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Abstract
A capitalization-weighted index is the most common way to gain access to broad

equity market performance. These portfolios are generally concentrated in a few stocks
and present some lack of diversification. In order to avoid this drawback or to sim-
ply diversify market exposure, alternative indexation methods have recently prompted
great interest, both from academic researchers and market practitioners. Fundamen-
tal indexation computes weights with regard to economic measures, while risk-based
indexation focuses on risk and diversification criteria. This paper describes risk-based
indexation methodologies, highlights potential practical issues when implemented, and
illustrates these issues as it applies to the Euro Stoxx 50 universe.

Keywords: Risk-based indexation, fundamental indexation, market capitalization, equity
indexes, diversification, portfolio optimization, robust estimation.

JEL classification: G11, C60.

1 Introduction
For the past forty years, asset allocation has relied on the Capital Asset Pricing Model
(CAPM) theory, originated by William F. Sharpe (1964). CAPM theory concludes that
under some assumptions, market-capitalization weighting is efficient for asset allocation,
in the sense that no other portfolio with the same risk (i.e. volatility) will have a higher
expected return. Since then, capitalization-weighted indexes (hereafter CW) have played
a central role in the investment industry. First, they provide convenient access to broad
equity markets and serve as a natural investment vehicle in financial markets (index funds,
electronic-traded funds, derivatives). Second, they represent a reference and benchmark for
active management.

Realistically, the assumptions of CAPM do not hold (investors do not all have the same
expectations, they cannot sell short without a penalty), and CAPM appears to be inefficient

∗We are grateful to Yannick Daniel, Kais Mbarek, François Millet, Katrin Muller, Pamela Segal and
Guillaume Simon for their helpful comments.
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(see, for example, Haugen et al. (1991), Amenc et al. (2006), Hsu (2006)). In this context,
investors have recently shown great interest in alternative-weighted indexes (hereafter AW).
An alternative-weighted index is defined as an index in which assets are weighted in a
different way than those based on market capitalization. Alternative-weighted indexes can be
split into two families: fundamental indexes and risk-based indexes. Fundamental indexation
defines the weights as a function of economic metrics like dividends or earnings. This
indexation has been studied in numerous articles (for example Arnott et al. (2005), Estrada
(2008) or Haugen et al. (2010)) and aims to provide higher returns and lower risk than
capitalization-weighted indexes.

On the other hand, risk-based indexes are meant to diversify the risk of the portfolio. Two
well-known examples are the minimum-variance portfolio (or MV portfolio) and the equally-
weighted portfolio (or 1/n portfolio). The MV portfolio is located on the mean-variance
efficient frontier with the lowest risk. Many equity funds have recently been launched using
this concept as it is both easy to compute, due to its unique solution, and recognized
as robust, since it is the only one among mean-variance efficient portfolios that does not
incorporate any information on expected returns. However, minimum-variance portfolios are
generally suffering from – and even deepening – the drawback of portfolio concentration. A
natural and simple way to deal with this last issue is to attribute the same weight to all the
assets of the portfolio. Equally-weighted portfolios are widely used in practice (Bernartzi
and Thaler (2001), Windcliff and Boyle (2004)) and have been shown to be efficient in
out-of-sample exercises (DeMiguel et al., 2007). Recently, Choueifaty and Coignard (2008)
introduced the concept of the most diversified portfolio (or MDP portfolio). As in the case of
minimum-variance portfolios (Clarke et al., 2006), the weights of the portfolio depend only
on the covariance matrix. Later, Maillard et al. (2008) studied the properties of the equally-
weighted risk contributions portfolio (or ERC portfolio) as a new methodology for building a
diversified portfolio. All of these methods have contributed to the emergence of the concept
of risk-based indexation. The main difference between fundamental and risk-based indexes
is that the former promises alpha, whereas the latter promises diversification.

This paper, which aims at comparing the different risk-based indexes, is organized in
the following structure: Section 2 analyzes the properties of capitalization-weighted and
fundamental indexes; Section 3 details the various risk-based indexes (MV, 1/n, MDP/MSR
and ERC portfolios) by comparing them in terms of mathematical properties; Section 4
presents empirical results based on the DJ Euro Stoxx 50 universe over the period 1992-
2009 and Section 5 draws conclusions.

2 Beyond capitalization-weighted indexes
Let us consider an index composed of n stocks. Let Pi (t) be the price of the i-th stock and
Ri (t) be the corresponding return between time t− 1 and t:

Ri (t) =
Pi (t)

Pi (t− 1)
− 1

The value of the index (or benchmark) B (t) at time t is defined by:

B (t) = B (t− 1)
n∑

i=1

wi (t) (1 + Ri (t))

where wi (t) is the weight of the i-th stock in the index satisfying
∑n

i=1 wi (t) = 1. The
computation of the value of the index B (t) is generally calculated at the closing time t.
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However, this computation is purely theoretical. In order to replicate this index, we have to
build a hedging strategy that consists of investing in stocks. Let S (t) be the value of the
strategy (or the index fund). We have:

S (t) =
n∑

i=1

ni (t) Pi (t)

where ni (t) is the number of stock i held between t− 1 and t. We define the tracking error
as the difference between the return of the strategy and the return of the index:

eS|B (t) = RS (t)−RB (t)

The quality of the replication process is generally measured by the volatility σ
(
eS|B (t)

)
of

the tracking error1. We may distinguish several cases:

1. We may have an index fund with a low tracking error volatility (less than 10 bps). It
can be achieved by a pure physical replication (by buying all of the components with
the appropriate weights each time) or by a synthetic replication (i.e. entering into a
swap agreement with an investment bank).

2. We may have an index fund with moderate tracking error volatility (between 10 bps
and 30 bps). For example, this is the case with an index fund based on sampling
techniques.

3. An index fund with a higher tracking error volatility (between 30 bps and 1%) exists
and corresponds either to some universes presenting liquidity problems or to enhanced
index funds as a part of active management.

It is also important to note the difference between an investable index and a non-investable
index. The frontier between these two categories is not precise. From a theoretical point
of view, an investable index may be replicated with a tracking error volatility close to zero.
For a non-investable index, it is impossible to replicate it perfectly. For example, stock
indexes of major market places are investable. This is the case with the S&P 500, DAX,
CAC and/or Nikkei indexes. This is not the case with private equity indexes, some small
cap indexes or for certain market places where it is difficult to invest (i.e. the Middle East).
Interesting examples are global stock indexes, like the MSCI World Index or the DJ Islamic
Market Index. They contain many stocks (more than 2000 for the two cited indexes) and
cover a variety of countries.

2.1 Capitalization-weighted indexes

By definition, the weights are given by:

wi (t) =
Ni (t) Pi (t)∑n

j=1 Nj (t)Pj (t)
(1)

where Ni (t) is the number of shares outstanding for the i-th stock. We notice that Ci (t) =
Ni (t)Pi (t) is the market capitalization of the i-th stock. The weight wi (t) then corresponds
to the ratio of the market capitalization Ci (t) = Ni (t)Pi (t) of the i-th stock with respect
to the market capitalization of the index. Generally, the number of shares is constant

1People often confuse the notions of tracking error and volatility of the tracking error.
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Ni (t) = Ni (t− 1) or changes at a low frequency. We also have:

wi (t) =
Ni (t)Pi (t)∑n

j=1 Nj (t)Pj (t)

=
Ni (t− 1) Pi (t)∑n

j=1 Nj (t− 1)Pj (t)

6= wi (t− 1)

Regardless of whether the number of shares is constant, the weights of CW indexes move
every day because of the price effect, giving us:

wi (t) ≥ wi (t− 1) ⇔ Ci (t)∑n
j=1 Cj (t)

≥ Ci (t− 1)∑n
j=1 Cj (t− 1)

⇔ Ci (t)
Ci (t− 1)

≥
∑n

j=1 Cj (t)∑n
j=1 Cj (t− 1)

⇔ Ri (t) ≥ RB (t) (2)

Another interesting result of CW indexes is that the portfolio of the hedging strategy does
not change if the structure of the market remains the same (or Ni (t) = Ni (t− 1)). We
verify that:

ni (t) = ni (t− 1) (3)

We do not need to rebalance the portfolio of the hedging portfolio because of the relationship:

ni (t)Pi (t) ∝ wi (t)Pi (t)

This property is one of the main benefits of CW indexes and implies low trading costs.

Another important advantage of CW indexes is that they are considered to be a good
proxy of the market portfolio defined in the CAPM-Sharpe model. To define the market
portfolio, we proceed with two steps (see Figure 1):

1. First, we build the efficient frontier by computing the convex hull of the risk/return
ratio for every possible portfolio. This is equivalent to finding all of the portfolios w?

defined by:

w? = arg maxµ>w

u.c.
√

w>Σw ≤ σ?, 1>w = 1 and 0 ≤ w ≤ 1

where µ is the vector of expected returns, Σ is the covariance matrix and σ? is the
desired level of volatility.

2. Second, we determine the capital market line, which is graphically, the tangent line
connecting the return of a risk-free-asset with the efficient market frontier. The tan-
gency portfolio belonging to both the efficient frontier and the market line is the market
portfolio.

Under certain assumptions, such as the efficient market hypothesis (EMH), the theory states
that the tangency portfolio is the unique risky portfolio owned by investors. In a manner of
speaking, this means that a CW index defines a tangency portfolio.

The main criticisms we may address to CW indexes are the following:
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Figure 1: The Market Portfolio

• By construction, a CW index is trend-following, meaning that it incorporates momen-
tum bias which leads to bubble exposure risk as the weight of the best performers
increases and the weight of the worst performers decreases (see Equation 2).

• A CW index generally contains a growth bias, because high-valuation multiple stocks
weigh more than low valuation multiple stocks with equivalent realized earnings.

• The index may suffer from a high drawdown risk and a lack of risk diversification.

Another important issue is the concentration of underlying portfolios. In Table 1 and Figure
2, we presented the Gini coefficient and the Lorenz curve for several equity indexes. These
two concepts are presented in Appendix A. The Lorenz curve L (x) is a graphical repre-
sentation of the concentration. It represents the cumulative weight of the first x% most
representative stocks. If the index is not concentrated, the Lorenz curve is a straight 45◦

line. The more concentrated the index, the steeper the Lorenz curve. For example, we note
in Figure 2 that the DJ Stoxx 50 Index is less concentrated than the OMX Index. Generally,
we summarize the information contained in the Lorenz curve with the Gini coefficient, which
is a statistical measure of concentration or dispersion. When the Gini coefficient is equal
to 0, it corresponds to perfect equality between weights. Total concentration corresponds
to a Gini coefficient equal to 1. The results are given in Table 1 where we have ranked
several stock indexes using the Gini coefficient from the least concentrated index to the
most concentrated index. For each index, we have also indicated the values taken by L (x)
and L−1 (x) for different values of x (expressed as a %). For example, in the case of the
NASDAQ 100 Stock Index (NDX), L (10%) is equal to 47%, meaning that 10% of the stocks
represent almost 50% of the weight, and L−1 (25%) is equal to 3%, meaning that 25% of the
weight is concentrated in 3% of the stocks. We can also note that some non-large indexes
(for example SMI or IBEX indexes) are highly concentrated.

5



RISK-BASED INDEXATION

Table 1: Gini coefficient of several equity indexes (December 31, 2009)

L (x) L−1 (x)
Index Gini 10 25 50 75 90 95 10 25 50 75 90 95
SX5P 0.27 23 45 68 86 95 98 4 11 30 59 81 90
INDU 0.29 21 42 71 89 97 98 4 13 31 55 76 86
SX5E 0.31 24 45 71 90 97 99 3 11 29 55 76 84
BEL20 0.41 28 51 79 93 98 99 2 8 24 45 67 80
OMX 0.44 33 57 79 93 98 99 3 7 19 44 69 81
CAC 0.47 34 58 82 94 98 99 2 6 19 41 65 79
DAX 0.47 29 58 84 94 98 99 3 9 20 36 63 78
HSI 0.51 39 63 83 95 99 99 2 6 15 38 64 76
AEX 0.51 34 62 85 96 99 100 3 7 18 37 58 70
NDX 0.53 47 66 82 93 98 99 1 3 12 38 66 81
NKY 0.59 47 69 87 96 99 100 1 4 12 31 56 70

MEXBOL 0.59 44 68 89 97 99 100 1 4 13 31 52 67
SMI 0.60 41 71 90 96 99 100 2 5 13 28 50 68
SPX 0.63 52 73 89 96 99 100 1 3 9 28 54 69
UKX 0.63 49 76 89 96 99 99 1 3 10 24 52 71
SXXE 0.64 52 76 90 96 99 99 1 3 9 24 50 68
HSCEI 0.64 53 77 90 97 99 100 1 4 9 23 49 67
SPTSX 0.66 55 77 90 97 99 100 1 3 8 23 49 67
SXXP 0.67 57 78 90 97 99 100 1 2 8 22 49 67
IBEX 0.69 61 81 91 97 99 100 1 3 7 17 47 66
TWSE 0.78 71 85 94 98 100 100 0 1 3 13 36 53
TPX 0.82 74 90 97 99 100 100 0 1 3 11 26 41

KOSPI 0.86 81 94 98 100 100 100 0 1 3 8 17 30
1/n 0.00 10 25 50 75 90 95 10 25 50 75 90 95

Notes on the indexes in Table 1.

AEX (AEX Index) is an index of 25 leading Dutch stocks traded on the Amsterdam Exchange. BEL20 (BEL 20

Index) is an index of 20 leading Belgian stocks traded on the Brussels Stock Exchange. CAC (CAC 40 Index) is

an index of 40 leading French stocks traded on the Paris Bourse. DAX (DAX Index) is an index of 30 leading

German stocks traded on the Frankfurt Stock Exchange. HSCEI (Hang Seng China Enterprises Index) is an index

of H-Shares listed on the Hong Kong Stock Exchange and included in the Hang Seng Mainland Composite Index.

HSI (Hang Seng Index) is an index of leading stocks traded on the Hong Kong Stock Exchange. IBEX (IBEX

35 Index) is an index of 35 leading Spanish stocks traded on the Spanish Continuous Market. INDU (Dow Jones

Industrial Average) is an index of 30 blue-chip stocks. KOSPI (KOSPI Index) is an index of all common shares

on the Korean Stock Exchanges. MEXBOL (Mexico Bolza Index) is an index of leading Mexican stocks traded on

the Mexican Stock Exchange. NDX (NASDAQ 100 Stock Index) is an index of the 100 largest and most active

non-financial domestic and international issues listed on the NASDAQ. NKY (NIKKEI 225 Index) is an index of

225 top-rated Japanese companies listed on the First Section of the Tokyo Stock Exchange. OMX (OMX Stockholm

30 Index) is an index of 30 Swedish stocks traded on the Stockholm Stock Exchange. SMI (Swiss Market Index)

is an index of the 20 leading Swiss stocks of the SPI universe. SPTSX (S&P/Toronto Stock Exchange Composite

Index) is an index of leading stocks listed on the TSX. SPX (S&P 500 Index) is an index of 500 leading US stocks.

SX5E (Dow Jones Euro Stoxx 50) is an index of 50 European blue-chip stocks from countries participating in the

EMU. SX5P (Dow Jones Stoxx 50) is an index of 50 European blue-chip stocks. SXXE (Dow Jones Euro Stoxx)is

an index that includes stocks of the DJ Stoxx 600 Index from countries participating in the EMU. SXXP (Dow

Jones Stoxx 600) is an index of 600 leading European stocks. TPX (Tokyo Stock Price Index) is an index of all

companies listed on the First Section of the Tokyo Stock Exchange. TWSE (Taiwan Taiex Index) is an index of all

listed common shares traded on the Taiwan Stock Exchange. UKX (FTSE 100 Index) is an index of 100 leading

stocks traded on the London Stock Exchange.
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Figure 2: Lorenz curve of several equity indexes (December 31, 2009)

Figure 3: Change in the Gini coefficient for the DJ Euro Stoxx 50 Index
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Remark 1 Table 1 is a snapshot of the Gini coefficient at one trading date (December 13,
2009) but it changes over time. In Figure 3, we indicate the coefficient from 1992 to 2009 on
a monthly basis for the DJ Euro Stoxx 50 Index, which is the universe examined in Section
4 presenting the empirical results. We see that the Gini coefficient is higher in the dot-com
period. We have also indicated the Gini coefficient computed with risk contributions. We
will comment on these results in Section 4.

2.2 Price-weighted indexes

In the previous paragraph, we saw that the dynamic of a capitalized-weighted index has
two components: a share component and a price component. Generally, the share
component is very stable over time, whereas the price component changes every day, meaning
that the high-frequency dynamic of the CW index is driven entirely by the price dynamics.
Price-weighted (PW) indexation utilizes this idea. We have:

B (t) = B (t− 1)
∑n

i=1 Pi (t)∑n
i=1 Pi (t− 1)

Two well-known PW indexes are the Nikkei Index and the Dow Jones Industrial Average
Index. Price-weighted indexation has been criticized extensively, but from our point of view,
price-weighted indexation and capitalized-weighted indexation are very close.

2.3 Fundamental indexes

Fundamental indexation has been extensively studied by Arnott et al. (2005). The idea is to
define the weights as a function of fundamental statistics. A basic example of fundamental
statistics is the dividend yield. In November 2003, Dow Jones launched the DJ US Select
Dividend Index followed by other dividend indexes by country and region. Now, there are
other dividend index providers like WisdomTree, MarketGrader, etc. In November 2005,
FTSE launched the RAFIr Index (Research Affiliates Fundamental Index) with Research
Affiliates, LLC, formed by Robert D. Arnott. The RAFI method uses four fundamental
measures: Cash Flow, Sales, Book Value and Dividends. In Figure 4, we represent the
performance of these two indexes (with base 100 in January 1992). It is Interesting to note
that the two fundamental indexes outperformed the S&P 500 Index.

One of the reasons for the success of fundamental indexes is the promise of potentially
superior returns:

“We show that the fundamentals-weighted, noncapitalization-based indexes con-
sistently provide higher returns and lower risks than the traditional cap-weighted
equity market indexes while retaining many of the benefits of traditional index-
ing” [Arnott et al. (2005), page 83].

Figure 4 shows the impressiveness of backtestings. Despite the lack of any significant over-
performance in 2007 and 2008, these indexes performed solidly in 2009. Still, the con-
struction of these indexes is not obvious and some practitioners associate them with a
stock-picking strategy packaged in a passive strategy2.

2In asset management, many quantitative stock screening models and value investment strategies are
based on these fundamental or economic variables.
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Figure 4: Performance since January 1992

2.4 Construction of alternative-weighted indexes
There are several arguments supporting capitalization-weighted indexation. First, a CW
index is comprehensible and data-independent; closing prices and the number of shares
are available without any measurement errors. Second, trading costs are low, because it
corresponds to a buy-and-hold strategy if the number of shares remains unchanged. Lastly,
a CW index may be easily hedged and replicated because liquidity is highly correlated with
market capitalizations.

We will now define what are the necessary properties of an appropriate alternative-
weighted index. In what follows, the CW index is considered as the reference index.

• The universe of the AW index is included within the universe of the CW index:

UAW ⊆ UCW

This conveys that the AW index contains only assets belonging to the corresponding
reference index. For us, it is a key property in order to qualify the AW index as a
passive strategy and to minimize some style biases between the AW and CW indexes.

• In the long-term, the AW index must perform better than the CW index, and/or the
volatility of the AW index must be lower than that of the CW index. With respect to
the CW index, the AW index must obviously be characterized as an alpha index (like
fundamental indexation) or a beta index (like risk-based indexation).

• The correlation between the performance of the AW index and the performance of the
CW index is strictly different from one:

ρ (RAW (t; t + h) , RCW (t; t + h)) =
w>AWΣwCW√

w>AWΣwAW

√
w>CWΣwCW

< 1
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The lower the correlation, the higher the interest of the AW index. This third point is
the main rationale for the AW index. An investor who prefers to invest in both AW
and CW indexes does not necessarily seek better performance, but wants to diversify
the risk in order to achieve a better risk-return profile.

• The rules for constructing the AW index are clearly defined, and the computation of
the index values may be performed by several third-parties.

3 Risk-based indexation
We have seen that there are two methods for building alternative-weighted indexes:

1. Fundamental indexes (promising alpha)

2. Risk-based indexes (promising diversification)

In some sense, the difference between the two methods comes from the opinion of modifying
the risk-adjusted return ratio. In other words, in the case of fundamental indexes, one
expects to have superior returns, and one expects to create alpha with respect to the CW
index. In the case of risk-based indexes, one expects to decrease the risk of the portfolio in
either absolute or relative value. The AW index may have a smaller risk than the CW index
or the combination of the AW index and the CW index may produce lower risk because
they are not perfectly correlated. Consider a portfolio with (1− x)% of the CW index and
x% of the AW index. We denote the volatility of the returns of the two indexes as σCW

and σAW and the correlation between them as ρ. If we assume that the two indexes have
the same expected return, then we can compute the optimal portfolio. It appears that x is
equal to 0 if and only if we have σCW < ρσAW. As such, financial theory explains that if the
two indexes have the same expected return, it is better to invest in the two indexes rather
than only in the CW index, except if the volatility of the CW index is particularly low with
respect to the volatility of the AW index. In Figure 5, we have provided some examples with
σCW = 18%. In the first case (σAW = 20% and ρ = 95%), there is no interest in diversifying
the portfolio, because the inequality σCW > ρσAW does not hold. In other illustrative cases,
the investor is particularly interested in diversification if the correlation is low.

In this section, we focus on four risk-based indexation methods: 1/n, MV, MDP/MSR
and ERC portfolios. We have chosen these because they are already used by the investment
industry, but other solutions, which are more complex, also exist (see for example Bera et
al., 2008). The main advantage of the four methods is that they have been studied both by
academics and professionals.

3.1 The 1/n portfolio
The idea of the 1/n portfolio is to define a portfolio independently from estimated statistics
and properties of stocks (Windcliff et al., 2004). If we assume that it is impossible to
predict return and risk, then attributing an equal weight to all of the portfolio components
constitutes a natural choice. The structure of the portfolio depends only on the number n
of stocks because the weights are equal and uniform:

wi =
1
n

This type of indexation is easy to understand, thanks to the uncomplicated rules of con-
struction. It corresponds to a contrarian strategy with a take-profit scheme, because if one
stock has a substantial return between two rebalancing dates, its weight will reset to 1

n at
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Figure 5: Illustration of the diversification effect

the next rebalancing date. However, in a CW index, the opposite is true: the larger the
return of the stock, the greater its weight. An appealing property is that the 1/n index is
the least concentrated portfolio in terms of weights3. The main weakness is that it does not
consider individual risks and correlations between these risks, which implies that it is diffi-
cult to locate this portfolio in a mean-variance framework. From a theoretical point of view,
the 1/n portfolio coincides with the efficient portfolio if the expected returns and volatilities
of stocks are assumed to be equal and correlation is uniform. If we are not far from these
assumptions, we may consider the 1/n portfolio to be similar to the efficient portfolio

3.2 The minimum-variance portfolio

The minimum-variance (MV) portfolio is defined by the following mathematical problem:

w? = arg min w>Σw

u.c. 1>w = 1 and 0 ≤ w ≤ 1

The MV portfolio is the only portfolio located on the efficient frontier that is not dependent
on the expected returns hypothesis. The main advantages of the MV portfolio are:

• It is easy to understand (like the 1/n portfolio).

• By construction, its volatility is low, at least on an ex-ante basis.

• Academic literature generally reports that it presents some good out-of-sample perfor-
mance in a complete economic cycle (Clarke et al., 2006).

3For the 1/n portfolio, the Gini coefficient of weights is equal to zero.
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This portfolio is the tangency portfolio if and only if expected returns are equal for all
stocks4. Notwithstanding these advantages, the MV portfolio poses a serious drawback:
diversification of volatility, but not weight. This implies that the portfolio is concentrated
in relatively few stocks. All portfolios that are computed through optimization based on the
covariance matrix Σ share this drawback.

Figure 6: The MV portfolio and the efficient frontier

3.3 The MDP/MSR portfolio

Academic literature defines the MDP portfolio as the most-diversified portfolio (Choueifaty
and Coignard, 2008) and is synonymous with the MSR portfolio (maximum Sharpe ratio)
presented by Martellini (2008). It corresponds to the tangency portfolio in which it is
assumed that the risk premium is proportional to the volatility or, equivalently, when all of
the assets have the same Sharpe ratio. The traditional optimization program is defined as
follows:

w? = arg max sh (w)
u.c. 1>w = 1 and 0 ≤ w ≤ 1

where:5:

sh (w) =
µ>w − r√

w>Σw

4In the case of no risk-free asset and no short-selling constraint, we may show that every optimal portfolio
located in the efficient frontier contains a proportion of the MV portfolio. This result derives from Black’s
two-fund separation theorem. However, it does not hold when there is a risk-free asset or when we impose
a no-short-selling constraint.

5We remind that µ is the vector of expected returns and r is the risk free rate.
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In the case of the MDP/MSR portfolio, we assume that µi = r + sσi, and the objective
function becomes:

sh (w) = s
σ>w√
w>Σw

where σ = (σ1, . . . , σn) is the vector of volatilities. This portfolio presents appealing proper-
ties, such as better diversification and less sensitivity to inputs (than the MV portfolio) and
is not dependent upon any expected return hypothesis. Moreover, it is the optimal portfolio
when it is assumed that all Sharpe ratios are equal. Similar to the MV portfolio, it may still
be concentrated in a few stocks.

3.4 The ERC portfolio
The last construction is the ERC portfolio, which is derived from the techniques of risk-
budgeting (Scherer, 2007). The ERC portfolio corresponds to the portfolio in which the
risk contribution from each stock is made equal. It is the simplest risk budgeting rule. If
we assume that risk and correlation can be reasonably forecast but that it is impossible to
predict return, then attributing an equal budget of risk to all of the portfolio components
seems natural.

Let σ (w) =
√

w>Σw be the volatility of the portfolio with weights w. We can show that
we have the following decomposition:

σ (w) =
n∑

i=1

RCi =
n∑

i=1

wi
∂ σ (w)
∂ wi

The term RCi = wi
∂ σ(w)
∂ wi

is called the risk contribution of the ith asset to the volatility of
the portfolio, which is the product of the weight times the marginal risk. The ERC portfolio
then corresponds to the portfolio in which the risk contribution from each stock is equal6 –
the most straightforward risk budgeting rule. The main advantages of this method are the
following:

1. It defines a portfolio that is well diversified in terms of risk and weights.

2. Like the MV and 1/n portfolios, it does not depend on any expected returns hypothesis.

3. It is less sensitive to small changes in the covariance matrix than the MV andMDP/MSR
portfolios (Maillard et al., 2008).

Similar to the 1/n portfolio, it is difficult to locate on the mean-variance framework, but it
corresponds to the optimal portfolio when the correlation is uniform and the assets have the
same Sharpe ratio. The ERC portfolio coincides with the MDP/MSR portfolio when the
correlation is uniform.

6The ERC portfolio is also the least concentrated portfolio in terms of risk contributions, because the
corresponding Gini coefficient is zero.
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3.5 Comparison of the four passive indexation methods
3.5.1 Some properties

Although the four methods are based on different approaches, they present similarities.
First, we can compare them in terms of weights and risk contributions:

wi = wj (1/n)
∂ σ (w)
∂ wi

=
∂ σ (w)
∂ wj

(MV)

wi × ∂ σ (w)
∂ wi

= wj × ∂ σ (w)
∂ wj

(ERC)

1
σi
× ∂ σ (w)

∂ wi
=

1
σj
× ∂ σ (w)

∂ wj
(MDP)

The weights are equal in the 1/n portfolio whereas the marginal risk is equal in the MV
portfolio. In the case of the ERC portfolio, this is the product of the weight times the
marginal which is equal. For the MDP/MSR portfolio, the equality is on the marginal risk
divided by the volatility (this measure may be interpreted as relative or scaled marginal
risk). We notice that the equalities are verified in the case of the MV or the MDP/MSR
portfolio only for the assets with a non-zero weight.

Another important result is that the volatility of the MV, ERC and 1/n portfolios may
be ranked in the following order (Maillard et al., 2008):

σMV ≤ σERC ≤ σ1/n

The ERC portfolio may then be viewed as a portfolio between the MV and the 1/n portfolios.
Of course, in the case of the MDP/MSR portfolio, we also have σMV ≤ σMDP, but a
comparison with the ERC and 1/n portfolios is not possible. The volatility of the MDP/MSR
portfolio may be either greater or lower than the volatility of the ERC and 1/n portfolios.

It is important to mention that the ERC and MDP/MSR portfolios coincide when the
correlation is uniform across assets returns. In this case, the weight wi of the ith stock is
inversely proportional to its volatility σi. The MDP/MSR portfolio corresponds to the MV
portfolio when the individual volatilities σi are equal. Curiously, the ERC and MV portfolios
are the same when the correlation is uniform and is equal to the lower bound ρ = −1/(n−1)
(i.e. when diversification from correlation is maximum).

3.5.2 Some examples

We illustrate here the properties of these four portfolios by looking at six theoretical exam-
ples, for a better understanding of the characteristics of these four risk-based portfolios and
the issues faced in practice when they are implemented.

Example 1 We consider an example with four assets. We first assume that the volatility
σi is the same and equal to 20% for all four assets. The correlation matrix C is equal to:

C =




100%
80% 100%
0% 0% 100%
0% 0% −50% 100%




The results (expressed as a %) are reported in Table 2. We verify that because the volatility of
the assets is the same, the MDP/MSR portfolio is equal to the MV portfolio. We also check
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that the marginal risks MRi are equal for the MV portfolio whereas it is the risk contributions
RCi that are equal for the ERC portfolio. We notice that the MV and the ERC portfolios
are similar in terms of weights.

Table 2: Weights and risk contributions (Example 1)

MV ERC MDP/MSR 1/n
Asset wi MRi RCi wi MRi RCi wi MRi RCi wi MRi RCi

1 10.9 8.8 1.0 17.3 13.4 2.3 10.9 8.8 1.0 25.0 16.8 4.2
2 10.9 8.8 1.0 17.3 13.4 2.3 10.9 8.8 1.0 25.0 16.8 4.2
3 39.1 8.8 3.5 32.7 7.1 2.3 39.1 8.8 3.5 25.0 4.7 1.2
4 39.1 8.8 3.5 32.7 7.1 2.3 39.1 8.8 3.5 25.0 4.7 1.2

σ (w) 8.8 9.3 8.8 10.7

Example 2 We modify Example 1 by introducing differences in volatilities. They are 10%,
20%, 30% and 40% respectively. We consider the same correlation matrix as in Example 1.
We notice that the MV portfolio is concentrated in the first asset because of its low level of
volatility. The weight of the second asset is 0, because although its volatility is smaller than
that of the third and fourth asset, its correlation with the first asset is high. We verify that
the values of the marginal risk MRi in the MV portfolio are equal for assets with non-zero
weights (they are equal to 8.6%). The ERC and MDP/MSR portfolios produce more balanced
portfolios in terms of weights. In this example, we check the inequalities σMV ≤ σERC ≤ σ1/n.
Unlike the first example, however, the volatility of the MDP/MSR portfolio is now higher
than the volatility of the ERC portfolio.

Table 3: Weights and risk contributions (Example 2)

MV ERC MDP/MSR 1/n
Asset wi MRi RCi wi MRi RCi wi MRi RCi wi MRi RCi

1 74.5 8.6 6.4 38.4 6.7 2.6 27.8 4.4 1.2 25.0 5.6 1.4
2 0.0 13.8 0.0 19.2 13.4 2.6 13.9 8.8 1.2 25.0 12.2 3.0
3 15.2 8.6 1.3 24.3 10.6 2.6 33.3 13.3 4.4 25.0 6.5 1.6
4 10.3 8.6 0.9 18.2 14.1 2.6 25.0 17.7 4.4 25.0 21.7 5.4

σ (w) 8.6 10.3 11.3 11.5

Example 3 We now reverse the volatilities of Example 2. They are now equal to 40%,
30%, 20% and 10%. Weights of the MV, ERC and MDP/MSR portfolios are similar. The
volatilities of the corresponding portfolios are comparable, but the 1/n portfolio has a high
volatility with respect to the three other portfolios. It can be explained by the fact that the
first and second assets are more volatile and highly correlated, meaning that diversification
effects are low.
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Table 4: Weights and risk contributions (Example 3)

MV ERC MDP/MSR 1/n
Asset wi MRi RCi wi MRi RCi wi MRi RCi wi MRi RCi

1 0.0 6.8 0.0 7.3 26.8 2.0 4.2 17.7 0.7 25.0 37.3 9.3
2 4.5 6.4 0.3 9.7 20.1 2.0 5.6 13.3 0.7 25.0 27.1 6.8
3 27.3 6.4 1.7 27.7 7.1 2.0 30.1 8.8 2.7 25.0 4.4 1.1
4 68.2 6.4 4.4 55.3 3.5 2.0 60.2 4.4 2.7 25.0 0.0 0.0

σ (w) 6.4 7.8 6.8 17.2

Example 4 Now we consider an example with six assets. The volatilities are 25%, 22%,
14%, 30%, 40% and 30% respectively. We use the following correlation matrix:

C =




100%
60% 100%
60% 60% 100%
60% 60% 60% 100%
60% 60% 60% 60% 100%
60% 60% 60% 60% 20% 100%




The correlation matrix is specific, because the correlation is uniform and equal to 60% for all
assets except for the correlation between the fifth and sixth assets which is equal to 20%. The
results are surprising. Whereas the MV portfolio concentrates the weights in the second and
third assets, the MDP/MSR portfolio concentrates the weights in the fifth and sixth assets.
The ERC portfolio overweight the third asset, but the weights are close to the 1/n portfolio.
In this example, it is the MDP/MSR portfolio that has the largest volatility. It is interesting
to note that in this example, the MV portfolio is sensitive to the specific volatility risk
whereas the MDP/MSR portfolio is sensitive to the specific correlation risk.

Table 5: Weights and risk contributions (Example 4)

MV ERC MDP/MSR 1/n
Asset wi MRi RCi wi MRi RCi wi MRi RCi wi MRi RCi

1 0.0 15.3 0.0 15.7 20.7 3.3 0.0 19.4 0.0 16.7 20.8 3.5
2 3.6 14.0 0.5 17.8 18.2 3.3 0.0 17.0 0.0 16.7 18.1 3.0
3 96.4 14.0 13.5 28.0 11.6 3.3 0.0 10.8 0.0 16.7 11.1 1.9
4 0.0 18.4 0.0 13.1 24.9 3.3 0.0 23.2 0.0 16.7 25.4 4.2
5 0.0 24.5 0.0 10.9 30.0 3.3 42.9 31.0 13.3 16.7 31.4 5.2
6 0.0 18.4 0.0 14.5 22.5 3.3 57.1 23.2 13.3 16.7 21.6 3.6

σ (w) 14.0 19.5 26.6 21.4

Example 5 To illustrate how the MV and MDP/MSR portfolios are sensitive to specific
risks, we consider a universe of n assets with volatility equal to 20%. The structure of the
correlation matrix is the following:

C =




100%
ρ1,2 100%
0 ρ 100%
...

...
. . . 100%

0 ρ · · · ρ 100%



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The first asset is not correlated with the other assets, except with the second asset. The
correlation of the second asset to n is uniform and equal to ρ. The correlation of the first
two assets is set to ρ1,2. The correlation matrix is more specific, because it is similar to a
constant-correlation matrix except for one asset. In Figure 7, we report the sum w1 + w2

with respect to the number n of assets by considering several values of ρ and ρ1,2. It is
interesting to note the significant difference between the MV and MDP/MSR portfolios7 on
one side and the ERC and 1/n portfolios on the other side. The sum w1 + w2 decreases
faster for the ERC and 1/n portfolio whereas the decrease is low for the MV and MDP/MSR
portfolios. For example, if ρ = 70% and ρ1,2 = 20%, the sum w1 + w2 is equal to 58.6%
(MV and MDP/MSR), 54.3% (ERC) and 50% (1/n) respectively if n is equal to 4. If n is
now set to 50, the sum w1 + w2 becomes 54.1% (MV and MDP/MSR), 18.1% (ERC) and
4% (1/n) respectively. The number of assets only marginally impacts MV and MDP/MSR
weights, because they rely solely on the covariance matrix. They concentrate their weights in
the relatively least volatile or least correlated assets. The ERC portfolio with its implicit di-
versification constraint, naturally dilutes weights among components as the number of assets
increases.

Figure 7: Weights (in %) of the first two assets (Example 5)

4 Empirical results
In order to illustrate the preceding methods, we consider the universe of the DJ Euro Stoxx
50 Index from December 31, 1991, to December 31, 2009. Results are purely indicative. If
we use another universe, we may find other empirical results. However, we believe that we
can draw some interesting conclusions from this specific example.

We build risk-based indexes by using the following characteristics:
7They are equal because the volatilities are the same.
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• Every month, we consider only the stocks which belong to the DJ Euro Stoxx 50 Index.

• We compute the empirical covariance matrix using a 1 year (or 260 trading days)
window lag at the last trading day of the month.

• The portfolio is rebalanced on the first trading day of the next month.

• The risk-based index is computed daily as a price index.

4.1 Performance and risk
The results are presented in Table 6. We first notice that the four risk-based indexes out-
perform the DJ Euro Stoxx 50 Index. We have to be cautious that we do not take trading
costs into account, an issue discussed in the next paragraph. Comparing the risk-based
indexes with the CW index in terms of risk, we observe that they present lower risk if we
consider the volatility or drawdown measures except for the 1/n portfolio. It is not true
for the kurtosis measure. Finally, we report the correlation of daily returns with the DJ
Euro Stoxx 50 Index. The least correlated is the MV portfolio followed by the MDP/MSR
portfolio. Results by calendar year are reported in Table 7.

Table 6: Statistics of performance and risk

CW MV ERC MDP 1/n
Performance 6.39 8.08 10.30 12.63 9.22
Volatility 22.41 17.65 20.66 20.00 22.43
Sharpe 0.29 0.46 0.50 0.62 0.41

Volatility of TE 14.85 5.98 13.19 4.37
IR 0.11 0.65 0.47 0.65

Drawdown 66.88 55.89 56.84 49.95 61.79
Skewness (monthly) −0.50 −1.06 −0.55 −0.58 −0.45
Kurtosis (monthly) 3.87 5.31 4.42 4.25 4.70

Skewness 0.06 2.12 0.24 3.44 0.08
Kurtosis 8.63 59.59 11.05 90.58 9.71

Correlation 100.00 75.00 94.66 81.24 98.10

Notes about the statistics in Table 6.

All the statistics are computed on a daily basis if not mentioned (otherwise only the skewness and the kurtosis are

computed on a monthly basis). They are expressed in % except for the Sharpe and IR ratios, the skewness and

kurtosis coefficients which are measured in decimals. The performance corresponds to the annualized return in %.

The Sharpe ratio is the annualized performance divided by the volatility without taking into account the risk-free

rate. The volatility of the index and the volatility of the tracking error are equal to the standard deviation of

the daily return or difference of returns multiplied by the square root of 260. The information ratio (IR) is the

annualized excess performance divided by the volatility of the tracking error.

4.2 On the importance of constraints
Figure 8 represents some statistics regarding concentration. The top/left graph corresponds
to the average of all the Lorenz curves of weights. The MV and MDP portfolios are more
concentrated than the CW index, but it is not the case for the ERC portfolio. Of course, the
1/n portfolio appears the least concentrated. If we build the Lorenz curve on risk contribu-
tions (top/right graph), we obtain the same conclusions: the MV and MDP portfolios are
the most concentrated indexes. Another way to illustrate this concentration is to consider
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Table 7: Statistics of performance and risk by year

Performance (in %) Volatility (in %)
Year CW MV ERC MDP 1/n CW MV ERC MDP 1/n
1993 38.7 38.1 43.5 45.5 44.5 10.8 7.9 8.7 8.2 10.0
1994 −7.9 −4.0 −2.1 6.6 −2.7 13.2 9.5 11.5 10.4 12.5
1995 14.5 16.0 14.3 18.1 13.0 10.2 8.0 9.5 9.0 10.3
1996 22.8 26.4 29.5 33.2 30.0 10.2 10.2 9.9 10.4 10.2
1997 36.8 38.8 45.0 46.7 44.6 20.0 12.9 18.4 17.2 19.4
1998 32.0 47.6 34.4 52.9 33.6 26.6 19.2 24.0 20.7 25.5
1999 46.7 20.8 36.6 25.6 41.9 20.1 17.2 17.5 18.0 18.3
2000 −2.7 4.6 5.8 3.8 2.5 23.1 15.4 15.7 16.3 17.5
2001 −20.2 −11.2 −13.8 −10.3 −17.7 27.2 18.7 22.9 19.7 26.2
2002 −37.3 −34.7 −32.9 −29.2 −34.8 37.2 24.6 35.0 29.9 38.4
2003 15.7 4.3 18.8 24.9 23.3 27.1 18.5 25.9 24.9 28.6
2004 6.9 15.6 10.0 8.3 8.0 14.0 9.6 13.0 12.2 14.3
2005 21.3 16.9 20.0 16.1 20.4 11.0 9.7 10.8 10.4 11.2
2006 14.3 16.7 17.9 15.5 17.5 14.7 11.7 14.1 12.9 14.6
2007 6.8 −2.3 5.0 −2.5 5.2 15.9 11.9 14.6 12.4 15.5
2008 −44.4 −15.7 −36.1 −20.1 −44.2 39.4 40.1 38.6 44.0 40.6
2009 21.1 −5.2 25.5 16.9 29.4 28.0 23.0 27.8 26.5 31.7

Figure 8: Lorenz curve of weights
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the maximum weights of the portfolio. We have represented their box plots8 for the 216
monthly rebalanced dates (below graph).

These observations imply that we have to introduce some constraints in the MV and
MDP/MSR indexation if we want to obtain an investment strategy that makes sense. We
report in Table 8 the composition of the different portfolios as of December 31, 2009. The
MV index is invested in exactly 11 stocks, whereas the MDP/MSR portfolio is composed
of 17 stocks. By construction, the ERC and 1/n portfolios are invested in all the stocks of
the universe. So, the MV and MDP/MSR portfolios take big bets on some stocks contrary
to the ERC and 1/n portfolios. We think that it is certainly the main difference between
these risk-based indexes. We have also reported the composition of the MV and MDP/MSR
portfolios when we impose an upper bound (10% or 5%).

In Table 9, we have computed the annualized turnover9 based on the monthly weights.
In the case of the 1Y estimated covariance matrix (which is our default case), the turnover
is equal respectively to 327%, 65%, 340% and 20% for the MV, ERC, MDP/MSR and 1/n
indexes. We notice that the turnover is not equal to zero for the 1/n portfolio because of the
entry/exit in the universe. The turnover of the ERC portfolio is relatively small whereas it
is high for the MV and MDP/MSR portfolios. To reduce these turnovers, we may impose
some constraints (like an upper bound) or use a covariance matrix estimated with a longer
window lag. For example, turnover is reduced on average by a factor of two with a 3 year
window lag. Moreover, if we impose a 5% upper bound on the weights, the turnover becomes
74% and 95% for the MV and MDP/MSR portfolios.

In practice, we can not build a MV index or a MDP/MSR index without imposing
some constraints10 because these portfolios are too concentrated (more than the capitalized-
weighted index). We report the Gini coefficient for the different portfolios at the end of
year 2009 in Table 10. We compute this coefficient for both the weights (GW) and the
risk contributions (GRC). For the CW index, we retrieve the value of 0.31 for the weights
(computed in Table 1). In terms of risk contributions, this index is more concentrated
(GRC = 0.38). We also verify that MV and MDP/MSR indexes are more concentrated. Even
if we impose an upper bound of 5% for the weights, we have GW = 0.60 and GRC = 0.64.
We do not encounter this problem with the 1/n index because it is the least concentrated
portfolio in terms of weight by definition. For the ERC index, concentration is not a concern.
Indeed, Maillard et al. (2008) show that if w? is the solution of the ERC problem, then there
exists a constant c such that it is also the solution of the following optimization problem :

w? = arg min w>Σw

u.c.





∑n
i=1 ln wi ≥ c

1>w = 1
0 ≤ w ≤ 1

We may also interpret the ERC method as a minimum-variance optimization problem under
a constraint of sufficient diversification (

∑n
i=1 ln wi ≥ c).

Remark 2 It is important to reduce the turnover not only because of trading costs, but above
all because of possible market price impact. Moreover, two portfolios with same turnover may
produce different market price impacts. Let us consider the two portfolios with 10 assets in

8In the box plot, we indicate the statistics of maximum, minimum, median and 25th and 75th percentiles.
9Let wi (t) be the weight of asset i at time t. The turnover is defined by TW =

Pn
i=1 |wi (t)− wi (t− 1)|.

10Moreover, without constraints, the MV and MDP/MSR indexes do not satisfy the 5/10/40 UCITS III
rule.
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Table 8: Weights for the Euro Stoxx 50 universe (31/12/2009)

Name CW MV ERC MDP 1/n MV MDP MV MDP
10% 10% 5% 5%

TOTAL 6.1 2.1 2.0 5.0
BANCO SANTANDER 5.8 1.3 2.0

TELEFONICA SA 5.0 31.2 3.5 2.0 10.0 5.0 5.0
SANOFI-AVENTIS 3.6 12.1 4.5 15.5 2.0 10.0 10.0 5.0 5.0

E.ON AG 3.6 2.1 2.0 1.4
BNP PARIBAS 3.4 1.1 2.0
SIEMENS AG 3.2 1.5 2.0

BBVA(BILB-VIZ-ARG) 2.9 1.4 2.0
BAYER AG 2.9 2.6 3.7 2.0 2.2 5.0 5.0 5.0

ENI 2.7 2.1 2.0
GDF SUEZ 2.5 2.6 4.5 2.0 5.4 5.0 5.0
BASF SE 2.5 1.5 2.0

ALLIANZ SE 2.4 1.4 2.0
UNICREDIT SPA 2.3 1.1 2.0
SOC GENERALE 2.2 1.2 3.9 2.0 3.7 5.0
UNILEVER NV 2.2 11.4 3.7 10.8 2.0 10.0 10.0 5.0 5.0

FRANCE TELECOM 2.1 14.9 4.1 10.2 2.0 10.0 10.0 5.0 5.0
NOKIA OYJ 2.1 1.8 4.5 2.0 4.8 5.0
DAIMLER AG 2.1 1.3 2.0

DEUTSCHE BANK AG 1.9 1.0 2.0
DEUTSCHE TELEKOM 1.9 3.2 2.6 2.0 5.7 3.7 5.0 5.0
INTESA SANPAOLO 1.9 1.3 2.0

AXA 1.8 1.0 2.0
ARCELORMITTAL 1.8 1.0 2.0

SAP AG 1.8 21.0 3.4 11.2 2.0 10.0 10.0 5.0 5.0
RWE AG (NEU) 1.7 2.7 2.7 2.0 7.0 5.0
ING GROEP NV 1.6 0.8 0.4 2.0

DANONE 1.6 1.9 3.4 1.8 2.0 8.7 3.3 5.0 5.0
IBERDROLA SA 1.6 2.5 2.0 5.1 5.0 1.2

ENEL 1.6 2.1 2.0 5.0 2.9
VIVENDI SA 1.6 2.8 3.1 4.5 2.0 10.0 5.9 5.0 5.0

ANHEUSER-BUSCH INB 1.6 0.2 2.7 10.9 2.0 2.1 10.0 5.0 5.0
ASSIC GENERALI SPA 1.6 1.8 2.0

AIR LIQUIDE(L’) 1.4 2.1 2.0 5.0
MUENCHENER RUECKVE 1.3 2.1 2.1 2.0 3.1 5.0 5.0
SCHNEIDER ELECTRIC 1.3 1.5 2.0

CARREFOUR 1.3 1.0 2.7 1.3 2.0 3.7 2.5 5.0 5.0
VINCI 1.3 1.6 2.0

LVMH MOET HENNESSY 1.2 1.8 2.0
PHILIPS ELEC(KON) 1.2 1.4 2.0

L’OREAL 1.1 0.8 2.8 2.0 5.5 5.0 5.0
CIE DE ST-GOBAIN 1.0 1.1 2.0
REPSOL YPF SA 0.9 2.0 2.0 5.0

CRH 0.8 1.7 5.1 2.0 5.2 5.0
CREDIT AGRICOLE SA 0.8 1.1 2.0
DEUTSCHE BOERSE AG 0.7 1.5 2.0 1.9
TELECOM ITALIA SPA 0.7 2.0 2.0 2.5

ALSTOM 0.6 1.5 2.0
AEGON NV 0.4 0.7 2.0

VOLKSWAGEN AG 0.2 1.8 7.1 2.0 7.4 5.0
Total of components 50 11 50 17 50 14 16 20 23
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Table 9: Annualized monthly turnover (in %)

Lag MV ERC MDP 1/n MV MDP MV MDP
10% 10% 5% 5%

1M 1791 578 1932 20 1444 1597 991 1113
2M 1248 304 1321 20 939 1064 636 727
3M 913 205 984 20 705 818 472 548
1Y 327 65 340 20 249 292 162 202
2Y 194 43 212 20 149 190 99 129
3Y 145 36 157 20 112 144 74 95

Table 10: Gini coefficient of weights and risk contribution (31/12/2009)

Index GW GRC

CW 0.31 0.38
MV 0.90 0.90
ERC 0.25 0.00
MDP 0.79 0.79
1/n 0.00 0.26
MV 10% 0.78 0.78
MDP 10% 0.76 0.76
MV 5% 0.60 0.64
MDP 5% 0.60 0.64

Table 11. These two portfolios have the same turnover (it is equal to 100%). However,
because the portfolio B is more concentrated than the portfolio A, we may think that the
market price impact will be higher for the portfolio B.

Table 11: Weights (in %) of two portfolios with same turnover of 100%

Portfolio A TW

wi (t− 1) 10 10 10 10 10 10 10 10 10 10
wi (t) 20 0 20 0 20 0 20 0 20 0 100

Portfolio B TW

wi (t− 1) 25 25 0 0 0 0 0 0 25 25
wi (t) 25 0 50 0 0 0 0 0 25 0 100

4.3 Robust estimation of the covariance matrix

Imposing constraints is not the only way to improve the MV and MDP/MSR methods
in terms of turnover. Another important issue is the statistical method to estimate the
covariance matrix. Using a more robust method may have two effects:

1. Obtaining a more weight-balanced portfolio and reducing the turnover.

2. Defining a more forward looking covariance matrix.

The first point is related to the MV and MDP/MSR methods whereas the second point
concerns the ERC method too. Throughout this paper, we have used the empirical covari-
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ance matrix. In the next paragraph, we review general methods to improve the estimated
covariance matrix.

4.3.1 The maximum likelihood estimator

Let X be a n× 1 random vector such that X ∼ N (µ, Σ). We denote xt the observed value
of X at time t. The log-likelihood of the sample x = {xt, t = 1, . . . , T} is:

` (x) = −nT

2
ln 2π − T

2
ln (det Σ)− 1

2

T∑
t=1

(xt − µ)>Σ−1 (xt − µ) (4)

We may show that the ML estimator is:

Σ̂ =
1
T

T∑
t=1

(xt − x̄)> (xt − x̄)

The ML estimate Σ̂ corresponds to the empirical covariance matrix. Using ML theory, it
converges to the true value Σ as T →∞ and n is fixed.

If the sample size T is small and the number n of variables is large, the ML estimator
Σ̂ is not stable. Moreover, if n ≥ T , Σ̂ is a singular matrix. For example, we encounter
this type of problem when we estimate the covariance matrix of large stock market indexes
(S&P 500, etc.) with a one-year lag window – here T = 260 and n = 500. In this case,
it may be valuable to estimate Σ in another way. A first way consists in defining a factor
model to explain the stock returns whereas the second case is based on Bayesian methods
and the concept of shrinkage.

4.3.2 Factor models

Let Rt be the return of the n stocks at time t. We assume that it is related to m exogenous
factors Ft:

Rt = AFt + ut

with A a n×m matrix and cov [Ft] = Ω. AFt represents the factor or common component
whereas ut is the idiosyncratic component of the returns. Moreover, we assume that E [ut] =
0 and cov [ut] = D. By assuming that returns are gaussian, we may write the concentrated
log-likelihood function in the following way:

` ∝ −T

2

(
ln |Φ|+ tr

(
Φ−1Σ̂

))
(5)

with Σ̂ the empirical covariance matrix and Φ = AΩA> + D. The idea of factor models
(FM) is to reduce the number of estimated parameters. That’s why we generally use the
following hypothesis: D is a diagonal matrix. Moreover, if we want to identify the model,
we have to assume that Ω is given11. In this case, the number of estimated parameters
associated to the log-likelihood (5) is p2 = n× (m + 1) whereas it is p1 = n× (n + 1) /2 for
the log-likelihood (4). In the case of the DJ Euro Stoxx 50 universe, we have n = 50 and
p1 = 1 275 parameters. If we use a ten factors model, the number of parameters becomes
p2 = 550, which is lower. For the S&P 500 universe, we have p1 = 125 250 and p2 = 5 500
(22 times less parameters than for the estimated covariance matrix).

11In the case when one uses exogenous economic factors, Ω is set to the empirical covariance matrix of
the factors. If we don’t want to define the factors, we use the identity matrix.
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The simplest factor model is to consider that the correlation between returns is uniform.
This model is known as the constant correlation (CC) model and is used in finance for a
long time (Elton and Gruber, 1973). It corresponds to a special case of the 1F model when
the vector of loadings is proportional to the volatilities of the stock returns. Let ρ be the
uniform correlation. One generally estimates it as the average of the empirical correlations:

ρ̂ =
2

n (n− 1)

∑

i>j

Σ̂i,j√
Σ̂i,iΣ̂j,j

However, this estimator is biased and we prefer to estimate the parameter ρ by maximum
likelihood.

Naturally, the number of parameters in factor models is smaller implying that the in-
stability of the estimated covariance matrix is reduced. Previously, we have assumed that
factors are exogenous. Another way to improve the estimation of Σ is to use principal
components analysis (PCA). By construction, the ML estimate Σ̂ is a symmetric, positive
semi-definite matrix. We may also apply eigenvalues decomposition:

Σ̂ = UΛU> (6)

where Λ = diag (λ1, . . . , λn) is a diagonal matrix12 and U is an orthogonal matrix. In
PCA, the endogenous factors take the form Ft = Λ−1/2U>Rt. By considering only the
first m components or factors, we may build a more robust estimation of Σ. The main
question is to determine the number m of components. One solution is to consider only
the factors which explains more than 1/n of the variance. In this case, we have m =
max {i : λi ≥ (λ1 + . . . + λn) /n}. Another solution is to exploit the algorithm of Laloux et
al. (1999). Using results on random matrix theory (RMT), they show that the eigen-
values of a T × n random matrix X has asymptotically a maximum equal to λmax =
σ2

(
1 + n/T + 2

√
n/T

)
with σ2 the variance of X. In this case, m = max {i : λi > λmax}.

4.3.3 The shrinkage estimator

On one hand, we know that the empirical covariance matrix estimator is unbiased but its
convergence rate is very low if the number of variables is high. On the other hand, we
know that covariance matrix estimators based on factor models are faster to converge but
are biased. The idea of shrinkage estimation consists in combining a biased estimator with
other information (for example an unbiased estimator) to produce another estimator with
a smaller mean squared error. Some examples are the Bayes-Stein estimator (Jorion, 1996)
or the shrinkage method presented by Ledoit and Wolf (2003).

Let Σ̂1 and Σ̂2 be two estimators of the covariance matrix Σ. Let us build the estimator
Σ̂α as a linear combination of the previous estimators :

Σ̂α = αΣ̂1 + (1− α) Σ̂2 (7)

Suppose that we want to minimize the expected value of the quadratic loss function:

α? = arg maxE
(∥∥∥αΣ̂1 + (1− α) Σ̂2 − Σ

∥∥∥
2
)

Ledoit and Wolf (2003) derive the analytical expression of the optimal value α? when Σ̂1

is the estimated covariance matrix based on a factor model and when Σ̂2 is the empirical
covariance matrix. The case when Σ̂1 is built with a CC matrix is treated in Ledoit and
Wolf (2004).

12The eigenvalues are ordered in descending order: λ1 > λ2 > . . . > λn.
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Table 12: Gini coefficient of weights and risk contribution (31/12/2009)

Stats MV ERC MDP 1/n MV MDP MV MDP
10% 10% 5% 5%

Empirical covariance matrix (EMP)
TW 327 65 340 20 249 292 162 202
ḠW 0.85 0.18 0.78 0.00 0.77 0.74 0.59 0.58
ḠRC 0.85 0.00 0.77 0.19 0.76 0.74 0.60 0.62
IR 0.11 0.65 0.47 0.65 0.29 0.54 0.45 0.67

Constant correlation matrix (CC)
TW 280 47 47 20 213 47 136 47
ḠW 0.86 0.14 0.14 0.00 0.76 0.14 0.59 0.14
ḠRC 0.86 0.00 0.01 0.16 0.76 0.01 0.60 0.01
IR 0.02 0.62 0.63 0.65 0.19 0.62 0.29 0.62

Principal component analysis (PCA)
TW 264 65 259 20 206 230 144 173
ḠW 0.85 0.19 0.76 0.00 0.77 0.73 0.59 0.58
ḠRC 0.85 0.00 0.75 0.19 0.77 0.73 0.61 0.61
IR 0.14 0.68 0.55 0.65 0.25 0.54 0.48 0.69

Shrinkage estimator with CC (CC-SHRINK)
TW 310 59 306 20 236 272 151 198
ḠW 0.86 0.17 0.73 0.00 0.76 0.70 0.59 0.57
ḠRC 0.86 0.00 0.72 0.18 0.76 0.70 0.60 0.59
IR 0.10 0.72 0.52 0.65 0.29 0.55 0.37 0.67

Shrinkage estimator with PCA (PCA-SHRINK)
TW 303 65 307 20 233 271 155 192
ḠW 0.85 0.19 0.76 0.00 0.76 0.73 0.59 0.58
ḠRC 0.85 0.00 0.75 0.19 0.76 0.73 0.61 0.61
IR 0.13 0.66 0.54 0.65 0.28 0.54 0.44 0.67

4.3.4 Application to our example

Using different estimators for the covariance matrix, we obtain results in Table 12. For each
estimator, we report the yearly turnover TW (expressed in %), the average Gini coefficients
ḠW and ḠRC, and the information ratio IR. All estimators use a window lag of one year.
The first estimator EMP is empirical (or ML) estimate of the covariance matrix. The
second estimator CC is the estimated covariance matrix built with empirical volatilities and
a uniform correlation. PCA corresponds to the covariance matrix deduced from principal
component analysis with a number of factors computed with the formula of Laloux et al.
(1999). CC-SHRINK and PCA-SHRINK are the shrinkage estimators deduced from the
previous CC and PCA estimators. We notice that using a more robust covariance matrix
estimate allows generally to reduce the turnover. But except for the CC estimator applied
to the MDP/MSR method, they are not sufficient to solve the concentration issue. Imposing
bounds (and using longer window lag) remains the main method to reduce this problem.

5 Conclusion

The failure of many active managers to generate value has caused investors to shift their focus
from active management to passive exposure to the market. This encourages investors to
study the alternative ways in which they can gain equity market exposure. The classical and
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natural way consists of a capitalization-weighted indexation, which under CAPM framework
and tedious assumptions, can be presented as the efficient portfolio. But this does not seem
to be efficient. As illustrated in this paper a lot of capitalization-weighted equity indexes
are concentrated in their biggest members. They suffer from a lack of diversification and
expose investors to high shortfalls of risk. Another issue is that they adopt a trend following
behavior and contain a growth bias.

Alternative methods have thus emerged and have been promoted. There are two distinct
methods that offer more efficient exposure to the market, or get a better beta. The first one
uses fundamental statistics such as earnings or dividend yields to compute weights. These
fundamental indexes are thus value-tilted and promote this value bias as a potential return
enhancement or at least as diversifying to growth oriented capitalization weighted indexes.
The second kind is risk-based indexation. By looking for an efficient way to split the risk
within the portfolio they promise lower risk and diversification regarding their cap-weighted
counterpart. We described four risk-based indexations. The simplest way is to equalize the
weights between stocks (the 1/n portfolio), but this does not necessarily guarantee that the
portfolio will be balanced in terms of risk. This naturally leads to a portfolio where the
risks, no longer the weights, is split equally among components: every component has the
same contribution to the portfolio total risk in an ERC portfolio. The third and fourth
portfolios are the result of an optimization program. The former is the minimum-variance
portfolio, i.e. the one with the minimum volatility on an ex-ante basis. The latter is the
most-diversified portfolio, the portfolio maximizing a diversification measure.

This paper then illustrated these methods with an application using the DJ Euro Stoxx
50 universe. It showed that restrictive constraints on weights should be imposed with MV
or MDP/MSR methods to avoid extreme concentration in the less volatile or less correlated
assets. Finally non-constrained and constrained portfolios may be different and constrained
thresholds show importance in the design of the portfolio. The definition of constraints is
however an open question, because it introduces a discretionary part in the strategy and they
are not generally rigourously justified. The ERC portfolio is balanced in weights such that
there is no need for constraints as does the 1/n portfolio. Regarding correlation with CW
index, MDP/MSR and MV portfolios are the least correlated. Regarding index volatility, as
expected, the MV portfolio is the least volatile. The volatility of the 1/n portfolio is similar
to those of the CW index while the out-of-sample volatility of the ERC and MDP/MSR
portfolios stand middle grounded between the volatilities of the MV and 1/n portfolios. In
terms of risk adjusted performance, the four alternative indexation post higher figures than
cap weighted performance. Lastly, risk-based indexation methods all experience smaller
drawdown compared to the CW index. Avoiding portfolio concentration is critical to capital
preservation. With alternative indexes, investors can thus access to a well diversified and
diversifying exposure to broad equity markets.

26



RISK-BASED INDEXATION

Appendix

A The Lorenz curve and the Gini coefficient

In economics, the Lorenz curve is a graphical representation of the cumulative distribution
function of the empirical probability distribution of wealth. The x value of the curve corre-
sponds to a percentile of the population ordered according to the characteristic in question.
The y value of the curve represents that portion of the total value of the characteristic in
question. If we apply this concept to the composition of an index, the Lorenz curve repre-
sents the cumulated weights of the first x% most important stocks. In Figure 9, we have
represented an example of a Lorenz curve. In this case, we have L (20%) = 56.9% meaning
that the 20% most weighted stocks represent 56.9% of the weight in the index. In the case of
no concentration, the Lorenz curve is the straight 45◦ line which corresponds to the perfect
equality of the weights and we have L (x) = x. Perfect concentration corresponds to the
case when one stock has a weight of 100% and we have L (x) = 0 if x < 1/n and L (x) = 1
if x ≥ 1/n.

Figure 9: The concept of Lorenz curve

The Gini Coefficient G is a measure of the dispersion using the Lorenz curve. Graphically,
we have G = A/ (A + B) with A and B the two areas defined in Figure 9. Another expression
is:

G = 2
∫ 1

0

L (x) dx− 1

The statistical measure G takes the value 1 for a perfectly concentrated portfolio and 0 for
the portfolio with uniform weights.
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