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Abstract

Research in hedge fund investing proposes different solutions to build optimal hedge
fund portfolios. However, these solutions are direct extensions of the usual mean-
variance framework, and still suffer from model risks. More complex approaches start
to be used but are related to numerous estimation risks. We compare in this paper
the out-sample properties of different allocation models through a dynamic investment
exercise using hedge fund indices. We show that the best out-of-sample properties are
obtained by allocation models that take into account the specific statistical properties
of hedge fund returns.

Keywords: Hedge funds, portfolio allocation, higher-order moments, regime-switching
models.

JEL classification: G11, G24, C53.

1 Introduction
Hedge fund returns differ substantially from the returns of standard asset classes, making
hedge funds of interest to investors seeking to diversify balanced portfolios. Research into
hedge fund investing has therefore naturally focused on finding the optimal proportion in
which to invest in hedge funds1, measuring hedge fund performance2, identifying hedge fund
risk factors3, and finally constructing optimal hedge fund portfolios4. However, despite the

∗We are grateful to L. Erdely, J.M. Stenger and G. Comissiong for their helpful comments.
1see e.g. Terhaar et al. (2003), Cvitanic et al. (2003), Popova et al. (2003), Amin and Kat (2003).
2see e.g. Eling and Schumacher (2007), Darolles et al. (2009), Darolles and Gourieroux (2010).
3see e.g. Fung and Hsieh (1997), Ackermann et al. (1999), Brown et al. (1999), Liew (2003), Agarwal

and Naik (2004), Agarwal et al. (2009), Buraschi et al. (2010), Darolles and Mero (2010).
4see e.g. Amenc and Martellini (2002), McFall Lamm (2003), Kat (2004), Agarwal and Naik (2004),

Alexander and Dimitriu (2004), Morton et al. (2006), Giomouridis and Vrontos (2007), Adam et al. (2008).
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nature of hedge fund investments (dynamic trading strategies, use of derivatives and lever-
age) and their observable consequences on hedge fund return characteristics (time-varying
covariance parameters, high kurtosis of returns distributions), this research is mainly con-
ducted in the usual framework of normal independent and identically distributed (i.i.d.)
returns. For example, Giomouridis and Vrontos (2007) are the first to use dynamic spec-
ification for the covariance parameters and to evaluate the consequences at the portfolio
allocation level. More generally, we can think that the standard methods used for portfolio
allocation are inadequate since non null skewness and high kurtosis, relative to traditional
asset classes, are observed in the monthly returns of hedge funds5.

The mean-variance approach (Markovitz, 1952) is a standard in the asset management in-
dustry. This approach is founded on the assumption of normal i.i.d. returns and is naturally
subject to criticisms, when applied to build portfolios involving hedge funds. These criti-
cisms stress that mean-variance is in this case only appropriate for investors having quadratic
preferences, thus making it not applicable in all situations. But this kind of analysis is widely
used in practice as well as in the literature. Among others, Amenc and Martellini (2002),
Terhaar et al. (2003) and Alexander and Dimitriu (2004) consider hedge fund allocation
in this framework. However, alternative approaches have already been proposed. Bares et
al. (2002) and Cvitanic et al. (2003) compute optimal portfolios in an expected utility
framework. Amin and Kat (2003) discuss the problems arising in mean-variance allocation
when the asset returns are not symmetric. Popova et al. (2003), Hagelin and Pramborg
(2003), Jurczenko et al. (2005) and Davies et al. (2009) introduce higher moments analysis.
Krokhmal et al. (2002), Favre and Galeano (2002), Agarwal and Naik (2004) and Adam et
al. (2008) construct optimal portfolios using alternative risk measures. Given the increasing
interest for risk management, there is indeed a multiplication of measures capturing different
types of risks and several tentatives to unify these approaches. Rockafellar et al. (2006) for
example propose generalized measures as substitutes for volatility.

In this paper, we consider a general set of asset allocation models to measure the dif-
ferences in allocation obtained when using alternative specifications. We first consider the
mean-variance model and then discuss basic extensions that do not involve expected return
estimation and are presumed to be more robust against estimation errors. Such extensions
include the minimum-variance (Clarke et al., 2006), constant-Sharpe (Martellini, 2008),
equally-weighted risk contribution (Maillard et al., 2010) and most diversified (Choueifaty
and Coignard, 2008) portfolios. We also consider optimal portfolios as determined by maxi-
mizing different utility functions and the Omega ratio risk measure. Each of these approaches
is given a set of solutions that can be easily compared when applied to hedge fund returns.
We then examine four extensions that seem particularly promising in addressing the appro-
priate allocation to hedge funds. First, we include higher-order moments in the objective
function to maximize. This extension allows investors to recognize and use information em-
bedded in the unusual distribution of hedge fund returns (Martellini and Ziemann, 2010).
Second, we address the issue of time-varying variance covariance parameters and their po-
tential impact on hedge fund portfolio allocation. We use the regime-switching dynamic
correlation model6 to include these stylized facts in the covariance matrix specification.
Third, we include exogenous stress scenarios to reflect the possibility of extreme drawdowns
attributable to certain rare events. Fourth, we consider the impact of inclusion of managers’
views of portfolio performance in a Black-Litterman framework.

5see e.g. Fung and Hsieh (1997, 2001), Brooks and Kat (2002), Popova et al. (2003), Agarwal and Naik
(2004), Martellini and Ziemann (2010).

6see, e.g. Pelletier (2006), Giomouridis and Vrontos (2007).
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To evaluate the models ability to work with non-normal distribution and time-varying
parameters, we illustrate our analysis by actively managing a fund of hedge funds invested in
hedge fund indices from the CSFB/Tremont and HFR database. We use index data instead
of single hedge fund data for essentially two reasons. First, the direct optimization of a hedge
funds portfolio is impossible with regards to the variety of investment constraints related
to each individual hedge fund. This explains why portfolio construction is in practice done
in two steps. The first step corresponds to strategic and tactical allocation and determines
the portfolio profile in terms of strategies. The second step is the implementation of the
decision allocation, with the choice of specific hedge funds allowing the portfolio manager
to implement the strategic/tactical allocation bets. As this second step necessarily involves
deep qualitative analysis of each candidate hedge fund, quantitative models are more relevant
during the first step, i.e. when allocating between hedge fund strategies. Second, Darolles
and Vaissie (2010) find that the added value of funds of hedge funds at the tactical level is
poor. It is then of great interest to evaluate quantitative allocation tools to actively manage
the tactical allocation of hedge fund portfolios and enhance the total added value proposed
by funds of hedge funds. The paper is organized as follow. Section 2 describes the classic
allocation models used as benchmarks for our analysis. Section 3 presents two allocation
models developed in the particular context of hedge funds portfolio construction. Section 4
applies benchmark and specific models to hedge fund data. Finally, Section 5 concludes.

2 Models of portfolio optimization

In what follows, we describe the different models that can be used to determinate the
portfolio allocation of hedge funds. We consider a universe of n hedge fund strategies. We
denote by Ri,t the return of the ith strategy at time t. µ and Σ are the expected return and
the covariance matrix of the returns (R1,t, . . . , Rn,t). Let w be the weights of the portfolio.
We suppose that the portfolio construction faces some constraints and we note w ∈ A. For
example, we may assume that the weights are positive and sum to one. In this case, A is
the simplex set:

A =

{
x ∈ [0, 1]n :

n∑

i=1

xi = 1

}

In order to be more legible, we do not report the constraints w ∈ A in the optimization
programs, but they are taken into account implicitly.

2.1 Mean-variance framework

2.1.1 Optimization program

The mean-variance framework was introduced by Markowitz (1952) and is now widely used.
The main idea of that seminal work is to find an efficient equilibrium between risks and
returns. More precisely, the market risks are entirely monitored by the variance of the
portfolio while the returns are characterized through their expected value. Its popularity
comes from the fact that this program produces an optimal allocation with respect to any
risk-averse criterion based on probabilities, as long as the asset return distributions are
supposed to be gaussian. Indeed, in that case, any portfolio has a gaussian behavior, which
is therefore completely described by its return and its variance. On the other hand, many
studies (see e.g. Cont, 2001) show that asset returns are not normally distributed, especially
when considering hedge funds (Fung and Hsieh, 1999, Malkiel and Saha, 2005). Hence,
considering only the variance as a measure of risks may be insufficient.

3
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For any risk-averse investor, the expected return of the portfolio should be maximized,
while risk should be minimized. Thus, it is natural to maximize expected returns while
keeping variance under a given acceptable level:

maxw>µ u.c. w>Σw ≤ σ2
max (1)

where w>µ is the expected return of the portfolio and w>Σw denotes the variance of the
portfolio. Another equivalent procedure is to minimize the variance while keeping the ex-
pected returns above a minimal level:

min w>Σw u.c. w>µ ≥ µmin (2)

Portfolio allocations given by those programs define the mean/variance efficient frontier,
that is also the maximal attainable expected return for a given level of risk7.

Another equivalent point of view is to set the following optimization problem:

maxw>µ− λ

2
w>Σw (3)

where λ is called the risk aversion parameter. It is clear that the solution of this problem
will maximize expected returns while minimizing portfolio variance. Each parameter λ > 0
involves an optimal portfolio corresponding to a given value of µmin in problem (2). Unfortu-
nately, the correspondence between the risk aversion parameter λ and the resulting average
return µmin can only be found by solving problem (3). Nevertheless, with this formulation,
this method could be seen as a special case of utility maximization involving a quadratic
utility function8.

2.1.2 Parameter uncertainty problem

The major issue of the mean-variance framework is the estimation of the asset returns
covariance matrix Σ and of the expected returns µ. These parameters can be estimated
with their empirical counterparts. However, we should emphasize that optimizing the mean-
variance criterion through backtesting or with the empirical moments lead exactly to the
same results.

The empirical estimator Σ̂ is traditionally used for the covariance matrix, due to its
appealing properties. Indeed, it corresponds to the maximum likelihood estimator. However,
its convergence is very slow especially when the number of assets is large. In this case, Σ̂
introduces some extreme errors, and any optimization procedure will focus on those errors,
thus placing big bets on the mostly unreliable coefficients (Michaud, 1989). Shrinkage
methods is a popular solution to obtain a biased but robust covariance matrix.

Let Φ̂ be a biased estimate of Σ. We assume that it converges faster than Σ̂. In this
case, we define Σ̂α as a convex combination of these two estimators:

Σ̂α = αΦ̂ + (1− α) Σ̂

The main problem is to compute the optimal value of α. Ledoit and Wolf (2003) consider
the quadratic loss function L (α) defined as follows:

L (α) =
∥∥∥αΦ̂ + (1− α) Σ̂− Σ

∥∥∥
2

7This frontier can be obtained by computing the minimal attainable variance w>Σw for all the expected
return level constraints µmin.

8See Section 2.2 for details.
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They define the optimal value as the solution of the problem α? = arg minE [L (α)]. Ledoit
and Wolf (2003) give the analytical solution of α? in the case of a one-factor model, whereas
the optimal estimate α? in the case of a constant correlation matrix may be found in Ledoit
and Wolf (2004).

2.1.3 Risk based portfolios

One of the issues of parameter uncertainty is to estimate the expected returns µ. Merton
(1980) points that historical estimates fail to account for the effects of changes in the level of
market risk and expected returns may be estimated using equilibrium models. Nevertheless,
this approach makes sense only for traditional asset classes. In the case of hedge funds, an
equilibrium model to estimate the risk premium of one strategy does not exist. That is why
we may prefer to use some allocation methods which are presumed to be more robust as
they are not dependent on expected returns.

The minimum-variance portfolio is the only portfolio on the mean-variance frontier which
does not depend on expected returns. More formally, it is defined by the following optimiza-
tion program:

w? = arg min w>Σw

This approach is widely used by practitioners (Clarke et al., 2006). However, it may suffer
some drawbacks concerning the concentration.

In order to obtain a more diversified portfolio, Maillard et al. (2010) propose to use
the equally-weighted risk contribution portfolio (known as the ERC portfolio). Let σ (w) =√

w>Σw be the volatility of the portfolio. We have:

σ (w) =
n∑

i=1

RCi =
n∑

i=1

wi
∂ σ (w)
∂ wi

RCi = wi × ∂wi σ (w) is the risk contribution of the ith strategy to the portfolio volatility.
The ERC portfolio corresponds to the portfolio where all the risk contributions are the same:

RCi = RCj

As shown by Maillard et al. (2010), the ERC portfolio may be viewed as a minimum-variance
portfolio subject to a constraint of sufficient diversification in terms of weights.

In the third approach, we assume that the risk premium is proportional to the volatility.
It means that all components of the portfolio have the same Sharpe ratio s. The Sharpe
ratio of the portfolio is defined by:

sh (w) =
w> (µ− r)√

w>Σw
= s

w>σ√
w>Σw

Maximizing the Sharpe ratio is then equivalent to maximizing the dispersion ratio. This
portfolio is known as the most diversified portfolio (Choueifaty and Coignard, 2008).
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2.2 Utility theory

2.2.1 General framework

The utility function framework was introduced by Von Neumann and Morgenstern (1953)
and has been widely used since by academics and practitioners to handle portfolio manage-
ment problems. This theory states that, under some assumptions, the investor’s preference
in terms of returns distributions can be ordered with the expected value of a utility function.
That is, an allocation is preferred to another if the expected utility of the resulting wealth
at some fixed time T is higher. In mathematical terms, a portfolio w1 resulting in some
random wealth W

(w1)
T at time T is preferred to w2 leading to W

(w2)
T if:

E
[
U

(
W

(w1)
T

)]
> E

[
U

(
W

(w2)
T

)]

We can interpret U (x) as the “satisfaction” of the investor to possess the wealth level x.
Therefore, we must find the portfolio that achieves a maximum expectation of the utility
function.

As described in Appendix A.2, this criterion features both appetite for gains and risk
aversion. Of course, even if we suppose that the probability distribution of assets returns
is perfectly known, we must specify the utility function for our problem. This is the major
weakness of this kind of framework. Indeed, two difficulties appear. First of all, this utility
function should be different for every investor, thus introducing difficulties in fund manage-
ment. Second, the utility function of an investor is very difficult to formalize, and there is
no clear method to build it. Nevertheless, in Appendix A.2 we come up with some intuitions
on the behavior of utility functions and provide some fundamental examples.

2.2.2 Application to the empirical distribution

Let us consider the utility maximization problem. Once the utility function has been fixed,
the main difficulty is to estimate the joint probability distribution of the asset returns. If
we consider a gaussian distribution, the utility problem is strictly equivalent to the mean-
variance problem. Indeed, with such assumptions, the returns of any portfolio is gaussian
and is entirely characterized by its mean and variance parameters. Therefore, as the utility
function introduces a risk adverse behavior together with an appetite for gains, the program
consist in maximizing the average return while minimizing the volatility of the portfolio.
This is equivalent to solving the optimization program (3). A non-gaussian probability
distribution leads to a different optimal portfolio. Therefore, this choice is crucial. This
problem is avoided by using the empirical distribution of the asset returns, i.e. maximizing
the expected utility function through backtesting (Sharpe, 2007).

All allocations w are first backtested, leading to the historical monthly performance rw
t

of all corresponding portfolios. These backtests are then used to compute the historical
utility of the corresponding portfolio as follows:

Û (w) =
1
n

n∑
t=1

u (1 + rw
t )

In the last step, we maximize the historical average utility function to find out the portfolio
weights w? such that:

w? = arg max Û (w)
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This method can be interpreted as a “ let the data talk ” approach. No explicit statistical
model assumptions are needed, and model risk is irrelevant. We only introduce assumption
about the preferences of the investor (i.e. the utility function).

2.3 Omega ratio

2.3.1 Definition

The Omega ratio performance measure was introduced in Shadwick and Keating (2002).
Let F be the cumulative distribution function of the portfolio returns. For a given threshold
H, the Omega ratio is defined as follows:

Ω(H) =

∫ +∞
H

(1− F (x)) dx
∫ H

−∞F (x) (x) dx

It can be also written as9:

Ω(H) =
Pr {R > H} × E [R−H | R > H]
Pr {R < H} × E [R−H | R < H]

Therefore, it can be interpreted as the ratio between the average returns above H and the
average returns below H (or call-put ratio). If H = 0, it is the ratio between average gains
and losses, weighted by the probabilities of those events. Therefore, H can be interpreted as
the threshold above which a return is considered as a gain and below which the returns are
considered as losses. An order of magnitude of Ω can be derived by remarking that setting
the threshold H equal to the mean return E [R] of the portfolio leads to an Omega ratio
equal to 1. In other words, Ω(E [R]) = 1 for any portfolio.

Let Ω? (H) be the optimal portfolio Omega ratio. Maximizing the Omega ratio for a
given value H is equivalent to maximizing the following utility function:

U (x) = (x−H)+ − Ω? (H) (H − x)+
= x−H + (1− Ω? (H)) (H − x)+

When the optimal Omega ratio Ω? (H) is below 1, the utility function is convex, while an
optimal ratio Ω? (H) above 1 corresponds to a concave utility function. The behavior of the
investor is risk adverse when Ω? (H) > 1, while it is risk-seeking when Ω? (H) < 1. Lastly,
an Omega ratio equal to 1 induces a risk-neutral behavior. When Ω? (H) < 1, the risk
seeking behavior is not conventional as an investor will try to maximize his risk for a given
expected return level. Therefore, allocation based on the Omega ratio is misleading and
inaccurate when Ω? (H) < 1. This can be considered together with the property that the
Omega ratio is equal to 1 when the target H is equal to the mean return of the portfolio.
To conclude, the target H should be set carefully, ensuring that this performance level H
is attainable on average by some portfolios based on available assets. For example, this is
always the case if H is the return of the riskless asset.

9Let f be the density function of F. We have:

Ω(H) =

R+∞
H

R+∞
x f (y) dy dx

RH
−∞

R x
−∞ f (y) dy dx

=

R+∞
H (x−H) f (x) dx
RH
−∞ (H − x) f (x) dx

=
E
h
(X −H)+

i

E
h
(H −X)+

i
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2.3.2 Regularization of the Omega ratio using the Cornish-Fisher expansion

As in the case of utility maximization, the empirical distribution can be used to optimize the
Omega ratio. However, this is a difficult task, as standard maximization procedures tend
to perform poorly. Furthermore, as we use a limited set of returns (typically 24 monthly
returns), there often exists an asset that never performs below the threshold H, thus leading
to an infinite Omega ratio. This problem gets even worse when several assets exhibit this
behavior, as any combination of these assets lead to an infinite Omega ratio, and the optimal
allocation cannot be uniquely defined. Thus, we need a smoother criterion that takes into
account the possibility of losses in any case. To this end, we introduce the Cornish-Fisher
approximation of the empirical distribution of the portfolio. We compute the four first
moments of the returns of every allocation we consider. These moments characterize the
distribution of returns. The Cornish Fisher approximation takes those moments as an input
to build a distribution, which we use to calculate the past Omega ratio of the considered
portfolio. We do not consider the moments and distribution of each asset separately, but
only the moments of the historical performance obtained by each portfolio constructed with
those assets. Therefore, we do not need to consider explicitly the assets covariances, or
higher order cross-moments, which may be poorly estimated. Details are given in Appendix
A.3.

3 Hedge Funds portfolio specific models

There is a trade-off between model risk and estimation risk in the choice of an allocation
model (see, e.g. Amenc and Martellini, 2002, in the case of hedge funds investing). If the
model is simple, then the risk to miss some important characteristics of the return distri-
bution is high. But this kind of model is likely to be more robust and associated with
small estimation errors. On the contrary, the use of a more sophisticated model in general
decreases the model risk, but also increases dramatically the estimation risk and generates
robustness issues. The literature of hedge funds investing addresses this issue and proposes
two extensions of the usual mean-variance framework that take into account the estimation
risk dimension. The first extension starts from the expected utility maximization approach,
but use finite dimension approximation of the utility function to first reduce the problem
dimension, and then impose some structure on the covariance and higher-order comoments
(Martellini and Ziemann, 2010). The second extension involves more complex specifications
of the covariance matrix that is the central parameter driving portfolio allocation. A parsi-
monious dynamic specification of these covariance parameters are proposed in Giomouridis
and Vrontos (2007).

3.1 Taking into account higher-order moments

A way to reduce model risk is to consider higher comoments, i.e. coskewness and cokurtosis,
in addition to covariance. However, this approach increases further the estimation risk which
is already high in the classic mean-variance framework when the number of assets is high.
Therefore, one could wonder whether the framework using higher-order moments could be
implemented in a realistic way. Martellini and Ziemann (2010) apply some statistical tech-
niques already used in the mean-variance framework to higher-order moments estimation.
These extensions are dimension reduction techniques based on constant correlation (Elton
and Gruber, 1973) and single-factor based (Sharpe, 1963) estimators.
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3.1.1 Finite dimensional expansion

To account for the impact of higher-order moments of asset returns on the portfolio alloca-
tion, Martellini and Ziemann (2010) consider the finite dimensional expansion of a standard
expected utility maximization framework introduced in Section 2.2. Assuming infinite dif-
ferentiability, the utility function U can be approximated as follows:

U (W ) =
∞∑

k=0

Uk (E [W ])
k!

(W − E [W ])k

where W is a random variable representing investor’s terminal wealth. One can typically
assume that the fourth-order development is sufficient to get a good approximation. We
cut the sum after the fourth term and apply the expectation operator to both sides of the
previous equation. We then get the approximated expected utility:

E [U (W )] ' U (E [W ]) +
1
2
U (2) (E [W ]) µ(2) +

1
6
U (3) (E [W ]) µ(3) +

1
24

U (4) (E [W ]) µ(4)

where µ(n) = E [W − E [W ]]n denotes the nth-order centered moment of W . Thus, maximiz-
ing this approximated expected utility allows investors to account for first, second, but also
third (skewness) and fourth (kurtosis) moments and comoments of the underlying assets in
the portfolio. Portfolio choice is no longer a trade-off between expected return and volatility
as in the mean-variance case. It involves high moments considerations that can be written
as direct functions of portfolio weights.

To get an explicit form of the higher-order moments and comoments, Martellini and
Ziemann (2010) introduce higher-order moment tensors M2, M3 and M4 (see Jondeau and
Rockinger, 2006 and Appendix A.4 for explicit expressions of these tensors). As in the gen-
eral expected utility maximization framework, we choose a given U to completely specify
the objective function. We use in the following a CARA utility function. More gener-
ally, this approach can be seen as a midpoint between the mean-variance and the expected
utility maximization framework. Indeed, the two-order approximation corresponds to the
mean-variance case, as the limiting case is the expected utility maximization case. This
suggests applying covariance cleaning techniques developed in the mean-variance case to
more complex allocation models.

3.1.2 Taking into account estimation risk

Even in the mean-variance case, the number of parameters to estimate increases dramati-
cally with the number of assets. This problem is of course even more important when we
consider higher-order moments. For an illustration, we develop the example of n = 10 as-
sets. The number parameters involved in M2 (respectively M3 and M4) is 55 (respectively
220 and 715). Martellini and Ziemann (2010) then address the dimension reduction issue
when estimating the M2, M3 and M4 tensors. Two improved estimators for the higher-order
moment tensor matrices are proposed. The constant correlation estimator (Elton and Gru-
ber, 1973) is a classic solution to overcome the covariance matrix estimator for portfolios
containing a large number of assets. A constant correlation across the underlying assets
improves the out-of-sample mean-variance portfolio performance despite the specification
error. Martellini and Ziemann (2010) extend this approach to M3 and M4 estimators.

An unbiased estimator for the constant correlation parameter is given by the average of

9
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all sample correlation parameters:

ρ̂ =
2

N(N − 1)

∑

i<j

Σ̂i,j√
Σ̂i,iΣ̂j,j

where Σ̂i,j denotes the sample covariance between assets i and j. Thus, the covariance
coefficient can be estimated as follows:

σ̂i,j = ρ̂

√
Σ̂i,iΣ̂j,j

Martellini and Ziemann (2010) extend the idea of constant correlation to the context of
higher-order moment tensors by including appropriate combinations of higher-order como-
ments according to the definition of the matrices M3 and M4.

The single-factor based estimator (Sharpe, 1963) assumes that a single factor explain the
n individual asset returns:

Ri,t = c + βiFt + εi,t

where Ft is a well-diversified market index at time t and εi,t is the idiosyncratic error term
of asset i. The regression residual are assumed to be homoscedastic and cross-sectionally
uncorrelated with covariance matrix Ψ. Based on this specification, the elements of the
covariance matrix and the higher-order moment tensors have the following forms:

M2 = ββ>µ
(2)
0 + Ψ

M3 = (ββ> ⊗ β>)µ(3)
0 + Φ

M4 = (ββ> ⊗ β> ⊗ β>)µ(4)
0 + Γ

where µ
(2)
0 , µ

(3)
0 and µ

(4)
0 are respectively the second, third and fourth centered moments of

the single factor and ⊗ designates the tensor product between two matrices. The detailed
formulas of Φ, Ψ and Γ are provided in Martellini and Ziemann (2010).

3.2 Regime-switching dynamic correlation model
As our focus on hedge funds is portfolio allocation, it is natural to discuss the specification of
the covariance matrix, the essential input of the mean-variance approach. Empirical evidence
observed on hedge fund returns exclude static specifications and clearly support the use of
dynamic models. There are numerous dynamic specifications but, following Giomouridis
and Vrontos (2007), we consider regime-switching models for two reasons. First, they show
that this approach is the most relevant to model hedge fund data. Second, we can control
the increase in the number of parameters by limiting the number of states.

The notion of regime-switching models for correlation was introduced by Ang and Chen
(2002) for explaining asymmetry in the correlation of an equity portfolio. This kind of
stylized facts is also observed on hedge fund returns during the last subprime crisis, where
correlations where submitted to brutal changes. Therefore, a model in which the correlation
could switch between states of nature should be able to provide a better explanation of
the asset’s joint behavior. Intuitively, this switching approach can be seen as a midpoint
between the constant correlation coefficient (Bollerslev, 1990) and the dynamic correlation
coefficient (Engle 2002) models. The first model assumes constant correlation over time. The
second allows correlations to change at every period. In the switching approach, correlation

10
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can only take a finite number of values. We use the dynamic specification proposed by
Pelletier (2006) and applied to hedge fund allocation problem by Giomouridis and Vrontos
(2007). More generally, regime-switching models are used in the hedge funds literature in
a number of contexts including measuring the systemic risk (Chan et al., 2006, Billio et
al., 2010), studying serial correlations (Getmansky et al., 2004) and detecting switching
strategies (Alexander and Dimitiu, 2004).

In this section we provide a short presentation of the regime-switching dynamic correla-
tion (RSDC hereafter). The hedge fund returns are defined by:

Rt = µ + εt

where εt|It−1 ∼ N (0, Vt), µ is a n×1 vector of constants, εt is a n×1 innovation vector and
It is the information available up to time t. The n× n covariance matrix Vt is decomposed
into:

Vt = ΣtCtΣt

where Σt is a diagonal matrix composed of the standard deviations σi,t (i = 1, . . . , n) and
Ct is the correlation matrix. Both matrices are time-varying. In particular, the conditional
variances σi,t are modeled using a GARCH(1,1) specification of the form:

σ2
i,t = αi + βiε

2
i,t + γiσ

2
i,t−1

while the correlation matrix Ct is modeled in a dynamic framework by using:

Ct =
K∑

k=1

1 {St = k} · Ck

where 1 is the indicator function, St is an unobserved Markov chain process independent of
εt which can take K possible values (St = 1, 2, ...,K) and Ck are correlation matrices with
Ck 6= Ck′ for k 6= k′. Regime switches in the state variable St are assumed to be governed
by the transition probability matrix Π = (πi,j). The transition probabilities between states
follow a first order Markov chain:

Pr {St = j|St−1 = i, St−2 = k, . . .} = Pr {St = j|St−1 = i} = πi,j

As in Pelletier (2006) and Giomouridis and Vrontos (2007), we assume that K = 2. The
estimation of the RSDC model can be achieved by using a two-steps procedure (Engle, 2002).
In the first step, we estimate the univariate GARCH model parameters. In the second step,
we estimate the parameters in the correlation matrix and the transition probabilities πi,j

conditional on the first step estimates. Details of the estimation procedure can be found in
Pelletier (2006).

3.3 Taking into account stress scenarios
Hedge fund returns exhibit negative skewness and positive excess kurtosis. These mathe-
matical properties can be explained through the exposure of these funds to extreme events.
Indeed, hedge fund returns show stable positive returns with little volatility most of the
time, but may experience severe drawdowns on rare occasions, with a magnitude exceeding
several times their usual standard deviation. Furthermore, these rare events might not be
observed on historical data. Finding a parametric law that matches this behavior is difficult,
as the scope of such probability distributions is huge, and involve a precise knowledge of
events that typically never happen.
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The stress testing methodology precisely addresses this question (Berkowitz, 2000). It
introduces changes in the asset simulation method, such as simulating shocks that occur
more likely than historical observation suggests, or introducing shocks that never happened,
to reflect a potential structural change or a major crisis. Therefore, we consider a generic and
intuitive method, with the introduction of stress scenarios into the previously used probabil-
ity distribution. This framework can be applied to any parametric or empirical distribution,
as well as in the mean-variance framework. We add to the probability distribution of asset
returns a set of scenarios that may happen with a given probability (see Appendix A.5 for
details).

3.4 How to incorporate the manager’s views?

The classical method to incorporate the manager’s view is to use the Black-Litterman (BL)
method described in Appendix A.6. Given a reference portfolio, the idea of this model is
to modify the allocation in order to take into account the views of the manager. It may be
viewed as a model of tactical asset allocation.

The BL portfolio is a weighted average of the reference portfolio w0 and the portfolio w?

reflecting the views of the manager:

w = αw0 + (1− α)w?

One difficulty is to define the weight α. Generally, one considers a tracking error constraint
to compute α. The input of the model is the value and the uncertainty of the views. We
have:

Pµ = Q + ε

with ε ∼ N (0, Ω). Suppose for example that the manager thinks that the second strategy
will outperform the first strategy by 3% in mean and that the expected return of the third
strategy will be 10%. We then have:

( −1 1 0
0 0 1

) 


µ1

µ2

µ3


 =

(
3%
10%

)
+

(
ε1

ε2

)

Now, he has to define the uncertainty of his views. This is done by scenario analysis. For
example, if he think that Pr {µ2 > µ1 + x%} = y%, we deduce that the volatility of ε1 is
(x%− 3%)/Φ−1 (1− y%). For example, if the manager thinks that the probability that
the second strategy will outperform the first strategy by 5% is 20%, the uncertainty or the
volatility of ε1 is 2.54%.

4 Empirical Results

4.1 Data

We illustrate our analysis by constructing an actively managed fund of funds investing in
hedge fund indices from the CSFB/Tremont database. CSFB/Tremont computes monthly
return data for the 10 strategy indices: convertible arbitrage (CA), dedicated short bias
(SB), emerging markets (EM), equity market neutral (EMN), event driven (ED), fixed in-
come arbitrage (FI), global macro (GM), long/short equity (LS), managed futures (MF) and

12
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multi-strategy (MS). CSFB/Tremont also publish a global index (CST Index) that corre-
sponds to an asset-weighted average of all strategy index performances, with some additional
concentration risk limit. The returns cover the time period from January 1994 through May
2010 for a total of 197 monthly returns. It includes a number of crises that occurred in
the 1990s, i.e. the Mexican, Asian, Russian, LTCM crises as well as the IT bubble in 2000
and the subprime crisis in 2008. This last crisis is particularly interesting since hedge fund
performances during this crisis are disappointing and surprisingly correlated. Figure 1 plots
the historical evolution of the 10 strategy indices compared to the global index and shows
that this last crisis has a huge impact on most hedge fund strategies.

Figure 1: CSFB/Tremont strategy indices

Table 1 reports summary statistics for the hedge fund indices returns over the period. It
presents the annualized return, annualized volatility, Sharpe ratio, skewness, kurtosis, his-
torical drawdown period (MaxDD), with additional information of the first and last month
corresponding to this period (Start MDD and End MDD, respectively). The returns of the
10 hedge fund strategies are very heterogeneous in terms of risk profile. Some strategies
have relatively high annualized volatilities, such as dedicated short bias, emerging markets,
long/short equity and managed futures and can be considered as equity type investments. On
the contrary, convertible arbitrage, event driven, fixed income arbitrage and multi-strategy
exhibit low volatility levels and could be used in a portfolio to substitute some percentage
of the fixed income holdings. Differences in the higher-order moments are also important.
The kurtosis of the 10 indices returns ranges from 0.07 (managed futures) to 156.44 (eq-
uity market neutral), indicating fat-tailness in the return distributions of some strategies,
in particular the ones related to arbitrage trading. Concerning the skewness, 5 strategies
have null or slightly positive asymmetry (dedicated short bias, emerging markets, global
macro, long/short equity and managed futures, i.e. directional strategies). The 5 remain-
ing strategies exhibit significant negative asymmetry (convertible arbitrage, equity market

13



PORTFOLIO ALLOCATION OF HEDGE FUNDS

neutral, even driven, fixed income arbitrage and multi-strategy, i.e. essentially arbitrage
trading strategies). Finally, we observe that the strategies do not produce their historical
drawdown during the same period. If the subprime crisis is the most difficult period for 6
strategies (convertible arbitrage, equity market neutral, even driven, fixed income arbitrage,
long/short equity and multistrategy), global macro and emerging markets hit their draw-
down in 1998 and managed futures in 1995. Interestingly, the last crisis allows the dedicated
short bias strategy to end its drawdown period.

Table 1: CSFB/Tremont single strategy indices descriptive statistics

Hedge Funds strategy Ann. Ret Ann. Vol Skew Kurtosis Max DD Start MDD End MDD

Convertible arbitrage 7.65% 7.18% -2.72 15.70 -32.86% Oct-07 Dec-08

Dedicated short bias -2.92% 16.92% 0.75 1.62 -53.54% Aug-98 Apr-10

Emerging markets 7.76% 15.43% -0.76 4.85 -45.15% Jul-97 Jan-99

Equity market neutral 5.10% 10.75% -11.86 156.44 -45.11% Jun-08 Feb-09

Event driven 10.20% 6.09% -2.55 13.86 -19.15% Oct-07 Feb-09

Fixed income arbitrage 4.98% 6.02% -4.25 28.06 -29.03% Jan-08 Dec-08

Global macro 12.32% 10.18% -0.02 3.40 -26.78 % Jul-98 Sep-99

Long/short equity 9.95% 10.02% 0.00 3.53 -21.97 % Oct-07 Feb-09

Managed futures 6.12% 11.79% 0.02 0.07 -17.74 % Mar-95 Nov-95

Multi-strategy 7.89% 5.45% -1.78 6.29 -24.75 % Oct-07 Dec-08

Table 2 reports correlation coefficients computed for the CSFB/Tremont strategy index
returns. Index returns exhibit low to medium absolute pairwise correlation. Indeed, corre-
lations range from a minimum of 6% between managed futures and long short equity, to a
maximum of 78% for fixed income and convertible arbitrage. The average pairwise corre-
lation is 22%. These low correlations indicate that the potential for risk diversification in
hedge fund investment portfolios is high. However, high kurtosis observed in hedge fund
returns suggests the analysis of covariance dynamics. Figure 2 plots the 24−months rolling
pairwise correlation analysis and clearly reveals the time-variation behavior of correlations.
We observe that pairwise correlations vary over time suggesting that modeling time-varying
correlations may improve optimal portfolio construction.

4.2 Traditional allocation approaches

In this section, we present the results of an investment exercise which compares the empirical
out-of-sample performance of the 8 benchmark allocation models introduced in Section 2,
i.e. mean-variance (MV), constant-Sharpe (CS), minimum-variance (MIN), equally-weighted
risk contribution (ERC), most diversified portfolio (MDP), the two CARA and CRRA op-
timal portfolios (CARA & CRRA) and finally the portfolio obtained when maximizing the
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Table 2: CSFB/Tremont single strategy indices correlations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Convertible arbitrage (1) 1.00

Dedicated short bias (2) -0.26 1.00

Emerging markets (3) 0.43 -0.54 1.00

Equity market neutral (4) 0.21 -0.13 0.14 1.00

Event driven (5) 0.66 -0.57 0.70 0.30 1.00

Fixed income arbitrage (6) 0.78 -0.20 0.41 0.32 0.55 1.00

Global macro (7) 0.34 -0.12 0.45 0.07 0.41 0.40 1.00

Long/short equity (8) 0.44 -0.68 0.65 0.19 0.72 0.38 0.46 1.00

Managed futures (9) -0.09 0.09 -0.04 0.00 -0.06 -0.07 0.28 0.06 1.00

Multi-strategy (10) 0.70 -0.19 0.26 0.35 0.52 0.63 0.26 0.42 0.04 1.00

Figure 2: CSFB/Tremont strategy index rolling correlations
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Figure 3: Density of the correlation variations

Omega ratio (OMEGA). For the mean-variance and constant-Sharpe problems, the volatil-
ity target is set to 7% by year. This value is also used to calibrate the parameters of the two
utility functions CARA and CRRA. We also include in our analysis the portfolio invested
in the global index and the equal-weighted portfolio. The setup of our experiments is the
following. We use the first 24 months history of data to calibrate the empirical distribution
or the model parameters. We then construct optimal hedge fund portfolios. Given the op-
timized weights, we calculate buy-and-hold returns on the portfolio for a holding period of
1 month, at the end of which the estimation and optimization procedures are repeated on
the last 24 months until the end of the dataset. This exercise produces 173 out-of-sample
observations that cover the period January 1996-May 2010.

First, we examine the realized returns of the constructed portfolios. Given the fund
weights wt = (w1,t, w2,t, ..., w10,t) at time t and the realized returns of the 10 indices at
time t + 1, the realized return Rp,t+1 of the portfolio at time t + 1 is computed. Figure
4 report the backtests of these realized returns for the benchmark models. We analyze
the portfolios performance both before and during the subprime crisis. The 10 backtested
portfolios exhibit very heterogeneous performance and risk profiles. Mean-variance, CARA
and CRRA are the most aggressive portfolios, with high positive returns during the first
subperiod. However, these three portfolios suffer during the last period. On the contrary,
minimum-variance, constant-Sharpe, ERC and MDP correspond to conservative portfolios,
with low performance and risk during the first period when compared to the global index
portfolio. However, if the drawdowns of the constant-Sharpe, ERC and MPD are limited
during the last period, the recovery after this crisis is non significant versus the gains observed
on the global index and the equal-weighted portfolios over the same period. The OMEGA
portfolio has very disappointing returns during the post crisis period.
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Table 3: Out-of-sample performance of efficient portfolios with 1-month rebalancing

Model Ann. Ret Ann. Vol Skew Kurtosis Max DD Start MDD End MDD

Panel A: Raw statistics

Global index 9.3% 7.8% -0.2 5.7 -19.7% Oct-07 Dec-08

Equal-weighted 7.7% 4.7% -1.6 9.4 -18.8% Jun-08 Dec-08

Mean-variance 10.5% 9.0% -1.5 9.6 -28.2% Feb-08 Apr-09

Constant-Sharpe 4.7% 7.0% -0.2 3.2 -14.7% May-98 Jan-99

Minimum-variance 4.3% 10.6% -11.6 146.7 -41.9% Jul-08 Apr-09

ERC 6.5% 4.5% -4.1 29.7 -20.7% Jun-08 Dec-08

MDP 6.4% 3.9% -2.0 13.0 -13.8% Jun-08 Apr-09

CARA 8.0% 9.7% -3.2 24.6 -34.3% Feb-08 Jul-09

CRRA 8.0% 9.7% -3.2 24.4 -34.3% Feb-08 Jul-09

Omega 7.7% 6.8% -2.4 14.5 -29.8% Feb-08 Jan-10

Model SR TE IR Alpha DD 1M DD 6M DD 1Y

Panel B: Risk-adjusted statistics and drawdown analysis

Global index 0.72 -7.5% -19.5% -19.1%

Equal-weighted 0.82 4.5% -0.34 -1.5% -6.4% -18.8% -17.4%

Mean-variance 0.74 5.5% 0.19 1.0% -14.3% -25.3% -25.8%

Constant-Sharpe 0.13 9.2% -0.46 -4.2% -5.4% -14.3% -10.6%

Minimum-variance 0.05 11.0% -0.42 -4.6% -38.2% -41.0% -40.8%

ERC 0.61 6.1% -0.43 -2.6% -9.8% -20.7% -19.3%

MDP 0.66 6.3% -0.43 -2.7% -6.9% -11.9% -12.2%

CARA 0.44 7.0% -0.17 -1.2% -21.4% -29.6% -33.7%

CRRA 0.44 7.0% -0.17 -1.2% -21.4% -29.6% -33.8%

Omega 0.58 6.3% -0.23 -1.5% -12.5% -19.4% -26.3%
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Figure 4: Backtest of traditional allocation approach with CSFB/Tremont strategy indices

Second, we compare the different allocation models in terms of risk-adjusted returns.
Portfolio optimization generally produces heterogeneous volatility portfolios. As a result,
realized returns are not directly comparable across models since they represent portfolios
bearing different risks. Table 3 reports these results of the risk-adjusted analysis. Panel A
presents the annualized return, annualized volatility, skewness, kurtosis and historical draw-
down period information. All the portfolios, except the constant-Sharpe, hit their drawdown
during the subprime crisis. The particular behavior of the mean-variance portfolio appears
immediately on the higher-order moments of this portfolio’s returns distribution. Panel B
displays the risk-adjusted statistics (Sharpe ratio (SR), tracking error (TE), information
ratio (IR) and Jensen alpha) and a detailed analysis of the drawdown over 1-month (DD
1M), 6-month (DD 6M) and 1-year (DD 1Y) periods. The best portfolios in terms of Sharpe
ratio are the equal-weight (0.82) and the mean-variance (0.74). The other portfolios have
lower Sharpe ratio than the global index (0.72). The range goes from 0.66 for the most
diversified portfolio to 0.12 for the constant-Shape portfolio. These results confirm the poor
performance of actively managed portfolios. Yearly returns and annually volatility may be
found in Tables 3 and 4 in Appendix A. Figure 5 indicates the average Lorenz curve of the
weights concentration.

Third, we discuss the model choice in terms of transaction costs. Transaction costs
associated with hedge funds, however, are not generally easy to compute (Alexander and
Dimitriu, 2004). Nevertheless, if the gain in the performance does not cover the extra
transaction costs, less accurate, but less variable weighting strategies would be preferred.
To study this issue we define portfolio turnover as in Greyserman et al. (2006), that is
the sum of the absolute changes in the portfolio weights from the previous month to that
month. This metric intuitively represents the fraction of the portfolio value that has to be
liquidated/reallocated at the point of rebalancing.
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Figure 5: Average Lorenz curve of the portfolio weights

4.3 Including higher-order moments
We reproduce in this section the same investment exercise, but with the allocation models
introduced in Section 3.1. These portfolios are obtained by maximizing a finite dimensional
approximation of a CARA utility function. They differ on two points: the approximation
order (2 or 4), and the estimators of the higher-order moments (sample moments, constant
correlation or single factor estimators). We finally get 6 different portfolios. The corre-
sponding cumulative returns are plotted in Figure 6.

The risk-adjusted analysis of these six portfolios is presented in Table 4. Panel A reports
the annualized statistics. We observe that all portfolios have very similar characteristics.
However, two main comments can be done. First, we do not significantly increase the skew-
ness and decrease the kurtosis of the out-of-sample portfolio when higher-order moments
are included in the objective function. Similarly, the historical drawdown is of the same
order and occurred during the same period. Second, the sample estimators are always given
the less performing portfolios. In other words, it is always interesting to add structure to
the estimation of covariance and higher-order moments. Martellini and Ziemann (2010) re-
port similar results. Panel B confirms these findings. The Sharpe performance decreases if
higher-order moments are introduced in the analysis without limiting the estimation risk.
The only way to recover the initial global index performance is to use the constant corre-
lation estimator together with the 4th order expansion. These disappointing results can be
explained by the use of index data. The non-normality on these indices, i.e. average returns,
is not as severe as what we observe on single hedge fund returns. It would be interesting
to apply these utility expansion approaches to less normal distributed return assets. The
moment component analysis proposed by Jondeau et al. (2010) is also a promising solution
to control the estimation risk related to the higher moments.
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Table 4: Out-of-sample performance of efficient portfolios with 1-month rebalancing

Model Estimation Ann. Ret Ann. Vol Skew Kurtosis Max DD Start MDD End MDD

Panel A: Raw statistics

Global index 9.3% 7.8% -0.2 5.7 -19.7% Oct-07 Dec-08

2nd order Sample 10.5% 10.1% -0.3 5.3 -23.3% Feb-08 Jan-10

2nd order Constant 10.6% 9.6% -0.2 4.7 -19.0% Feb-08 Jul-09

2nd order Factor 10.6% 9.8% -0.4 5.5 -21.7% Feb-08 Jul-09

4th order Sample 10.2% 10.0% -0.5 5.0 -24.1% Feb-08 Jan-10

4th order Constant 10.1% 9.4% -0.4 4.4 -22.1% Feb-08 Jul-09

4th order Factor 10.8% 10.1% -0.4 5.2 -21.6% Feb-08 Jul-09

Model Estimation SR TE IR Alpha DD 1M DD 6M DD 1Y

Panel B: Risk-adjusted statistics and drawdown analysis

Global index 0.72 -7.5% -19.5% -19.1%

2nd order Sample 0.67 5.7% 0.19 1.1% -10.6% -15.5% -21.4%

2nd order Constant 0.71 5.3% 0.21 1.1% -9.1% -14.4% -17.4%

2nd order Factor 0.70 5.4% 0.22 1.2% -11.1% -15.0% -20.6%

4th order Sample 0.64 5.6% 0.14 0.8% -10.5% -16.3% -22.2%

4th order Constant 0.67 5.2% 0.14 0.7% -9.1% -15.2% -20.6%

4th order Factor 0.70 5.6% 0.24 1.4% -11.2% -15.1% -20.4%
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Figure 6: Backtest of the allocation methods with higher-order moments

4.4 Including regime-switching dynamic correlation

We now examine the benefits of introducing dynamic structure for the covariance of hedge
fund returns in hedge funds portfolio construction. We need to adapt the previous invest-
ment exercise. Indeed, the calibration of a regime-switching model demands a long history
of data, and then out-of-sample analysis is impossible with monthly data. We consider then
in this section a subset of HFRX strategy indices that display daily returns: convertible
arbitrage, equity hedge, equity market neutral, event driven, macro and merger arbitrage.
Our sample goes from 1 April 2003 to 16 August 2010, i.e. 1 848 daily returns. We com-
pare performance of the HFRX global index, the constant-Sharpe portfolio with a static
covariance specification, and the constant-Sharpe portfolio with a 2 states regime-switching
covariance specification. We use the 300 first days of data to calibrate the model parameters.
We then construct optimal portfolios and compute the buy and hold portfolios returns for 1
day. At the end of the day, we add the current return data to the calibration set and restart
the optimization procedures. This exercise produces 1 548 out-of-sample observations.

First, we comment portfolio performance in terms of cumulative returns using Figure
7. Compared to the global index and the constant-Sharpe portfolio, the regime-switching
portfolio gives the portfolio with the highest cumulative return. Table 5 reports the usual
corresponding statistics. The regime-switching model gives the portfolio that realizes the
highest out-of-sample performance. The most interesting feature is the portfolio returns
during the crisis. The switch in the correlation coefficient limits the maximum drawdown
of the actively managed portfolio (-10.0% instead of -26.3% for the passive portfolio). As a
consequence, the annualized return of this portfolio is higher, the volatility lower and the
Sharpe ratio multiplied by 4.

21



PORTFOLIO ALLOCATION OF HEDGE FUNDS

Figure 7: Backtest of the allocation methods with HFR Hedge Funds sub-indexes

Table 5: Out-of-sample performance of efficient portfolios with 1-day rebalancing

Model Ann. Ret Ann. Vol Skew Kurtosis Max DD Start MDD End MDD

Panel A: Raw statistics

Global index 0.7% 4.4% -1.2 7.9 -26.3% Jul-07 Dec-08

Equal-weighted 0.6% 3.7% -1.7 11.2 -23.2% Jul-07 Dec-08

Constant-Sharpe -0.5% 3.3% -1.9 16.1 -24.5% Jul-07 Dec-08

regime-switching 2.9% 2.5% -0.8 4.4 -10.0% Jul-07 Nov-08

Model SR TE IR Alpha DD 1M DD 6M DD 1Y

Panel B: Risk-adjusted statistics and drawdown analysis

Global index -12.3% -22.9% -23.4%

Equal-weighted 1.6% -0.1 -0.61% -12.1% -20.9% -20.1%

Constant-Sharpe 2.9% -0.4 -2.13% -13.2% -21.3% -21.8%

regime-switching 0.02 3.4% 0.6 0.80% -6.7% -5.6% -7.9%
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Finally, we briefly discuss the average structure of hedge fund portfolios constructed with
the static and dynamic models. The weights of the assets in the regime-switching portfolio
move faster than the ones obtained in the static case. We note that four strategies, merger
arbitrage, macro, equity market neutral and convertible arbitrage have the highest weights
in the average structure of the regime-switching portfolio. One of the main interesting
characteristics of the model is to cut the convertible arbitrage exposure during the last crisis
and increase it at the beginning of 2009.

In summary, we have found that modeling time-varying covariance of hedge fund returns
improves our ability to optimize hedge fund portfolio risk. This is reflected in the reduced
risk of the portfolios constructed with the dynamic covariance models relative to the risk of
the portfolios constructed with the other models.

4.5 Including stress scenarios

Stress scenarios reflect the possibility of extreme drawdowns linked to some rare events.
Table 6 gives a canonical example of stress scenarios definition.

Table 6: An example of stress scenarios

Intensity CA SB EM EMN ED FI GM LS CTA MS
10% −15% 0 0 0 0 0 0 0 0 0
10% 0 −15% 0 0 0 0 0 0 0 0
10% 0 0 −15% 0 0 0 0 0 0 0
10% 0 0 0 −15% 0 0 0 0 0 0
10% 0 0 0 0 −15% 0 0 0 0 0
10% 0 0 0 0 0 −15% 0 0 0 0
10% 0 0 0 0 0 0 −15% 0 0 0
10% 0 0 0 0 0 0 0 −15% 0 0
10% 0 0 0 0 0 0 0 0 −15% 0
10% 0 0 0 0 0 0 0 0 0 −15%

The possibility of individual drawdowns introduces idiosyncratic risks to the probability
measure, which favor portfolio diversification. As the stress scenarios are the same for
all components of the index, the risk level of low volatility components is increased more
proportionally. In other words, less faith is given to low volatility assets. As a result, the
allocation procedure leads naturally to better diversified and more homogeneous portfolios,
without imposing any diversification constraint. This is confirmed by the following historical
simulations.

The stress scenarios given in Table 6 illustrate how they can favor diversification. We
only consider in this example individual drawdowns of the same magnitude, with equal
intensities. A deeper study of hedge fund strategies types could lead to more sophisticated
features, such as different magnitudes, intensities, or joined stress scenarios involving some
or all of the hedge fund strategies types. Such a study could be based on both quantitative
and qualitative properties of those strategies, for example their risk profiles or their typical
exposure to main asset classes. Furthermore, such fundamental studies on hedge funds or
hedge fund classes could highlight hidden risks that a fund of funds manager would be
reluctant to take. The stress scenario approach brings an adapted formalization of those
views, introducing those expectations into the allocation procedure. Therefore, it can be a
way to reduce exposure to hedge funds that are considered hazardous by the manager.
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Figure 8: Backtest of the Stress Scenarios approach

Figure 9: Comparison of average Lorenz curve with and without stress
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4.6 Including views
We suppose that the manager knows the average returns for the next m months. We assume
that the uncertainty matrix Ω is a diagonal matrix with entry ω. We report the results in
Figure 10. As expected, the Black-Litterman approach produces better results than the
previous ones. We notice than the performance depends on two main parameters. Active
bets increase with the tracking-error (TE) level and decrease with the uncertainty parameter.

Figure 10: Backtest of the Black-Litterman approach

Of course, the previous example is not realistic, but it gives an idea about the calibration
of views in a tactical allocation framework. In particular, the key point is not the tracking
error target, but the joint statistics of tracking error and uncertainty. Indeed, in an allocation
process, the portfolio manager has to manage the tracking error level with respect to the
uncertainty of the views given by the hedge funds analysts.
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5 Conclusions
To evaluate the impact of non-normal distribution and time-varying parameters, we illustrate
our analysis using an actively managed fund of hedge funds invested in hedge fund indices
from the CSFB/Tremont and HFR databases. Our main findings are summarized in the
five following points. First, the application of mean-variance and extension models does not
result in performing portfolios of hedge funds. In terms of risk-adjusted returns, all such
portfolios underperformed the CSFB/Tremont global index portfolio. In other words, active
management destroyed value as compared to a static investment in the same underlyings.
Second, the inclusion of higher-order moments at the objective function level does not solve
this problem. If the model takes into account more hedge fund returns characteristics, the
loss in terms of estimation error is too high. This result persists even when some robustness
techniques are used at the estimation level. Third, regime-switching dynamic correlation
models are able to capture changes in correlation between hedge fund strategies and result
in better performing hedge fund portfolios with better diversification. This gives some
intuition about the failings of classic models, and implies that the correlation dynamics
between hedge fund returns are the main feature allocation models must integrate. Fourth,
considering stress scenarios in the allocation process also increases the diversification level of
efficient portfolios. Fifth, views considered in a Black-Litterman framework result in optimal
active portfolios that outperform a static allocation.
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Appendix

A Mathematical aspects of allocation models

A.1 Shrinkage methods
We remind that the shrinkage estimator is:

Σ̂α? = α?Φ̂ + (1− α?) Σ̂

with:
α? = max

(
0, min

(
1
T

π − %

γ
, 1

))

If Φ̂ is the covariance matrix with a constant correlation10 ρ̄, we obtain (Ledoit and Wolf,
2004):

πi,j =
1
T

n∑
t=1

(
(xi,t − x̄i) (xj,t − x̄j)− Σ̂i,j

)2

ϑi,j =
1
T

n∑
t=1

(
(xi,t − x̄i)

2 − Σ̂i,j

)(
(xi,t − x̄i) (xj,t − x̄j)− Σ̂i,j

)

π =
n∑

i=1

n∑

j=1

πi,j

% =
n∑

i=1

πi,i +
n∑

i=1

∑

j 6=i

ρ̄

2

(√
Σ̂j,j

Σ̂i,i

ϑi,j +

√
Σ̂i,i

Σ̂j,j

ϑj,i

)

γ =
n∑

i=1

n∑

j=1

(
Φ̂i,j − Σ̂i,j

)2

In the more general case where Φ̂ is the covariance matrix of the one-factor model, the
expressions of π and γ are the same and % becomes:

% =
n∑

i=1

n∑

j=1

%i,j

with %i,i = πi,j and:

%i,j =
1
T

n∑
t=1

%i,j,t

%i,j,t =
(
Σ̂j,0Σ̂0,0 (xi,t − x̄i) + Σ̂i,0Σ̂0,0 (xj,t − x̄j)− Σ̂i,0Σ̂j,0

(
ft − f̄

))×
(xi,t − x̄i) (xj,t − x̄j)

(
ft − f̄

)/
Σ̂2

0,0 − Φ̂i,jΣ̂i,j

In the expression of %i,j,t, we use the augmented matrix Σ̂ corresponding to the empirical
covariance matrix of (ft, Xt) with the convention that the position of the factor in the matrix
is 0. Thus, Σ̂i,0 is the empirical covariance between ft and xi,t, and Σ̂0,0 is the empirical
variance of the factor.

10We have Φ̂i,i = Σ̂i,i and Φ̂i,j = ρ̄
q

Σ̂i,iΣ̂j,j .
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A.2 Utility function characteristics
The two main features of a utility function are the appetite for gain and the risk aversion.
The appetite for gain is very natural, and can be translated as “more is better than less”.

A.2.1 Some properties

The appetite for gain is captured by the increasing property of U , i.e. its derivative U ′ is
positive. The other main feature is the investor’s risk aversion, translating the fact that the
investor would always prefer a fixed wealth to a random wealth with the same expectation.
This feature corresponds to the concavity of the function U with respect to terminal wealth.
Therefore, for a fixed level of risk, the investor would try to maximize his average return,
and controversy, for a fixed level of return the investor would try to minimize his risks. On
the contrary, a convex utility function (with U ′′ > 0) would imply that the investor is risk
seeking and prefers to maximize his risk for a fixed average return.

The qualitative properties of utility functions are now stated, and we can study the
quantitative properties of these functions. In particular, there is a clear dilemma between
the appetite for high returns and the risk aversion. Indeed, if we consider only one risky asset
and a riskless asset, and if this asset has a known positive expected return, then the money
invested in the risky asset may range from 0 to +∞ depending of the shape of the utility
function. But fortunately, that behavior can be synthesized in a risk aversion coefficient A
given by −U ′′ (x) /U ′ (x) (or −U ′′ (x) / (xU ′ (x)) when relative wealth is considered. This
coefficient may depend of the level of wealth. Two particular cases are interesting: the
constant absolute risk aversion (CARA) or the constant relative risk aversion (CRRA).
In the CARA case, with stable market conditions, the optimal investment strategy is to
keep a fixed absolute amount of risk (i.e. a fixed amount of money invested in the risky
asset). Meanwhile, with a CRRA utility, the optimal strategy keeps a fixed proportion of
the investor’s wealth invested in the risky asset. Therefore, those two fundamental examples
differ on the absolute or relative reference to risks.

A.2.2 Fundamental examples

The CARA utility can be shown to be of the form:

U (x) = 1− exp
(
−x

γ

)

Where the parameter γ is homogeneous to some wealth, and is therefore referred to as the
wealth at risk of the utility function. The absolute risk aversion coefficient is equal to 1/γ.
Thus, the risk aversion parameter increases naturally as the target wealth at risk decreases.
In the case of a single risky asset, it can be shown that the amount w invested in that risky
asset is equal to:

w = γ
µ− r

σ2

In other words, the volatility of the optimal investment strategy is equal to:

σ (w) = w × σ = γ × sh

where sh is the Sharpe ratio of the risky asset. As the Sharpe ratio of a good risky asset can
be in general estimated around 50%, the parameter γ actually deserves its name of wealth
at risk, as it is of the same order of magnitude as the volatility of the optimal portfolio for
this utility function.
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Meanwhile, the CRRA utility can be written as:

U (x) =
xφ

φ

with φ < 1 (in order to ensure a risk adverse behavior). Therefore the relative risk aversion
coefficient is given by:

A = − U ′′ (x)
xU ′ (x)

= 1− φ

and the volatility of the optimal allocation is given by:

σ (w) =
1

1− φ

µ− r

σ
=

sh
1− φ

Therefore, the volatility of the optimal allocation has the order of magnitude of the product
of the Sharpe ratio of the risky asset and a factor 1/ (1− φ) which represents the risk
tolerance. Hence, given the value of the Sharpe ratio of the allocation, the risk aversion
coefficient A = 1 − φ may be calibrated to set the volatility of the optimal portfolio at a
given value.

A.3 Computation of the Omega ratio with the Cornish-Fisher ex-
pansion

The Cornish Fisher approximation can be described as follows. To obtain a random variable
Z with an average µ, a standard deviation σ, a skewness s and an excess Kurtosis κ, it is
sufficient to consider a polynomial of a standard Gaussian random variable X, that is:

Z = P (X) = µ + σ

(
X +

(
X2 − 1

) s

6
+

(
X3 − 3X

) κ

24
− (

2X3 − 5X
) s2

36

)

as long as the following condition is satisfied:

s2

9
− 4

(
κ

8
− s2

6

)(
1− κ

8
+

5s2

36

)
≤ 0

Therefore, to calculate the Omega ratio:

Ω(H) =
E

[
(Z −H)+

]

E
[
(H − Z)+

] =
E

[
(Z −H)+

]

H − µ + E
[
(Z −H)+

]

we just have to calculate the expectation of a the positive part of a gaussian polynomial.
Let P (x) the function defined by:

P (x) = µ + σ

(
x +

(
x2 − 1

) s

6
+

(
x3 − 3x

) κ

24
− (

2x3 − 5x
) s2

36

)

A simple calculus gives:

P (x) = µ− σ
s

6
+ σ

((
1− κ

8
+

5s2

36

)
x +

s

6
x2 +

(
κ

24
− s2

18

)
x3

)

= Q (x)
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Using this result, the formula of the expected return above H when the distribution is given
by the Cornish Fisher expansion is:

E
(
(Z −H)+

)
=

∫ ∞

P−1(H)

1√
2π

P (x) e−
x2
2 dx

=
∫ ∞

P−1(H)

1√
2π

Q (x) e−
x2
2 dx

=
(
µ− σ

s

6

)
A0 (H) + σ

(
1− κ

8
+

5s2

36

)
A1 (H) +

σ
s

6
A2 (H) + σ

(
κ

24
− s2

18

)
A3 (H)

where the coefficient A0, A1, A2 and A3 are given by the following expressions :

A0 (H) =
∫ ∞

P−1(H)

1√
2π

e−
x2
2 dx

= 1− Φ
(
P−1 (H)

)

A1 (H) =
∫ ∞

P−1(H)

1√
2π

xe−
x2
2 dx

=
[
− 1√

2π
e−

x2
2

]∞

P−1(H)

=
1√
2π

e−
(P−1(H))2

2

A2 (H) =
∫ ∞

P−1(H)

1√
2π

x2e−
x2
2 dx

=
[
− 1√

2π
xe−

x2
2

]∞

P−1(H)

+
∫ ∞

P−1(H)

1√
2π

e−
x2
2 dx

=
1√
2π

P−1 (H) e−
(P−1(H))2

2 + 1− Φ
(
P−1 (H)

)

A3 (H) =
∫ ∞

P−1(H)

1√
2π

x3e−
x2
2 dx

=
[
− 1√

2π
x2e−

x2
2

]∞

P−1(H)

+
∫ ∞

P−1(H)

2x√
2π

e−
x2
2 dx

=
1√
2π

(
P−1 (H)

)2
e−

(P−1(H))2

2 +
2√
2π

e−
(P−1(H))2

2

Anyway, we must make sure that the Cornish Fisher expansion is well defined. This random
variable defined by this expansion must be an increasing function of the underlying gaussian
variable. This is insured by the following condition:

s2

9
− 4

(
κ

8
− s2

6

)(
1− κ

8
+

5s2

36

)
≤ 0

By denoting κ̃ = κ
8 and s̃ = s2

9 , we obtain:

s̃− 4
(

κ̃− 3s̃

2

)(
1− κ̃ +

5s̃

4

)
≤ 0
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As we only look for a sufficient condition, we first consider the case where s̃ = 0. In that
case, the condition reduces to −4κ̃ (1− κ̃) ≤ 0. Thus the condition is satisfied for 0 ≤ κ̃ ≤ 1.
If we suppose that it is fulfilled, we have the condition:

s̃− 4
(

κ̃− 3s̃

2

)(
1− κ̃ +

5s̃

4

)
= s̃− 4

(
κ̃− κ̃2 +

5s̃κ̃

4
− 3s̃

2
+

3s̃κ̃

2
− 15s̃2

8

)

= 4
(
κ̃2 − κ̃

)
+ (7− 11κ̃) s̃2 +

15s̃2

2
≤ 0

Resolving this polynomial inequation, we finally find the sufficient condition:

s̃ ≤
11κ̃− 7 +

√
(11κ̃− 7)2 − 120 (κ̃2 − κ̃)

15

A.4 Higher-order moments
The second moment tensor M2 corresponds to the usual variance-covariance matrix:

M2 = E
[
(R− E [R]) (R− E [R])>

]

The representations of M3 and M4 use a column-wise approach that gives the following
expression of the coskewness of assets i, j and k:

si,j,k = E [(Ri − µi) (Rj − µj) (Rk − µk)]

and the cokurtosis of assets i, j, k and l:

κi,j,k,l = E [(Ri − µi) (Rj − µj) (Rk − µk) (Rl − µl)]

where Ri denotes the return of asset i and µi its expected return. To illustrate this column-
wise representation, we give the higher-order moment tensors M3 and M4 for n = 3 assets:

M3 =
[

S1 | S2 | S3

]

M4 =
[

K1,1 K1,2 K1,3 | K2,1 K2,2 K2,3 | K3,1 K3,2 K3,3

]

where:

Sp =




sp,1,1 sp,1,2 sp,1,3

sp,2,1 sp,2,2 sp,2,3

sp,3,1 sp,3,2 sp,3,3


 , Kp,q =




κp,q,1,1 κp,q,1,2 κp,q,1,3

κp,q,2,1 κp,q,2,2 κp,q,2,3

κp,q,3,1 κp,q,3,2 κp,q,3,3




are n× n matrices. Using the Kronecker product, the higher-order moment tensors can be
represented as follows:

M3 = E
[
(R− E [R]) (R− E [R])> ⊗ (R− E [R])>

]

M4 = E
[
(R− E [R]) (R− E [R])> ⊗ (R− E [R])> ⊗ (R− E [R])>

]

Thus, the expressions of the portfolio centered moments are polynomial functions in the
n× 1 vector of the underlying asset weights w:

µ(2) = w>M2w

µ(3) = w>M3 (w ⊗ w)
µ(4) = w>M4 (w ⊗ w ⊗ w)
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Assuming that the wealth W is equal to the final portfolio value and with an initial wealth
equal to one, we can write the expected utility as a function of the portfolio weights:

E [U (W )] ' U
(
w>µ

)
+

1
2
U (2)

(
w>µ

)
w>M2w +

1
6
U (3)

(
w>µ

)
w>M3 (w ⊗ w) +

1
24

U (4)
(
w>µ

)
w>M4 (w ⊗ w ⊗ w)

The investor’s optimization problem is then to maximize this approximated expected utility
with respect to the w.

A.5 Stress scenarios properties

A.5.1 Average time between two stress scenarios

The probability of occurrence of a stress scenario is defined through the concept of intensity,
derived from the theory of Poisson processes. A given level of intensity λ means that the
stress scenario has a probability λ∆t of occurrence during any small time interval ∆t. Thus,
the parameter λ can be interpreted as the yearly probability of occurrence of the scenario.
Therefore, a scenario is observed more frequently if its intensity λ is high. The frequency of
stress scenario observation is therefore proportional to the intensity. From this definition,
we can easily calculate the average time between two observations of the same scenario. If
we denote the last scenario observation date as t = 0, and the next occurrence date of the
same scenario as τ , the probability that the same scenario occurs after a given time t is be
denoted as:

P (t) = P {τ > t}
For small dt, it satisfies the following equation:

P {τ > t} − P {τ > t + dt} = P {t + dt > τ > t}
= P { t + dt > τ | τ > t} · P {τ > t}
= λP {τ > t} dt

Therefore, we get the differential equation:

dP (t) = −λP (t) dt

Using the fact that P (0) = 1, we obtain:

P (t) = e−λt

Then, integrating the probability distribution of t gives us the average time between two
stress scenarios:

E [τ ] =
∫ +∞

0

−t
dP

dt
dt

=
∫ +∞

0

λte−λt dt

=
1
λ

The average time between two stress scenarios is indeed the inverse of its intensity.

32



PORTFOLIO ALLOCATION OF HEDGE FUNDS

A.5.2 Stressing the probability distribution

Stress scenarios can be added when using either parametric or empirical probability distri-
butions. Any criterion relying on an expectation of a function of the portfolio returns is
based on a computation of:

EP [f (rw
t )]

where rw
t is the random return of the portfolio w over some period t, characterized by

its distribution P. We introduce K stress scenarios, which would lead to a performance
rw
sk

for strategy w and scenario sk. The probability of each of those scenarios to occur is
proportional to the length of the backtesting period. Typically, a stress scenario has a 10%
probability to happen each year. We denote by λk the yearly probability of appearance
of the k-th scenario, i.e. the stress intensity. The average number of occurrence of each
scenario is then λkt, while the probabilities of other events sum to 1. Thus, the new formula
to compute the stress expectation is given by:

E [f (rw
t )| s1, . . . , sK ] =

1

1 +
∑K

k=1 λkt

(
EP [f (rw

t )] +
k∑

k=1

λktf
(
rw
sk

)
)

A.5.3 Case of the empirical distributions

With the empirical distribution, we include some hypothetical scenarios into the set of his-
torical returns. The difference between those fictitious stress scenarios and actual historical
observations is their probabilities. In particular, without stress scenarios, backtesting over
n months an allocation w leads to an historical monthly performance rw

t , with t ranging
from 1 to n. In that case, the standard empirical distribution is obtained by considering
that each return occurs with an equal probability 1

n . Thus, the expected utility given by
this allocation is:

Û (w) =
1∑
e αe

×
(∑

e

αe × U (e)

)

where e is the event and αe is the weight of the event. We obtain, with stress scenarios:

Û (w) =
1

n + n∆t

∑K
k=1 λk

(
n∑

t=1

U (1 + rw
t ) + n∆t

K∑

k=1

λkU
(
1 + rw

sk

)
)

=
1

1 + ∆t

∑K
k=1 λk

(
n−1

n∑
t=1

U (1 + rw
t ) +

K∑

k=1

∆tλkU
(
1 + rw

sk

)
)

In general, the expectation of any function of the assets returns can be written as:

Ê [f (r)| s1, . . . , sK ] =
1

1 + ∆t

∑K
k=1 λk

(
n−1

n∑
t=1

f (rt) +
K∑

k=1

∆tλkf (rsk
)

)

A.6 Black-Litterman approach
We assume that the vector µ of expected returns is unknown and we have:

µ ∼ N (π, Γ)

The views of the fund manager are given by:

Pµ = Q + ε
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where P is a k×n matrix Q is a k× 1 vector and ε ∼ N (0,Ω) is a gaussian random vector.
Let µcond the conditional expected return defined by the following optimization program:

µcond = arg min (µ− π)> Γ−1 (µ− π)
u.c. Pµ = Q + ε

We may show the solution is:

µcond = E [µ | Pµ = Q + ε]

=
(
Γ−1 + P>Ω−1P

)−1 (
Γ−1π + P>Ω−1Q

)

After some computations, we finally obtain11:

µcond = π + ΓP>
(
PΓP> + Ω

)−1
(Q− Pπ) (4)

From a practical point of view, the following steps to implement the Black-Litterman model
are:

1. We compute the empirical covariance matrix Σ. Given the portfolio allocation w0, we
deduce the expected returns π as the solution of the inverse mean-variance problem:

π =
2
λ

Σ−1w

2. We define the views of the fund manager by specifying the matrices P , Q, Γand Ω.
We then compute the conditional expected returns µcond given by equation (4).

3. We then solve the traditional tracking error problem:

max w>µcond u.c. (w − w0)
>Σ (w − w0) ≤ σ2

TE

with σTE the maximum level of the tracking error volatility.

11Using the following result on matrix inversion:
“
A + XBX>

”−1
= A−1 −A−1X

“
B−1 + X>A−1X

”−1
X>A−1

we obtain: “
Γ−1 + P>Ω−1P

”−1
= Γ− ΓP>

“
Ω + PΓP>

”−1
PΓ

We deduce that:

µcond =

„
Γ− ΓP>

“
Ω + PΓP>

”−1
PΓ

«“
Γ−1π + P>Ω−1Q

”

= π − ΓP>
“
Ω + PΓP>

”−1 “
Pπ + PΓP>Ω−1Q

”
+ ΓP>Ω−1Q

= π − ΓP>
“
Ω + PΓP>

”−1
Pπ + ΓP>

„
Ω−1 −

“
Ω + PΓP>

”−1
PΓP>Ω−1

«
Q

= π − ΓP>
“
Ω + PΓP>

”−1
Pπ + ΓP>

“
Ω + PΓP>

”−1
Q
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