m iterations. This implies that the basic function fj (x) is related to
the residuals z(j), z(j+m), z(j+2m), etc. Following Tibshirani (2017), it is better to write the
Dykstra’s algorithm by using two iteration indices k and j. The main index k refers to the
cycle20, whereas the sub-index j refers to the constraint number:

19See Douglas and Rachford (1956), Combettes and Pesquet (2011), and Lindstrom and Sims (2018).
20Exactly like the coordinate descent algorithm.
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1. The x-update is:
x(k+1,j) = proxfj

(
x(k+1,j−1) + z(k,j)

)
(28)

2. The z-update is:
z(k+1,j) = x(k+1,j−1) + z(k,j) − x(k+1,j) (29)

where x(1,0) = v, z(k,j) = 0n for k = 0 and x(k+1,0) = x(k,m).
The Dykstra’s algorithm is particularly efficient when we consider the projection problem:

x? = PΩ (v)

where:
Ω = Ω1 ∩ Ω2 ∩ · · · ∩ Ωm

Indeed, the solution is found by replacing Equation (28) with:

x(k+1,j) = PΩj

(
x(k+1,j−1) + z(k,j)

)
(30)

3.4.3 Application to general linear constraints

Let us consider the case Ω = {x ∈ Rn : Cx ≤ D} where the number of inequality constraints
is equal to m. We can write:

Ω = Ω1 ∩ Ω2 ∩ · · · ∩ Ωm

where Ωj =
{
x ∈ Rn : c>(j)x ≤ d(j)

}
, c>(j) corresponds to the jth row of C and d(j) is the jth

element of D. Since the projection PΩj is known and has been given on page 21, we can
find the projection PΩ using Algorithm (6).

Algorithm 6 Dykstra’s algorithm for solving the proximal problem with linear inequality
constraints

The goal is to compute the solution x? = proxf (v) where f (x) = 1Ω (x) and Ω =
{x ∈ Rn : Cx ≤ D}
We initialize x(0,m) ← v
We set z(0,1) ← 0n, . . . , z(0,m) ← 0n
k ← 0
repeat
x(k+1,0) ← x(k,m)

for j = 1 : m do
The x-update is:

x(k+1,j) = x(k+1,j−1) + z(k,j) −

(
c>(j)x

(k+1;j−1) + c>(j)z
(k,j) − d(j)

)
+∥∥c(j)∥∥2

2

c(j)

The z-update is:
z(k+1,j) = x(k+1,j−1) + z(k,j) − x(k+1,j)

end for
k ← k + 1

until Convergence
return x? ← x(k,m)
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If we define Ω as follows:

Ω =
{
x ∈ Rn : Ax = B,Cx ≤ D,x− ≤ x ≤ x+}

we decompose Ω as the intersection of three basic convex sets:

Ω = Ω1 ∩ Ω2 ∩ Ω3

where Ω1 = {x ∈ Rn : Ax = B}, Ω2 = {x ∈ Rn : Cx ≤ D} and Ω3 = {x ∈ Rn : x− ≤ x ≤ x+}.
Using Dykstra’s algorithm is equivalent to formulating Algorithm (7).

Algorithm 7 Dykstra’s algorithm for solving the proximal problem with general linear
constraints

The goal is to compute the solution x? = proxf (v) where f (x) = 1Ω (x) and Ω =
{x ∈ Rn : Ax = B,Cx ≤ D,x− ≤ x ≤ x+}
We initialize x(0)

m ← v
We set z(0)

1 ← 0n, z(0)
2 ← 0n and z

(0)
3 ← 0n

k ← 0
repeat
x

(k+1)
0 ← x

(k)
m

x
(k+1)
1 ← x

(k+1)
0 + z

(k)
1 −A†

(
Ax

(k+1)
0 +Az

(k)
1 −B

)
z

(k+1)
1 ← x

(k+1)
0 + z

(k)
1 − x(k+1)

1

x
(k+1)
2 ← PΩ2

(
x

(k+1)
1 + z

(k)
2

)
I Algorithm (6)

z
(k+1)
2 ← x

(k+1)
1 + z

(k)
2 − x(k+1)

2

x
(k+1)
3 ← T

(
x

(k+1)
2 + z

(k)
3 ;x−, x+

)
z

(k+1)
3 ← x

(k+1)
2 + z

(k)
3 − x(k+1)

3
k ← k + 1

until Convergence
return x? ← x

(k)
3

Since we have:
1
2 ‖x− v‖

2
2 = 1

2x
>x− x>v + 1

2v
>v

we deduce that the two previous problems can be cast into a QP problem:

x? = arg min
x

1
2x
>Inx− x>v

s.t. x ∈ Ω

We can then compare the efficiency of Dykstra’s algorithm with the QP algorithm. Let us
consider the proximal problem where the vector v is defined by the elements vi = ln

(
1 + i2

)
and the set of constraints is:

Ω =
{
x ∈ Rn :

n∑
i=1

xi ≤
1
2 ,

n∑
i=1

e−ixi ≥ 0
}

Using a Matlab implementation21, we find that the computational time of the Dykstra’s
algorithm when n is equal to 10 million is equal to the QP algorithm when n is equal to
12 500, meaning that there is a factor of 800 between the two methods!

21The QP implementation corresponds to the quadprog function.
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3.4.4 Application to the `2-penalized logarithmic barrier function

We consider the following proximal problem:

x? = arg min
x
−λ

n∑
i=1

bi ln xi + 1
2 ‖x− v‖

2
2

s.t. ‖x− c‖2 ≤ r

In Appendix A.8.6 on page 59, we show that the corresponding Dykstra’s algorithm is:

x(k+1) =
y(k) + z

(k)
1 +

√(
y(k) + z

(k)
1

)
�
(
y(k) + z

(k)
1

)
+ 4λb

2
z

(k+1)
1 = y(k) + z

(k)
1 − x(k+1)

y(k+1) = c+ r

max
(
r,
∥∥∥x(k+1) + z

(k)
2 − c

∥∥∥
2

) (x(k+1) + z
(k)
2 − c

)
z

(k+1)
2 = x(k+1) + z

(k)
2 − y(k+1)

4 Applications to portfolio optimization
The development of the previous algorithms will fundamentally change the practice of port-
folio optimization. Until now, we have seen that portfolio managers live in a quadratic
programming world. With these new optimization algorithms, we can consider more com-
plex portfolio optimization programs with non-quadratic objective function, regularization
with penalty functions and non-linear constraints.

Table 1: Some objective functions used in portfolio optimization

Item Portfolio f (x) Reference
(1) MVO 1

2x
>Σx− γx>µ Markowitz (1952)

(2) GMV 1
2x
>Σx Jagganathan and Ma (2003)

(3) MDP ln
(√

x>Σx
)
− ln

(
x>σ

)
Choueifaty and Coignard (2008)

(4) KL
∑n
i=1 xi ln (xi/x̃i) Bera and Park (2008)

(5) ERC 1
2x
>Σx− λ

∑n
i=1 ln xi Maillard et al. (2010)

(6) RB R (x)− λ
∑n
i=1RBi · ln xi Roncalli (2015)

(7) RQE 1
2x
>Dx Carmichael et al. (2018)

We consider a universe of n assets. Let x be the vector of weights in the portfolio.
We denote by µ and Σ the vector of expected returns and the covariance matrix of asset
returns22. Some models consider also a reference portfolio x̃. In Table 1, we report the main
objective functions that are used by professionals23. Besides the mean-variance optimized
portfolio (MVO) and the global minimum variance portfolio (GMV), we find the equal risk
contribution portfolio (ERC), the risk budgeting portfolio (RB) and the most diversified
portfolio (MDP). According to Choueifaty and Coignard (2008), the MDP is defined as the

portfolio which maximizes the diversification ratio DR (x) = x>σ√
x>Σx

. We also include in

22The vector of volatilities is defined by σ = (σ1, . . . , σn).
23For each model, we write the optimization problem as a minimization problem.
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the list two ‘academic’ portfolios, which are based on the Kullback-Leibler (KL) information
criteria and the Rao’s quadratic entropy (RQE) measure24.

Table 2: Some regularization penalties used in portfolio optimization

Item Regularization R (x) Reference
(8) Ridge λ ‖x− x̃‖22 DeMiguel et al. (2009)
(9) Lasso λ ‖x− x̃‖1 Brodie at al. (2009)
(10) Log-barrier −

∑n
i=1 λi ln xi Roncalli (2013)

(11) Shannon’s entropy λ
∑n
i=1 xi ln xi Yu et al. (2014)

In a similar way, we list in Table 2 some popular regularization penalty functions that
are used in the industry (Bruder et al., 2013; Bourgeron et al., 2018). The ridge and lasso
regularization are well-known in statistics and machine learning (Hastie et al., 2009). The
log-barrier penalty function comes from the risk budgeting optimization problem, whereas
Shannon’s entropy is another approach for imposing a sufficient weight diversification.

Table 3: Some constraints used in portfolio optimization

(12) No cash and leverage
∑n
i=1 xi = 1

(13) No short selling xi ≥ 0
(14) Weight bounds x−i ≤ xi ≤ x

+
i

(15) Asset class limits c−j ≤
∑
i∈Cj

xi ≤ c+j
(16) Turnover

∑n
i=1 |xi − x̃i| ≤ τ+

(17) Transaction costs
∑n
i=1
(
c−i (x̃i − xi)+ + c+i (xi − x̃i)+

)
≤ ccc+

(18) Leverage limit
∑n
i=1 |xi| ≤ L+

(19) Long/short exposure −LS− ≤
∑n
i=1 xi ≤ LS

+

(20) Benchmarking
√

(x− x̃)> Σ (x− x̃) ≤ σ+

(21) Tracking error floor
√

(x− x̃)>Σ (x− x̃) ≥ σ−
(22) Active share floor 1

2
∑n
i=1 |xi − x̃i| ≥ AS

−

(23) Number of active bets
(
x>x

)−1 ≥ N−

Concerning the constraints, the most famous are the no cash/no leverage and no short
selling restrictions. Weight bounds and asset class limits are also extensively used by prac-
titioners. Turnover and transaction cost management may be an important topic when
rebalancing a current portfolio x̃. When managing long/short portfolios, we generally im-
pose leverage or long/short exposure limits. In the case of a benchmarked strategy, we might
also want to have a tracking error limit with respect to the benchmark x̃. On the contrary,
we can impose a minimum tracking error or active share in the case of active management.
Finally, the Herfindahl constraint is used for some smart beta portfolios.

In what follows, we consider several portfolio optimization problems. Most of them are a
combination of an objective function, one or two regularization penalty functions and some
constraints that have been listed above. From an industrial point of view, it is interesting
to implement the proximal operator for each item. In this approach, solving any portfolio
optimization problem is equivalent to using CCD, ADMM, Dykstra and the appropriate
proximal functions as Lego bricks.

24D is the dissimilarity matrix satisfying Di,j ≥ 0 and Di,j = Dj,i.
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4.1 Minimum variance optimization
4.1.1 Managing diversification

The global minimum variance (GMV) portfolio corresponds to the following optimization
program:

x? = arg min
x

1
2x
>Σx

s.t. 1>n x = 1

We know that the solution is x? =
(
1>nΣ−11n

)−1 Σ−11n. In practice, nobody implements
the GMV portfolio because it is a long/short portfolio and it is not robust. Most of the time,
professionals impose weight bounds: 0 ≤ xi ≤ x+. However, this approach generally leads
to corner solutions, meaning that a large number of optimized weights are equal to zero or
the upper bound and very few assets have a weight within the range. With the emergence of
smart beta portfolios, the minimum variance portfolio gained popularity among institutional
investors. For instance, we can find many passive indices based on this framework. In order
to increase the robustness of these portfolios, the first generation of minimum variance
strategies has used relative weight bounds with respect to a benchmark b:

δ−bi ≤ xi ≤ δ+bi (31)

where 0 < δ− < 1 and δ+ > 1. For instance, the most popular scheme is to take δ− = 0.5
and δ+ = 2. Nevertheless, the constraint (31) produces the illusion that the portfolio is
diversified, because the optimized weights are different. In fact, portfolio weights are differ-
ent because benchmark weights are different. The second generation of minimum variance
strategies imposes a global diversification constraint. The most popular solution is based
on the Herfindahl index H (x) =

∑n
i=1 x

2
i . This index takes the value 1 for a pure concen-

trated portfolio (∃ i : xi = 1) and 1/n for an equally-weighted portfolio. Therefore, we can
define the number of effective bets as the inverse of the Herfindahl index (Meucci, 2009):
N (x) = H (x)−1. The optimization program becomes:

x? = arg min
x

1
2x
>Σx (32)

s.t.

 1>n x = 1
0n ≤ x ≤ x+

N (x) ≥ N−

where N− is the minimum number of effective bets.
The Herfindhal constraint is equivalent to:

N (x) ≥ N− ⇔
(
x>x

)−1 ≥ N−

⇔ x>x ≤ 1
N−

Therefore, a first solution to solve (32) is to consider the following QP problem25:

x? (λ) = arg min
x

1
2x
>Σx+ λx>x (33)

s.t.
{

1>n x = 1
0n ≤ x ≤ x+

25The objective function can be written as:
1
2
x>Σx+ λx>x =

1
2
x> (Σ + 2In)x
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where λ ≥ 0 is a scalar. Since N (x? (∞)) is equal to the number n of assets and N (x? (λ))
is an increasing function of λ, Problem (33) has a unique solution if N− ∈ [N (x? (0)) , n].
There is an optimal value λ? such that for each λ ≥ λ?, we have N (x? (λ)) ≥ N−. Comput-
ing the optimal portfolio x? (λ?) therefore implies finding the solution λ? of the non-linear
equation26 N (x? (λ)) = N−.

A second method is to consider the ADMM form:

{x?, y?} = arg min
(x,y)

1
2x
>Σx+ 1Ω1 (x) + 1Ω2 (y)

s.t. x = y

where Ω1 =
{
x ∈ Rn : 1>n x = 1,0n ≤ x ≤ x+} and Ω2 = B2

(
0n,
√

1
N−

)
. We deduce that

the x-update is a QP problem:

x(k+1) = arg min
x

{
1
2x
> (Σ + ϕIn)x− ϕx>

(
y(k) − u(k)

)
+ 1Ω1 (x)

}
whereas the y-update is:

y(k+1) = x(k+1) + u(k)

max
(

1,
√
N−

∥∥x(k+1) + u(k)
∥∥

2

)
A better approach is to write the problem as follows:

{x?, y?} = arg min
(x,y)

1
2x
>Σx+ 1Ω3 (x) + 1Ω4 (y)

s.t. x = y

where Ω3 = Hyperplane [1n, 1] and Ω4 = Box [0n, x+] ∩ B2

(
0n,
√

1
N−

)
. In this case, the x-

and y-updates become27:

x(k+1) = arg min
x

{
1
2x
> (Σ + ϕIn)x− ϕx>

(
y(k) − u(k)

)
+ 1Ω3 (x)

}
= (Σ + ϕIn)−1

(
ϕ
(
y(k) − u(k)

)
+

1− 1>n (Σ + ϕIn)−1
ϕ
(
y(k) − u(k))

1>n (Σ + ϕIn)−1 1n
1n

)

and:

y(k+1) = PBox−Ball

(
x(k+1) + u(k); 0n, x+,0n,

√
1
N−

)
where PBox−Ball corresponds to the Dykstra’s algorithm given in Appendix A.8.8 on page
59.

We consider the parameter set #1 given in Appendix B on page 64. The investment
universe is made up of eight stocks. We would like to build a diversified minimum variance
long-only portfolio without imposing an upper weight bound28. In Table 4, we report the
solutions found by the ADMM algorithm for several values of N−. When there is no
Herfindahl constraint, the portfolio is fully invested in the seventh stock, meaning that the

26We generally use the bisection algorithm to determine the optimal solution λ?.
27See Appendix A.4 on page 52 for the derivation of the x-update.
28This means that x+ is set to 1n.
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asset diversification is very poor. Then we increase the number of effective bets. If N−
is equal to the number n of stocks, we verify that the solution corresponds to the equally-
weighted portfolio. Between these two limit cases, we see the impact of the Herfindahl
constraint on the portfolio diversification. The parameter set #1 is defined with respect to
a capitalization-weighted index, whose weights are equal to 23%, 19%, 17%, 9%, 8%, 6%
and 5%. The number of effective bets of this benchmark is equal to 6.435. If we impose
that the effective number of bets of the minimum variance portfolio is at least equal to the
effective number of bets of the benchmark, we find the following solution: 14.74%, 15.45%,
1.79%, 15.49%, 6.17%, 13.83%, 23.21% and 9.31%.

Table 4: Minimum variance portfolios (in %)

N− 1.00 2.00 3.00 4.00 5.00 6.00 6.50 7.00 7.50 8.00
x?1 0.00 3.22 9.60 13.83 15.18 15.05 14.69 14.27 13.75 12.50
x?2 0.00 12.75 14.14 15.85 16.19 15.89 15.39 14.82 14.13 12.50
x?3 0.00 0.00 0.00 0.00 0.00 0.07 2.05 4.21 6.79 12.50
x?4 0.00 10.13 15.01 17.38 17.21 16.09 15.40 14.72 13.97 12.50
x?5 0.00 0.00 0.00 0.00 0.71 5.10 6.33 7.64 9.17 12.50
x?6 0.00 5.36 8.95 12.42 13.68 14.01 13.80 13.56 13.25 12.50
x?7 100.00 68.53 52.31 40.01 31.52 25.13 22.92 20.63 18.00 12.50
x?8 0.00 0.00 0.00 0.50 5.51 8.66 9.41 10.14 10.95 12.50

λ? (in %) 0.00 1.59 3.10 5.90 10.38 18.31 23.45 31.73 49.79 ∞

As explained before, we can also solve the optimization problem by combining Problem
(33) and the bisection algorithm. This is why we have reported the corresponding value λ? in
the last row in Table 4. However, this approach is no longer valid if we consider diversification
constraints that are not quadratic. For instance, let us consider the generalized minimum
variance problem:

x? = arg min
x

1
2x
>Σx (34)

s.t.

 1>n x = 1
0n ≤ x ≤ x+

D (x) ≥ D−

where D (x) is a weight diversification measure and D− is the minimum acceptable diversi-
fication. For example, we can use Shannon’s entropy, the Gini index or the diversification
ratio. In this case, it is not possible to obtain an equivalent QP problem, whereas the
ADMM algorithm is exactly the same as previously except for the y-update:

y(k+1) = PBox[0n,x+]∩D

(
x(k+1) + u(k)

)
where D = {x ∈ Rn : D (x) ≥ D−}. The projection onto D can be easily derived from the
proximal operator of the dual function (see the tips and tricks on page 42).

Remark 7 If we compare the computational times, we observe that the best method is the
second version of the ADMM algorithm. In our example, the computational time is divided
by a factor of eight with respect to the bisection approach29. If we consider a large-scale
problem with n larger than 1 000, the computational time is generally divided by a factor
greater than 50!

29In contrast, the first version of the ADMM algorithm is not efficient since the computational time is
multiply by a factor of five with respect to the bisection approach.
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4.1.2 Managing the portfolio rebalancing process

Another big challenge of the minimum variance portfolio is the management of the turnover
between two rebalancing dates. Let xt be the current portfolio. The optimization program
for calibrating the optimal solution xt+1 for the next rebalancing date t + 1 may include a
penalty function ccc (x | xt) and/or a weight constraint C (x | xt) that are parameterized with
respect to the current portfolio xt:

xt+1 = arg min
x

1
2x
>Σx+ ccc (x | xt) (35)

s.t.

 1>n x = 1
0n ≤ x ≤ x+

x ∈ C (x | xt)

Again, we can solve this problem using the ADMM algorithm. Thanks to the Dykstra’s
algorithm, the only difficulty is finding the proximal operator of ccc (x | xt) or C (x | xt) when
performing the y-update.

Let us define the cost function as:

ccc (x | xt) = λ

n∑
i=1

(
c−i (xi,t − xi)+ + c+i (xi − xi,t)+

)
where c−i and c+i are the bid and ask transaction costs. In Appendix A.8.12 on page 62, we
show that the proximal operator is:

proxccc(x|xt) (v) = xt + S
(
v − xt;λc−, λc+

)
(36)

where S (v;λ−, λ+) = (v − λ+)+ − (v + λ−)− is the two-sided soft-thresholding operator.
If we define the cost constraint C (x | xt) as a turnover constraint:

C (x | xt) =
{
x ∈ Rn : ‖x− xt‖1 ≤ τ

+}
the proximal operator is:

PC (v) = v − sign (v − xt)�min (|v − xt| , s?) (37)

where s? =
{
s ∈ R :

∑n
i=1 (|vi − xt,i| − s)+ = τ+

}
.

Remark 8 These two examples are very basic and show how we can easily introduce turnover
management using the ADMM framework. More sophisticated approaches are presented in
Section 4.4 on page 42.

4.2 Smart beta portfolios

In this section, we consider three main models of smart beta portfolios: the equal risk
contribution (ERC) portfolio, the risk budgeting (RB) portfolio and the most diversified
portfolio (MDP). Specific algorithms for these portfolios based on the CCD method have
already been presented in Griveau-Billion et al. (2013) and Richard and Roncalli (2015,
2019). We extend these results to the ADMM algorithm.
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4.2.1 The ERC portfolio

The ERC portfolio uses the volatility risk measure σ (x) =
√
x>Σx and allocates the weights

such that the risk contribution is the same for all the assets of the portfolio (Maillard et al.,
2010):

RCi (x) = xi
∂ σ (x)
∂ xi

= xj
∂ σ (x)
∂ xj

= RCj (x)

In this case, we can show that the ERC portfolio is the scaled solution x?/
(
1>n x?

)
where x?

is given by:

x? = arg min
x

1
2x
>Σx− λ

n∑
i=1

ln xi

and λ is any positive scalar. The first-order condition is (Σx)i − λx
−1
i = 0. It follows that

xi (Σx)i − λ = 0 or:
x2
iσ

2
i + xiσi

∑
j 6=i

xjρi,jσj − λ = 0

We deduce that the solution is the positive root of the second-degree equation. Finally, we
obtain the following iteration for the CCD algorithm:

x
(k+1)
i =

−v(k+1)
i +

√(
v

(k+1)
i

)2
+ 4λσ2

i

2σ2
i

(38)

where:
v

(k+1)
i = σi

∑
j<i

x
(k+1)
j ρi,jσj + σi

∑
j>i

x
(k)
j ρi,jσj

The ADMM algorithm uses the first trick where fx (x) = 1
2x
>Σx and fy (y) = −λ

∑n
i=1 ln yi.

It follows that the x- and y-update steps are:

x(k+1) = (Σ + ϕIn)−1
ϕ
(
y(k) − u(k)

)
and:

y
(k+1)
i = 1

2

((
x

(k+1)
i + u

(k)
i

)
+
√(

x
(k+1)
i + u

(k)
i

)2
+ 4λϕ−1

)

We apply the CCD and ADMM algorithms to the parameter set #1. We find that the
ERC portfolio is equal to 11.40%, 12.29%, 5.49%, 11.91%, 6.65%, 10.81%, 33.52% and 7.93%.
It appears that the CCD algorithm is much more efficient than the ADMM algorithm. For
instance, if we set λ =

√
x(0)>Σx(0), x(0) = n−11n and ϕ = 1, the CCD algorithm needs

six cycles to converge whereas the ADMM algorithm needs 156 iterations if we set the
convergence criterion30 ε = 10−8. Whatever the values of λ, x(0) and ε, our experience is
that the CCD generally converges within less than 15 cycles even if the number of assets is
greater than 1 000. The convergence of the ADMM is more of an issue, because it depends
on the parameters λ and ϕ. In Figure 5, we have reported the number of iterations of the
ADMM with respect to ϕ for several values of ε when λ = 1 and x(0) = 1n. We verify that
it is very sensitive to the value taken by ϕ. Curiously, the parameter λ has little influence,
meaning that the convergence issue mainly concerns the x-update step.

30The termination rule is defined as max
∣∣∣x(k+1)

i − x(k)
i

∣∣∣ ≤ ε.
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Figure 5: Number of ADMM iterations for finding the ERC portfolio
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4.2.2 Risk budgeting optimization

The ERC portfolio has been extended by Roncalli (2013) when the risk budgets are not
equal and when the risk measure R (x) is convex and coherent:

RCi (x) = xi
∂R (x)
∂ xi

= RBi

where RBi is the risk budget allocated to Asset i. In this case, we can show that the risk
budgeting portfolio is the scaled solution of the following optimization problem:

x? = arg min
x
R (x)− λ

n∑
i=1
RBi · ln xi

where λ is any positive scalar. Depending on the risk measure, we can use the CCD or the
ADMM algorithm.

For example, Roncalli (2015) proposes using the standard deviation-based risk measure:

R (x) = −x> (µ− r) + ξ
√
x>Σx

In this case, the first-order condition for defining the CCD algorithm is:

− (µi − r) + ξ
(Σx)i√
x>Σx

− λRBi
xi

= 0

It follows that ξxi (Σx)i − (µi − r)xiσ (x)− λσ (x) · RBi = 0 or equivalently:

αix
2
i + βixi + γi = 0
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where αi = ξσ2
i , βi = ξσi

∑
j 6=i xjρi,jσj − (µi − r)σ (x) and γi = −λσ (x) · RBi. We notice

that the solution xi depends on the volatility σ (x). Here, we face an endogenous problem,
because σ (x) depends on xi. Griveau-Billon et al. (2015) notice that this is not an issue,
because we may assume that σ (x) is almost constant between two coordinate iterations of
the CCD algorithm. They deduce that the coordinate solution is then the positive root of
the second-degree equation:

x
(k+1)
i =

−β(k+1)
i +

√(
β

(k+1)
i

)2
− 4α(k+1)

i γ
(k+1)
i

2α(k+1)
i

(39)

where: 

α
(k+1)
i = ξσ2

i

β
(k+1)
i = ξσi

(∑
j<i x

(k+1)
j ρi,jσj +

∑
j>i x

(k)
j ρi,jσj

)
− (µi − r)σ(k+1)

i (x)
γ

(k+1)
i = −λσ(k+1)

i (x) · RBi
σ

(k+1)
i (x) =

√
χ>Σχ

χ =
(
x

(k+1)
1 , . . . , x

(k+1)
i−1 , x

(k)
i , x

(k)
i+1 . . . , x

(k)
n

)
In the case of the volatility or the standard deviation-based risk measure, we apply the

exact formulation of the CCD algorithm because we have an analytical solution of the first-
order condition. This is not always the case, especially when we consider skewness-based
risk measure (Bruder et al., 2016; Lezmi et al., 2018). In this case, we can use the gradient
formulation of the CCD algorithm or the ADMM algorithm, which is defined as follows:

x(k+1) = proxϕ−1R(x)
(
y(k) − u(k))

v
(k+1)
y = x(k+1) + u(k)

y(k+1) = 1
2

(
v

(k+1)
y +

√
v

(k+1)
y � v(k+1)

y + 4λϕ−1 · RB
)

u(k+1) = u(k) + x(k+1) − y(k+1)

4.2.3 The most diversified portfolio

Choueifaty and Coignard (2008) introduce the concept of diversification ratio, which corre-
sponds to the following expression:

DR (x) =
∑n
i=1 xiσi
σ (x) = x>σ√

x>Σx

By construction, the diversification ratio of a portfolio fully invested in one asset is equal to
one, whereas it is larger than one in the general case. The authors then propose building
the most diversified portfolio as the portfolio which maximizes the diversification ratio. It
is also the solution to the following minimization problem31:

x? = arg min
x

1
2 ln

(
x>Σx

)
− ln

(
x>σ

)
s.t.

{
1>n x = 1
x ∈ Ω

31See Choueifaty et al. (2013).
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This problem is relatively easy to solve using standard numerical algorithms if Ω corresponds
to linear constraints, for example weight constraints. However, the optimal solution may face
the same problem as the minimum variance portfolio since most of the time it is concentrated
on a small number of assets. This is why it is interesting to add a weight diversification
constraint D (x) ≥ D−. For example, we can assume that the number of effective bets N (x)
is larger than a minimum acceptable valueN−. Contrary to the minimum variance portfolio,
we do not obtain a QP problem and we observe that the optimization problem is tricky
in practice. Thanks to the ADMM algorithm, we can however simplify the optimization
problem by splitting the constraints and using the same approach that has been already
described on page 33. The x-update consists in finding the regularized standard MDP:

x(k+1) = arg min
x

{
1
2 ln

(
x>Σx

)
− ln

(
x>σ

)
+ ϕ

2

∥∥∥x− y(k) + u(k)
∥∥∥2

2
s.t. 1>n x = 1

}
whereas the y-update corresponds to the projection onto the intersection of Ω and D =
{x ∈ Rn : D (x) ≥ D−}:

y(k+1) = PΩ∩D

(
x(k+1) + u(k)

)

We consider the parameter set #2 given in Appendix B on page 64. Results are reported
in Table 5. The second column corresponds to the long/short MDP portfolio (or Ω = Rn).
By definition, we cannot compute the number of effective bets because it contains short
positions. The other columns correspond to the long-only MDP portfolio (or Ω = [0, 1]n)
when we impose a sufficient number of effective bets N−. We notice that the traditional
long-only MDP is poorly diversified in terms of weights since we have N (x) = 2.30. As for
the minimum variance portfolio, the MDP tends to the equally-weighted portfolio when N−
tends to the number of assets

Table 5: MDP portfolios (in %)

L/S Long-only
N− 0.00 3.00 4.00 5.00 6.00 7.00
x?1 41.81 41.04 35.74 30.29 26.08 22.44 18.83
x?2 51.88 50.92 43.91 36.68 31.05 26.12 21.19
x?3 8.20 8.05 10.12 11.52 12.33 12.80 13.01
x?4 −0.43 0.00 2.48 5.12 7.16 8.90 10.51
x?5 −0.26 0.00 0.92 2.28 3.60 5.02 6.85
x?6 −0.38 0.00 2.03 4.36 6.28 8.02 9.79
x?7 −0.51 0.00 3.47 6.68 8.85 10.44 11.65
x?8 −0.31 0.00 1.32 3.07 4.65 6.27 8.17
N (x) 2.30 3.00 4.00 5.00 6.00 7.00

4.3 Robo-advisory optimization
Today’s financial industry is facing a digital revolution in all areas: payment services, on-
line banking, asset management, etc. This is particularly true for the financial advisory
industry, which has been impacted in the last few years by the emergence of digitalization
and robo-advisors. The demand for robo-advisors is strong, which explains the growth of
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this business32. How does one characterize a robo-advisor? This is not simple, but the
underlying idea is to build a systematic portfolio allocation in order to provide a customized
advisory service. A robo-advisor has two main objectives. The first objective is to know the
investor better than a traditional asset manager. Because of this better knowledge, the robo-
advisor may propose a more appropriate asset allocation. The second objective is to perform
the task in a systematic way and to build an automated rebalancing process. Ultimately,
the goal is to offer a customized solution. In fact, the reality is very different. We generally
notice that many robo-advisors are more a web or a digital application, but not really a
robo-advisor. The reason is that portfolio optimization is a very difficult task. In many
robo-advisors, asset allocation is then rather human-based or not completely systematic
with the aim to rectify the shortcomings of mean-variance optimization. Over the next five
years, the most important challenge for robo-advisors will be to reduce these discretionary
decisions and improve the robustness of their systematic asset allocation process. But this
means that robo-advisors must give up the quadratic programming world of the portfolio
allocation.

4.3.1 Specification of the objective function

In order to make mean-variance optimization more robust, two directions can be followed.
The first one has been largely explored and adds a penalty function in order to regularize
or sparsify the solution (Brodie et al. 2009; DeMiguel et al., 2009; Carrasco and Noumon,
2010; Bruder et al., 2013; Bourgeron et al., 2018). The second one consists in changing
the objective function and considering risk budgeting portfolios instead of mean-variance
optimized portfolios (Maillard et al., 2010; Roncalli, 2013). Even if this second direction has
encountered great success, it presents a solution that is not sufficiently flexible in terms of
active management. Nevertheless, these two directions are not so divergent. Indeed, Roncalli
(2013) shows that the risk budgeting optimization can be viewed as a non-linear shrinkage
approach of the minimum variance optimization. Richard and Roncalli (2015) propose then
a unified approach of smart beta portfolios by considering alternative allocation models
as penalty functions of the minimum variance optimization. In particular, they use the
logarithmic barrier function in order to regularize minimum variance portfolios. This idea
has also been reiterated by de Jong (2018), who considers a mean-variance framework.

Therefore, we propose defining the robo-advisor optimization problem as follows:

x?t+1 = arg min
x
fRobo (x) (40)

s.t.

 1>n x = 1
0n ≤ x ≤ 1n
x ∈ Ω

where:

fRobo (x) = 1
2 (x− b)> Σt (x− b)− γ (x− b)> µt +

%1 ‖Γ1 (x− xt)‖1 + 1
2%2 ‖Γ2 (x− xt)‖22 +

%̃1
∥∥Γ̃1 (x− x̃)

∥∥
1 + 1

2 %̃2
∥∥Γ̃2 (x− x̃)

∥∥2
2 − λ

n∑
i=1
RBi · ln xi (41)

32For instance, the growth was 60% per year in the US over the last five years. In Europe, the growth is
also impressive, even though the market is smaller. In the last two years, assets under management have
increased 14-fold.

39



Machine Learning Optimization Algorithms & Portfolio Allocation

b is the benchmark portfolio, x̃ is the reference portfolio and xt is the current portfolio.
This specification is sufficiently broad that it encompasses most models used by the

industry. We notice that the objective function is made up of three parts. The first part
corresponds to the MVO objective function with a benchmark. If we set b equal to 0n, we
obtain the Markowitz utility function. The second part contains `1- and `2-norm penalty
functions. The regularization can be done with respect to the current allocation xt in order
to control the rebalancing process and the smoothness of the dynamic allocation. The
regularization can also be done with respect to a reference portfolio, which is generally the
strategic asset allocation of the fund. The idea is to control the profile of the fund. For
example, if the strategic asset allocation is an 80/20 asset mix policy, we do not want the
portfolio to present a defensive or balanced risk profile. Finally, the third part of the objective
function corresponds to the logarithmic barrier function, where the parameter λ controls the
trade-off between MVO optimization and RB optimization. This last part is very important
in order to make the dynamic asset allocation more robust. The hyperparameters of the
objective function are %1, %2, %̃1, %̃2 and λ. They are all positive and can also be set to zero in
order to deactivate a penalty function. For instance, %2 and %̃2 are equal to zero if we don’t
want to have a shrinkage of the covariance matrix Σt. The hyperparameters %1 and %̃1 can
also be equal to zero because the `1 regularization is generally introduced when specifying
the additional constraints Ω. The parameter γ is not really a hyperparameter, because it
is generally calibrated to target volatility or an expected return. We also notice that this
model encompasses the Black-Litterman model thanks to the specification of µt (Bourgeron
et al., 2018). Another important component of this framework is the specification of the
set x ∈ Ω. It may include traditional constraints such as weight bounds and/or asset class
limits, but we can also add non-linear constraints such as a turnover limit, an active share
floor or a weight diversification constraint.

4.3.2 Derivation of the general algorithm

Problem (40) is equivalent to solving:

x?t+1 = arg min
x
f+
Robo (x)

where the objective function can be broken down as follows:

f+
Robo (x) = fMVO (x) + f`1 (x) + f`2 (x) + fRB (x) +

+1Ω0 (x) + 1Ω (x)

where:

fMVO (x) = 1
2 (x− b)>Σt (x− b)− γ (x− b)> µt

f`1 (x) = %1 ‖Γ1 (x− xt)‖1 + %̃1
∥∥Γ̃1 (x− x̃)

∥∥
1

f`2 (x) = 1
2%2 ‖Γ2 (x− xt)‖22 + 1

2 %̃2
∥∥Γ̃2 (x− x̃)

∥∥2
2

fRB (x) = −λ
n∑
i=1
RBi · ln xi

and Ω0 =
{
x ∈ [0, 1]n : 1>n x = 1

}
. The ADMM algorithm is implemented as follows:

{x?, y?} = arg min fx (x) + fy (y)
s.t. x− y = 0n
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This is the general approach for solving the robo-advisor problem.
The main task is then to split the function f+

Robo into fx and fy. However, in order to
be efficient, the x- and y-update steps of the ADMM algorithm must be easy to compute.
Therefore, we impose that the x-step is solved using QP or CCD methods while the y-step
is solved using the Dykstra’s algorithm, where each component corresponds to an analytical
proximal operator. Moreover, we also split the set of constraints Ω into a set of linear
constraints ΩLinear and a set of non-linear constraints ΩNonlinear. This lead defining fx (x)
and fy (y) as follows:{

fx (x) = fMVO (x) + f`2 (x) + 1Ω0 (x) + 1ΩLinear
(x)

fy (y) = f`1 (y) + fRB (x) + 1ΩNonlinear
(x) (42)

We notice that fx (x) has a quadratic form, implying that the x-step may be solved using a
QP algorithm. Another formulation is:{

fx (x) = fMVO (x) + f`2 (x) + fRB (x)
fy (y) = f`1 (y) + 1Ω0 (x) + 1ΩLinear

(x) + 1ΩNonlinear
(x) (43)

In this case, the x-step is solved using the CCD algorithm.

4.3.3 Specific algorithms

The ADMM-QP formulation If we consider Formulation (42), we have:

fQP (x) = fMVO (x) + f`2 (x)

= 1
2 (x− b)> Σt (x− b)− γ (x− b)> µt + 1

2%2 ‖Γ2 (x− xt)‖22 + 1
2 %̃2

∥∥Γ̃2 (x− x̃)
∥∥2

2

= 1
2x
>Qx− x>R+ C

where Q = Σt + %2Γ>2 Γ2 + %̃2Γ̃>2 Γ̃2, R = γµt + Σtb + %2Γ>2 Γ2xt + %̃2Γ̃>2 Γ̃2x̃ and C is a
constant33. Using the fourth ADMM trick, we deduce that x(k+1) is the solution of the
following QP problem:

x(k+1) = arg min
x

1
2x
> (Q+ ϕIn)x− x>

(
R+ ϕ

(
y(k) − u(k)

))
s.t.

{
1>n x = 1
0n ≤ x ≤ 1n

Since the proximal operators of f`1 and fRB have been already computed, finding y(k+1)

is straightforward with the Dykstra’s algorithm as long as the proximal of each non-linear
constraint is known.

The ADMM-CCD formulation If we consider Formulation (43), we have:

fx (x) = fQP (x)− λ
n∑
i=1
RBi · ln xi

33The expression of fQP (x) is computed in Appendix A.9 on page 63.

41



Machine Learning Optimization Algorithms & Portfolio Allocation

Using Appendix A.10 on page 63, the CCD algorithm applied to x-update is:

x
(k+1)
i =

Ri −
∑
j<i x

(k+1)
j Qi,j −

∑
j>i x

(k)
j Qi,j

2Qi,i
+√(∑

j<i x
(k+1)
j Qi,j +

∑
j>i x

(k)
j Qi,j −Ri

)2
+ 4λiQi,i

2Qi,i
where the matrices Q and R are defined as:

Q = Σt + %2Γ>2 Γ2 + %̃2Γ̃>2 Γ̃2 + ϕIn

and:
R = γµt + Σtb+ %2Γ>2 Γ2xt + %̃2Γ̃>2 Γ̃2x̃+ ϕ

(
y(k) − u(k)

)
and λi = λ · RBi. Like the ADMM-QP formulation, the y-update step does not pose any
particular difficulties.

4.4 Tips and tricks
If we consider the different portfolio optimization approaches presented in Table 1, we have
shown how to solve MVO (1), GMV (2), MDP (3), ERC (4) and RB (5) models. The RQE
(7) model is equivalent to the GMV (2) model by replacing the covariance matrix Σ by
the dissimilarity matrix D. Below, we implement the Kullback-Leibler model (4) of Bera
and Park (2008) using the ADMM framework. Concerning the regularization problems
in Table 2, ridge (8), lasso (9) and log-barrier (10) penalty functions have been already
covered. Indeed, ridge and lasso penalizations correspond to the proximal operator of `1-
and `2-norm functions by applying the translation g (x) = x − x̃. Shannon’s entropy (11)
penalization is discussed below. For the constraints that are considered in Table 3, imposing
no cash and leverage (12) is done with the proximal of the hyperplane Hyperlane [1n, 1]. No
short selling (13) and weight bounds (14) are equivalent to considering the box projections
Box [0n,∞] and Box [x−, x+]. Asset class limits can be implemented using the projection
onto the intersection of two half-spaces Halfspace

[
1i∈Cj

, c+j
]

and Halfspace
[
−1i∈Cj

,−c−j
]
.

The proximal of the turnover (16) had been already given in Equation (37) on page 34. If we
want to impose an upper limit on transaction costs (17), we use the Moreau decomposition
and Equation (36). Finally, Section 4.1.1 on page 31 dealt with the weight diversification
problem of the number of active bets. Therefore, it remains to solve leverage limits (18),
long/short exposure (19) restrictions and active management constraints: benchmarking
(20), tracking error floor (21) and active share floor (22).

4.4.1 Volatility and return targeting

We first consider the µ-problem and the σ-problem. Targeting a minimum expected return
µ (x) ≥ µ? can be implemented in the ADMM framework using the proximal operator of
the hyperplane34 Hyperlane [−µ,−µ?]. In the case of the σ-problem σ (x) ≤ σ?, we use the
fourth ADMM trick. Let L be the lower Cholesky decomposition of Σ, we have:

σ (x) ≤ σ? ⇔
√
x>Σx ≤ σ?

⇔
√
x> (LL>)x ≤ σ?

⇔
∥∥y>y∥∥2 ≤ σ

?

34We have µ (x) ≥ µ? ⇔ x>µ ≥ µ? ⇔ −µ>x ≤ −µ?.
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where y = L>x. It follows that the proximal of the y-update is the projection onto the `2
ball B2 (0n, σ?).

4.4.2 Leverage management

If we impose a leverage limit
∑n
i=1 |xi| ≤ L+, we have ‖x‖1 ≤ L+ and the proximal of the

y-update is the projection onto the `1 ball B1 (0n,L+). If the leverage constraint concerns
the long/short limits −LS− ≤

∑n
i=1 xi ≤ LS

+, we consider the intersection of the two half-
spaces Halfspace

[
1n,LS+] and Halfspace

[
−1n,LS−

]
. If we consider an absolute leverage

|
∑n
i=1 xi| ≤ L+, we obtain the previous case with LS− = LS+ = L+. Portfolio managers

can also use another constraint concerning the sum of the k largest values35:

f (x) =
n∑

i=n−k+1
x(i:n) = x(n:n) + . . .+ x(n−k+1:n)

where x(i:n) is the order statistics of x: x(1:n) ≤ x(2:n) ≤ · · · ≤ x(n:n). Beck (2017) shows
that:

proxλf(x) (v) = v − λPΩ

( v
λ

)
where:

Ω =
{
x ∈ [0, 1]n : 1>n x = k

}
= Box [0n,1n] ∩Hyperlane [1n, k]

4.4.3 Entropy portfolio and diversification measure

Bera and Park (2008) propose using a cross-entropy measure as the objective function:

x? = arg min
x

KL (x | x̃)

s.t.


1>n x = 1
0n ≤ x ≤ 1n
µ (x) ≥ µ?
σ (x) ≤ σ?

where KL (x | x̃) =
∑n
i=1 xi ln (xi/x̃i) and x̃ is a reference portfolio, which is well-diversified

(e.g. the EW36 or ERC portfolio). In Appendix A.8.9 on page 60, we show that the proximal
operator of λKL (x | x̃) is equal to:

proxλKL(v|x̃) (v) = λ


W
(
λ−1x̃1e

λ−1v1−x̃−1
1

)
...

W
(
λ−1x̃ne

λ−1vn−x̃−1
n

)


where W (x) is the Lambert W function.

Remark 9 Using the previous result and the fact that SE (x) = −KL (x | 1n), we can use
Shannon’s entropy to define the diversification measure D (x) = SE (x). Therefore, solving
Problem (34) is straightforward when we consider the following diversification set:

D =
{
x ∈ [0, 1]n : −

n∑
i=1

xi ln xi≥SE−
}

35An example is the 5/10/40 UCITS rule: A UCITS fund may invest no more than 10% of its net assets
in transferable securities or money market instruments issued by the same body, with a further aggregate
limitation of 40% of net assets on exposures of greater than 5% to single issuers.

36In this case, it is equivalent to maximize Shannon’s entropy because x̃ = 1n.
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4.4.4 Passive and active management

In the case of the active share, we use the translation property:

AS (x | x̃) = 1
2

n∑
i=1
|xi − x̃i|

= 1
2 ‖x− x̃‖1

The proximal operator is given in Appendix A.8.11 on page 62. It is interesting to notice that
this type of problem cannot be solved using an augmented QP algorithm since it involves
the complement of the `1 ball and not directly the `1 ball itself. In this case, we face a
maximization problem and not a minimization problem, and the technique of augmented
variables does not work.

For tracking error volatility, again we use the fourth ADMM trick:

σ (x | x̃) =
√

(x− x̃)> Σ (x− x̃)
= ‖y‖2

where y = L>x− L>x̃. Using our ADMM notations, we have Ax+By = c where A = L>,
B = −In and c = L>x̃.

4.4.5 Index sampling

Index sampling is based on the cardinality constraint
∑n
i=1 1 {xi > 0} ≤ nx. It is closed to

the `0-norm function ‖x‖0 =
∑n
i=1 1 {xi 6= 0}. Beck (2017) derives the proximal of λ ‖x‖0

on pages 137-138 of his monograph. However, it does not help to solve the index sampling
problem, because we are interested in computing the projection onto the `0 ball and not the
proximal of the `0-norm function37. This is why index sampling remains an open problem
using the ADMM framework.

5 Conclusion
The aim of this paper is to propose an alternative solution to the quadratic programming
algorithm in the context of portfolio allocation. In numerical analysis, the quadratic pro-
gramming model is a powerful optimization tool, which is computationally very efficient.
In portfolio management, the mean-variance optimization model is exactly a quadratic pro-
gramming model, meaning that it benefits from its computational power. Therefore, the
success of the Markowitz allocation model is explained by these two factors: the quadratic
utility function and the quadratic programming setup. A lot of academics and profession-
als have proposed an alternative approach to the MVO framework, but very few of these
models are used in practice. The main reason is that these competing models focus on the
objective function and not on the numerical implementation. However, we believe that any
model which is not tractable will have little success with portfolio managers. The analogy
is obvious if we consider the theory of options. The success of the Black-Scholes model
lies in the Black-Scholes analytical formula. Over the last thirty years, many models have
been created (e.g. local volatility and stochastic volatility models), but only one can really

37We cannot use the Moreau decomposition, because the dual of λ ‖x‖p is not necessarily the ball
Bp (0n, λ). For example, the dual of the `2-norm function is the `2 ball, but the dual of the `1-norm
function is the `∞ ball.
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compete with the Black-Scholes model. This is the SABR model, and the main reason is
that it has an analytical formula for implied volatility.

This paper focuses then on a general approach for numerically solving non-QP portfolio
allocation models. For that, we consider some algorithms that have been successfully ap-
plied to machine learning and large-scale optimization. For instance, the coordinate descent
algorithm is the fastest method for performing high-dimensional lasso regression, while the
Dykstra’s algorithm has been created to find the solution of restricted least squares regres-
sion. Since there is a strong link between MVO and linear regression (Scherer, 2007), this is
not a surprise if these algorithms can help solve regularized MVO allocation models. How-
ever, these two algorithms are not sufficient for defining a general framework. For that, we
need to use the alternating direction method of multipliers and proximal gradient methods.
Finally, the combination of these four algorithms (CD, ADMM, PO and Dykstra) allows us
to consider allocation models that cannot be cast into a QP form.

In this paper, we have first considered allocation models with non-quadratic objective
functions. For example, we have used models based on the diversification ratio, Shannon’s
entropy or the Kullback-Leibler divergence. Second, we have solved regularized MVO mod-
els with non-linear penalty functions such as the `p-norm penalty or the logarithmic barrier.
Third, we have discussed how to handle non-linear constraints. For instance, we have im-
posed constraints on active share, volatility targeting, leverage limits, transaction costs, etc.
Most importantly, these three non-QP extensions can be combined.

With the development of quantitative strategies (smart beta, factor investing, alternative
risk premia, systematic strategies, robo-advisors, etc.), the asset management industry has
dramatically changed over the last five years. This is just the beginning and we think that
alternative data, machine learning methods and artificial intelligence will massively shape
investment processes in the future. This paper is an illustration of this trend and shows
how machine learning optimization algorithms allow to move away from the traditional QP
world of portfolio management.
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Appendix

A Mathematical results
A.1 QP problem when there is a benchmark
Following Roncalli (2013), the excess return R (x | b) of Portfolio x with respect to Bench-
mark b is the difference between the return of the portfolio and the return of the benchmark:

R (x | b) = R (x)−R (b) = (x− b)>R

It is easy to show that the expected excess return is equal to:

µ (x | b) = E [R (x | b)] = (x− b)> µ

whereas the volatility of the tracking error is given by:

σ (x | b) = σ (R (x | b)) =
√

(x− b)>Σ (x− b)

The objective function is then:

f (x | b) = 1
2 (x− b)>Σ (x− b)− γ (x− b)> µ

= 1
2x
>Σx− x> (γµ+ Σb) +

(
1
2b
>Σb+ γb>µ

)
= 1

2x
>Qx− x>R+ C

where C is a constant which does not depend on Portfolio x. We recognize a QP problem
where Q = Σ and R = γµ+ Σb.

A.2 Augmented QP formulation of the turnover management prob-
lem

The augmented QP problem is defined by:

X? = arg min
X

1
2X
>QX −X>R

s.t.

 AX = B
CX ≤ D
03n ≤ X ≤ 13n

where X =
(
x1, . . . , xn, x

−
1 , . . . , x

−
n , x

+
1 , . . . , x

+
n

)
is a 3n× 1 vector, Q is a 3n× 3n matrix:

Q =

 Σ 0n×n 0n×n
0n×n 0n×n 0n×n
0n×n 0n×n 0n×n


R = (γµ,0n,0n) is a 3n× 1 vector, A is a (n+ 1)× 3n matrix:

A =
(

1>n 0>n 0>n
In In −In

)
B = (1, x̄) is a (n+ 1)× 1 vector, C =

(
0>n 1>n 1>n

)
is a 1× 3n matrix and D = τ+.

51



Machine Learning Optimization Algorithms & Portfolio Allocation

A.3 Augmented QP formulation of the MVO problem with trans-
action costs

The augmented QP problem of dimension 3n is defined by:

X? = arg min
X

1
2X
>QX −X>R

s.t.
{
AX = B
03n ≤ X ≤ 13n

where X =
(
x1, . . . , xn, x

−
1 , . . . , x

−
n , x

+
1 , . . . , x

+
n

)
is a 3n× 1 vector, Q is a 3n× 3n matrix:

Q =

 Σ 0n×n 0n×n
0n×n 0n×n 0n×n
0n×n 0n×n 0n×n


R = (γµ,−c−,−c+) is a 3n× 1 vector, A is a (n+ 1)× 3n matrix:

A =
(

1>n (c−)> (c+)>

In In −In

)
and B = (1, x̄) is a (n+ 1)× 1 vector.

A.4 QP problem with a hyperplane constraint

We consider the following QP problem:

x? = arg min
x

1
2x
>Qx− x>R

s.t. a>x = b

The associated Lagrange function is:

L (x;λ) = 1
2x
>Qx− x>R+ λ

(
a>x− b

)
The first-order conditions are then:{

∂x L (x;λ) = Qx−R+ λa = 0n
∂λ L (x;λ) = a>x− b = 0

We obtain x = Q−1 (R+ λa). Because a>x− b = 0, we have a>Q−1R+ λa>Q−1a = b and:

λ? = b− a>Q−1R

a>Q−1a

The optimal solution is then:

x? = Q−1
(
R+ b− a>Q−1R

a>Q−1a
a

)
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A.5 Derivation of the soft-thresholding operator
We consider the following equation:

cx− v + λ∂ |x| ∈ 0

where c > 0 and λ > 0. Since we have ∂ |x| = sign (x), we deduce that:

x? =

 c−1 (v + λ) if x? < 0
0 if x? = 0
c−1 (v − λ) if x? > 0

If x? < 0 or x? > 0, then we have v+λ < 0 or v−λ > 0. This is equivalent to set |v| > λ > 0.
The case x? = 0 implies that |v| ≤ λ. We deduce that:

x? = c−1 · S (v;λ)

where S (v;λ) is the soft-thresholding operator:

S (v;λ) =
{

0 if |v| ≤ λ
v − λ sign (v) otherwise

= sign (v) · (|v| − λ)+

In Figure 6, we have represented the function S (v;λ) when λ is respectively equal to 1 and
2.

Remark 10 The soft-thresholding operator is the proximal operator of the `1-norm f (x) =
‖x‖1. Indeed, we have proxf (v) = S (v; 1) and proxλf (v) = S (v;λ).

A.6 The box-constrained QP problem
We consider the box-constrained QP problem:

x? = arg min
x

1
2x
>Qx− x>R (44)

s.t. x− ≤ x ≤ x+

The objective function is equal to:

f (x) = 1
2x
>Qx− x>R

= 1
2

n∑
i=1

xi

n∑
j=1

Qi,jxj −
n∑
i=1

xiRi

= 1
2

n∑
i=1

xi

Qi,ixi +
∑
j 6=i

Qi,jxj

− n∑
i=1

xiRi

We deduce that:

∂ f (x)
∂ xi

= 1
2

2xiQi,i +
∑
j 6=i

xj (Qi,j +Qj,i)

−Ri
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Figure 6: Soft-thresholding operator S (v;λ)
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We notice that:

∂ f (x)
∂ xi

= 0⇔ xi = 1
Qi,i

Ri −∑
j 6=i

xj

(
Qi,j +Qj,i

2

)
The Lagrange function associated to Problem (44) is equal to:

L
(
x;λ−, λ+) = f (x)−

n∑
i=1

λ−i
(
xi − x−i

)
−

n∑
i=1

λ+
i

(
x+
i − xi

)
The first-order condition is then:

∂ L (x;λ−, λ+)
∂ xi

= ∂ f (x)
∂ xi

− λ−i + λ+
i = 0

Since the Kuhn-Tucker conditions are:{
min

(
λ−i , xi − x

−
i

)
= 0

min
(
λ+
i , x

+
i − xi

)
= 0

we obtain three cases:

1. If no bound is reached, we have λ−i = λ+
i = 0 and the solution is equal to:

x?i = 1
Qi,i

Ri −∑
j 6=i

xj

(
Qi,j +Qj,i

2

)
2. If the lower bound is reached, we have λ−i > 0, λ+

i = 0 and x?i = x−i .

3. If the upper bound is reached, we have λ−i = 0, λ+
i > 0 and x?i = x+

i .
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A.7 ADMM algorithm
The optimization problem is defined as:

{x?, y?} = arg min
(x,y)

fx (x) + fy (y) (45)

s.t. Ax+By = c

The derivation of the algorithm is fully explained in Boyd et al. (2011). For that, they
consider the augmented Lagrange function:

L (x, y;λ, ϕ) = fx (x) + fy (y) + λ> (Ax+By − c) + ϕ

2 ‖Ax+By − c‖22 (46)

where ϕ > 0. According to Boyd et al. (2011), the `2-norm penalty adds robustness to
the dual ascent method and accelerates its convergence. The ADMM algorithm uses the
property that the objective function is separable, and consists of the following iterations:

x(k+1) = arg min
x
L
(
x, y(k);λ(k), ϕ

)
= arg min

x

{
fx (x) + λ(k)>

(
Ax+By(k) − c

)
+ ϕ

2

∥∥∥Ax+By(k) − c
∥∥∥2

2

}
and:

y(k+1) = arg min
y
L
(
x(k+1), y;λ(k), ϕ

)
= arg min

y

{
fy (y) + λ(k)>

(
Ax(k+1) +By − c

)
+ ϕ

2

∥∥∥Ax(k+1) +By − c
∥∥∥2

2

}
The update for the dual variable λ is then:

λ(k+1) = λ(k) + ϕ
(
Ax(k+1) +By(k+1) − c

)
We repeat the iterations until convergence.

Boyd et al. (2011) notice that the previous algorithm can be simplified. Let r = Ax +
By − c be the (primal) residual. By combining linear and quadratic terms, we have:

λ>r + ϕ

2 ‖r‖
2
2 = ϕ

2 ‖r + u‖2 − ϕ

2 ‖u‖
2

where u = ϕ−1λ is the scaled dual variable. We can then write the Lagrange function (46)
as follows:

L (x, y;u, ϕ) = fx (x) + fy (y) + ϕ

2 ‖Ax+By − c+ u‖22 −
ϕ

2 ‖u‖
2

= fx (x) + fy (y) + ϕ

2 ‖Ax+By − c+ u‖22 −
1

2ϕ ‖λ‖
2

Since the last term is a constant, we deduce that the x- and y-updates become:

x(k+1) = arg min
x
L
(
x, y(k);u(k), ϕ

)
= arg min

x

{
fx (x) + ϕ

2

∥∥∥Ax+By(k) − c+ u(k)
∥∥∥2

2

}
(47)
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and:

y(k+1) = arg min
y
L
(
x(k+1), y;u(k), ϕ

)
= arg min

y

{
fy (y) + ϕ

2

∥∥∥Ax(k+1) +By − c+ u(k)
∥∥∥2

2

}
(48)

For the scaled dual variable u, we have:

u(k+1) = u(k) + r(k+1)

= u(k) +
(
Ax(k+1) +By(k+1) − c

)
(49)

where r(k+1) = Ax(k+1) + By(k+1) − c is the primal residual at iteration k + 1. Boyd et
al. (2011) also define the variable s(k+1) = ϕA>B

(
y(k+1) − y(k)) and refer to s(k+1) as the

dual residual at iteration k + 1.
Under the assumption that the traditional Lagrange function L (x, y;λ, 0) has a saddle

point, one can prove that the residual r(k) converges to zero, the objective function fx
(
x(k))+

fy
(
y(k)) converges to the optimal value fx (x?) +fy (y?), and the dual variable λ(k) = ϕu(k)

converges to a dual optimal point. However, the rate of convergence is not known and the
primal variables x(k) and y(k) do not necessarily converge to the optimal values x? and y?.
In general, the stopping criterion is defined with respect to the residuals:{ ∥∥r(k+1)

∥∥
2 6 ε∥∥s(k+1)
∥∥

2 6 ε′

Typical values when implementing this stopping criterion are ε = ε′ = 10−15 (Bourgeron et
al., 2018).

From a theoretical point of view, the convergence holds regardless of the choice of the
penalization parameter ϕ > 0. But the choice of ϕ affects the convergence rate (Ghadimi
et al., 2015; Giselsson and Boyd, 2017). In practice, the penalization parameter ϕ may be
changed at each iteration, implying that ϕ is replaced by ϕ(k) and the scaled dual variable
uk is equal to λ(k)/ϕ(k). This may improve the convergence and make the performance
independent of the initial choice ϕ(0). To update ϕ(k) in practice, He et al. (2000) and
Wang and Liao (2001) provide a simple and efficient scheme. On the one hand, the x- and
y-updates in ADMM essentially come from placing a penalty on

∥∥r(k)
∥∥2

2. As a consequence,
if ϕ(k) is large,

∥∥r(k)
∥∥2

2 tends to be small. On the other hand, s(k) depends linearly on ϕ.
As a consequence, if ϕ(k) is small,

∥∥s(k)
∥∥2

2 is small. To keep
∥∥r(k)

∥∥2
2 and

∥∥s(k)
∥∥2

2 within a
factor µ, one may consider:

ϕ(k+1) =


τϕ(k) if

∥∥r(k)
∥∥2

2 > µ
∥∥s(k)

∥∥2
2

ϕ(k)/τ ′ if
∥∥s(k)

∥∥2
2 > µ

∥∥r(k)
∥∥2

2
ϕ(k) otherwise

where µ, τ and τ ′ are parameters that are greater than one. In practice, we use ϕ(0) = 1,
u(0) = 0p, µ = 103 and τ = τ ′ = 2.

Remark 11 The constant case ϕ(k+1) = ϕ(k) = ϕ(0) is obtained by setting τ = τ ′ = 1.
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A.8 Proximal operators
A.8.1 Pointwise maximum function

The unit simplex is the generalization of the triangle:

Sn =
{
x ∈ [0, 1]n , θi ≥ 0 : x =

n∑
i=0

θiei,

n∑
i=0

θi = 1,1>n x ≤ 1
}

where e0 is the zero vector and ei are the unit vectors for i ≥ 1. Beck (2017) shows that
PSn

(v) = (v − µ?1n)+ where µ? is the root of the equation 1>n (v − µ?1n)+ = 1. In the case
of the pointwise maximum function f (x) = max x, the Moreau decomposition gives:

proxλmax x (v) = v − λPSn

( v
λ

)
= v − λ

( v
λ
− µ?1n

)
+

where µ∗ is the root of the equation:

1>n
( v
λ
− µ?1n

)
+

= 1 ⇔
n∑
i=1

(vi
λ
− µ?

)
+

= 1

⇔
n∑
i=1

(vi − s?)+ = λ

where s? = λµ?. It follows that:

proxλmax x (v) = v − (v − s?1n)+
= min (v, s?)

A.8.2 `2-norm function

The projection onto the unit ball B2 (0, 1) = {x ∈ Rn : ‖x‖2 ≤ 1} is equal to:

PB2(0,1) (v) =
{

v if ‖v‖2 ≤ 1
v

‖v‖2
if ‖v‖2 > 1

Since we have:
proxλ‖x‖2 (v) + λPB2(0,1)

( v
λ

)
= v

we deduce that:

proxλ‖x‖2 (v) = v − λPB2(0,1)

( v
λ

)

=


v − λ

( v
λ

)
if ‖v‖2 ≤ λ

v − λ

v

λ∥∥∥ v
λ

∥∥∥
2

if ‖v‖2 > λ

=

 0 if ‖v‖2 ≤ λ

v − λv

‖v‖2
if ‖v‖2 > λ

=
(

1− λ

max (λ, ‖v‖2)

)
v
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A.8.3 Scaling and translation

Let g (x) = f (ax+ b) where a 6= 0. Using the change of variable y = ax+ b, we have:

proxg (v) = arg min
x

{
g (x) + 1

2 ‖x− v‖
2
2

}
= arg min

x

{
f (ax+ b) + 1

2 ‖x− v‖
2
2

}
= arg min

y

{
f (y) + 1

2

∥∥∥∥y − ba − v
∥∥∥∥2

2

}
We deduce that:

f (y) + 1
2

∥∥∥∥y − ba − v
∥∥∥∥2

2
= f (y) + 1

2a2 ‖y − b− av‖
2
2

= 1
a2

(
a2f (y) + 1

2 ‖y − (av + b)‖22
)

We conclude that y? = proxa2f (av + b) and:

proxg (v) = y? − b
a

=
proxa2f (av + b)− b

a

A.8.4 Projection onto the `1 ball

We have:

x = PB1(c,r) (v)
= PB1(0n,r) (v − c) + c

= (v − c)− sign (v − c)� proxrmax x (|v − c|) + c

= v − sign (v − c)�min (|v − c| , s?)

where s? is the solution of the following equation:

s? =
{
s ∈ R :

n∑
i=1

(|vi − ci| − s)+ = r

}
Remark 12 PB1(c,r) (v) is sometimes expressed using the soft-thresholding operator (Beck,
2017, page 151), but the two formulas are equivalent.

A.8.5 Projection onto the `2 ball

We have:

x = PB2(c,r) (v)
= PB2(0n,r) (v − c) + c

= (v − c)− proxr‖x‖2 (v − c) + c

= v −
(

1− r

max (r, ‖v − c‖2)

)
(v − c)

= c+ r

max (r, ‖v − c‖2) (v − c) (50)
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A.8.6 `2-penalized logarithmic barrier function

We note f1 (x) = −λ
∑n
i=1 bi ln xi and f2 (x) = 1Ω (x) where Ω = B2 (c, r). The Dykstra’s

algorithm becomes: 

v
(k)
x = y(k) + z

(k)
1

x(k+1) = proxf1

(
v

(k)
x

)
z

(k+1)
1 = y(k) + z

(k)
1 − x(k+1)

v
(k)
y = x(k+1) + z

(k)
2

y(k+1) = proxf2

(
v

(k)
y

)
z

(k+1)
2 = x(k+1) + z

(k)
2 − y(k+1)

It follows that:

x(k+1) =
v

(k)
x +

√
v

(k)
x � v(k)

x + 4λb
2

and:

y(k+1) = PB2(c,r)

(
v(k)
y

)
= c+ r

max
(
r,
∥∥∥v(k)
y − c

∥∥∥
2

) (v(k)
y − c

)

A.8.7 Quadratic function

Let f (x) = 1
2x
>Qx− x>R. We have:

proxf (v) = arg min
x

{
1
2x
>Qx− x>R+ 1

2 ‖x− v‖
2
2

}
= arg min

x

{
1
2x
> (Q+ In)x− x> (R+ v) + 1

2v
>v

}
= (Q+ In)−1 (R+ v)

A.8.8 Projection onto the intersection of a `2 ball and a box

We note f1 (x) = 1Ω1 (x) and f2 (x) = 1Ω2 (x) where Ω1 = B2 (c, r) and Ω2 = Box [x−, x+] =
{x ∈ Rn : x− ≤ x ≤ x+}. The Dykstra’s algorithm becomes:

x(k+1) = c+ r

max
(
r,
∥∥∥y(k) + z

(k)
1 − c

∥∥∥
2

) (y(k) + z
(k)
1 − c

)
z

(k+1)
1 = y(k) + z

(k)
1 − x(k+1)

y(k+1) = T
(
x(k+1) + z

(k)
2 ;x−, x+

)
z

(k+1)
2 = x(k+1) + z

(k)
2 − y(k+1)

This algorithm is denoted by PBox−Ball (v;x−, x+, c, r).
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A.8.9 Shannon’s entropy and Kullback-Leibler divergence

If we consider the scalar function f (x) = λx ln (x/x̃) where x̃ is a constant, we have:

λf (x) + 1
2 ‖x− v‖

2
2 = λx ln x

x̃
+ 1

2 (x− v)2

= λx ln x
x̃

+ 1
2x

2 − xv + 1
2v

2

The first-order condition is:

λ
1
x̃

+ λ ln x
x̃

+ x− v = 0 ⇔ ln x+ λ−1x = ln x̃+ λ−1v − 1
x̃

⇔ eln x+λ−1x = eλ
−1v− 1

x̃ +ln x̃

⇔ xeλ
−1x = x̃eλ

−1v− 1
x̃

⇔
(
λ−1x

)
e(λ
−1x) = λ−1x̃eλ

−1v− 1
x̃

We deduce that the root is equal to:

x? = λW

(
x̃eλ

−1v− 1
x̃

λ

)

where W (x) is the Lambert W function satisfying W (x) eW (x) = x (Corless et al., 1996).
In the case of the Kullback-Liebler divergence KL (x) =

∑n
i=1 xi ln (xi/x̃i), it follows that:

proxλKL(v|x̃) (v) = λ


W
(
λ−1x̃1e

λ−1v1−x̃−1
1

)
...

W
(
λ−1x̃ne

λ−1vn−x̃−1
n

)


Remark 13 The proximal of Shannon’s entropy SE (x) = −
∑n
i=1 xi ln xi is a special case

of the previous result38 with x̃i = 1:

proxλ SE(x) (v) = λ


W
(
λ−1eλ

−1v1−1
)

...
W
(
λ−1eλ

−1vn−1
)


This result has been first obtained by Chaux et al. (2007).

A.8.10 Projection onto the complement B̄2 (c, r) of the `2 ball

We consider the following proximal problem:

x? = arg min
x

{
1Ω (x) + 1

2 ‖x− v‖
2
2

}
where:

Ω = {x ∈ Rn : ‖x− c‖2 ≥ r}

38We use the fact that max SE (x) = min− SE (x).
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This problem is equivalent to:

x? = arg min
x

1
2 (x− v)> (x− v)

s.t. (x− c)> (x− c)− r2 ≥ 0

We deduce that the Lagrange function is equal to:

L (x;λ) = 1
2 (x− v)> (x− v)− λ

(
(x− c)> (x− c)− r2

)
The first-order condition is:

∂ L (x;λ)
∂ x

= x− v − 2λ (x− c) = 0n

whereas the KKT condition is min
(
λ, (x− c)> (x− c)− r2

)
= 0. We distinguish two cases:

1. If λ = 0, this means that x? = v and (x− c)> (x− c)− r2 > 0.

2. If λ > 0, we have (x− c)> (x− c) = r2. Then we obtain the following system:{
x− v − 2λ (x− c) = 0n
(x− c)> (x− c) = r2

We deduce that:
(x− c)− (v − c)− 2λ (x− c) = 0n (51)

and:
(x− c)> (x− c)− (x− c)> (v − c)− 2λ (x− c)> (x− c) = 0

It follows that r2 − (x− c)> (v − c)− 2λr2 = 0, meaning that:

λ? = r2 − (x− c)> (v − c)
2r2

We notice that:

(51) ⇔ (x− c)− (v − c)− 2r
2 − (x− c)> (v − c)

2r2 (x− c) = 0n

⇔ −r2 (v − c) + (x− c)> (v − c) (x− c) = 0n
⇔ (x− c)> (v − c) (x− c) = r2 (v − c)

Because (x− c)> (v − c) is a scalar, we deduce that x− c and v − c are two collinear
vectors:

x− c = r
(v − c)
‖v − c‖2

The optimal solution is:
x? = c+ r

(v − c)
‖v − c‖2

Combining the two cases gives:

prox1Ω(x) (v) = c+ r

min (r, ‖v − c‖2) (v − c)

This is the formula of the projection onto the `2 ball, but the minimum function has replaced
the maximum function39.

39See Equation (50) on page 58.
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A.8.11 Projection onto the complement B̄1 (c, r) of the `1 ball

This proximal problem associated with B̄1 (0n, r) is:

x? = arg min
x

1
2 (x− v)> (x− v)

s.t. ‖x‖1 ≥ r

We deduce that the Lagrange function is equal to:

L (x;λ) = 1
2 (x− v)> (x− v)− λ (‖x‖1 − r)

The first-order condition is:

∂ L (x;λ)
∂ x

= x− v − λ sign (x) = 0n

whereas the KKT condition is min (λ, ‖x‖1 − r) = 0. We distinguish two cases:

1. If λ = 0, this means that x? = v and ‖x‖1 ≥ r.

2. If λ > 0, we have ‖x‖1 = r. Then we obtain the following system of equations:{
x− v = λ sign (x)
‖x‖1 = r

The first condition gives that x − v is a vector whose elements are +λ and/or −λ,
whereas the second condition shows that x is on the surface of the `1 ball. Unfortu-
nately, there is no unique solution. This is why we assume that sign (x) = sign (v) and
we modify the sign function: sign (a) = 1 if a ≥ 0 and sign (a) = −1 if a < 0. In this
case, there is a unique solution x? = v+λ? sign (v) where λ? = n−1 (r − ‖v‖1) because
|v + λ sign (v)| = |v|+ λ.

Combining the two cases implies that:

PB̄1(0n,r) (v) =
{
v if ‖v‖1 ≥ r
v + sign (v)� n−1 (r − ‖v‖1) if ‖v‖1 < r

Using the translation property, we deduce that:

PB̄1(c,r) (v) = v + sign (v − c)�
max (r − ‖v − c‖1 , 0)

n

A.8.12 The bid-ask linear cost function

If we consider the scalar function:

f (x) = α (γ − x)+ + β (x− γ)+

we have:

fv (x) = λf (x) + 1
2 ‖x− v‖

2
2

= λα (γ − x)+ + λβ (x− γ)+ + 1
2x

2 − xv + 1
2v

2

Following Beck (2017), we distinguish three cases:
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1. If fv (x) = λα (γ − x) + 1
2x

2 − xv + 1
2v

2, then f ′v (x) = −λα+ x− v and x? = v + λα.
This implies that γ − x? > 0 or v < γ − λα.

2. If fv (x) = λβ (x− γ)+ + 1
2x

2 − xv + 1
2v

2, then f ′v (x) = λβ + x− v and x? = v − λβ.
This implies that x? − γ > 0 or v < γ + λβ.

3. If v ∈ [γ − λα, γ + λβ], the minimum is not obtained at a point of differentiability.
Since γ is the only point of non-differentiability, we obtain x? = γ.

Therefore, we can write the proximal operator in the following compact form:

x? = γ + (v − γ − λβ)+ − (v − γ + λα)−

where x− and x+ are the negative part and the positive part of x. If we consider the
vector-value function f (x) =

∑n
i=1 αi (γi − xi)+ + βi (xi − γi)+, we deduce that:

proxλf(x) (v) = γ + S (v − γ;λα, λβ)

where S (v;λ−, λ+) = (v − λ+)+ − (v + λ−)− is the two-sided soft-thresholding operator.

A.9 The QP form of the ADMM-QP problem
We have:

fQP (x) = fMVO (x) + f`2 (x)

= 1
2 (x− b)> Σt (x− b)− γ (x− b)> µt + 1

2%2 ‖Γ2 (x− xt)‖22 + 1
2 %̃2

∥∥Γ̃2 (x− x̃)
∥∥2

2

= 1
2x
>Σtx− x>Σtb+ 1

2b
>Σtb− γx>µt + γb>µt +

1
2x
> (%2Γ>2 Γ2

)
x− x>

(
%2Γ>2 Γ2

)
xt + 1

2x
>
t

(
%2Γ>2 Γ2

)
xt +

1
2x
> (%̃2Γ̃>2 Γ̃2

)
x− x>

(
%̃2Γ̃>2 Γ̃2

)
x̃+ 1

2 x̃
(
%̃2Γ̃>2 Γ̃2

)
x̃

= 1
2x
> (Σt + %2Γ>2 Γ2 + %̃2Γ̃>2 Γ̃2

)
x− x>

(
γµt + Σtb+ %2Γ>2 Γ2xt + %̃2Γ̃>2 Γ̃2x̃

)
+

γb>µt + 1
2
(
b>Σtb+ %2x

>
t Γ>2 Γ2xt + %̃2x̃%̃2Γ̃>2 Γ̃2x̃

)
A.10 The CCD algorithm of a QP form with a logarithmic barrier
We consider the following optimization problem:

x? = arg min
x

1
2x
>Qx− x>R−

n∑
i=1

λi ln xi

where Q is a positive-definite matrix and λi > 0. The first-order condition with respect to
coordinate xi is:

(Qx)i −Ri −
λi
xi

= 0

It follows that xi (Qx)i −Rixi − λi = 0 or equivalently:

Qi,ix
2
i +

∑
j 6=i

xjQi,j −Ri

xi − λi = 0
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The polynomial function is convex because we have Qi,i > 0. Since the product of the roots
is negative40, we have two solutions with opposite signs. We deduce that the solution is the
positive root of the second-degree equation:

x?i =
Ri −

∑
j 6=i xjQi,j +

√(∑
j 6=i xjQi,j −Ri

)2
+ 4λiQi,i

2Qi,i

It follows that CCD algorithm is:

x
(k+1)
i =

Ri −
∑
j<i x

(k+1)
j Qi,j −

∑
j>i x

(k)
j Qi,j

2Qi,i
+√(∑

j<i x
(k+1)
j Qi,j +

∑
j>i x

(k)
j Qi,j −Ri

)2
+ 4λiQi,i

2Qi,i

B Data
Parameter set #1 We consider a capitalization-weighted stock index, which is com-

posed of eight stocks. The weights of this benchmark are equal to 23%, 19%, 17%, 9%, 8%,
6% and 5%. We assume that their volatilities are 21%, 20%, 40%, 18%, 35%, 23%, 7% and
29%. The correlation matrix is defined as follows:

ρ =



100%
80% 100%
70% 75% 100%
60% 65% 90% 100%
70% 50% 70% 85% 100%
50% 60% 70% 80% 60% 100%
70% 50% 70% 75% 80% 50% 100%
60% 65% 70% 75% 65% 70% 80% 100%


Parameter set #2 We consider a universe of eight stocks. We assume that their

volatilities are 25%, 20%, 15%, 18%, 30%, 20%, 15% and 35%. The correlation matrix is
defined as follows:

ρ =



100%
20% 100%
55% 60% 100%
60% 60% 60% 100%
60% 60% 60% 60% 100%
60% 60% 60% 60% 60% 100%
60% 60% 60% 60% 60% 60% 100%
60% 60% 60% 60% 60% 60% 60% 100%


C Notations
• µ = (µ1, . . . , µn) is the vector of expected return.

40We have −Qi,iλi < 0.
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• Σ = [ρi,jσiσj ]i,j=1
i,j=1 is the covariance matrix where σi is the volatility of Asset i and

ρi,j is the correlation between Asset i and Asset j.

• b is the vector of benchmark weights.

• µ (x) = x>µ is the expected return of Portfolio x.

• σ (x) =
√
x>Σx is the volatility of Portfolio x.

• µ (x | b) = (x− b)> µ is the expected excess return of Portfolio x with respect to
Benchmark b.

• σ (x | b) =
√

(x− b)>Σ (x− b) is the tracking error volatility of Portfolio x with re-
spect to Benchmark b.

• R (x) is a convex risk measure.

• RB = (RB1, . . . ,RBn) is the vector of risk budgets.

• RCi (x) is the risk contribution of Asset i with respect to Portfolio x.

• τ (x | x̃) =
∑n
i=1 |xi − x̃i| is the turnover between Portfolios x and x̃. The maximum

acceptable turnover is denoted by τ+.

• ccc (x | x̃) is the cost function when rebalancing Portfolio x from Portfolio x̃. The max-
imum acceptable cost is denoted by ccc+.

• AS (x | b) = 1
2
∑n
i=1 |xi − bi| is the active share of Portfolio x with respect to Bench-

mark b. AS− is the minimum acceptable active share.

• H (x) =
∑n
i=1 x

2
i is the Herfindahl index.

• N (x) = 1/H (x) is the number of effective bets. N− corresponds to the minimum
acceptable number of effective bets.

• DR (x) =
(
x>σ

)
/
√
x>Σx is the diversification ratio of Portfolio x.

• LS (x) = |
∑n
i=1 xi| is the long/short exposure of Portfolio x.

• L (x) =
∑n
i=1 |xi| is the leverage of Portfolio x.

• SE (x) = −
∑n
i=1 xi ln xi is Shannon’s entropy of x.

• KL (x) =
∑n
i=1 xi ln (xi/x̃i) is the Kullback-Leibler divergence between x and x̃.

• W (x) is the Lambert W function satisfying W (x) eW (x) = x.

• 0n is the vector of zeros.

• 1n is the vector of ones.

• ei is the unit vector, i.e. [ei]i = 1 and [ei]j = 0 for all j 6= i.

• x− = max (−x, 0) = −min (x, 0) is the negative part of x.

• x+ = max (x, 0) is the positive part of x.

• 1Ω (x) is the convex indicator function of Ω: 1Ω (x) = 0 for x ∈ Ω and 1Ω (x) = +∞
for x /∈ Ω.
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• A† is the Moore-Penrose pseudo-inverse matrix of A.

• ‖x‖p = (
∑n
i=1 |xi|

p)1/p is the `p norm.

• ‖x‖A =
(
x>Ax

)1/2 is the weighted `2 norm.

• x� y is the Hadamard element-wise product: [x� y]i,j = [x]i,j [y]i,j .

• proxf (v) is the proximal operator of f (x): proxf (v) = arg minx
{
f (x) + 1

2 ‖x− v‖
2
2

}
.

• S (v;λ) = sign (v) · (|v| − λ)+ is the soft-thresholding operator.

• S (v;λ−, λ+) = (v − λ+)+−(v + λ−)− is the two-sided soft-thresholding operator. We
have the following property: S (v;λ) = S (v;λ, λ).

• T (v, x−, x+) = max (x−,min (x, x+)) is the truncation operator.

• PΩ (v) is the projection of v onto the set Ω: PΩ (v) = arg minx∈Ω
1
2 ‖x− v‖

2
2 =

prox1Ω(x) (v).

• Sn is the unit simplex with dimension n.

• Affineset [A,B] is the affine set {x ∈ Rn : Ax = B}.

• Hyperplane [a, b] is the hyperplane
{
x ∈ Rn : a>x = b

}
.

• Halfspace [c, d] is the half-space
{
x ∈ Rn : c>x ≤ d

}
.

• Box [x−, x+] is the box {x ∈ Rn : x− ≤ x ≤ x+}.

• Bp (c, r) is the `p-ball
{
x ∈ Rn : ‖x− c‖p ≤ r

}
.

• D is the weight diversification set {x ∈ Rn : D (x) ≥ D−} where D (x) is the diversifi-
cation measure and D− is the minimum acceptable diversification.
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