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Abstract

This paper studies trend filtering methods. These methods are widely used in mo-
mentum strategies, which correspond to an investment style based only on the history
of past prices. For example, the CTA strategy used by hedge funds is one of the
best-known momentum strategies. In this paper, we review the different econometric
estimators to extract a trend of a time series. We distinguish between linear and non-
linear models as well as univariate and multivariate filtering. For each approach, we
provide a comprehensive presentation, an overview of its advantages and disadvantages
and an application to the S&P 500 index. We also consider the calibration problem of
these filters. We illustrate the two main solutions, the first based on prediction error,
and the second using a benchmark estimator. We conclude the paper by listing some
issues to consider when implementing a momentum strategy.

Keywords: Momentum strategy, trend following, moving average, filtering, trend extrac-
tion.

JEL classification: G11, G17, C63.

1 Introduction
The efficient market hypothesis tells us that financial asset prices fully reflect all available
information (Fama, 1970). One consequence of this theory is that future returns are not
predictable. Nevertheless, since the beginning of the nineties, a large body of academic
research has rejected this assumption. One of the arguments is that risk premiums are time
varying and depend on the business cycle (Cochrane, 2001). In this framework, returns
on financial assets are related to some slow-moving economic variables that exhibit cyclical
patterns in accordance with the business cycle. Another argument is that some agents are

∗We are grateful to Guillaume Jamet and Hoang-Phong Nguyen for their helpful comments.
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not fully rational, meaning that prices may underreact in the short run but overreact at long
horizons (Hong and Stein, 1997). This phenomenon may be easily explained by the theory
of behavioural finance (Barberis and Thaler, 2002).

Based on these two arguments, it is now commonly accepted that prices may exhibit
trends or cycles. In some sense, these arguments chime with the Dow theory (Brown et al.,
1998), which is one of the first momentum strategies. A momentum strategy is an investment
style based only on the history of past prices (Chan et al., 1996). We generally distinguish
between two types of momentum strategy:

1. the trend following strategy, which consists of buying (or selling) an asset if the esti-
mated price trend is positive (or negative);

2. the contrarian (or mean-reverting) strategy, which consists of selling (or buying) an
asset if the estimated price trend is positive (or negative).

Contrarian strategies are clearly the opposite of trend following strategies. One of the tasks
involved in these strategies is to estimate the trend, excepted when based on mean-reverting
processes (see D’Aspremont, 2011). In this paper, we provide a survey of the different
trend filtering methods. However, trend filtering is just one of the difficulties in building a
momentum strategy. The complete process of constructing a momentum strategy is highly
complex, especially as regards transforming past trends into exposures – an important factor
that is beyond the scope of this paper.

The paper is organized as follows. Section two presents a survey of the different econo-
metric trend estimators. In particular, we distinguish between methods based on linear
filtering and nonlinear filtering. In section three, we consider some issues that arise when
trend filtering is applied in practice. We also propose some methods for calibrating trend
filtering models and highlight the problem of estimator variance. Section four offers some
concluding remarks.

2 A review of econometric estimators for trend filtering

Trend filtering (or trend detection) is a major task of time series analysis from both a
mathematical and financial viewpoint. The trend of a time series is considered to be the
component containing the global change, which contrasts with local changes due to noise.
The trend filtering procedure concerns not only the problem of denoising; it must also
take into account the dynamics of the underlying process. This explains why mathematical
approaches to trend extraction have a long history, and why this subject is still of great
interest to the scientific community1. From an investment perspective, trend filtering is
fundamental to most momentum strategies developed in asset management and hedge funds
sectors in order to improve performance and limit portfolio risks.

2.1 The trend-cycle model

In economics, trend-cycle decomposition plays an important role by identifying the perma-
nent and transitory stochastic components in a non-stationary time series. Generally, the
permanent component can be interpreted as a trend, whereas the transitory component may

1See Alexandrov et al. (2008).
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be a noise or a stochastic cycle. Let yt be a stochastic process. We assume that yt is the
sum of two different unobservable parts:

yt = xt + εt

where xt represents the trend and εt is a stochastic (or noise) process. There is no precise
definition for trend, but it is generally accepted to be a smooth function representing long-
term movements:

“ [...] the essential idea of trend is that it shall be smooth.” (Kendall, 1973).

It means that changes in the trend xt must be smaller than those of the process yt. From a
statistical standpoint, it implies that the volatility of yt − yt−1 is higher than the volatility
of xt − xt−1:

σ (yt − yt−1) ≫ σ (xt − xt−1)

One of the major problems in financial econometrics is the estimation of xt. This is the
subject of signal extraction and filtering (Pollock, 2009).

Finite moving average filtering for trend estimation has a long history. It has been used
in actuarial science since the beginning of the twentieth century2. But the modern theory of
signal filtering has its origins in the Second World War and was formulated independently
by Norbert Wiener (1941) and Andrei Kolmogorov (1941) in two different ways. Wiener
worked principally in the frequency domain whereas Kolmogorov considered a time-domain
approach. This theory was extensively developed in the fifties and sixties by mathematicians
and statisticians such as Hermann Wold, Peter Whittle, Rudolf Kalman, Maurice Priestley,
George Box, etc. In economics, the problem of trend filtering is not a recent one, and may
date back to the seminal article of Muth (1960). It was extensively studied in the eighties and
nineties in the literature on business cycles, which led to a vast body of empirical research
being carried out in this area3. However, it is in climatology that trend filtering is most
extensively studied nowadays. Another important point is that the development of filtering
techniques has evolved according to the development of computational power and the IT
industry. The Savitzky-Golay smoothing procedure may appear very basic today though it
was revolutionary4 when it was published in 1964.

In what follows, we review the class of filtering techniques that is generally used to
estimate a trend. Moving average filters play an important role in finance. As they are very
intuitive and easy to implement, they undoubtedly represent the model most commonly used
in trading strategies. The moving average technique belongs to the class of linear filters,
which share a lot of common properties. After studying this class of filters, we consider
some nonlinear filtering techniques, which may be well suited to solving financial problems.

2.2 Linear filtering
2.2.1 The convolution representation

We denote by y = {. . . , y−2, y−1, y0, y1, y2, . . .} the ordered sequence of observations of the
process yt. Let x̂t be the estimator of the underlying trend xt which is by definition an

2See, in particular, the works of Henderson (1916), Whittaker (1923) and Macaulay (1931).
3See for example Cleveland and Tiao (1976), Beveridge and Nelson (1981), Harvey (1991) or Hodrick and

Prescott (1997).
4The paper of Savitzky and Golay (1964) is still considered by the Analytical Chemistry journal to be

one of its 10 seminal papers.
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unobservable process. A filtering procedure consists of applying a filter L to the data y:

x̂ = L (y)

with x̂ = {. . . , x̂−2, x̂−1, x̂0, x̂1, x̂2, . . .}. When the filter is linear, we have x̂ = Ly with the
normalisation condition 1 = L1. If we assume that the signal yt is observed at regular
dates5, we obtain:

x̂t =
∞∑

i=−∞
Lt,t−iyt−i (1)

We deduce that linear filtering may be viewed as a convolution. The previous filter may not
be of much use, however, because it uses future values of yt. As a result, we generally impose
some restriction on the coefficients Lt,t−i in order to use only past and present values of the
signal. In this case, we say that the filter is causal. Moreover, if we restrict our study to
time invariant filters, the equation (1) becomes a simple convolution of the observed signal
yt with a window function Li:

x̂t =
n−1∑
i=0

Liyt−i (2)

With this notation, a linear filter is characterised by a window kernel Li and its support.
The kernel defines the type of filtering, whereas the support defines the range of the filter.
For instance, if we take a square window on a compact support [0, T ] with T = n∆ the
width of the averaging window, we obtain the well-known moving average filter:

Li =
1

n
1 {i < n}

We finish this description by considering the lag representation:

x̂t =
n−1∑
i=0

LiL
iyt

with the lag operator L satisfying Lyt = yt−1.

2.2.2 Measuring the trend and its derivative

We discuss here how to use linear filtering to measure the trend of an asset price and its
derivative. Let St be the asset price which follows the dynamics of the Black-Scholes model:

dSt

St
= µt dt+ σt dWt

where µt is the drift, σt is the volatility and Wt is a standard Brownian motion. The
asset price St is observed in a series of discrete dates {t0, . . . , tn}. Within this model, the
appropriate signal to be filtered is the logarithm of the price yt = lnSt but not the price
itself. Let Rt = lnSt − lnSt−1 represent the realised return at time t over a unit period. If
µt and σt are known, we have:

Rt =

(
µt −

1

2
σ2
t

)
∆+ σt

√
∆ηt

5We have ti+1 − ti = ∆.
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where ηt is a standard Gaussian white noise. The filtered trend can be extracted using the
following equation:

x̂t =

n−1∑
i=0

Liyt−i

and the estimator of µt is6:

µ̂t ≃
1

∆

n−1∑
i=0

LiRt−i

We can also obtain the same result by applying the filter directly to the signal and defining
the derivative of the window function as ℓi = L̇i:

µ̂t ≃
1

∆

n∑
i=0

ℓiyt−i

We obtain the following correspondence:

ℓi =

 L0 if i = 0
Li − Li−1 if i = 1, . . . , n− 1
−Ln−1 if i = n

(3)

Remark 1 In some senses, µ̂t and x̂t are related by the following expression:

µ̂t =
d

dt
x̂t

Econometric methods principally involve x̂t, whereas µ̂t is more important for trading strate-
gies.

Remark 2 µ̂t is a biased estimator of µt and the bias increases with the volatility of the
process σt. The expression of the unbiased estimator is then:

µ̂t =
1

2
σ2
t +

1

∆

n−1∑
i=0

LiRt−i

Remark 3 In the previous analysis, x̂t and µ̂t are two estimators. We may also represent
them by their corresponding probability density functions. It is therefore easy to derive
estimates, but we should not forget that these estimators present some variance. In finance,
and in particular in trading strategies, the question of statistical inference is generally not
addressed. However, it is a crucial factor in designing a successful momentum strategy.

2.2.3 Moving average filters

Average return over a given period Here, we consider the simplest case corresponding
to the moving average filter where the form of the window is:

Li =
1

n
1 {i < n}

In this case, the only calibration parameter is the window support, i.e. T = n∆. It char-
acterises the smoothness of the filtered signal. For the limit T → 0, the window becomes
a Dirac distribution δt and the filtered signal is exactly the same as the observed signal:

6If we neglect the contribution from the term σ2
t . Moreover, we consider ∆ = 1 to simplify the calculation.
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x̂t = yt. For T > 0, if we assume that the noise εt is independent from xt and is a centered
process, the first contribution of the filtered signal is the average trend:

x̂t =
1

n

n−1∑
i=0

xt−i

If the trend is homogeneous, this average value is located at t− (n− 1) /2 by construction.
It means that the filtered signal lags the observed signal by a time period which is half the
window. To extract the derivative of the trend, we compute the derivative kernel ℓi which
is given by the following formula:

ℓi =
1

n∆
(δi,0 − δi,n)

where δi,j is the Kronecker delta7. The main advantage of using a moving average filter is
the reduction of noise due to the central limit theorem. For the limit case n→ ∞, the signal
is completely denoised but it corresponds to the average value of the trend. The estimator is
also biased. In trend filtering, we also face a trade-off between denoising maximisation and
bias minimisation. The problem is the calibration procedure for the lag window T . Another
way to determine the optimal parameter T ⋆ is to take into account the dynamics of the
trend.

The above moving average filter can be applied directly to the signal. However, µ̂t is
simply the cumulative return over the window period. It needs only the first and last dates
of the period under consideration.

Moving average crossovers Many practitioners, and even individual investors, use the
moving average of the price itself as a trend indication, instead of the moving average of
returns. These moving averages are generally uniform moving averages of the price. Here
we will consider an average of the logarithm of the price, in order to be consistent with the
previous examples:

ŷnt =
1

n

n−1∑
i=0

yt−i

Of course, an average price does not estimate the trend µt. This trend is estimated from
the difference between two moving averages over two different time horizons n1 and n2.
Supposing that n1 > n2, the trend µ may be estimated from:

µ̂t ≃
2

(n1 − n2)∆
(ŷn2

t − ŷn1
t ) (4)

In particular, the estimated trend is positive if the short-term moving average is higher
than the long-term moving average. Thus, the sign of the trend changes when the short-
term moving average crosses the long-term moving average. Of course, when the short-term
horizon n1 is one, then the short-term moving average is just the current asset price. The
scaling term 2 (n1 − n2)

−1 is explained below. It is derived from the interpretation of this
estimator as a weighted moving average of asset returns. Indeed, this estimator can be
interpreted in terms of asset returns by inverting the formula (3) with Li being interpreted
as the primitive of ℓi:

Li =

 ℓ0 if i = 0
ℓi + Li−1 if i = 1, . . . , n− 1
−ℓn+1 if i = n

7δi,j is equal to 1 if i = j and 0 otherwise.
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The weighting of each return in the estimator (4) is represented in Figure 1. It forms a
triangle, and the biggest weighting is given at the horizon of the smallest moving average.
Therefore, depending on the horizon n2 of the shortest moving average, the indicator can
be focused toward the current trend (if n2 is small) or toward past trends (if n2 is as large
as n1/2 for instance). From these weightings, in the case of a constant trend µ, we can
compute the expectation of the difference between the two moving averages:

E [ŷn2
t − ŷn1

t ] =
n1 − n2

2

(
µ− 1

2
σ2
t

)
∆

Therefore, the scaling factor in formula (4) appears naturally.

Figure 1: Window function Li of moving average crossovers (n1 = 100)

Enhanced filters To improve the uniform moving average estimator, we may take the
following kernel function:

ℓi =
4

n2
sgn

(n
2
− i
)

We notice that the estimator µ̂t now takes into account all the dates of the window period.
By taking the primitive of the function ℓi, the trend filter is given as follows:

Li =
4

n2

(n
2
−
∣∣∣i− n

2

∣∣∣)
We now move to the second type of moving average filter which is characterised by an
asymmetric form of the convolution kernel. One possibility is to take an asymmetric window
function with a triangular form:

Li =
2

n2
(n− i)1 {i < n}

7
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By computing the derivative of this window function, we obtain the following kernel:

ℓi =
2

n
(δi − 1 {i < n})

The filtering equation of µt then becomes:

µ̂t =
2

n

(
xt −

1

n

n−1∑
i=0

xt−i

)

Remark 4 Another way to define µ̂t is to consider the Lanczos generalised derivative
(Groetsch, 1998). Let f (x) be a function. We define the Lanczos derivative of f (x) in
terms of the following relationship:

dL

dx
f (x) = lim

ε→0

3

2ε3

∫ ε

−ε

tf (x+ t) dt

In the discrete case, we have:

dL

dx
f (x) = lim

h→0

∑n
k=−n kf (x+ kh)

2
∑n

k=1 k
2h

We first notice that the Lanczos derivative is more general than the traditional derivative.
Although Lanczos’ formula is a more onerous method for finding the derivative, it offers
some advantages. This technique allows us to compute a “pseudo-derivative” at points where
the function is not differentiable. For the observable signal yt, the traditional derivative does
not exist because of the noise εt, but does in the case of the Lanczos derivative. Let us apply
the Lanczos’ formula to estimate the derivative of the trend at the point t−T/2. We obtain:

dL

dt
x̂t =

12

n3

n∑
i=0

(n
2
− i
)
yt−i

We deduce that the kernel is:

ℓi =
12

n3

(n
2
− i
)
1 {0 ≤ i ≤ n}

By computing an integration by parts, we obtain the trend filter:

Li =
6

n3
i (n− i)1 {0 ≤ i ≤ n}

In Figure 2, we have represented the different functions Li given in this paragraph. We
may extend these filters by computing the convolution of two or more filters. For exemple,
the mixed filter in Figure 2 is the convolution of the asymmetric filter with the Lanczos
filter. Let us apply these filters to the S&P 500 index. The results are given in Figure 3
for two values of the window length (n = 65 days and n = 260 days). We notice that the
choice of n has a big impact on the filtered series. The choice of the window function seems
to be less important at first sight. However, we should mention that traders are principally
interested in the derivative of the trend, and not the absolute value of the trend itself. In
this case, the window function may have a significant impact. Figure 4 is the scatterplot of
the µ̂t statistic in the case of the S&P 500 index from January 2000 to July 2011 (we have
considered the uniform and Lanczos filters using n = 260). We may also show that this
impact increases when we reduce the length of the window as illustrated in Table 1.

8
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Figure 2: Window function Li of moving average filters (n = 100)

Figure 3: Trend estimate for the S&P 500 index
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Table 1: Correlation between the uniform and Lanczos derivatives

n 5 10 22 65 130 260
Pearson ρ 84.67 87.86 90.14 90.52 92.57 94.03
Kendall τ 65.69 68.92 70.94 71.63 73.63 76.17
Spearman ϱ 83.15 86.09 88.17 88.92 90.18 92.19

Figure 4: Comparison of the derivative of the trend

2.2.4 Least squares filters

L2 filtering The previous Lanczos filter may be viewed as a local linear regression (Burch
et al., 2005). More generally, least squares methods are often used to define trend estimators:

{x̂1, . . . , x̂n} = argmin
1

2

n∑
t=1

(yt − x̂t)
2

However, this problem is not well-defined. We also need to impose some restrictions on the
underlying process yt or on the filtered trend x̂t to obtain a solution. For example, we may
consider a deterministic constant trend:

xt = xt−1 + µ

In this case, we have:
yt = µt+ εt (5)

Estimating the filtered trend x̂t is also equivalent to estimating the coefficient µ:

µ̂ =

∑n
t=1 tyt∑n
t=1 t

2

10
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If we consider a trend that is not constant, we may define the following objective function:

1

2

n∑
t=1

(yt − x̂t)
2
+ λ

n−1∑
t=2

(x̂t−1 − 2x̂t + x̂t+1)
2

In this function, λ is the regularisation parameter which controls the competition between
the smoothness8 of x̂t and the noise yt − x̂t. We may rewrite the objective function in the
vectorial form:

1

2
∥y − x̂∥22 + λ ∥Dx̂∥22

where y = (y1, . . . , yn), x̂ = (x̂1, . . . , x̂n) and the D operator is the (n− 2)× n matrix:

D =


1 −2 1

1 −2 1
. . .
1 −2 1

1 2 1


The estimator is then given by the following solution:

x̂ =
(
I + 2λD⊤D

)−1
y

It is known as the Hodrick-Prescott filter (or L2 filter). This filter plays an important role
in calibrating the business cycle.

Kalman filtering Another important trend estimation technique is the Kalman filter,
which is described in Appendix A.1. In this case, the trend µt is a hidden process which
follows a given dynamic. For example, we may assume that the model is9:{

Rt = µt + σζζt
µt = µt−1 + σηηt

(6)

Here, the equation of Rt is the measurement equation and Rt is the observable signal of
realised returns. The hidden process µt is supposed to follow a random walk. We define
µ̂t|t−1 = Et−1 [µt] and Pt|t−1 = Et−1

[(
µ̂t|t−1 − µt

)2]. Using the results given in Appendix
A.1, we have:

µ̂t+1|t = (1−Kt) µ̂t|t−1 +KtRt

where Kt = Pt|t−1/
(
Pt|t−1 + σ2

ζ

)
is the Kalman gain. The estimation error is determined

by Riccati’s equation:
Pt+1|t = Pt|t−1 + σ2

η − Pt|t−1Kt

Riccati’s equation gives us the stationary solution:

P ∗ =
ση
2

(
ση +

√
σ2
η + 4σ2

ζ

)
The filter equation becomes:

µ̂t+1|t = (1− κ) µ̂t|t−1 + κRt

8We notice that the second term is the discrete derivative of the trend x̂t which characterises the smooth-
ness of the curve.

9Equation (5) is a special case of this model if ση = 0.
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with:
κ =

2ση

ση +
√
σ2
η + 4σ2

ζ

This Kalman filter can be considered as an exponential moving average filter with parame-
ter10 λ = − ln (1− κ):

µ̂t =
(
1− e−λ

) ∞∑
i=0

e−λiRt−i

with11 µ̂t = Et [µt]. The filter of the trend x̂t is therefore determined by the following
equation:

x̂t =
(
1− e−λ

) ∞∑
i=0

e−λiyt−i

while the derivative of the trend may be directly related to the observed signal yt as follows:

µ̂t =
(
1− e−λ

)
yt −

(
1− e−λ

) (
eλ − 1

) ∞∑
i=1

e−λiyt−i

In Figure 5, we reported the window function of the Kalman filter for several values of λ.
We notice that the cumulative weightings increase strongly with λ. The half-life of this filter
is approximatively equal to ⌈

(
λ−1 − 2−1

)
ln 2⌉. For example, the half-life for λ = 5% is 14

days.

Figure 5: Window function Li of the Kalman filter

10We have 0 < κ < 1 and lambda > 0.
11We notice that µ̂t+1|t = µ̂t.
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We may wonder what the link is between the regression model (5) and the Markov model
(6). Equation (5) is equivalent to the following state space model12:{

yt = xt + σεεt
xt = xt−1 + µ

If we now consider that the trend is stochastic, the model becomes:{
yt = xt + σεεt
xt = xt−1 + µ+ σζζt

This model is called the local level model. We may also assume that the slope of the trend
is stochastic, in which case we obtain the local linear trend model: yt = xt + σεεt

xt = xt−1 + µt−1 + σζζt
µt = µt−1 + σηηt

These three models are special cases of structural models (Harvey, 1989) and may be easily
solved by Kalman filtering. We also deduce that the Markov model (6) is a special case of
the latter when σε = 0.

Remark 5 We have shown that Kalman filtering may be viewed as an exponential moving
average filter when we consider the Markov model (6). Nevertheless, we cannot regard the
Kalman filter simply as a moving average filter. First, the Kalman filter is the optimal
filter in the case of the linear Gaussian model described in Appendix A.1. Second, it could
be regarded as “an efficient computational solution of the least squares method” (Sorensen,
1970). Third, we could use it to solve more sophisticated processes than the Markov model
(6). However, some nonlinear or non Gaussian models may be too complex for Kalman
filtering. These nonlinear models can be solved by particle filters or sequential Monte Carlo
methods (see Doucet et al., 1998).

Another important feature of the Kalman approach is the derivation of an optimal
smoother (see Appendix A.1). At time t, we are interested by the numerical value of xt, but
also by the past values of xt−i because we would like to measure the slope of the trend. The
Kalman smoother improves the estimate of x̂t−i by using all the information between t− i
and t. Let us consider the previous example in relation to the S&P 500 index, using the local
level model. Figure 6 gives the filtered and smoothed components xt and µt for two sets
of parameters13. We verify that the Kalman smoother reduces the noise by incorporating
more information. We also notice that the restriction σε = 0 increases the variance of the
trend and slope estimators.

2.3 Nonlinear filtering

In this section, we review other filtering approaches. They are generally classed as nonlinear
filters, because it is not possible to express the trend as a linear convolution of the signal
and a window function.

12In what follows, the noise processes are white noise: εt ∼ N (0, 1), ζt ∼ N (0, 1) and ηt ∼ N (0, 1).
13For the first set of parameters, we assume that σε = 100σζ and ση = 1/100σζ . For the second set of

parameters, we impose the restriction σε = 0.
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Figure 6: Kalman filtered and smoothed components

2.3.1 Nonparametric regression

In the regression model (5), we assume that xt = f (t) while f (t) = µt. The model is said to
be parametric because the estimation of the trend consists of estimating the parameter µ.
We then have x̂t = µ̂t. With nonparametric regression, we directly estimate the function f ,
obtaining x̂t = f̂ (t). Some examples of nonparametric regression are kernel regression, loess
regression and spline regression. A popular method for trend filtering is local polynomial
regression:

yt = f (t) + εt

= β0 (τ) +

p∑
j=1

βj (τ) (τ − t)
j
+ εt

For a given value of τ , we estimate the parameters β̂j (τ) using weighted least squares with
the following weightings:

wt = K
(
τ − t

h

)
where K is the kernel function with a bandwidth h. We deduce that:

x̂t = E [yt| τ = t] = β̂0 (t)

Cleveland (1979) proposed an improvement to the kernel regression through a two-stage
procedure (loess regression). First, we fit a polynomial regression to estimate the residuals
ε̂t. Then, we compute δt =

(
1− u2t

)
· 1 {|ut| ≤ 1} with ut = ε̂t/ (6median (|ε̂|)) and run a

second kernel regression14 with weightings δtwt.
14Cleveland (1979) suggests using the tricube kernel function to define K.
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A spline function is a C2 function S (τ) which corresponds to a cubic polynomial function
on each interval [t, t+ 1[. Let SP be the set of spline functions. We then have to solve the
following optimisation programme:

min
S∈SP

(1− h)
n∑

t=0

wt (yt − S (t))
2
+ h

∫ T

0

wτS
′′ (τ)

2
dτ

where h is the smoothing parameter – h = 0 corresponds to the interpolation case15 and
h = 1 corresponds to the linear regression16.

Figure 7: Illustration of the kernel, loess and spline filters

We illustrate these three nonparametric methods in Figure 7. The calibration of these
filters is more complicated than for moving average filters, where the only parameter is the
length n of the window. With these methods, we have to decide the polynomial degree17 p,
the kernel function18 K and the smoothing parameter19 h.

2.3.2 L1 filtering

The idea of the Hodrick-Prescott filter can be generalised to a larger class of filters by using
the Lp penalty condition instead of the L2 penalty. This generalisation was previously

15We have x̂t = S (t) = yt.
16We have x̂t = S (t) = ĉ + µ̂t with (ĉ, µ̂) the OLS estimate of yt on a constant and time t because the

optimum is reached for S′′ (τ) = 0.
17For the kernel regression, we use a Gaussian kernel with a bandwidth h = 0.10. We notice the impact

of the degree of polynomial. The higher the degree, the smoother the trend (and the slope of the trend).
18For the loess regression, the degree of polynomial is set to 1 and the bandwidth h is 0.02. We show the

impact of the second step which modifies the kernel function.
19For the spline regression, we consider a uniform kernel function. We notice that the parameter h has an

impact on the smoothness of the trend.

15



Trend Filtering Methods for Momentum Strategies

discussed in the work of Daubechies et al. (2004) in relation to the linear inverse problem,
while Tibshirani (1996) considers the Lasso regression problem. If we consider an L1 filter,
the objective function becomes:

1

2

n∑
t=1

(yt − x̂t)
2
+ λ

n−1∑
t=2

|x̂t−1 − 2x̂t + x̂t+1|

which is equivalent to the following vectorial form:

1

2
∥y − x̂∥22 + λ ∥Dx̂∥1

Kim et al. (2009) shows that the dual problem of this L1 filter scheme is a quadratic
programme with some boundary constraints20. To find x̂, we may also use the quadratic
programming algorithm, but Kim et al. (2009) suggest using the primal-dual interior point
method in order to optimise the numerical computation speed.

We have illustrated the L1 filter in Figure 8. Contrary to all other previous methods, the
filtered signal comprises a set of straight trends and breaks21, because the L1 norm imposes
the condition that the second derivative of the filtered signal must be zero. The competition
between the two terms in the objective function turns to the competition between the number
of straight trends (or the number of breaks) and the closeness to the data. Thus, the
smoothing parameter λ plays an important role for detecting the number of breaks. This
explains why L1 filtering is radically different to L2 (or Hodrick-Prescott) filtering. Moreover,
it is easy to compute the slope of the trend µ̂t for the L1 filter. It is a step function, indicating
clearly if the trend is up or down, and when it changes (see Figure 8).

2.3.3 Wavelet filtering

Another way to estimate the trend xt is to denoise the signal yt by using spectral analy-
sis. The Fourier transform is an alternative representation of the original signal yt, which
becomes a frequency function:

y (ω) =
n∑

t=1

yte
−iωt

We note y (ω) = F (y). By construction, we have y = F−1 (y) with F−1 the inverse Fourier
transform. A simple idea for denoising in spectral analysis is to set some coefficients y (ω)
to zero before reconstructing the signal. Figure 9 is an illustration of denoising using the
thresholding rule. Selected parts of the frequency spectrum can easily be manipulated by
filtering tools. For example, some can be attenuated, and others may be completely removed.
Applying the inverse Fourier transform to this filtered spectrum leads to a filtered time series.
Therefore, a smoothing signal can be easily performed by applying a low-pass filter, that is,
by removing the higher frequencies. For example, we have represented two denoised signals
of the S&P 500 index in Figure 9. For the first one, we use a 95% thresholding procedure
whereas 99% of the Fourier coefficients are set to zero in the second case. One difficulty
with this approach is the bad time location for low frequency signals and the bad frequency
location for the high frequency signals. It is then difficult to localise when the trend (which
is located in low frequencies) reverses. But the main drawback of spectral analysis is that
it is not well suited to nonstationary processes (Martin and Flandrin, 1985, Fuentes, 2002,
Oppenheim and Schafer, 2009).

20The detail of this derivation is shown in Appendix A.2.
21A break is the position where the signal trend changes.
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Figure 8: L1 versus L2 filtering

Figure 9: Spectral filtering
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A solution consists of adopting a double dimension analysis, both in time and frequency.
This approach corresponds to the wavelet analysis. The method of denoising is the same as
described previously and the estimation of xt is done in three steps:

1. we compute the wavelet transform W of the original signal yt to obtain the wavelet
coefficients ω = W (y);

2. we modify the wavelet coefficients according to a denoising rule D:

ω⋆ = D (ω)

3. We convert the modified wavelet coefficients into a new signal using the inverse wavelet
transform W−1:

x = W−1 (ω⋆)

There are two principal choices in this approach. First, we have to specify which mother
wavelet to use. Second, we have to define the denoising rule. Let ω− and ω+ be two scalars
with 0 < ω− < ω+. Donoho and Johnstone (1995) define several shrinkage methods22:

• Hard shrinkage
ω⋆
i = ωi · 1

{
|ωi| > ω+

}
• Soft shrinkage

ω⋆
i = sgn (ωi) ·

(
|ωi| − ω+

)
+

• Semi-soft shrinkage

ω⋆
i =


0 si |ωi| ≤ ω−

sgn (ωi) (ω
+ − ω−)

−1
ω+ (|ωi| − ω−) si ω− < |ωi| ≤ ω+

ωi si |ωi| > ω+

• Quantile shrinkage is a hard shrinkage method where w+ is the qth quantile of the
coefficients |ωi|.

Wavelet filtering is illustrated in Figure 10. We have computed the wavelet coefficients
using the cascade algorithm of Mallat (1989) and the low-pass and high-pass filters of order
6 proposed by Daubechies (1992). The filtered trend is obtained using quantile shrinkage.
In the first case, the noisy signal remains because we consider all the coefficients (q = 0). In
the second and third cases, 95% and 99% of the wavelet coefficients are set to zero23.

2.3.4 Other methods

Many other methods can be used to perform trend filtering. The most recent include, for
example, singular spectrum analysis24 (Vautard et al., 1992), support vector machines25
and empirical mode decomposition (Flandrin et al., 2004). Moreover, we notice that traders
sometimes use their own techniques (see, inter alia, Ehlers, 2001).

22In practice, the coefficients ωi are standardised before being computed.
23It is interesting to note that the denoising procedure retains some wavelet coefficients corresponding to

high and medium frequencies and located around the 2008 crisis.
24See Appendix A.5 for an illustration.
25A brief presentation is given in Appendix A.4.
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Figure 10: Wavelet filtering

2.4 Multivariate filtering

Until now, we have assumed that the trend is specific to a financial asset. However, we may
be interested in estimating the common trend of several financial assets. For example, if we
wanted to estimate the trend of emerging markets equities, we could use a global index like
the MSCI EM or extract the trend by considering several indices, e.g. the Bovespa index
(Brazil), the RTS index (Russia), the Nifty index (India), the HSCEI index (China), etc. In
this case, the trend-cycle model becomes:


y
(1)
t
...

y
(m)
t

 = xt +


ε
(1)
t
...

ε
(m)
t



where y(j)t and ε
(j)
t are respectively the signal and the noise of the financial asset j and xt

is the common trend. One idea for estimating the common trend is to obtain the mean of
the specific trends:

x̂t =
1

m

m∑
j=1

x̂
(j)
t
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If we consider moving average filtering, it is equivalent to applying the filter to the average
filter26 ȳt = 1

m

∑m
j=1 y

(j)
t . This rule is also valid for some nonlinear filters such as L1 filtering

(see Appendix A.2). In what follows, we consider the two main alternative approaches
developed in econometrics to estimate a (stochastic) common trend.

2.4.1 Error-correction model, common factors and the P-T decomposition

The econometrics of nonstationary time series may also help us to estimate a common trend.
y
(j)
t is said to be integrated of order 1 if the change y(j)t − y

(j)
t−1 is stationary. We will note

y
(j)
t ∼ I (1) and (1− L) y

(j)
t ∼ I (0). Let us now define yt =

(
y
(1)
t , . . . , y

(m)
t

)
. The vector yt

is cointegrated of rank r if there exists a matrix β of rank r such that zt = β⊤yt ∼ I (0).
In this case, we show that yt may be specified by an error-correction model (Engle and
Granger, 1987):

∆yt = γzt−1 +
∞∑
i=1

Φi∆yt−i + ζt (7)

where ζt is a I (0) vector process. Stock and Watson (1988) propose another interesting
representation of cointegration systems. Let ft be a vector of r common factors which are
I (1). Therefore, we have:

yt = Aft + ηt (8)

where ηt is a I (0) vector process and ft is a I (1) vector process. One of the difficulties with
this type of model is the identification step (Peña and Box, 1987). Gonzalo and Granger
(1995) suggest defining a permanent-transitory (P-T) decomposition:

yt = Pt + Tt

such that the permanent component Pt is difference stationary, the transitory component Tt
is covariance stationary and (∆Pt, Tt) satisfies a constrained autoregressive representation.
Using this framework and some other conditions, Gonzalo and Granger show that we may
obtain the representation (8) by estimating the relationship (7):

ft = γ̆⊤yt (9)

where γ̆⊤γ = 0. They then follow the works of Johansen (1988, 1991) to derive the maximum
likelihood estimator of γ̆. Once we have estimated the relationship (9), it is also easy to
identify the common trend27 x̂t.

26We have:

x̂t =
1

m

m∑
j=1

n−1∑
i=0

Liy
(j)
t−i

=

n−1∑
i=0

Li

 1

m

m∑
j=1

y
(j)
t−i


=

n−1∑
i=0

Liȳt−i

27If a common trend exists, it is necessarily one of the common factors.
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2.4.2 Common stochastic trend model

Another idea is to consider an extension of the local linear trend model: yt = αxt + εt
xt = xt−1 + µt−1 + σζζt
µt = µt−1 + σηηt

with yt =
(
y
(1)
t , . . . , y

(m)
t

)
, εt =

(
ε
(1)
t , . . . , ε

(m)
t

)
∼ N (0,Ω), ζt ∼ N (0, 1) and ηt ∼ N (0, 1).

Moreover, we assume that εt, ζt and ηt are independent of each other. Given the parameters
(α,Ω, σζ , ση), we may run the Kalman filter to estimate the trend xt and the slope µt whereas
the Kalman smoother allows us to estimate xt−i and µt−i at time t.

Remark 6 The case ση = 0 has been extensively studied by Chang et al. (2009). In
particular, they show that yt is cointegrated with β = Ω−1Γ and Γ a m × (m− 1) matrix
such that Γ⊤Ω−1α = 0 and Γ⊤Ω−1Γ = Im−1. Using the P-T decomposition, they also found
that the common stochastic trend is given by α⊤Ω−1yt, implying that the above averaging
rule is not optimal.

We come back to the example given in Figure 6 page 14. Using the second set of
parameters, we now consider three stock indices: the S&P 500 index, the Stoxx 600 index
and the MSCI EM index. For each index, we estimate the filtered trend. Moreover, using the
previous common stochastic trend model28, we estimate the common trend for the bivariate
signal (S&P 500, Stoxx 600) and the trivariate signal (S&P 500, Stoxx 600, MSCI EM).

Figure 11: Multivariate Kalman filtering

28We assume that αj takes the value 1 for the three signals.
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3 Trend filtering in practice

3.1 The calibration problem

For the practical use of the trend extraction techniques discussed above, the calibration of
filtering parameters is crucial. These calibrated parameters must incorporate our prediction
requirement or they can be mapped to a commonly-known benchmark estimator. These
constraints offer us some criteria for determining the optimal parameters for our expected
prediction horizon. Below, we consider two possible calibration schemes based on these
criteria.

3.1.1 Calibration based on prediction error

One idea for estimating the parameters of a model is to use statistical inference tools. Let
us consider the local linear trend model. We may estimate the set of parameters (σε, σζ , ση)
by maximising the log-likelihood function29:

ℓ =
1

2

n∑
t=1

ln 2π + lnFt +
v2t
Ft

where vt = yt − Et−1 [yt] is the innovation process and Ft = Et−1

[
v2t
]

is the variance of vt.
In Figure 12, we have reported the filtered and smoothed trend and slope estimated by the
maximum likelihood method. We notice that the estimated components are more noisy than
those obtained in Figure 6. We can explain this easily because maximum likelihood is based
on the one-day innovation process. If we want to look at a longer trend, we have to consider
the innovation process vt = yt − Et−h [yt] where h is the horizon time. We have reported
the slope for h = 50 days in Figure 12. It is very different from the slope corresponding to
h = 1 day.

The problem is that the computation of the log-likelihood for the innovation process
vt = yt − Et−h [yt] is trickier because there is generally no analytic expression. This is
why we do not recommend this technology for trend filtering problems, because the trends
estimated are generally very short-term. A better solution is to employ a cross-validation
procedure to calibrate the parameters θ of the filters discussed above. Let us consider the
calibration scheme presented in Figure 13. We divide our historical data into a training set
and a validation set, which are characterised by two time parameters T1 and T2. The size
of training set T1 controls the precision of our calibration, for a fixed parameter θ. For this
training set, the value of the expectation of Et−h [yt] is computed. The second parameter

29Another way of estimating the parameters is to consider the log-likelihood function in the frequency
domain analysis (Roncalli, 2010). In the case of the local linear trend model, the stationary form of yt is
S (yt) = (1− L)2 yt. We deduce that the associated log-likelihood function is:

ℓ = −
n

2
ln 2π −

1

2

n−1∑
j=0

ln f (λj)−
1

2

n−1∑
j=0

I (λj)

f (λj)

where I (λj) is the periodogram of S (yt) and f (λ) is the spectral density:

f (λ) =
σ2
η + 2 (1− cosλ)σ2

ζ + 4 (1− cosλ)2 σ2
ε

2π

because we have:
S (yt) = σηηt−1 + σζ (1− L) ζt + σε (1− L)2 εt
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Figure 12: Maximum likelihood of the trend and slope components

T2 determines the size of the validation set, which is used to estimate the prediction error:

e (θ;h) =
n−h∑
t=1

(yt − Et−h [yt])
2

This quantity is directly related to the prediction horizon h = T2 for a given investment
strategy. The minimisation of the prediction error leads to the optimal value θ⋆ of the filter
parameters which will be used to predict the trend for the test set. For example, we apply
this calibration scheme for L1 filtering for h equal to 50 days. Figure 14 illustrates the
calibration procedure for the S&P 500 index with T1 = 400 and T2 = 50. Minimising the
cumulative prediction error over the validation set gives the optimal value λ⋆ = 7.03.

Figure 13: Cross-validation procedure for determining optimal parameters θ⋆

| -∥
| -

T1

Training set

| -
T2

Test set

| -
T2

Forecasting

Historical data Today Prediction

3.1.2 Calibration based on benchmark estimator

The trend filtering algorithm can be calibrated with a benchmark estimator. In order to
illustrate this idea, we present in this discussion the calibration procedure for L2 filters by

23



Trend Filtering Methods for Momentum Strategies

Figure 14: Calibration procedure with the S&P 500 index for the L1 filter

using spectral analysis. Though the L2 filter provides an explicit solution which is a great
advantage for numerical implementation, the calibration of the smoothing parameter λ is
not straightforward. We propose to calibrate the L2 filter by comparing the spectral density
of this filter with that obtained using the uniform moving average filter with horizon n for
which the spectral density is:

fMA (ω) =
1

n2

∣∣∣∣∣
n−1∑
t=0

e−iωt

∣∣∣∣∣
2

For the L2 filter, the solution has the analytical form x̂ =
(
1 + 2λD⊤D

)−1
y. Therefore, the

spectral density can also be computed explicitly:

fHP (ω) =

(
1

1 + 4λ (3− 4 cosω + cos 2ω)

)2

This spectral density can then be approximated by 1/
(
1 + 2λω4

)2. Hence, the spectral
width is (2λ)−1/4 for the L2 filter whereas it is 2πn−1 for the uniform moving average filter.
The calibration of the L2 filter could be achieved by matching these two quantities. Finally,
we obtain the following relationship:

λ ∝ λ⋆ =
1

2

( n
2π

)4
In Figure 15, we represent the spectral density of the uniform moving average filter for
different window sizes n. We also report the spectral density of the corresponding L2 filters.
To obtain this, we calibrated the optimal parameter λ⋆ by least square minimisation. In
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Figure 16, we compare the optimal estimator λ⋆ with that corresponding to 10.27× λ⋆. We
notice that the approximation is very good30.

Figure 15: Spectral density of moving average and L2 filters

3.2 What about the variance of the estimator?

Let µ̂t be the estimator of the slope of the trend. There may be a confusion between the
estimator of the slope and the estimated value of the slope (or the estimate). The estimator
is a random variable and is defined by a probability distribution function. Based on the
sample data, the estimator takes a value which is the estimate of the slope. Suppose that
we obtain an estimate of 10%. It means that 10% is the most likely value of the slope given
the data. But it does not mean that 10% is the true value of the slope.

3.2.1 Measuring the efficiency of trend filters

Let µ0
t be the true value of the slope. In statistical inference, the quality of an estimator is

defined by the mean squared error (or MSE):

MSE (µ̂t) = E
[(
µ̂t − µ0

t

)2]
It indicates how far the estimates are from the true value. We say that the estimator µ̂(1)

t

is more efficient than the estimator µ̂(2)
t if its MSE is lower:

µ̂
(1)
t ≻ µ̂

(2)
t ⇔ MSE

(
µ̂
(1)
t

)
≤ MSE

(
µ̂
(2)
t

)
30We estimated the figure 10.27 using least squares.
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Figure 16: Relationship between the value of λ and the length of the moving average filter

We may decompose the MSE statistic into two components:

MSE (µ̂t) = E
[
(µ̂t − E [µ̂t])

2
]
+ E

[(
E [µ̂t]− µ0

t

)]2
The first component is the variance of the estimator var (µ̂t) whereas the second component
is the square of the bias B (µ̂t). Generally, we are interested by estimators that are unbiased
(B (µ̂t) = 0). If this is the case, comparing two estimators is equivalent to comparing their
variances.

Let us assume that the price process is a geometric Brownian motion:

dSt = µ0St dt+ σ0St dWt

In this case, the slope of the trend is constant and is equal to µ0. In Figure 17, we have
reported the probability density function of the estimator µ̂t when the true slope µ0 is 10%.
We consider the estimator based on a uniform moving average filter of length n. First, we
notice that using filters is better than using the noisy signal. We also observe that the
variance of the estimators increases with the parameter σ0 and decreases with the length n.

3.2.2 Trend detection versus trend filtering

In the previous paragraph, we saw that an estimate of the trend may not be significant if
the variance of the estimator is too large. Before computing an estimate of the trend, we
then have to decide if there is a trend or not. This process is called trend detection. Mann
(1945) considers the following statistic:

S(n)t =
n−2∑
i=0

n−1∑
j=i+1

sgn (yt−i − yt−j)
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Figure 17: Density of the estimator µ̂t

Figure 18: Impact of µ0 on the estimator µ̂t
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with sgn (yt−i − yt−j) = 1 if yt−i > yt−j and sgn (yt−i − yt−j) = −1 if yt−i < yt−j . We
have31:

var
(
S(n)t

)
=
n (n− 1) (2n+ 5)

18

We can show that:
−n (n+ 1)

2
≤ S(n)t ≤ n (n+ 1)

2

The bounds are reached if yt < yt−i (negative trend) or yt > yt−i (positive trend) for i ∈ N∗.
We can then normalise the score:

S(n)
t =

2S(n)t

n (n+ 1)

S(n)
t takes the value +1 (or −1) if we have a perfect positive (or negative) trend. If there is

no trend, it is obvious that S(n)t ≃ 0. Under this null hypothesis, we have:

Z
(n)
t −→

n→∞
N (0, 1)

with:

Z
(n)
t =

S(n)t√
var
(
S(n)t

)

In Figure 19, we reported the normalised score S(n)
t for the S&P 500 index and different

values of n. Statistics relating to the null hypothesis are given in Table 2 for the study
period. We notice that we generally reject the hypothesis that there is no trend when we
consider a period of one year. The number of cases when we observe a trend increases if we
consider a shorter period. For example, if n is equal to 10 days, we accept the hypothesis
that there is no trend in 42% of cases when the confidence level α is set to 90%.

Table 2: Frequencies of rejecting the null hypothesis with confidence level α

α 90% 95% 99%
n = 10 days 58.06% 49.47% 29.37%
n = 3 months 85.77% 82.87% 76.68%
n = 1 year 97.17% 96.78% 95.33%

Remark 7 We have reported the statistic S(10)
t against the trend estimate32 µ̂t for the S&P

500 index since January 2000. We notice that µ̂t may be positive whereas S(10)
t is negative.

This illustrates that a trend measurement is just an estimate. It does not mean that a trend
exists.

31If there are some tied sequences (yt−i = yt−i−1), the formula becomes:

var
(
S(n)
t

)
=

1

18

(
n (n− 1) (2n+ 5)−

g∑
k=1

nk (nk − 1) (2nk + 5)

)

with g the number of tied sequences and nk the number of data points in the kth tied sequence.
32It is computed with a uniform moving average of 10 days.
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Figure 19: Trend detection for the S&P 500 index

Figure 20: Trend detection versus trend filtering

29



Trend Filtering Methods for Momentum Strategies

3.3 From trend filtering to trend forecasting

There are two possible applications for the trend following problem. First, trend filtering
can analyse the past. A noisy signal can be transformed into a smoother signal, which can be
interpreted more easily. An ex-post analysis of this kind can, for instance, clearly separate
increasing price periods from decreasing price periods. This analysis can be performed on
any time series, or even on a random walk. For example, we have reported four simulations
of a geometric Brownian motion without drift and annual volatility of 20% in Figure 21. In
this context, trend filtering could help us to estimate the different trends in the past.

Figure 21: Four simulations of a geometric Brownian motion without drift

On the other hand, trend analysis may be used as a predictive tool. Prediction is a
much more ambitious objective than analysing the past. It cannot be performed on any
time series. For instance, trend following predictions suppose that the last observed trend
influences future returns. More precisely, these predictors suppose that positive (or negative)
trends are more likely to be followed by positive (or negative) returns. Such an assumption
has to be tested empirically. For example, it is obvious that the time series in Figure 21
exhibit certain trends, whereas we know that there is no trend in a geometric Brownian
motion without drift. Thus, we may still observe some trends in an ex-post analysis. It does
not mean, however, that trends will persist in the future.

The persistence of trends is tested here in a simple framework for major financial in-
dices33. For each of these indices the average one-month returns are separated into two sets.
The first set includes one-month returns that immediately follow a positive three-month
return (this is negative for the second set). The average one-month return is computed for
each of these two sets, and the results are given in Table 3. These results clearly show

33The study period begins in January 1995 (January 1999 for the MSCI EM) and finish in October 2011.
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Figure 22: Distribution of the conditional standardised monthly return

that, on average, higher returns can be expected after a positive three-month return than
after a negative three-month period. Therefore, observation of the current trend may have a
predictive value for the indices under consideration. Moreover, we consider the distribution
of the one-month returns, based on past three-month returns. Figure 22 illustrates the case
of the GSCI index. In the first quadrant, the one-month returns are divided into two sets,
depending on whether the previous three-month return is positive or negative. The cumu-
lative distributions of these two sets are shown. In the second quadrant, we consider, on
the one hand, the distribution of one-month returns following a three-month return below
−5% and, on the other hand, the distribution of returns following a three-month return
exceeding +5%. The same procedure is repeated in the other quadrants, for a 10% and a
15% threshold. This simple test illustrates the usefulness of trend following strategies. Here,
trends seem persistent enough to study such strategies. Of course, on other time scales or
for other assets, one may obtain opposite results that would support contrarian strategies.

Table 3: Average one-month conditional return based on past trends

Trend Positive Negative Difference
Eurostoxx 50 1.1% 0.2% 0.9%
S&P 500 0.9% 0.5% 0.4%
MSCI WORLD 0.6% −0.3% 1.0%
MSCI EM 1.9% −0.3% 2.2%
TOPIX 0.4% −0.4% 0.9%
EUR/USD 0.2% −0.2% 0.4%
USD/JPY 0.2% −0.2% 0.4%
GSCI 1.3% −0.4% 1.6%
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4 Conclusion
The ultimate goal of trend filtering in finance is to design portfolio strategies that may
benefit from these trends. But the path between trend measurement and portfolio allocation
is not straightforward. It involves studies and explanations that would not fit in this paper.
Nevertheless, let us point out some major issues. Of course, the first problem is the selection
of the trend filtering method. This selection may lead to a single procedure or to a pool of
methods. The selection of several methods raises the question of an aggregation procedure.
This can be done through averaging or dynamic model selection, for instance. The resulting
trend indicator is meant to forecast future asset returns at a given horizon.

Intuitively, an investor should buy assets with positive return forecasts and sell assets
with negative forecasts. But the size of each long or short position is a quantitative problem
that requires a clear investment process. This process should take into account the risk
entailed by each position, compared with the expected return. Traditionally, individual
risks can be calculated in relation to asset volatility. A correlation matrix can aggregate
those individual risks into a global portfolio risk. But in the case of a multi-asset trend
following strategy, should we consider the correlation of assets or the correlation of each
individual strategy? These may be quite different, as the correlations between strategies
are usually smaller than the correlations between assets in absolute terms. Even when the
portfolio risks can be calculated, the distribution of those risks between assets or strategies
remains an open problem. Clearly, this distribution should take into account the individual
risks, their correlations and the expected return of each asset. But there are many competing
allocation procedures, such as Markowitz portfolio theory or risk budgeting methods.

In addition, the total amount of risk in the portfolio must be decided. The average target
volatility of the portfolio is closely related to the risk aversion of the final investor. But this
total amount of risk may not be constant over time, as some periods could bring higher
expected returns than others. For example, some funds do not change the average size of
their positions during period of high market volatility. This increases their risks, but they
consider that their return opportunities, even when risk-adjusted, are greater during those
periods. On the contrary, some investors reduce their exposure to markets during volatility
peaks, in order to limit their potential drawdowns. Anyway, any consistent investment
process should measure and control the global risk of the portfolio.

These are just a few questions relating to trend following strategies. Many more arise in
practical cases, such as execution policies and transaction cost management. Each of these
issues must be studied in depth, and re-examined on a regular basis. This is the essence of
quantitative management processes.
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A Statistical complements

A.1 State space model and Kalman filtering
A state space model is defined by a transition equation and a measurement equation. In
the measurement equation, we postulate the relationship between an observable vector and
a state vector, while the transition equation describes the generating process of the state
variables. The state vector αt is generated by a first-order Markov process of the form:

αt = Ttαt−1 + ct +Rtηt

where αt is the vector of the m state variables, Tt is a m ×m matrix, ct is a m × 1 vector
and Rt is a m× p matrix. The measurement equation of the state-space representation is:

yt = Ztαt + dt + εt

where yt is a n-dimension time series, Zt is a n×m matrix, dt is a n× 1 vector. ηt and εt
are assumed to be white noise processes of dimensions p and n respectively. These two last
uncorrelated processes are Gaussian with zero mean and respective covariance matrices Qt

and Ht. α0 ∼ N (a0, P0) describes the initial position of the state vector. We define at and
a t|t−1 as the optimal estimators of αt based on all the information available respectively at
time t and t − 1. Let Pt and P t|t−1 be the associated covariance matrices34. The Kalman
filter consists of the following set of recursive equations (Harvey, 1990):

a t|t−1 = Ttat−1 + ct
P t|t−1 = TtPt−1T

⊤
t +RtQtR

⊤
t

y t|t−1 = Zta t|t−1 + dt
vt = yt − y t|t−1

Ft = ZtP t|t−1Z
⊤
t +Ht

at = a t|t−1 + P t|t−1Z
⊤
t F

−1
t vt

Pt =
(
Im − P t|t−1Z

⊤
t F

−1
t Zt

)
P t|t−1

where vt is the innovation process with covariance matrix Ft and y t|t−1 = Et−1 [yt]. Harvey
(1989) shows that we can obtain a t+1|t directly from a t|t−1:

a t+1|t = (Tt+1 −KtZt) a t|t−1 +Ktyt + (ct+1 −Ktdt)

where Kt = Tt+1P t|t−1Z
⊤
t F

−1
t is the matrix of gain. We also have:

a t+1|t = Tt+1a t|t−1 + ct+1 +Kt

(
yt − Zta t|t−1 − dt

)
Finally, we obtain: {

yt = Zta t|t−1 + dt + vt
a t+1|t = Tt+1a t|t−1 + ct+1 +Ktvt

This system is called the innovation representation.

Let t⋆ be a fixed given date. We define a t|t⋆ = Et⋆ [αt] and P t|t⋆ = Et⋆

[(
a t|t⋆ − αt

) (
a t|t⋆ − αt

)⊤]
with t ≤ t⋆. We have a t⋆|t⋆ = at⋆ and P t⋆|t⋆ = Pt⋆ . The Kalman smoother is then defined
by the following set of recursive equations:

P ∗
t = PtT

⊤
t+1P

−1
t+1|t

a t|t⋆ = at + P ∗
t

(
a t+1|t⋆ − a t+1|t

)
P t|t⋆ = Pt + P ∗

t

(
P t+1|t⋆ − P t+1|t

)
P ∗⊤
t

34We have at = Et [αt], a t|t−1 = Et−1 [αt], Pt = Et

[
(at − αt) (at − αt)

⊤
]

and P t|t−1 =

Et−1

[(
a t|t−1 − αt

) (
a t|t−1 − αt

)⊤] where Et indicates the conditional expectation operator.
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A.2 L1 filtering
A.2.1 The dual problem

The L1 filtering problem can be solved by considering the dual problem which is a QP
programme. We first rewrite the primal problem with a new variable z = Dx̂:

min
1

2
∥y − x̂∥22 + λ ∥z∥1

u.c. z = Dx̂

We now construct the Lagrangian function with the dual variable ν ∈ Rn−2:

L (x̂, z, v) =
1

2
∥y − x̂∥22 + λ ∥z∥1 + ν⊤ (Dx̂− z)

The dual objective function is obtained in the following way:

inf x̂,z L (x̂, z, ν) = −1

2
ν⊤DD⊤ν + y⊤D⊤ν

for −λ1 ≤ ν ≤ λ1. According to the Kuhn-Tucker theorem, the initial problem is equivalent
to the dual problem:

min
1

2
ν⊤DD⊤ν − y⊤D⊤ν

u.c. −λ1 ≤ ν ≤ λ1

This QP programme can be solved by a traditional Newton algorithm or by interior-point
methods, and finally, the solution of the trend is:

x̂ = y −D⊤ν

A.2.2 Solving using interior-point algorithms

We briefly present the interior-point algorithm of Boyd and Vandenberghe (2009) in the case
of the following optimisation problem:

min f0 (θ)

u.c.
{
Aθ = b
fi (θ) < 0 for i = 1, . . . ,m

where f0, . . . , fm : Rn → R are convex and twice continuously differentiable and rank (A) =
p < n. The inequality constraints will become implicit if the problem is rewritten as:

min f0 (θ) +

m∑
i=1

I− (fi (θ))

u.c. Aθ = b

where I− (u) : R → R is the non-positive indicator function35. This indicator function is
discontinuous, so the Newton method can not be applied. In order to overcome this prob-
lem, we approximate I− (u) using the logarithmic barrier function I⋆

− (u) = −τ−1 ln (−u)
35We have:

I− (u) =

{
0 u ≤ 0
∞ u > 0
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with τ → ∞. Finally the Kuhn-Tucker condition for this approximation problem gives
rt (θ, λ, ν) = 0 with:

rτ (θ, λ, ν) =

 ∇f0 (θ) +∇f (θ)⊤ λ+A⊤ν
−diag (λ) f (θ)− τ−11

Aθ − b


The solution of rτ (θ, λ, ν) = 0 can be obtained using Newton’s iteration for the triple
π = (θ, λ, ν):

rτ (π +∆π) ≃ rτ (π) +∇rτ (π)∆π = 0

This equation gives the Newton step ∆π = −∇rτ (π)−1
rτ (π), which defines the search

direction.

A.2.3 The multivariate case

In the multivariate case, the primal problem is:

min
1

2

m∑
j=1

∥∥∥y(j) − x̂
∥∥∥2
2
+ λ ∥z∥1

u.c. z = Dx̂

The dual objective function becomes:

inf x̂,z L (x̂, z, ν) = −1

2
ν⊤DD⊤ν + ȳ⊤D⊤ν +

1

2

m∑
j=1

(
y(j) − ȳ

)⊤ (
y(j) − ȳ

)
for −λ1 ≤ ν ≤ λ1. According to the Kuhn-Tucker theorem, the initial problem is equivalent
to the dual problem:

min
1

2
ν⊤DD⊤ν − ȳ⊤D⊤ν

u.c. −λ1 ≤ ν ≤ λ1

The solution is then x̂ = ȳ −D⊤ν.

A.2.4 The scaling of the smoothing parameter

We can attempt to estimate the order of magnitude of the parameter λmax by considering
the continuous case. We assume that the signal is a process Wt. The value of λmax in the
discrete case is defined by:

λmax =
∥∥∥(DD⊤)−1

Dy
∥∥∥
∞

can be considered as the first primitive I1 (T ) =
∫ T

0
Wt dt of the process Wt if D = D1

(L1 − C filtering) or the second primitive I2 (T ) =
∫ T

0

∫ t

0
Ws dsdt of Wt if D = D2 (L1 − T

filtering). We have:

I1 (T ) =

∫ T

0

Wt dt

= WTT −
∫ T

0

t dWt

=

∫ T

0

(T − t) dWt
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The process I1 (T ) is a Wiener integral (or a Gaussian process) with variance:

E
[
I21 (T )

]
=

∫ T

0

(T − t)
2
dt =

T 3

3

In this case, we expect that λmax ∼ T 3/2. The second order primitive can be calculated in
the following way:

I2 (T ) =

∫ T

0

I1 (t) dt

= I1 (T )T −
∫ T

0

t dI1 (T )

= I1 (T )T −
∫ T

0

tWt dt

= I1 (T )T − T 2

2
WT +

∫ T

0

t2

2
dWt

= −T
2

2
WT +

∫ T

0

(
T 2 − Tt+

t2

2

)
dWt

=
1

2

∫ T

0

(T − t)
2
dWT

This quantity is again a Gaussian process with variance:

E[I22 (T )] =
1

4

∫ T

0

(T − t)
4
dt =

T 5

20

In this case, we expect that λmax ∼ T 5/2.

A.3 Wavelet analysis
The time analysis can detect anomalies in time series, such as a market crash on a specific
date. The frequency analysis detects repeated sequences in a signal. The double dimension
analysis makes it possible to coordinate time and frequency detection, as we use a larger
time window than a smaller frequency interval (see Figure 23). In this area, the uncertainty
of localisation is 1/dt, with dt the sampling step and f = 1/dt the sampling frequency. The
wavelet transform can be a solution to analysing time series in terms of the time-frequency
dimension.

The first wavelet approach appeared in the early eighties in seismic data analysis. The
term wavelet was introduced in the scientific community by Grossmann and Morlet (1984).
Since 1986, a great deal of theoretical research, including wavelets, has been developed.
The wavelet transform uses a basic function, called the mother wavelet, then dilates and
translates it to capture features that are local in time and frequency. The distribution of the
time-frequency domain with respect to the wavelet transform is long in time when capturing
low frequency events and long in frequency when capturing high frequency events. As an
example, we represent some mother wavelets in Figure 24.

The aim of wavelet analysis is to separate signal trends and details. These different
components can be distinguished by different levels of resolution or different sizes/scales
of detail. In this sense, it generates a phase space decomposition which is defined by two
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Figure 23: Time-frequency dimension

Figure 24: Some mother wavelets
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parameters (scale and location) in opposition to a Fourier decomposition. A wavelet ψ (t)
is a function of time t such that: ∫ +∞

−∞
ψ (t) dt = 0∫ +∞

−∞
|ψ (t)|2 dt = 1

The continuous wavelet transform is a function of two variables W (u, s) and is given by
projecting the time series x (t) onto a particular wavelet ψ by:

W (u, s) =

∫ +∞

−∞
x (t)ψu,s (t) dt

with:
ψu,s (t) =

1√
s
ψ

(
t− u

s

)
which corresponds to the mother wavelet translated by u (location parameter) and dilated
by s (scale parameter). If the wavelet satisfies the previous properties, the inverse operation
may be performed to produce the original signal from its wavelet coefficients:

x (t) =

∫ +∞

−∞

∫ +∞

−∞
W (u, s)ψ (u, s) duds

The continuous wavelet transform of a time series signal x (t) gives an infinite number
of coefficients W (u, s) where u ∈ R and s ∈ R+, but many coefficients are close or equal to
zero. The discrete wavelet transform can be used to decompose a signal into a finite number
of coefficients where we use s = 2−j as the scale parameter and u = k2−j as the location
parameter with j ∈ Z and k ∈ Z. Therefore ψu,s (t) becomes:

ψj,k(t) = 2
j
2ψ
(
2jt− k

)
where j = 1, 2, ..., J in a J-level decomposition. The wavelet representation of a discrete
signal x (t) is given by:

x (t) = s(0)ϕ (t) +

J−1∑
j=0

2j−1∑
k=0

d(j),kψj,k(t)

where ϕ (t) = 1 if t ∈ [0, 1] and J is the number of multi-resolution levels. Therefore,
computing the wavelet transform of the discrete signal is equivalent to compute the smooth
coefficient s(0) and the detail coefficients d(j),k.

Introduced by Mallat (1989), the multi-scale analysis corresponds to the following iter-
ative scheme:

x
↙ ↘

s d
↙ ↘

ss sd
↙ ↘

sss ssd
↙ ↘

ssss sssd
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where the high-pass filter defines the details of the data and the low-pass filter defines the
smoothing signal. In this example, we obtain these wavelet coefficients:

W =


ssss
sssd
ssd
sd
d


Applying this pyramidal algorithm to the time series signal up to the J resolution level gives
us the wavelet coefficients:

W =



s(0)
d(0)
d(1)
.
.
.

d(J−1)


A.4 Support vector machine

The support vector machine is an important part of statistical learning theory (Hastie et al.,
2009). It was first introduced by Boser et al. (1992) and has been used in various domains
such as pattern recognition, biometrics, etc. This technique can be employed in different
contexts such as classification, regression or density estimation (see Vapnik, 1998). Recently,
applications in finance have been developed in two main directions. The first employs the
SVM as a nonlinear estimator in order to forecast the trend or volatility of financial assets.
In this context, the SVM is used as a regression technique with the possibility for extension
to nonlinear cases thank to the kernel approach. The second direction consists of using
the SVM as a classification technique which aims to define the stock selection in trading
strategies.

A.4.1 SVM in a nutshell

We illustrate here the basic idea of the SVM as a classification method. Let us define the
training data set consisting of n pairs of “input/output” points (xi, yi) where xi ∈ X and
yi ∈ {−1, 1}. The idea of linear classification is to look for a possible hyperplane that
can separate {xi ⊂ X} into two classes corresponding to the labels yi = ±1. It consists of
constructing a linear discriminant function h (x) = w⊤x+ b where w is the vector of weights
and b is called the bias. The hyperplane is then defined by the following equation:

H = {x : h (x) = w⊤x+ b = 0}

The vector w is interpreted as the normal vector to the hyperplane. We denote its norm
∥w∥ and its direction ŵ = w/ ∥w∥. In Figure 25, we give a geometric interpretation of the
margin in the linear case. Let x+ and x− be the closest points to the hyperplane from the
positive side and negative side. These points determine the margin to the boundary from
which the two classes of points D are separated:

mD (h) =
1

2
ŵ⊤ (x+ − x−) =

1

∥w∥
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Figure 25: Geometric interpretation of the margin in a linear SVM

The main idea of a maximum margin classifier is to determine the hyperplane that maximises
the margin. For a separable dataset, the margin SVM is defined by the following optimisation
problem:

min
w,b

1

2
∥w∥2

u.c. yi
(
w⊤xi + b

)
> 1 for i = 1, . . . , n

The historical approach to solving this quadratic problem with nonlinear constraints is to
map the primal problem to the dual problem:

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
⊤
i xj

u.c. αi ≥ 0 for i = 1, . . . , n

Because of the Kuhn-Tucker conditions, the optimised solution (w⋆, b⋆) of the primal problem
is given by w⋆ =

∑n
i=1 α

⋆
i yixi where α⋆ = (α⋆

1, . . . , α
⋆
n) is the solution of the dual problem.

We notice that linear SVM depends on input data via the inner product. An intelligent
way to extend SVM formalism to the nonlinear case is then to replace the inner product
with a nonlinear kernel. Hence, the nonlinear SVM dual problem can be obtained by sys-
tematically replacing the inner product x⊤i xj by a general kernel K (xi, xj). Some standard
kernels are widely used in pattern recognition, for example polynomial, radial basis or neural
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network kernels36. Finally, the decision/prediction function is then given by:

f (x) = sgnh (x) = sgn

(
n∑

i=1

αiyiK (x, xi) + b

)

A.4.2 SVM regression

In the last discussion, we presented the basic idea of the SVM in the classification context.
We now show how the regression problem can be interpreted as a SVM problem. In the
general framework of statistical learning, the SVM problem consists of minimising the risk
function R (f) depending on the form of the prediction function f (x). The risk function is
calculated via the loss function L (f (x) , y) which clearly defines our objective (classification
or regression):

R (f) =

∫
L (f (x) , y) dP (x, y)

where the distribution P (x, y) can be computed by empirical distribution37 or an approx-
imated distribution38. For the regression problem, the loss function is simply defined as
L (f (x) , y) = (f (x)− y)

2 or L (f (x) , y) = |f (x)− y|p in the case of Lp norm.

We have seen that the linear SVM is a special case of nonlinear SVM within the kernel
approach. We therefore consider the nonlinear case directly where the approximate function
of the regression has the following form f (x) = w⊤ϕ (x) + b. In the VRM framework, we
assume that P (x, y) is a Gaussian noise with variance σ2:

R (f) =
1

n

n∑
i=1

|f (xi)− yi|p + σ2 ∥w∥2

We introduce the variable ξ = (ξ1, . . . , ξn) which satisfies yi = f (xi) + ξi. The optimisa-
tion problem of the risk function can now be written as a QP programme with nonlinear
constraints:

min
w,b,ξ

1

2
∥w∥2 +

(
2nσ2

)−1
n∑

i=1

|ξi|p

u.c. yi = w⊤ϕ (xi) + b+ ξi for i = 1, . . . , n

In the present form, the regression looks very similar to the SVM classification problem and
can be solved in the same way by mapping to the dual problem. We notice that the SVM
regression can be easily generalised in two possible ways:

1. by introducing a more general loss function such as the ε-SV regression proposed by
Vapnik (1998);

2. by using a weighting distribution ω for the empirical distribution:

dP (x, y) =

n∑
i=1

ωiδxi (x) δyi (y)

36We have, respectively, K (xi, xj) =
(
x⊤
i xj + 1

)p, K (xi, xj) = exp
(
−∥xi − xj∥2 /

(
2σ2

))
or

K (xi, xj) = tanh
(
ax⊤

i xj − b
)
.

37This framework called ERM was first introduced by Vapnik and Chervonenskis (1991).
38This framework is called VRM (Chapelle, 2002).
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As financial series have short memory and depend more on the recent past, an asym-
metric weight distribution focusing on recent data would improve the prediction39.

The dual problem in the case p = 1 is given by:

max
α

α⊤y − 1

2
α⊤Kα

u.c.
{
α⊤1 = 0

|α| ≤
(
2nσ2

)−1
1

As previously, the optimal vector α⋆ is obtained by solving the QP programme. We then
deduce that w⋆ =

∑n
i=1 α

⋆
i ϕ (xi) and b⋆ is computed using the Kuhn-Tucker condition:

w⊤ϕ (xi) + b− yi = 0

for support vectors (xi, yi). In order to achieve a good level of accuracy for the estimation
of b, we average out the set of support vectors and obtain b⋆. The SVM regressor is then
given by the following formula:

f (x) =
n∑

i=1

α⋆
iK (x, xi) + b⋆

with K (x, xi) = ϕ (x)ϕ (xi).

In Figure 26, we apply SVM regression with the Gaussian kernel to the S&P 500 index.
The kernel parameter σ characterises the estimation horizon which is equivalent to period
n in the moving average regression.

A.5 Singular spectrum analysis

In recent years the singular spectrum analysis (SSA) technique has been developed as a
time-frequency domain method40. It consists of decomposing a time series into a trend,
oscillatory components and a noise.

The method is based on the principal component analysis of the auto-covariance matrix
of the time series y = (y1, . . . , yt). Let n be the window length such that n = t−m+1 with
m < t/2. We define the n ×m Hankel matrix H as the matrix of the m concatenated lag
vector of y:

H =



y1 y2 y3 · · · ym
y2 y3 y4 · · · ym+1

y3 y4 y5 · · ·
...

...
...

...
. . . yt−1

yn yn+1 yn+2 · · · yt


We recover the time series y by diagonal averaging:

yp =
1

αp

m∑
j=1

H(i,j) (10)

39See Gestel et al. (2001) and Tay and Cao 2002.
40Introduced by Broomhead and King (1986).
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Figure 26: SVM filtering

where i = p− j + 1, 0 < i < n+ 1 and:

αp =


p if p < m

t− p+ 1 if p > t−m+ 1

m otherwise

This relationship seems trivial because each H(i,j) is equal to yp with respect to the condi-
tions for i and j. But this equality no longer holds if we apply factor analysis. Let C = H⊤H
be the covariance matrix of H. By performing the eigenvalue decomposition C = V ΛV ⊤, we
can deduce the corresponding principal components:

Pk = HVk

where Vk is the matrix of the first kth eigenvectors of C.

Let us now define the n×m matrix Ĥ as follows:

Ĥ = PkV
⊤
k

We have Ĥ = H if all the components are selected. If k < m, we have removed the noise and
the trend x̂ is estimated by applying the diagonal averaging procedure (10) to the matrix
Ĥ.

We have applied the singular spectrum decomposition to the S&P 500 index with different
lags m. For each lag, we compute the Hankel matrix H, then deduce the matrix Ĥ using
only the first eigenvector (k = 1) and estimate the corresponding trend. Results are given
in Figure 27. As for other methods, such as nonlinear filters, the calibration depends on the
parameter m, which controls the window length.
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Figure 27: SSA filtering
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