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Abstract
Several years ago, the concept of target-date funds emerged to complement tra-

ditional balanced funds in defined-contribution pension plans. The main idea is to
delegate the dynamic allocation with respect to the retirement date of individuals to
the portfolio manager. Owing to its long-term horizon, a target-date fund is unique
and cannot be compared to a mutual fund. Moreover, the objective of the individual
is to contribute throughout their working life by investing a part of their income in
order to maximise their pension benefits. The main purpose of this article is to analyse
and understand dynamic allocation in a target-date fund framework. We show that
the optimal exposure in the risky portfolio varies over time and is very sensitive to
the parameters of both the market and the investor’s. We then deduce some practical
guidelines to better design target-date funds for the asset management industry.

Keywords: target-date fund, retirement system, dynamic asset allocation, stochastic opti-
mal control, market portfolio, risk aversion, stock/bond asset mix policy.

JEL classification: C61, D91, G11, J26.

1 Introduction
In 1952, Markowitz introduced the first mathematical formulation for portfolio optimisa-
tion. For Markowitz, “the investor does (or should) consider expected return a desirable
thing and variance of return an undesirable thing”. Indeed, Markowitz shows that an effi-
cient portfolio is the portfolio that maximises the expected return for a given level of risk
(corresponding to the variance of return). Markowitz concludes that there is not only one
optimal portfolio, but a set of optimal portfolios which is called the ‘efficient frontier’. By
studying the liquidity preference, Tobin (1958) shows that the efficient frontier becomes a
straight line in the presence of a risk-free asset. In this case, optimal portfolios correspond
to a combination of the risk-free asset and one particular efficient portfolio named the tan-
gency portfolio. Sharpe (1964) summarises Markowitz and Tobin’s results as follows: “the
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process of investment choice can be broken down into two phases: first, the choice of a
unique optimum combination of risky assets1; and second, a separate choice concerning the
allocation of funds between such a combination and a single riskless asset”. This two-step
procedure is today known as the separation theorem (Lintner, 1965).

In Figure 1, we have illustrated these results. The first panel represents the efficient fron-
tier of Markowitz between equities and bonds. By combining the mean-variance optimised
portfolio with the higher Sharpe ratio and the risk-free rate, we obtain the capital market
line. In the second panel, we have reported the risk/return profile of optimal portfolios cor-
responding to different values for the risk aversion parameter. The aggressive (A) investor
leverages the tangency portfolio in order to take more risk and to expect better performance.
For the moderate (M) investor, the optimal portfolio is closed to the tangency portfolio. The
conservative (C) investor will take less risk, hence the reason why they allocate their wealth
between the tangency portfolio (risky assets) and the risk-free asset. This theoretical view
of asset allocation is however far from the ‘popular advice’ on portfolio allocation. In the
third panel, we have shown typical diversified funds designed by the asset management in-
dustry. Generally, we distinguish three fund profiles: defensive, balanced and dynamic. The
difference between them comes from the relative proportion of stocks and bonds2. It means
that in practice, the composition of the risky portfolio varies according to the investor’s risk
aversion. This portfolio construction contradicts the separation theorem, which states that
the composition of the risky portfolio should be the same for all investors. This paradox,
known as the asset allocation puzzle (Canner et al., 1997), has resulted in wealth of literature
being written in an attempt to find some explanations (see Campbell (2000) for a survey).

Figure 1: The asset allocation puzzle

1It is precisely the tangency portfolio.
2For a defensive fund, the proportion of stocks and bonds is 20% and 80% respectively, whereas they are

the reverse for the dynamic fund. In the case of the balanced fund, we have the same proportions.
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Another puzzle concerns lifecycle funds or target-date funds. In a lifestyle fund like
diversified funds, the asset mix policy depends on the risk aversion (or the lifestyle) of the
investor. In a target-date fund, the asset mix policy depends on the time to retirement of
the investor. In Figure 2, we have reported the dynamic asset allocation of a typical target-
date fund3. When the individual is young, they invest principally in equities whereas the
allocation will be more heavily weighted toward bonds (or cash) as they approach retirement.
The speed with which a target-date fund changes its asset allocation is known as the ‘glide
path’.

Figure 2: An example of glide path

These funds have been gaining popularity since early 21st century. One of the reasons is
the major shift from defined benefit (DB) toward defined contribution (DC) pension plans
and the transfer of investment risk from the corporate sector to households. Another reason
concerns certain regulatory reform and tax benefits. For example, the Pension Protection
Act of 2006 in the US requires companies who have underfunded their pension plans to pay
higher premiums to the Pension Benefit Guaranty Corporation. DB liabilities may induce
large pension costs for the sponsor and incite it to promote DC pension plans. In this
context, it is not surprising that target-date funds encounter high growth:

“Target-date funds are fast becoming a fixed feature of the defined-contribution
landscape. Over the past half dozen years, assets in target-date funds have
grown more than fivefold from $71 billion at the end of 2005 to approximately
$378 billion at year-end 2011. In its most recent study, Vanguard reported that
82% of its retirement plans offered target-date funds, and nearly one fourth of
participants invested only in a target-date fund. The consultant Casey Quirk
estimates that target-date funds will consume more than half of all defined-
contribution assets by 2020” (Morningstar [39], 2012).

3τ = T − t is the remaining time until the retirement.
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It is also a concentrated industry, because, according to the Morningstar report, three asset
managers (Fidelity, Vanguard and T. Rowe Price) hold 78% of the target-date mutual funds.
The previous figures only concern open target-date assets and not the overall target-date
assets managed in retirement systems. The Investment Company Institute (2012) reports
that U.S. retirement assets were $17.9 trillion at year-end 2011. The largest components are
IRAs ($4.9), DC plans ($4.5) and private-sector DB pension funds ($2.4). For DC plans,
the asset allocation depends on the age of participants:

“On average, younger participants allocate a larger portion of their portfolio to
equities [...] According to research conducted by ICI and the Employee Ben-
efit Research Institute (EBRI), at year-end 2010, individuals in their twenties
invested 44% of their assets in equity funds and company stock, 37% in target-
date funds and non-target-date balanced funds [...] All told, participants in
their twenties had 74 percent of their 401(k) assets in equities. By comparison,
at year-end 2010, individuals in their sixties invested 41% of their assets in eq-
uity funds and company stock, 16% in target-date funds and non-target-date
balanced funds [...] All told, participants in their sixties had 49% of their 401(k)
assets in equities” (Investment Company Institute [27], 2012).

Indeed, target-date funds represent 27% and 9% respectively of the DC plan assets for
individuals in their twenties and in their sixties. This therefore confirms the appeal of
target-date funds for younger participants.

Figure 3: Allocation of the Fidelity ClearPath R⃝ 2045 Retirement Portfolio

Source: www.fidelity.ca/cs/Satellite/en/public/products/managed_solutions/clearpath.

One of the big challenges of target-date funds is the design of glide paths. Let us
consider for example the Fidelity ClearPath R⃝ Retirement Portfolios. In Figure 3, we have
reported the dynamic allocation for Canadian individuals who will retire in 40 years using
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the simulation tool provided on Fidelity’s web site. We notice how the split between stocks,
bonds and cash evolves in relation to time. The allocation becomes more conservative when
we approach the retirement date: equities represent more than 80% of the portfolio today
whereas their weight is only 31% in 50 years’ time; the bond allocation increases during
25 years and then stabilises at around 30%; the weight of the high yield asset class varies
between 7% and 5% and therefore is very stable; the allocation in cash begins 12 years
before the retirement date and represents 35% at the end. If we consider other target-date
funds, glide paths present similar patterns on average. But differences among target-date
funds may be very large. For example, Morningstar (2012) reports that equity allocation
varies between 20% (38% and 85% respectively) and 78% (86% and 100% respectively) if
the target year is 2015 (2025 and 2055 respectively). It is rather surprising to obtain such
broad allocation range particularly for shorter target dates.

There are many popular justifications given for these allocations (Quinn, 1991), but most
of them does not make economic sense (Jagannathan and Kocherlakota, 1996). Hence the
reason why academic research may help to understand this asset allocation puzzle. The
seminal work of Merton (1969, 1971) is the usual framework used to analyse dynamic asset
allocation. Most research introduces some clarifications of the Merton model. For example,
Munk et al. (2004) consider the mean-reverting property of equity returns and the uncer-
tainty of inflation risk. By calibrating their model with historical US data from the period
1951-2003, they found results consistent with the investment recommendation “more stocks
for longer-term investors”. This research confirms the conclusion made by Brennan and Xia
(2002) that the optimal stock-bond mix depends on the investor’s horizon in the presence of
inflation risk and highlights the influence of mean reversion4. Other clarifications concern
the behaviour of optimal allocation in the latter years before the retirement date (Basu and
Drew, 2009), the effect of the stock-bond correlation on hedging demand (Henderson, 2005),
the labour supply flexibility (Bodie et al., 1992), the longevity risk (Cocco and Gomez, 2012),
the effect of real estate assets (Martellini and Milhau, 2010) and the return predictability
(Larsen and Munk, 2012).

Although the various clarifications are interesting to understand the allocation of target-
date funds, they are not enough to explain the dynamics of glide paths. Labour income
is generally the key factor to understanding their behaviour. It explains the breadth of
literature on the relationship between stock-bond asset mix and labour income5. Our paper
adopts this approach by considering stochastic permanent contribution to the target-date
fund. In this case, we show that the behaviour of optimal exposure is similar to many glide
paths used in the investment industry. Nevertheless, we also notice that the solution is very
sensitive to input parameters like the equity risk premium, the contribution uncertainty or
the stock-bond correlation. But the most important factor concerns the personal profile of
the individual. The degree of risk aversion, retirement date and income perspective of the
investor are certainly the key elements to design target-date funds.

Our paper is organised as follows. Section two presents the theoretical model based on
the Merton framework. Since we assume that interest rates and permanent contribution are
stochastic, we have to solve the optimisation problem by considering numerical analysis. In
Section three, we analyse the dynamics of risky exposure and define the glide path. Then,
we highlight some patterns for the design of target-date funds with respect to our theoretical
model. Section five offers some concluding remarks.

4See also Barberis (2000), Campbell et al. (2001) or Wachter (2002) for related results.
5We could cite for example the works of Bodie et al. (2004), Cocco et al. (2005), Gomes and Michaelides

(2005), Henderson (2005), Munk and Sørensen (2010) or Viceira (2001).
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2 A theoretical model
We consider the intertemporal model of Merton (1971) in which we introduce a stochastic
permanent contribution πt. It is the main difference between the design of a mutual fund
and a target-date fund:

• In a mutual fund, the individual makes an initial investment and seeks to maximise
the net asset value for a given horizon. Generally, the investment horizon for such
funds is three or five years;

• In a target-date fund, the individual makes an initial investment and continues to
contribute throughout their working life. The investor’s objective is then to maximise
their pension benefits during retirement.

Another difference between a mutual fund and a target-date fund concerns then the invest-
ment horizon. The latter is typically equal to forty years.

Generally, retirement system models do not use permanent contribution πt as a state
variable, but prefer to consider labour income Lt. Of course, most of the permanent contri-
bution comes from a savings component related to labour income and we can link these two
state variables as follows:

πt = ϖtLt

where ϖt is the savings ratio of the individual. But this equation ignores the possibility
that the permanent contribution could come from family heritage, from inheritance or even
from the employer’s funding contribution system6. Hence why we prefer to consider the
permanent contribution, and not the labour income, as a (exogenous) state variable.

2.1 The framework
Let us first introduce some notations. We consider a target-date fund with maturity T
owned by only one investor. Its value at time t is denoted by Xt. It could be invested in a
risky portfolio St with a proportion αt and in a zero-coupon bond Bt,T with a proportion
1 − αt. Since the investor has some income or private wealth and would like to use the
target-date fund for retirement pension benefits, they regularly contribute to the fund. We
note their contribution as πt. The dynamics of the target-date fund is then:

dXt

Xt
= αt

dSt

St
+ (1− αt)

dBt,T

Bt,T
+

πt dt

Xt

Let us now precise the dynamics of St, Bt,T and πt. For this last one, we assume that
πt = ptQt where pt is the average contribution behaviour for the representative agent and
Qt is a random factor related to contribution uncertainty. The state variable Qt is important,
because the investor does not know exactly what their contribution will be in the future.
We then have: 

dSt = µtSt dt+ σtSt dW
S
t

dQt = θtQt dt+ ζtQt dW
Q
t

dBt,T = rtBt,T dt+ Γt,TBt,T dWB
t

6This last case may be illustrated by the French PERCO retirement system. The individual contribution
is completed by a (capped) employer contribution πE

t . It implies that the permanent contribution becomes:

πt = ϖtLt + πE
t

The objective of individuals is generally to obtain the maximum contribution πE
max of the employer meaning

that the permanent contribution is not a proportion of the labour income.
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Let Wt =
(
WS

t ,WQ
t ,WB

t

)
be the vector of brownian motions. We assume that:

E
[
WtW

⊤
t

]
=

 1 ρS,Q ρS,B
ρS,Q 1 ρQ,B

ρS,B ρQ,B 1

 dt

2.2 Optimal solution
Let U (x) be the investor’s utility function which depends on the value x reached by the
fund. We assume that their objective is to maximise their utility at time T . We then have:

α∗
t = argmaxEt [U (XT )]

The investor’s problem is then to find the optimal level of exposure α∗
t to the risky portfolio

depending on the behaviour of the assets and the investor’s contribution policy. Since we
cannot obtain a closed formula for α∗

t , we use stochastic optimal control.

We use the zero-coupon bond Bt,T of maturity T as the numéraire. We introduce the
notation Xt,T = Xt/Bt,T . As the self-financing condition is invariant by change of numéraire
(El Karoui et al., 1995), we obtain:

dXt,T

Xt,T
= αt

dSt,T

St,T
+

πt dt

Bt,TXt,T

In Appendix A.1, we show that the forward dynamics of (Xt, Qt) is:{
dXt,T = (αtµt,TXt,T + ptQt,T ) dt+ αtσt,TXt,T dBS

t

dQt,T = θt,TQt,T dt+ ζt,TQt,T dBQ
t

with7: 
µt,T = µt − rt + Γ2

t,T − ρS,BσtΓt,T

σt,T =
√
σ2
t + Γ2

t,T − 2ρS,BσtΓt,T

θt,T = θt − rt + Γ2
t,T − ρQ,BζtΓt,T

ζt,T =
√
ζ2t + Γ2

t,T − 2ρQ,BζtΓt,T

BS
t and BQ

t are two brownian motions such that E
[
BS

t B
Q
t

]
= ρ⋆ dt with:

ρ⋆ =
ρS,Qσtζt − ρS,BσtΓt,T − ρQ,BζtΓt,T + Γ2

t,T

σt,T ζt,T
(1)

Let J be the function defined by:

J (t, x, q) = sup
α

Et [U (XT ) | Qt,T = q,Xt,T = x]

The optimal exposure is then given by this relationship8:

α∗
t = −

µt,T∂xJ (t, x, q) + ρ⋆σt,T ζt,T q∂
2
x,qJ (t, x, q)

xσ2
t,T∂

2
xJ (t, x, q)

(2)

7To obtain this result and to solve our model, we have to introduce some technical restrictions to the
process µt − rt and θt − rt so that Xt,T and Qt,T are two Markov processes. For example, our analysis is
valid if µt − rt and θt − rt are deterministic.

8See Appendix A.2 for more details.
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2.3 Some specific cases
Let us first consider that the investor does not contribute to the fund. In this case, πt = 0
and the solution (2) reduces to:

α∗
t = − µt,T∂xJ (t, x)

xσ2
t,T∂

2
xJ (t, x)

(3)

Moreover, if we assume that the interest rate is constant and the parameters µt and σt do
not depend on time t, we obtain Merton’s well-known result (1969):

α∗
t = − (µ− r)

σ2
· ∂xJ (t, x)

x∂2
xJ (t, x)

In the case of the CRRA utility function U (x) = xγ/γ with γ < 1, the proportion of the
risky portfolio remains constant for the entire period [0, T ] and does not depend on the value
x of the fund:

α∗
t =

(µ− r)

(1− γ)σ2
= ᾱ (4)

The constant mix strategy is then the optimal dynamic allocation strategy.

If Qt = 1, it means that there is no uncertainty on the future contribution of the investor.
Moreover, if we assume that the interest rate is nul, Merton’s results (4) become:

α∗
t = ᾱ+

µ
∫ T

t
πu du

(1− γ)σ2x
(5)

Therefore, the optimal exposure depends on the future contributions to be made by the
investor. This result was already found by Merton (1971) when he introduced noncapital
gain income:

“ [...] one finds that, in computing the optimal decision rules, the individual
capitalizes the lifetime flow of wage income as the market (risk-free) rate of
interest and then treats the capitalized value of an addition to the current stock
of wealth ” (Merton (1971), page 395).

3 Dynamics of the risky exposure
In this section, we study the dynamics of the risky exposure α∗

t with respect to the different
parameters. First, we analyse the impact of permanent contribution. Second, we define
precisely what the glide path of a target-date fund is and how it is related to the opti-
mal allocation. Then, we measure the impact of the different input parameters (stochastic
contribution, stochastic interest rates and correlations) on the solution.

3.1 Comparison with the optimal solution of Merton
Let us consider the equation (5). We notice that α∗

t is an increasing function of the expected
return µ and the risk aversion parameter γ and a decreasing function of the volatility σ.
We retrieve Merton’s stylised fact. We also notice that α∗

t is larger than ᾱ if πt ≥ 0. It
means that the investor is more exposed in a target-date fund than in the constant mix
strategy, because of the contribution effect. The difference between α∗

t and ᾱ depends on
the behaviour of the contribution function πt and the value of the wealth x of the investor.
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It is an increasing function of the ratio between the future contributions and the actual value
of the target-date fund. In Table 1, we have shown the numerical values taken by α∗

t when
µ = 3%, σ = 15%, γ = −3 and πt = π. In this case, the optimal exposure of the constant
mix strategy is 33.3%. If we suppose that the investor plans to have a future cumulative
contribution Πt =

∫ T

t
πu du equal to their actual wealth, the optimal exposure is then twice

the exposure ᾱ obtained by Merton9. If the future contribution is relatively small compared
to the actual wealth, the exposure is close to the exposure of the constant mix strategy. We
could then deduce the following economic behaviour of the investor:

• the exposure is an increasing function of the maturity because the future contribution
Πt is an increasing function of the remaining time T − t; It implies, for example, that
a young worker has greater exposure than an individual close to retirement;

• the exposure is smaller for an investor who does not expect to have significant future
income with respect to their initial wealth than for an investor for whom future growth
is expected to be significant; this implies that individuals take less risk if they have
more initial wealth.

These different properties are illustrated in Figure 4 with the previous values of the param-
eters µ, σ and γ. We assume that πt = 5% while T is fixed to 40 years. In the first panel,
we confirm that exposure decreases with the value of the wealth x and the time10 t. In the
top-right panel, we illustrate the impact of the wealth x. The smaller the wealth, the greater
the risk exposure.

Table 1: Optimal exposure α∗
t (in %) with respect to x and π

T − t = 1 year T − t = 10 years
x/π 0 100 1000 10000 0 100 1000 10000
1000 33.3 36.7 66.7 366.7 33.3 66.7 366.7 3366.7
2000 33.3 35.0 50.0 200.0 33.3 50.0 200.0 1700.0
5000 33.3 34.0 40.0 100.0 33.3 40.0 100.0 700.0
10000 33.3 33.7 36.7 66.7 33.3 36.7 66.7 366.7
100000 33.3 33.4 33.7 36.7 33.3 33.7 36.7 66.7

The initial wealth x is reported in rows whereas the future contribution π corresponds
to columns. Their values are in dollars. For example, if the initial wealth is 10000

dollars and the future contribution is 1000 dollars per year, the optimal exposure α∗
t

is 36.7% (respectively 66.7%) if the time to retirement T − t is 1 year (respectively
10 years).

Remark 1 We notice that if we multiply the initial wealth x and the future contribution
πt by the same factor, the optimal exposure does not change. We could then normalize the
results, because they only depend on the relative ratio between the future contribution and
the current wealth. For example, we verify in Table 1 that the optimal exposure for x = 1000
dollars and π = 100 dollars is the same for x = 10000 dollars and π = 1000 dollars. This
is why we normalize x and set it to 1.

9It is the case when the actual wealth x is equal to 10000 dollars, the future contribution π is 1000 per
year and the time to retirement T − t is 10 years.

10meaning that it increases with the remaining time T − t.
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Figure 4: Computation of the risky exposure α∗
t

3.2 Defining the glide path
The glide path of the target-date fund is generally defined as dynamic asset allocation
{α∗

t , t ≤ T}. In Figure 4, the bottom-left panel corresponds to two simulations of the wealth
x whereas the bottom-right panel indicates the corresponding optimal exposure α∗

t . We
first notice that the allocation depends on the path of the wealth. It implies that optimal
exposure and wealth are both endogenous:

Xt −→ α∗
t −→ dXt −→ Xt+dt

Therefore, there is not one dynamic asset allocation path as illustrated in bottom-left panel.
Hence why it is more pertinent to define the glide path as the expected dynamic asset
allocation:

gt = E0 [α
∗
t ] = E [α∗

t | X0 = x0]

The glide path can be calculated using Monte Carlo simulations. In the case where the
interest rate is nul and the contribution function is linear, we obtain the approximated
formula given in Appendix A.4. In Figure 5, we have reported the glide path computed by
Monte Carlo and by approximation11. We notice that the approximated formula gives a
good result12.

The glide path depends on the shape of the contribution function πt. We give two exam-
ples in Figure 6. In the first example (top-left panel), the investor does not contribute when
they are relatively young, whereas upon retirement their contribution is at its maximum. In
this case, we obtain the glide path given in the bottom-left panel. During 10 years, the glide

11We use the same parameters values as before. For the contribution function, a and b are set to 0.002
and 0.01.

12The small difference comes from the convexity bias due to Jensen’s inequality.
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Figure 5: Computation of the glide path

Figure 6: Some examples of glide path
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path is approximatively constant because their future contribution remains constant. We
could also consider an example where the contribution function is not a monotone function
(top-right panel). In this case, the shape of the glide path is more complex as illustrated in
the bottom-right panel. We notice in this example that the exposure of the investor to the
risky asset is leveraged at the beginning of their working life.

3.3 Introducing uncertainty on the contribution function
In the sequel, we assume that µt = 3%, σt = 15%, θt = 0, ζt = 3%, rt = 1% and Γt,T = 0.
Moreover, all the correlations are set to zero. For the utility function, we continue to
use the CRRA function with γ = −3. The contribution πt is calibrated using the French
saving report done by INSEE (ref. [26], Figure 6, page 114). We obtain the function
pt reported in the first panel in Figure 7. In order to better understand these data, we
have indicated the corresponding monthly contribution in the second panel. The average
monthly contribution is equal to 1650 dollars whereas the minimum and the maximum are
respectively 880 and 1900 dollars. In the third panel, we have represented the probability
density function of Qt. We verify that the variance of Qt increases with the time t due to
the economic uncertainty. Finally, the fourth panel corresponds to the quantile distribution
of the cumulative contribution

∫ t

0
πu du.

Figure 7: Dynamics of the contribution function πt

The representation of the optimal exposure α∗
t is complicated because it depends on

three state variables: the time t, the wealth Xt and the degree of economic uncertainty Qt.
Hence why we prefer to compute the glide path gt:

gt = E0 [α
∗
t ] = E [α∗

t | X0 = x0, Q0 = q0]

For the illustration, x0 is set to USD 10 000 and q0 is equal to 1. We have reported the glide
path gt in Figure 8. If we consider the first panel, we retrieve the typical behaviour of glide

12
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paths used in the investment industry. But this glide path is valid for an investor with an
initial wealth of USD 10 000 and an average total contribution of USD 800 000 (see Figure
7). If the initial wealth is equal to USD 500 000, the glide path is completely different.
So, the glide paths used in the investment industry correspond to investors whose initial
wealth is very small compared with their future revenues. In the second panel, we show the
influence of economic uncertainty of future contributions. We notice that the influence of
Qt is similar to the ratio between the actual wealth and the future contributions. Of course,
the level of the glide path is highly dependent of the risk premium µ− r and the volatility
σ of the risky asset (Panels 3 and 4 in Figure 8). More precisely, we observe that the most
important factor is the Sharpe ratio divided by the volatility. This result has been already
exhibited by Merton (1969).

Figure 8: Glide path with random economic factor

The first panel corresponds to the glide path using default values for parameters.
The second panel represents the influence of Qt which is the state variable of the
contribution uncertainty. In average, Qt is equal to 1. If Qt < 1, the realized future
contribution is then below the expected future contribution. The third panel shows
the impact of the expected return µ of the risky asset whereas the fourth panel
indicates how the glide path changes with the volatility of the risky asset.

Remark 2 More surprising is the influence of the volatility ζt, which measures the standard
deviation of the future contribution. As expected, it reduces the risky exposure, but the
impact is small (see Figure 9). One explanation is the leptokurtic behavior of the log-normal
distribution of Qt. Increasing ζt implies a more dispersed probability distribution, but with
occurrences of high values of Qt. This second effect partially compensates the effect of
dispersion. Nevertheless, the impact of ζt implies that stable future contribution induces more
risky exposures than random future contributions (the typical example concerns individuals
working in the public sector compared to individuals working in the private sector).

13
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Figure 9: Influence of the volatility ζt on the glide path

3.4 Implications of stochastic interest rates
In the previous paragraph, we assumed that the volatility Γt,T of the zero-coupon bond is
equal to zero. We now consider that interest rates are stochastic. For that, we use the Ho
and Lee (1995) specification:

Γt,T = φ · (T − t)

When φ = 0.1%, we obtain the results of the first panel in Figure 10. Introducing the
volatility of interest rates reduces the optimal exposure, particularly at the beginning of the
time period. To understand this result, we notice that the interest rates volatility Γt,T has
three effects:

1. it increases the forward volatility σt,T of the risky asset St;

2. it increases the forward volatility ζt,T of the economic factor Qt;

3. it introduces a positive forward correlation ρ∗ between the risky asset and the economic
factor.

All these three effects have a negative impact on the optimal exposure α⋆
t . From an economic

point of view, we could interpret this effect because the zero-coupon bond is the only asset to
hedge the liabilities (which corresponds to the terminal wealth) in our model. The hedging
exposure increases then with interest rate volatilities. Hence why this effect is likely to
disappear if we introduce the cash or short-term bonds in the asset universe.

3.5 What is the impact of the correlations?
We continue our example by studying the influence of the correlations. The parameter φ of
the interest rates volatility is always set to 0.1%. In Figure 10, we observe that a positive
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Figure 10: Impact of stochastic interest rates and correlations

In the first panel, we compare the glide path with and without interest rates volatility
φ. The impact of the correlation ρS,Q between the risky asset returns and the
contribution πt is represented in the second panel. The third panel illustrates the
impact of the stock-bond correlation ρS,B .

correlation between St and Qt or a negative correlation between St and Bt,T decreases the
optimal exposure.

The parameter ρS,Q measures the correlation between the return of the risky asset and
the contribution to the fund. It is generally admitted that when the equity market performs
well, the contribution is improved because the investor is encouraged to participate in the
growth of the equity market. Another reason is that the economy is more likely to be in
a period of expansion because of the positive correlation between equity performance and
the business cycle. In the Lucas (1978) model, the payoff of the risky asset has a positive
covariance with consumption, which implies that the correlation with savings is negative.
For these reasons, we could admit than when St increases, Qt also increases. This explains
why we assume that the correlation ρS,Q is positive.

For the correlation ρS,B between the risky asset and the zero-coupon bond, it is more
complicated. Empirical works show that the stock-bond correlation is time-varying. In the
long-run, this correlation is generally positive because of the present value model. However,
it is negative in periods of flight-to-quality (Ilmanen, 2003) or periods of low inflation (Ey-
chenne et al., 2011). This has been the case for the past 15 years and is the reason why we
prefer to impose negative correlation ρS,B .

Indeed, the impact of the correlations ρS,Q and ρS,B is more complex than presented
here because Equation (1) shows that the results depend on the volatility of Qt, Bt,T and
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St. Appendix A.5 presents an in-depth analysis. For the single effects, we could summarise
the results as follows:

Parameter ρS,Q ρS,B ρQ,B Γt,T σt (Γt,T ≃ 0) ζt
Impact + − − ? sign of ρS,Q ?

For the multi-effects, it depends on the numerical values of the parameters.

Remark 3 ρS,Q measures the correlation between the risky asset and the permanent con-
tribution. If ρS,Q is close to one, the exposure to the risky asset tends to 0. In this case,
it is preferable that the individual invest a large part of their savings component into bonds.
This is the typical case for employee savings plan. By investing a large part of their money
into the stocks of their company, individuals face the simultaneous risk of losing their job
and experiencing large losses for their financial assets. But when financial income is highly
correlated with labour income (or the economic cycle), individuals demand a high risk pre-
mium. It is one of the lessons of the Lucas model and is certainly more rational to diversify
financial income and labour income. This explains why the exposure to the risky asset falls
to zero when the correlation tends to one.

4 Patterns of target-date funds
In this section, we exhibit the four patterns that characterise a target-date fund. First, it
is very sensitive to the personal profile of the investor. Second, a target-date fund exhibits
a contrarian allocation strategy. Third, the risk budget must be controlled. And finally,
tactical asset allocation has to be considered. These four patterns help us to better design
target-date funds as shown in the last paragraph of this section.

4.1 The personal profile of the investor
We may divide the parameters of our model into two families:

• some parameters concern the financial assets;

• other parameters relate to the individual.

These two types of parameters influence the design of the target-date fund in a different way.
For example, asset parameters, like the expected return or the volatility of the risky asset,
are defined by the portfolio manager. Indeed, the fund manager has the mandate to change
the allocation according to their short-term or long-term views on the different asset classes.
In some sense, these parameters are endogenous and change from one portfolio manager to
another. The investors’ parameters are more exogenous and concern:

1. the retirement date of the investor;

2. the risk aversion of the investor;

3. the actual and future wealth of the investor.

These three parameters are very important for designing the target-date fund.

Most of the time in the industry, target-date funds are only structured according to retire-
ment date. For example, Fidelity manages nine target-date funds called Fidelity ClearPath R⃝

Retirement Portfolios, each of them corresponding to a specific retirement date13. Thereby,
13The retirement dates begin in 2005 and end in 2045 on a constant scale of 5 years.
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the Fidelity ClearPath R⃝ Retirement Portfolio 2045 is designed for investors who will retire
in or around the year 2045.

The risk aversion of the investor is not often used to design target-date funds. However,
the asset management industry has created diversified funds by mapping investor risk profiles
to fund profiles. Defensive, balanced and aggressive funds correspond generally to the three
investor risk profiles: conservative (low risk), moderate (medium risk) and aggressive (high
risk). In Figure 11, we compare the previous solution obtained in section 3.3 with the
solution if γ = −6. We verify that if the investor is more sensitive to risk, the exposure to
the risky asset decreases largely.

Figure 11: Impact of investor parameters

The solid blue line corresponds to the reference exposure. It has been obtained for
an initial wealth x0 of 10000 dollars and a risk aversion parameter γ equal to −3. For
the short dashed green line, we assume that the investor has a higher risk aversion
(γ = −6), implying that the risky exposure is reduced in a quasi homogeneous way.
The dashed red line shows the impact of the initial wealth (x0 = 500000 dollars).

Another important parameter which is never used to build a target-date fund is the
ratio R between the expected future contribution of the investor and their current wealth.
In section 3.3, we assume that their current wealth is USD 10 000 whereas their future
cumulative contribution is close to USD 800 000 dollars (third panel in Figure 7). So, the
results we have obtained are for an investor with a very high ratio (R is equal to 80). This
is the typical profile of an individual with a high level of education and who expects to be
a high earner in the future. However, if this ratio is small, we obtain a different profile. In
Figure 11, we illustrated the glide path when the individual’s current wealth is USD 500 000
meaning that R is equal to 1.6. This result is not intuitive, because we might think that the
individual will invest more in risky assets if their future contribution is smaller in order to

17



How to Design Target-Date Funds?

maintain their pension benefits. But this argument means that the individual has a lower
level of risk aversion.

Remark 4 The previous figures of the initial wealth and the future contribution may appear
to be high. Nevertheless, the glide path remains the same if we divide these two quantities
by the same factor. For example, if x0 is equal to USD 1 000 and the future contribution is
USD 80 000, the solution always corresponds to the same reference curve.

4.2 The contrarian nature of target-date funds
Let us consider the optimal exposure α∗

t (x) at time t. If we consider the deterministic case,
we obtain:

∂ α∗
t (x)

∂ x
≤ 0 (6)

This result remains valid if we assume that14 ∂xJ (t, x, q) ≥ 0, ∂2
xJ (t, x, q) ≤ 0 and ρ⋆ = 0.

It means that the investment strategy is contrarian.

By defining the dynamic asset allocation by the glide path, the effect of the wealth
dynamics vanishes. In particular, if the risky asset has performed very well during a period,
the wealth of the investor increases and is certainly larger than the wealth expected:

Xt ≥ E [Xt] ⇒ α∗
t ≤ gt

In this case, the target-date fund takes more risk if the dynamic asset allocation is given by
the glide path gt. We have illustrated this difference of behaviour15 in Figure 12. X (T ; gt)
(resp. X (T ;α⋆

t )) is the terminal value of the target-date fund when the dynamic asset
allocation corresponds to the glide path (resp. the optimal exposure). We verify that for
large values of X (T ;α⋆

t ), X (T ; gt) is bigger. If the performance of the fund is not very
good, the difference is not significant.

These results are biased however, because we assume that the risky asset is a geometric
brownian motion. If the risky asset is mean-reverting, the glide path will give a smaller
performance than the optimised exposure. The reason for this is that the risky exposure of
the fund will be the highest at the top of the market and the smallest at the bottom of the
market in the case of the glide path. For the optimised exposure, the opposite applies.

Remark 5 The previous result (6) remains valid if we assume that the contribution is
stochastic and if ρ⋆ ≥ 0 (see Appendix A.5 for the proof).

4.3 Managing the risk budget
In the original Merton’s model, the volatility of the strategy is constant. Indeed, we have:

σ

(
dXt

Xt

)
= σ

(
α⋆
t

dSt

St

)
=

(µ− r)

(1− γ)σ2
σ
√
dt

=
SR

(1− γ)

√
dt

14The first two hypotheses are generally verified because the investor is risk averse meaning that the utility
function is concave.

15We use the same parameters as those in Figure 5.
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Figure 12: Glide path versus optimal exposure

Moreover, we do not make the distinction between the instantaneous volatility σt (dXt/Xt)
and the unconditional volatility σ0 (dXt/Xt). In the target-date fund, this result does not
hold. The instantaneous volatility depends on the level of the wealth Xt:

σt

(
dXt

Xt

)
= σ

(
α⋆
t

dSt

St

)
= ᾱ

(
1 +

µ
∫ T

t
πu du

Xt

)
σ
√
dt

=
SR

(1− γ)

(
1 +

µ
∫ T

t
πu du

Xt

)
√
dt

For the unconditional volatility, we obtain:

σ2
0

(
dXt

Xt

)
= σ2

0 (α
⋆
t )σ

2 dt+ g2t σ
2 dt

The two measures σt (dXt/Xt) and σ0 (dXt/Xt) are then different. They are equal if the
dynamic asset allocation is based on the glide path. In this case, we obtain:

σ

(
dXt

Xt

)
= σ

(
gt
dSt

St

)
= gtσ

√
dt

Using the glide path in a target-date fund is then equivalent to targeting a volatility budget
which is a decreasing function of the time t. Figure 13 illustrates this property using our
previous deterministic example.

Remark 6 This result is similar to another one when we introduce stochastic volatility in
the Merton model. In this last case, the optimal solution is to consider the volatility target
strategy.
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Figure 13: Volatility budget of the target-date fund

4.4 The importance of tactical asset allocation
In the previous paragraphs, we assume that the risk premium and the volatility of the risky
asset are constant. In real life, however, this is not the case. For example, the volatility
of the equity market exhibits some regimes or may be viewed as a mean-reverting process.
Since the work of Lucas (1978), we know that risk premia are time-varying. In particular,
we observe a covariance effect with the consumption behaviour of investors due to the fact
that output exhibits some cycle (Darolles et al., 2010). In this context, defining a glide path
with a constant risk premium and a constant volatility is suboptimal.

Suppose for example that the expected return of the risky asset is given by a sine function:

µt = 3%+ 1% · sin
(
2π

7
(T − t)

)
It implies that the expected return varies between 2% and 4% and that the cycle period is
7 years. We have illustrated the corresponding glide path in Figure 14. We observe that
the glide path is located between two curves, which are the glide paths for the lower and
upper bounds of µt. The variations may be very large. For example, if t is equal to 11
years, the optimal exposure is 100% while it becomes 30% three years later. If we assume
that the volatility is time-varying, we obtain similar conclusions. In finance, we generally
observe that performance is negatively correlated to risk. It is especially true for equities. In
this case, we will have a double effect: a negative outlook on expected return will decrease
the optimal exposure, and this jump will be amplified because of the increase in volatility.
Taking into account the short-run behaviour of asset classes is also necessarily in order
to optimise the glide path. Using strategic asset allocation to estimate the long-run path
of financial assets in terms of performance and risk is insufficient and therefore must be
supplemented by tactical asset allocation.
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Figure 14: Impact of a time-varying risk premium

4.5 Target-date funds in practice
The previous patterns help to design target-date funds in a practical way. In particular, most
academic models including our framework assume that the investor’s choices are driven by
a utility function. This utility function describes the behaviour of the investor with respect
to risks and potential returns. But such a utility function is not directly observable and
nobody is able to explicitly state its utility function. In practice, we have seen that asset
management offers balanced funds, each corresponding to a particular attitude toward risk.
They are then described by their exposure to risky assets. However, this characterises the
risk aversion backwards (from the optimal strategy to the risk aversion) and may appear
unsatisfactory.

Here, we develop an alternative approach. Instead of modelling the risk aversion of the
investor, we introduce the maximum cumulated quantity of risk that they are willing to
take throughout the investment horizon. This risk budget is directly related to the standard
deviation of the wealth at maturity. Therefore, the attitude toward risk is expressed in
terms of the confidence interval of the wealth at maturity. This constraint involves the
cumulated variance of the fund’s net asset value over the course of the investment horizon.
The instantaneous variance of the fund value is given by16:

σ2
t (dXt,T ) = α2

tσ
2
tX

2
t,T dt

The constraint holds on the cumulated variance of the fund value:∫ T

0

α2
tσ

2
tX

2
t,T dt ≤ V 2 (7)

16We consider the net asset value of the fund in the forward framework, as the variations of the current
net asset value due to interest rates do not change the expected value of the terminal wealth.
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where V 2 is the total variance budget of the strategy from inception date to maturity.
Once the risk has been constrained, the investor can focus on achieving the highest possible
average return. This is a translation of Markowitz problem in a dynamical framework. The
objective is to maximise the expected wealth at maturity, under the constraint (7):

α∗
t = argmaxE0 [XT ] such that

∫ T

0

α2
tσ

2
tX

2
t,T dt ≤ V 2

We suppose that the Sharpe ratio of the forward price St,T of the risky asset is constant,
and that the interest rates are deterministic. In this case, the optimal allocation policy is
given by:

α∗
t =

V

σt

√
TXt,T

The optimal proportion of risky assets is a linear function of the total risk budget V , and
it is inversely proportional to the forward wealth and the volatility of the risky asset. Let
v⋆ = V/E [Xt] be the risk budget expressed in terms of the terminal wealth. The glide
path may be approximated by the following system if we assume that the sharpe ratio
SR = (µt − rt) /σt is constant:

gt =
V

σt

√
Txt

dxt =
V

xt
SR dt+ πt dt (8)

xt = v⋆xT

We could then use a classical optimisation algorithm and the Runge-Kutta method to de-
termine the glide path gt, the associated expected wealth xt and the risk budget V .

Let us consider our previous example defined in Section 3.3 page 12. We assume that
µ = 3%, σ = 15% and r = 1%. In Figure 15, we have reported in the first panel the
glide path17 corresponding to different values of the risk budgeting ratio v⋆. For example,
v⋆ = 10% corresponds to a volatility budget V equal to USD 82 600. In this case, XT takes
the value USD 826 00018. If the investor finds this volatility budget V too high, they could
reduce it by choosing a smaller value for v⋆. For example, he could fix v⋆ to 1% implying
that the risky exposure is largely reduced. In the second panel, we show the influence of the
contribution function. Please note that our results are based on an initial wealth X0 equal
to USD 10 000 and a cumulative contribution Π0 close to USD 800 000. If the contribution
is divided by a factor of 10, we observe a significant impact on the risky exposure. Finally,
the last panel illustrates the relationship between the glide path and the parameters of the
risky asset. In the previous theoretical model, an increase of µ is equivalent to a decrease
in σ. In this practical model, it is not the case, because of the risk budget constraint. This
model then has an appealing property, because it contains a volatility target mechanism.

From a professional point of view, the model (8) is more powerful than the theoretical
model based on the Merton approach, because the results are quite similar to the glide
paths obtained via the utility framework although it is more tractable. Moreover, instead
of relying on an abstract risk aversion parameter, it uses an explicit standard deviation
parameter V , which is the risk budget of the investor. Finally, we could easily extend the
model by considering tactical asset allocation.

17with a maximum exposure of 100%
18We verify that the ratio between V and XT is 10%.
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Figure 15: Glide path with the risk budgeting approach

5 Conclusion

This paper proposes a model to understand the design of target-date funds. Our model is
based on the seminal work of Merton (1969, 1971) in which we introduce stochastic interest
rates and stochastic contribution. We show that the optimal exposure to risky assets could
be obtained by solving a two-dimensional PDE. We illustrate the impact of the different
parameters such as the risk premium or the volatility of the risky asset, the correlations
between the risky asset, the interest rate and the savings component, etc. We notice that the
most important factors for designing a target-date fund relate to the investors’ parameters:
retirement date, level of risk aversion and income perspective.

This paper highlights the role of the glide path. In the investment industry, these glide
paths are defined on creation of the target-date fund and are hardly revisited. By analysing
the theoretical behaviour of the solution, we find that defining the optimal exposure is
somewhere equivalent to defining a risk budget path. This is why we propose to design
target-date funds by using a glide path, not in terms of weighting but rather in terms of
risk19. This practical solution has the advantage of encompassing the risk aversion of the
individual and verifying the target risk pattern.

Our model may be improved in three ways. First, we assume that the retirement date is
constant. Introducing a stochastic retirement date is more realistic for two reasons: ageing
population in developed countries forces governments to delay retirement20 and the jobless
of individuals in their fifties or sixties imply that they will use perhaps their pension savings

19This approach is related to risk parity portfolios defined in Maillard et al. (2010) and Bruder and
Roncalli (2012).

20See Lachance (2008) for an example of a lifecycle model with a stochastic retirement date.
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before their retirement date. Second, our model assumes that retirement is the maturity of
the optimization problem. By assuming that, we ignore how many years the individual will
live after retirement and if the pension benefits will be sufficient, especially if the individual
lives a long time. A more realistic model consists then in considering the financial life of
the individual after the retirement date. Last, but not least, the investment policy of the
individual does not take the housing problem (Kraft and Munk, 2011) into consideration.
This last issue leads to a fundamental question for individuals: how will renting or owning
residential real estate modify optimal exposure to risky assets?
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A Mathematical results

A.1 Forward dynamics

We have:

St,T =
St

Bt,T

=
S0

B0,T
exp

(∫ t

0

(
µu − ru − 1

2

(
σ2
u − Γ2

u,T

))
du+

∫ t

0

σu dW
S
u − Γu,T dWB

u

)
St,T is then a log-normal process and could be written as follows:

St,T = S0,T exp

(∫ t

0

(
µu,T − 1

2
σ2
u,T

)
du+

∫ t

0

σu,T dBS
u

)
By construction, BS

t is a brownian motion and we have:

σ2
t,T dt = var

(
σtW

S
t − Γt,TW

B
t

)
=

(
σ2
t + Γ2

t,T − 2ρS,BσtΓt,T

)
dt

It implies that:

µt,T = µt − rt −
1

2

(
σ2
t − Γ2

t,T

)
+

1

2
σ2
t,T

= µt − rt + Γ2
t,T − ρS,BσtΓt,T

In a similar way, we deduce that Qt,T is a log-normal process:

Qt,T = Q0,T exp

((
θt,T − 1

2
ζ2t,T

)
t+ ζt,TB

Q
t

)
with: {

θt,T = θt,T − rt + Γ2
t,T − ρQ,BζtΓt,T

ζt,T =
√
ζ2t + Γ2

t,T − 2ρQ,BζtΓt,T

Let ρ⋆ be the correlation between the two brownian motions BS
t and BQ

t . It satisfies the
following relationship:

⟨dSt,T ,dQt,T ⟩ = ρ⋆σt,T ζt,T dt

We have also:

ρ⋆σt,T ζt,T dt =
⟨
σtdW

S
t − Γt,TdW

B
t , ζtdW

Q
t − Γt,TdW

B
t

⟩
=

(
ρS,Qσtζt − ρQ,BζtΓt,T − ρS,BσtΓt,T + Γ2

t,T

)
dt

We deduce that:

ρ⋆ =
ρS,Qσtζt − ρQ,BζtΓt,T − ρS,BσtΓt,T + Γ2

t,T√
σ2
t + Γ2

t,T − 2ρS,BσtΓt,T

√
ζ2t + Γ2

t,T − 2ρQ,BζtΓt,T

25



How to Design Target-Date Funds?

A.2 Solving the HJB equation
Let J be the function defined by:

J (t, x, q) = sup
α

Et [U (XT ) | Qt,T = q,Xt,T = x]

We may show that J verifies the following HJB equation (Pham, 2009, Prigent, 2007):

∂tJ (t, x, q) + max
α

H (t, x, q, α) = 0

where H is the associated Hamiltonian:

H (t, x, q, α) = (αµt,Tx+ ptq) ∂xJ (t, x, q) + θt,T q∂qJ (t, x, q) +

1

2
α2σ2

t,Tx
2∂2

xJ (t, x, q) + αρ⋆σt,T ζt,Txq∂
2
x,qJ (t, x, q) +

1

2
ζ2t,T q

2∂2
qJ (t, x, q)

At the optimum, we have:

∂H (t, x, q, α)

∂ α
= µt,TxJ (t, x, q) + ασ2

t,Tx
2∂2

xJ (t, x, q) +

ρ⋆σt,T ζt,Txq∂
2
x,qJ (t, x, q)

= 0

We deduce that the optimal exposure is:

α∗
t = −

µt,T∂xJ (t, x, q) + ρ⋆σt,T ζt,T q∂
2
x,qJ (t, x, q)

xσ2
t,T∂

2
xJ (t, x, q)

The HJB equation becomes a two-dimensional PDE:

∂tJ (t, x, q) +H (t, x, q, α∗
t ) = 0 (9)

From a numerical point of view, the HJB equation (9) is solved on the space [x−, x+]×
[q−, q+] with t ∈ [0, T ]. We impose boundary on the allocation such that 0 ≤ αt ≤
1. For the boundary conditions, we assume that J (T, x, q) = U (x), ∂qJ (t, x, q−) =
∂qJ (t, x, q− + dq), ∂qJ (t, x, q+) = ∂qJ (t, x, q+ − dq), ∂xJ (t, x−, q) = x−

γ−1∂
2
xJ (t, x−, q)

and ∂xJ (t, x+, q) =
x+

γ−1∂
2
xJ (t, x+, q). We consider that q− = 0 and q+ = 2 whereas the

bounds x− and x+ depend on the initial wealth and the expected future contribution of
the investor. For our example, we have taken x− ≃ 0 and x+ = 2 × 106. We then use the
Hopscotch algorithm to solve the HJB equation numerically (Kurpiel and Roncalli, 1999).

A.3 Derivation of the relationship (5)
Without interest rates and uncertainty of savings (πt = pt), the dynamics of the wealth
becomes:

dXπ
t

Xπ
t

= α̃t
dSt

St

with Xπ
t = Xt +

∫ T

t
πu du and α̃t = αtXt/X

π
t . It comes that:

Xπ
t = Xπ

0 exp

(∫ t

0

(
α̃uµu − 1

2
α̃2
uσ

2
u

)
du+

∫ t

0

α̃uσu dBu

)
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With U (x) = xγ/γ, we have:

max
α̃t

Et [U (Xπ
T )] ⇔ max

α̃t

γ

(
α̃tµt −

1

2
α̃2
tσ

2
t

)
+

1

2
γ2α̃2

tσ
2
t

The optimal solution is then:
α̃⋆
t =

µt

(1− γ)σ2
t

or:

α⋆
t =

µt

(1− γ)σ2
t

(
1 +

∫ T

t
πu du

x

)

A.4 Computation of the glide path when the contribution function
is linear

Let mt = E [Xt]. If πt is deterministic, we have:

dmt = αtµmt dt+ πt dt

= ᾱµmt dt+

(
ᾱµ

∫ T

t

πu du+ πt

)
dt

In the case where πt = at+ b, It comes that:

dmt = ᾱµmt dt+

(
ᾱµ

[
1

2
au2 + bu

]T
t

+ at+ b

)
dt

= ᾱµmt dt+

(
ᾱµ

(
1

2
a
(
T 2 − t2

)
+ b (T − t)

)
+ at+ b

)
dt

and:

mt = x0e
ᾱµt + ᾱµ

(
1

2
aT 2 + bT

)
t− ᾱµ

(
1

6
at2 +

1

2
bt

)
t+

(
1

2
at+ b

)
t

If the wealth is sufficient high21, we have :

gt ≃ ᾱ+
µ
(
1
2a
(
T 2 − t2

)
+ b (T − t)

)
(1− γ)σ2mt

A.5 Impact of the correlations on optimal exposure

We notice that the correlation parameters ρS,Q, ρS,B and ρQ,B influence the optimal solution
α⋆
t because they modify the forward correlation ρ⋆. So, if we are able to quantify the impact

of ρ⋆, we are able to analyse the impact of these correlation parameters.

Let us first consider the relationship (1) between the correlation parameters and the
forward correlation. We consider the previous values of parameters: σt = 15%, ζt = 3%
and T = 40 years. In Figure 16, we have reported the value of ρ⋆ with respect to time t
for three values of ρS,Q. If φ is set to zero and if there is not correlation between the risky
asset St and the economic factor Qt or the bond Bt,T , ρ⋆ is exactly equal to ρS,Q. If φ

21in order to diminish the convexity effect in Jensen’s inequality.
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increases, the correlation ρ⋆ increases too. In particular22, we have ρ⋆ → ρS,Q when t → T ,
ρ⋆ ≥ ρ⋆ when t → 0 and ρ⋆ → 1 when t → 0 and φ → ∞. These behaviors are illustrated
in the second and third panels in Figure 16, whereas the impact of ζt is reported in the
fourth panel. Figures 17 and 18 shows how the forward correlation changes with respect to
the correlations ρS,B and ρQ,B. The forward correlation is a decreasing function of these
two parameters, but the impact depend on the respective magnitude of the volatility of Qt,
Bt, T and St. It explains that the impact of ρQ,B is small in Figure 18.

Figure 16: The case ρS,B = ρS,Q = 0

Because J (t, x, q) is a utility function, we could assume that ∂xJ (t, x, q) ≥ 0 and
∂2
xJ (t, x, q) ≤ 0. Another expression of the equation (2) is:

α∗
t,x =

µt,T

σ2
t,T

(
− ∂xJ (t, x, q)

x∂2
xJ (t, x, q)

)
− ρ⋆

ζt,T
σt,T

(
q∂2

x,qJ (t, x, q)

x∂2
xJ (t, x, q)

)

=
1

R (t, x, q)

µt,T

σ2
t,T

− ρ⋆
1

Ex (t, x, q)
ζt,T
σt,T

where R (t, x, q) ≥ 0 is the relative risk aversion and Ex (t, x, q) ≥ 0 is a function which
depends on the derivatives of the marginal utility. It comes that:

∂ α∗
t,x

∂ ρ⋆
≤ 0

22In the case ρS,B = ρQ,B = 0, the formula (1) reduces to:

ρ⋆ =
ρS,Qσtζt + φ2T 2√

σ2
t + φ2T 2

√
ζ2t + φ2T
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Figure 17: The case φ = 20 bps

Figure 18: The case φ = 1%
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