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1 Introduction

An intense stream of research has been conducted over the past few years to address issues raised by the
practical implementation of Basel II Advanced Measurement Approaches (AMA) and in particular the Loss
Distribution Approach (LDA). Indeed, we believe that most of these issues are now sufficiently clarified to
allow for a survey on operational risk quantitative techniques. This is the aim of this chapter.

The roots of quantitative LDA come from actuarial techniques as they have been developped by the insurance
industry for years. It is of course the most natural idea apart from the fact that actuarial techniques could
not be imported directly without any care because of the specificities of operational risks, most notably the
reporting bias and the paucity of data. All quants who have looked closely to empirical data will agree on
the idea that these two features of OpRisk data have a dramatic impact on capital charge and thus can
definitely not be neglected even though it imposes to deal with more sophisticated computations than we
may have expected initially.

This chapter aims at describing step by step how a full Loss Distribution Approach can be implemented in
practice and how both quantitative and qualitative points of view can be reconciled. Our rule of conduct is
to be as pragmatic as possible and not more sophisticated than necessary. In particular, we explicitly drop
some maybe interesting issues when they should require too much effort in return for too few benefits in
terms of capital charge accuracy. In this respect, we benefit from our experience at Credit Lyonnais and
from all other related experiences and discussions we have been involved in over the last couple of years. In
some sense, we mimick the process which gave birth to the so-called Internal Ratings Based (IRB) formulas
proposed by the Basel Committee for credit risk: quants first started from a highly sophisticated credit risk
model and downgraded it until it turned out to be an acceptable, implementable and pragmatic proxy of the
“correct” capital charge. As an example it is worth noting that, at some time in the downgrading process,
it appeared that simplicity demands assuming that credit risk is driven by only one source of risk which is
furthermore assumed to be normally-distributed. All credit risk specialists will agree on the point that both
one-factor and normal distribution assumptions are very simplistic and unrealistic assumptions but that the
resulting capital charge is accurate enough to pretend representing an acceptable measure of risk. This is
the spirit we try to adopt here.

The second contribution of this chapter is to give some numerical calculations of the accuracy of capital
charge estimates. As by definition the severity and frequency estimations are processed with few available
data, it is crucial to have a clear view of the inaccuracy of capital charge estimates. Furthermore, an estimate
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of the inaccuracy is the basic tool for addressing the issue of the number of losses (both external and internal)
which are necessary for a reliable estimate of the capital charge.

This chapter follows the different steps necessary for implementing a LDA in practice:

• Step 1: Severity Estimation

• Step 2: Frequency Estimation

• Step 3: Capital Charge Computations

• Step 4: Confidence Interval

• Step 5: Self Assesment and Scenario Analysis

For each of these steps, we try to give illustrative examples and we gather all demanding mathematics into
subsections named Technical Appendix. We hope it will allow for a more reader-friendly chapter.

2 Severity Estimation

This is probably the most difficult task as text-book techniques can not be used directly because available
loss data are plagued by various sources of bias. This is the unfortunate case where our requirements –
simplicity and accuracy – contradict each other: treating our data as if they were text-book, unbiased data,
for the sake of simplicity is unacceptable as it may lead to highly inaccurate and entirely flawed capital
charge (see Baud, Frachot and Roncalli, 2003 and Fontnouvelle et al., 2003). Therefore we really have to
accept some complexity. It is however possible to make reasonable simplying assumptions which deteriorate
the accuracy of capital charge to an acceptable extent.

2.1 Scaling Issues and Reporting Biases

Let us consider that the severity distribution has to be estimated from (say) m sets of loss data coming
from m different “providers” (with “provider” meaning either a business unit within a bank or an external
entity/consortium). Severity calibration can not be undertaken before deciding in which of the two following
cases we fall:

• Case 1: The m sources of loss data are assumed to be drawn from the same primary
probability distribution but loss data are reported according to some (possible) different
thresholds. In other words, when we pool the m sources of data together, we are not mixing data
which would be different in nature. We are just mixing similar data but these data is “packaged”
differently.

• Case 2: The m sources of loss data come from different primary probability distributions
and thus have to be re-scaled. In addition, they may also be reported according to some
different thresholds. In this case, it really means that we try to mix data which are fundamentally
different by nature.

We argue that Case 2 is obviously the most general case and certainly the most realistic case. Who would
contradict the fact that (say) “external fraud” losses are structurally different from one country to another,
from one large bank compared to a small one etc ? However, at the state of knowledge of our OpRisk
community, Case 2 is much more too complex to be addressed properly and the benefits we
would (hardly) secure would probably not be worth the effort. There are some reasons why we
advocate this position:
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• first, even though some tentative works have been done to find out a way to rescale severity distributions
(see Shih, Samad-Khan and Medapa, 2000), such a task requires large sets of data and sets of data
coming from different sources (i.e. external and internal) and it is unreasonable to take for granted
that this is always feasible for all risk types. No doubts that the OpRisk community will investigate
this point in the coming years when datasets will get larger and larger. As of today, it is unrealistic to
consider that a reliable scaling function can be estimated.

• secondly, scaling formulas must be derived for each bank and nothing ensures that scaling formula
can be imported from one bank to another bank. The scaling formula is a mechanical transformation
which says how the “internal” severity distribution is to be compared with the “external” one. As a
result, if we accept the logic of Case 2, we should acknowledge that each bank may have to estimate
its own scaling formula.

• Third, there may be more differences between two business units within a bank (for example if they
operate in rather different countries) than between one internal business line and an external one.
Then, again if we accept the logic of Case 2, we should also think of deriving a scaling formula for
data coming from two different business lines within the bank. Ths is certainly hard work which stays
beyond the state of ressources dedicated to OpRisk in our institutions.

• Last but not least, some remarkable work done by Fontnouvelle et al., 2003 shows that, empirically
speaking, scaling issues are not so dramatic as the authors evidence great similarities between different
sources of loss data (OpVantage, OpRisk Analytics) once reporting biases have been properly
corrected.

We then suggest to abandon Case 2 and to consider that reporting bias is the most important issue, in the
same spirit as in Fontnouvelle et al., 2003. Therefore we leave Case 2 and scaling issue for a Basel III round.
As a result, the task of calibrating severity distributions is made simpler as only reporting biases have to be
considered.

2.2 How to Adjust for Reporting Bias?

In theory, the data collection threshold affects severity estimation in the sense that the sample severity
distribution (i.e. the severity distribution of reported losses) is different from the “true” one (i.e. the
severity distribution one would obtain if all losses were reported). Unfortunately, the true distribution is the
most relevant for calculating capital charge and also for being able to pool different sources of data in a
proper way. As a consequence, linking the sample distribution to the true one is a necessary task.

It can be done by using conditional distributions and by solving Maximum Likelihood (ML) program accord-
ingly. This point is now widely acknowledged (Baud, Frachot and Roncalli, 2002 and Fontnouvelle et al.,
2003) even though solving such a conditional ML program is not so easy. Furthermore Baud, Frachot and
Roncalli, 2003 have proven that neglecting reporting bias implies very poor estimates of the severity distri-
bution. In particular, in absence of an appropriate adjustment, pooling data coming from different sources
(with different data collection thresholds) results in strongly biased severity distribution which eventually
appeared to be much riskier than it actually is.

For practical calculations, it is probably not necessary to go as far as Baud, Frachot and Roncalli, 2002 have
suggested. In their paper, the authors consider that, for external databases, there are as many thresholds
as contributors and therefore they propose to treat thresholds as stochastic. This is certainly true and
realistic but is complicated to tackle as the corresponding likelihood is quite sophisticated. We then suggest
to consider that each dataset has one threshold and that the stated threshold is the actual one unless there
exist strong counter-arguments. We thus refer to Baud, Frachot and Roncalli, 2002 for a general treatment
of threshold corrections.
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Mathematically, calibration is done by maximizing the loglikelihood function. Suppose for sake of simplicity
that the severity distribution is lognormal with parameters µ and σ then one has to solve:

max
(µ,σ)

`n (µ, σ) =
n∑

i=1

` (ζi, µ, σ | Hi) (1)

where n is the number of losses, ` (ζi, µ, σ | Hi) is the loglikelihood of the ith loss (reported subject to the
threshold Hi).

Technical Appendix 1 The expression of the loglikelihood function is now common-knowledge. Let us
consider a dataset whose threshold is H, the sample distribution is equal to:

fsample (x;µ, σ | H) := 1 {x ≥ H} · f (x;µ, σ)∫ +∞
H

f (y; µ, σ) dy
= 1 {x ≥ H} · f (x;µ, σ)

1− F (H; µ, σ)

where f (x; µ, σ) is the true probability density function (which is assumed to be lognormal distribution
LN (µ, σ)) and F is the corresponding cumulative distribution function. As a result, the loglikelihood function
is:

`n (µ, σ) =
n∑

i=1

ln f (ζi; µ, σ)− n× ln (1− F (H; µ, σ))

where ζi is the ith loss and n is the number of losses. This is the second term which corrects for reporting
bias. We see in particular that it vanishes away when the threshold is equal to zero. As a consequence, if
thresholds are low then this last term is negligible but, on the contrary has a huge impact when they are
significant or if they differ significantly from one dataset to another. This bias correction is essential for
ensuring that different sources of data are pooled together properly.

2.3 How to Treat Aggregate Loss Data?

In some instances, loss data are not reported on a single-loss basis but are instead aggregated together. In
this case, only the aggregate value is reported into the internal database. Assuming that we also know the
underlying number of events corresponding to this aggregate loss, we may wonder whether this aggregate
loss carries valuable information for the purpose of severity estimation. Indeed it does but how to extract
this information is not straightforward (see for example Frachot, Georges and Roncalli, 2001 for a discussion
of the Generalized Method of Moment (GMM)). GMM is not too complicated to implement though it is
more difficult to tackle both single-losses and aggregate losses simultaneously as Maximum Likelihood and
GMM techniques do not marry easily.

This issue is also related to the data collection threshold: data losses are assumed to be reported on a single
basis provided they are higher than the threshold. As a consequence, as soon as a precise threshold will be
set, aggregate losses will become less and less a cause of concern. Therefore, we do not address this question
here.

3 Frequency Estimation

If we still try to stick to simplicity, it is a good idea to assume that the frequency distribution is a Poisson
distribution. This distribution has many appealing features: first it is widely used in the insurance industry
for modeling problems similar to operational risks; secondly it needs only one parameter (called λ) to be
entirely described and, third, the ML value of this parameter is simply the empirical average number of
events per year. However some care is necessary when reporting biases operate. For obvious reasons, if one
bank’s reporting cut-off is set at a high level, then the average number of (reported) events will be low. It
does not imply, in any sense, that the bank is allowed to put a lower amount of capital than another bank
which uses a lower threshold and is otherwise identical to the first one. It simply means that the average
number of events must be corrected for reporting bias as well.
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It appears that the calibration of the frequency distribution comes as a second step (after having calibrated
the severity distribution) because the forementionned correction needs an estimate of µ and σ for its cal-
culation. This is rather straightforward: the difference (more precisely the ratio) between the number of
reported events and the “true” number of events (which would be obtained if all losses were reported, i.e.
with a zero-threshold) corresponds exactly to the probability of one loss being higher than the threshold.
This probability is a direct by-product of the severity distribution. The following technical appendix gives
the mathematical expression of this probability, which in turn provides a straightforward way to make the
appropriate correction.

Technical Appendix 2 The expression of the “true” frequency parameter is given by:

λ =
λsample

Pr {loss > H}
which is mathematically equal to:

λ =
λsample

1− F (H; µ, σ)

In practical terms, one has to compute the average number of reported events by year (which is an estimate
of λsample) and to use the previous estimates of µ and σ to uncover the true frequency distribution.

What about external data and scaling issues? Exactly as in the previous section, we may have
information on frequency of events experienced by competitors or by the whole banking industry. The
extent by which they can be seen as a valuable information remains unclear as long as the scaling function
is unknown. Here the scaling function gives the link between the number of events experienced by one bank
and its business size (or any variable which may be considered as relevant for evaluating the expected number
of events). For example, past litterature has suggested that a square-root pattern may be appropriate for
modelling the scaling function (i.e. the number of events of one bank is linked to the square-root of its
business size). Other works have proposed to use credibility theory as a way to adjust internally-estimated
frequencies (Frachot and Roncalli, 2002). However we should honestly acknowledge that these methods
are hardly implementable because, again, few risk managers have enough data to test and calibrate such
functionnal links. Before a Basel III round takes place, it may be preferable to take internal frequencies of
events for granted, provided that they have been validated by bank’s experts (and otherwise corrected by
some expert-based adjustments when necessary). Quantitative adjustments by use of external frequencies
require data which are out of reach as of today and therefore would be more confusing than relevant for our
purpose.

4 Capital Charge Computation

Once the frequency and severity distributions have been calibrated, the computation of capital charge is quite
simple, provided we agree on its precise definition. Capital charge processing is done thanks to Monte Carlo
simulations which are standard skills among quants. We shall not spend much time here to detail how to
set up a Monte Carlo scheme since many papers have done this before. We prefer to give our understanding
of some widely-discussed issues related to capital charge calculations.

4.1 What is the Definition of the Capital Charge?

There remain ambiguities around the definition of the regulatory capital charge. We are aware of at least
three distinct definitions:

• Definition 1 (OpVaR): The capital charge is the 99.9% percentile of the total loss distribution.

• Definition 2 (OpVaR Unexpected Loss Only): This is the previous OpVaR from which expected
losses are substracted. The current Basel proposal seems to accept this definition as long as the bank
can demonstrate that it has adequately provided for expected losses through pricing, reserves, and/or
expensing practices.
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• Definition 3 (OpVaR Above Threshold): The capital charge is the 99.9% percentile of the total loss
distribution where only above-the-threshold losses are considered.

The three definitions can be implemented through Monte Carlo simulations with roughly the same level of
complexity but they obviously give different figures.

Technical Appendix 3 If N is the (random) number of events, then the aggregate loss is L =
∑N

i=0 ζi.
The three definitions can then be expressed in mathematical terms as:

• Definition 1
Pr {L > OpVaR} = 0.1%

• Definition 2
Pr {L > OpVaR + EL} = 0.1%

where EL is the expected total loss E
[∑N

i=0 ζi

]
.

• Definition 3

Pr

{
N∑

i=0

ζi × 1 {ζi ≥ H} > OpVaR

}
= 0.1%

where 1 {ζi ≥ H} equals 1 if the loss exceeds the threshold H and 0 otherwise.

4.2 How does Reporting Bias Affect Capital Charge Estimate?

The way capital charge is influenced by the level of the data collection threshold depends on the definition.

• Definitions 1 and 2: Since these definitions never mention any reference to the data collection process,
the two capital charges are independent of any threshold which may be used in practice. In both cases,
capital charge intends to represent the amount of capital to put aside operational risk within a bank. As
such, it has no reasons to depend on the way loss data are reported. In particular, the fact that bank’s
risk management policy has made up its mind for some specific reporting threshold says that only loss
data higher than the threshold will be captured in risk management system but does not say anything
on intrinsic riskiness of the bank. As a consequence, setting a reporting threshold should not affect
the capital charge. If previous steps have been carefully followed, that is if appropriate correction has
been taken to neutralize reporting bias, then the numerically-calculated capital charge is also invariant
with respect to the threshold.

• Definition 3: As the threshold value enters explicitly in the definition, then the capital charge does
depend on the threshold. Since in Definition 3 all losses below the threshold are excluded, the total
aggregate loss is thus below the one which enters Definition 1. As a result, the capital charge in
Definition 3 is getting lower as the threshold is set at a higher level.

More subtle is the fact that the threshold may affect the accuracy of the capital charge since frequency and
severity parameters’ accuracy do depend on the threshold. Intuitively accuracy is likely deteriorated when
the threshold is set at a high level because the calibration of the severity distribution relies on too few data.
In other words, the extrapolated part of the severity distribution becomes too important. Therefore, as far
as Definitions 1 and 2 are concerned, the trade-off which results in an optimal threshold has more to do with
the balance between collecting costs and the accuracy of the capital charge than with the level of the capital
charge itself.
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4.3 How to Aggregate Capital Charges for Different Loss Types and Business
Lines?

This issue remains to be addressed. From a theoretical point of view, one can admit that aggregate losses by
risk-type are not perfectly correlated and thus summing up all capital charges together is highly conservative.
The first point to be discussed is to clarify which correlation we are talking about. As the capital charge
results from two sources of randomness – frequency and severity – there are also two possible sources of
correlation.

As an example, we may find that aggregate losses for (say) external fraud and internal fraud are correlated
because either frequency of events or severity of events are correlated. In the former case, we should observe
that, historically, the number of external fraud events is high (respectively low) when the number of internal
fraud events is also high (respectively low). This is a sensible way to consider correlation between aggregate
losses of two different event types. On the contrary, we feel much less confortable with the other way,
i.e. severity correlation. In effect, a basic feature of actuarial models requires to assume that individual
losses are jointly independent within one specific risk type. Therefore it is conceptually difficult to
assume simultaneously severity-independence within each class of risk and severity-correlation
between two classes.

Subsequently, we would rather assume that correlation between aggregate losses by event-type
is fundamentally conveyed by the underlying correlation between frequencies. By analogy with
credit risk models, we expect that, even with strong frequency-correlation, aggregate losses may show low
level of correlation. Furthermore one may also guess that it is particularly true for high severity events since
severity-independence likely dominates frequency-correlation. This point is confirmed by our calculations in
the following technical appendix: even if two risk types occur with highly-correlated frequencies,
aggregate losses show low levels of correlations.

Since strong frequency-correlation might not translate in strong correlation of aggregate losses,
we conclude that diversification effects could be worth being taken into account as they may
significantly reduce the total capital charge (compared with the full-correlation feature which is as-
sumed when adding together capital charges of all event-types and/or business units).

Technical Appendix 4 Let us consider two aggregate losses L1 =
∑N1

i=0 ζ1
i and L2 =

∑N2
i=0 ζ2

i . In order
to obtain tractable formula, we assume that the two frequency distributions have the same parameters —
λ1 = λ2 = λ. If N1 and N2 are perfectly correlated, it comes that N1 = N2 = N . We have

cov (L1, L2) = E [L1L2]− E [L1]E [L2]

= E

[
N∑

i=0

ζ1
i

N∑

i=0

ζ2
i

]
− E [L1]E [L2]

= E
[
N2E

[
ζ1

]
E

[
ζ2

]]− λ2E
[
ζ1

]
E

[
ζ2

]

=
(
var (N) + E2 [N ]− λ2

)
E

[
ζ1

]
E

[
ζ2

]

= λ× E [
ζ1

]× E [
ζ2

]

We deduce that an upper bound of the correlation between the two aggregate losses is

cor+ (L1, L2) =
E

[
ζ1

]× E [
ζ2

]
√

(var (ζ1) + E2 [ζ1])× (var (ζ2) + E2 [ζ2])

We remark that the correlation between the two aggregate losses does not depend on the Poisson parameter
λ. When the severity distributions are lognormal, we obtain after some computations the following results:

cor+ (L1, L2) = exp
(
−1

2
σ2

1 −
1
2
σ2

2

)
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Figure 1: Upper bound of the correlation between two aggregate losses

The correlation is then a very simple formula which depends only on the values σ1 and σ2. Moreover, we
remark that the function is decreasing with respect to these parameters. We report in Figure 1 the relationship
between σ1, σ2 and cor+ (L1, L2). For high severity loss types, cor+ (L1, L2) is very small. For example,
when σ1 = σ2 = 2 and σ1 = σ2 = 2.2, cor+ (L1, L2) takes respectively the values 1.8% and 0.8%.

Remark 1 We point out that even for low severity loss types, the correlation between the aggregate losses
is very small: it can not be bigger than 10%, which is certainly very conservative — it corresponds to the
case where σ1 = σ2 = 1.50.

As a conclusion, according to the basic principle of actuarial / LDA models, correlations between aggregate
losses are necessarily low. Our numerical computations suggest to set the correlation well below 10%. Finally,
aggregation of capital charges can be performed by using the Normal approximation presented in Frachot,
Georges and Roncalli, 2001.

5 Confidence Interval

The previous procedure provides an estimation of the capital charge which is uncertain by nature. One can
guess that our regulators will expect from us to demonstrate that the estimate is not too far from its fair
value. This is a crucial point in operational risk modelling because of the paucity of data which normally
should translate into poor accuracy. As it will become clear in the sequel, confidence interval is the basic
tool for justifying the computed capital charge as well as for addressing numerous issues.

The inaccuracy of the capital charge is directly linked to the inaccuracy of the estimators of the three
underlying parameters λ, µ and σ. Therefore building a confidence interval of the capital charge can proceed
as follows:

• first, derive the (in some cases, approximate) distribution of the underlying estimators;

• draw from these distributions a sufficiently large number of simulations;
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• finally, for each path, compute the capital charge and then obtain its empirical distribution.

5.1 Parameters’ Accuracy

The most critical point is of course the methodology for building an approximate distribution of the esti-
mators of the underlying parameters. For the frequency parameter λ, this task is straightforward because
we know the exact distribution of the estimator which is also Poisson-distributed. For the two remaining
parameters µ and σ of the severity distribution, we can follow two different methodologies:

• Bootstrap methods

• Gaussian Approximation (for example because ML theory applies)

We are in favour of the second method because most of people (in particular regulators) are much more
familiar with Gaussian distribution than with Bootstrap methods. Furthermore, commercial package can
implement this methodology at almost no cost while Bootstrap methods may require some further develop-
ments. The last question which remains to be answered is to give the precise Gaussian distribution satisfied
by the estimators of the severity parameters. This is done in the next Technical Appendix. It is worth saying
that it can be derived as a by-product of step 1 (severity calibration) and thus does not require significantly
more efforts.

Finally, we see that the accuracy of the frequency estimator improves when the number of recorded years
T grows, and with an order of magnitude of

√
T . As an example, using a 5-year historical length instead

of a 3-year length improves accuracy (as measured by the standard deviation) to an extent of 30% (i.e.√
5/3 = 1.29). Similarly, the accuracy of the severity estimators follows the same pattern and behaves as√
n where n is the number of (both internal and external) losses.

Technical Appendix 5 If the number of events is asumed to be Poisson, then the ML estimator of the
annual number of events λ̂T is the average number of events per year for the last T years (if T is the number
of recorded years). The estimator is Poisson-distributed in the following sense1

T × λ̂T ∼ P (T × λ)

From ML theory, it comes that the estimators µ̂ and σ̂ are approximately Gaussian with:
(

µ̂n

σ̂n

)
≈ N

((
µ
σ

)
, Ωn

)

where Ωn is the inverse of the so-called Fisher information matrix:

Ωn = −
(

∂2`n/∂µ2 ∂2`n/∂µ∂σ
∂2`n/∂µ∂σ ∂2`n/∂σ2

)−1

`n is the loglikelihood function introduced in step 1. Therefore we just have to compute its second derivative
with respect to the parameters. Since step 1 requires to maximize the loglikelihood, this second derivative is
also computed in the course of the optimization (if a standard Newton-Raphson algorithm is used). In this
sense, it appears to be a by-product of step 1.

Remark 2 We assume that the estimator λ̂ is independent with respect to the estimators of the parameters
of the severity distribution. This assumption seems natural. However, we can not assume that µ̂n and σ̂n

are independent. From ML theory, µ̂n and σ̂n are asymptotically independent only when the threshold H is
zero (see Figure 2).

1We verify that

plim
P (T × λ)

T
= λ

9



Figure 2: Asymptotic correlation between µ̂n and σ̂n

5.2 Capital Charge Accuracy

As capital charge is directly linked to the frequency and severity parameters, its accuracy is easily derived
from above results. Generally speaking, the probability distribution of any function of the underlying pa-
rameters can be computed provided we know the distribution of the underlying parameter estimators and
we are able to calculate its first derivatives with respect to the parameters.

In practice, we simulate paths of frequency and severity parameters according to the approximate distribution
derived in the previous subsection, then, for each path, we compute the capital charge and we eventually
obtain its probability distribution. Following is a numerical example.

Suppose that λ = 100, µ = 9 and σ = 2. The number of recorded years is T = 5 years and the number of
losses is n = 1000. Since the average number of events per year is λ = 100 and the number of recorded years
is 5, it is rather unlikely that all the 1000 losses may come from internal databases. As a result, this example
assumes that internal databases are supplemented with external losses. Finally, we also assume that the
threshold is equal to 5000 euros. In Figure 3, we report the following ratios:

RFreq =
OpVaR

(
λ̂T , µ, σ

)

OpVaR (λ, µ, σ)

RSev =
OpVaR (λ, µ̂n, σ̂n)
OpVaR (λ, µ, σ)

RFreq+Sev =
OpVaR

(
λ̂T , µ̂n, σ̂n

)

OpVaR (λ, µ, σ)

R is then the ratio between the capital charge estimator (for various cases) and the true capital charge.
RFreq (and respectively RSev) corresponds to the case where the frequency parameter (resp. the severity
parameters) is the only parameter assumed to be random. It permits to assess which part of the total
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inaccuracy is attributable to each parameter. The real-life case where both the frequency and severity
parameters are random is captured by RFreq+Sev. In order to give an idea of the accuracy of the capital

Figure 3: Probability density function of ÔpVaR

charge estimate, we may estimate the value c defined as follows

Pr
{

ÔpVaR ≥ (1− c)×OpVaR
}

= α

where ÔpVaR is the capital charge estimate and OpVaR its true value2. This criterion is well-suited for
regulatory purposes since regulators will probably focus on the risk of under-estimating the
capital charge.

Using the previous numerical values for λ, µ and σ, and defining ÔpVaR as OpVaR (λ, µ̂n, σ̂n) – we treat
here the frequency parameter as given and not random – we obtain the following results for c:

α
n 75% 90% 95%

100 42% 60% 68%
1000 16% 26% 31%
10000 5% 9% 12%

As an example, for n = 10000 losses, the capital charge may be underestimated by less than 15% (if
we consider a 95% level of confidence). We remark that the error increases with the confidence level α
and decreases with the number of losses of the database. Now, if we consider that both the frequency
parameter and the parameters of the severity loss distribution are random – ÔpVaR is now defined as

2Here OpVaR is defined according to definition 1 of the previous section.
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OpVaR
(
λ̂T , µ̂n, σ̂n

)
– the results become:

α
n 75% 90% 95%

100 26% 50% 58%
1000 5% 18% 24%
10000 -1% 5% 7%

Finally, if we suppose the severity as given and non random (µ = 9 and σ = 2), ÔpVaR = OpVaR
(
λ̂T , µ, σ

)

is a function of the number of years T , and we may verify that the error c decreases with T .

As a conclusion, we must stress the fact that capital accuracy depends on the value of the frequency
and severity parameters. In particular, capital accuracy is probably different whether it is computed for
low severity/high frequency or high severity/low frequency events. In this sense, there is no one-size-fits-all
rule for deriving capital charge accuracy. Therefore we suggest to compute systematically capital accuracy.
Finally it is worth saying that our results confirm that external data may be necessary in some
cases.

6 Other Issues

Previous sections have shown how to build a sound and pragmatic LDA which addresses most important
issues. We now turn to some remaining issues/questions.

6.1 Goodness of Fit Tests

It is probably interesting to search for the distribution which fits best loss severity or to wonder if the Poisson
distribution is well-suited to modelling frequency. Again we back the idea that these questions should be left
for future research as they imply endless discussions. If the entire OpRisk community commits itself to use
one definite set of distributions (say Poisson × Lognormal), it would greatly simplify comparisons between
banks’ capital charges, and these benefits would largely encompass the (probably small) loss of accuracy due
to the use of one-size-fits-all distributions.

6.2 Data Sufficiency

This question can now receive a rigorous answer thanks to confidence intervals. Since capital charge accuracy
depends directly on the number of observed losses, we just have to check whether the capital charge is
calculated with an acceptable accuracy where “acceptable” means that the confidence interval is not too
wide.

Let us consider the problem of the previous section. We have computed the value c satisfying
Pr

{
ÔpVaR ≥ (1− c)×OpVaR

}
= α for a given value of α – n and T are fixed. Now, c is set to an

“acceptable” level and we want to find n? such that Pr
{

ÔpVaR ≥ (1− c)×OpVaR
}
≥ α if n ≥ n?. It then

answers the question of the number of external losses necessary to achieve an acceptable accuracy.

Example 1 Suppose that λ = 100, µ = 9 and σ = 2. We assume that T is 5 years. Moreover, we assume
that the threshold is equal to 5000 euros. In Figure 4, we report the relationship between the probability
Pr

{
ÔpVaR ≥ (1− c)×OpVaR

}
and the number of losses n. It is now easy to find the minimum observation

n? for a given value of α. For example, if c = 20% and α = 80%, n? is approximatively equal to 580 if µ = 9
and σ = 2 and 940 if µ = 7 and σ = 2.5. If c = 25% and α = 80%, n? takes respectively the values 240 and
490, etc.
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Figure 4: Relationship between the probability Pr
{

ÔpVaR ≥ (1− c)×OpVaR
}

and the number of losses
n

Technical Appendix 6 If we suppose the frequency as given and non random, we may find an analytical
expression of n?. From ML theory, we recall that the estimators µ̂ and σ̂ are approximately Gaussian with

√
n

((
µ̂n

σ̂n

)
−

(
µ
σ

))
−→ N (

0,J−1
)

where J is the Fisher information matrix. Because we define ÔpVaR as OpVaR (λ, µ̂n, σ̂n), we have
√

n (OpVaR (λ, µ̂n, σ̂n)−OpVaR (λ, µ, σ)) −→ N (
0,J−1

h

)

with

J−1
h =

[
∂µOpVaR (λ, µ̂n, σ̂n) ∂σOpVaR (λ, µ̂n, σ̂n)

]J−1

[
∂µOpVaR (λ, µ̂n, σ̂n)
∂σOpVaR (λ, µ̂n, σ̂n)

]

If we solve the equation
Pr

{
ÔpVaR ≥ (1− c)×OpVaR

}
= α

we find that

n? =
(

Φ−1 (α)
c×OpVaR (λ, µ, σ)

)2

J−1
h

If we apply this formula to our previous example, we obtain the following results:

α
c 60% 70% 80% 90%

10% 240 1040 2700 6260
20% 60 260 670 1560
30% 20 110 300 690
40% 60 160 390
50% 40 100 250

λ = 100, µ = 9, σ = 2, H = 0

α
c 60% 70% 80% 90%

10% 400 1740 4500 10430
20% 100 430 1120 2600
30% 40 190 500 1150
40% 20 100 280 650
50% 10 60 180 410
λ = 100, µ = 9, σ = 2, H = 5000
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α
c 60% 70% 80% 90%

10% 410 1760 4540 10530
20% 100 440 1130 2630
30% 40 190 500 1170
40% 20 110 280 650
50% 10 70 180 420
λ = 100, µ = 7, σ = 2.5, H = 0

α
c 60% 70% 80% 90%

10% 820 3530 9110 21120
20% 200 880 2270 5280
30% 90 390 1010 2340
40% 50 220 560 1320
50% 30 140 360 840
λ = 100, µ = 7, σ = 2.5, H = 5000

7 Self Assesment and Scenario Analysis

The concept of Scenario Analysis should deserve further clarification. Roughly speaking, when we refer to
Scenario Analysis, we want to express the idea that banks’ experts and experienced managers have some
reliable intuitions on the riskiness of their business and that these intuitions are not entirely reflected in the
bank’s historical, internal data. As a first requirement, we expect that experts should have the opportunity
to give their approval to capital charge results. In a second step, one can imagine that experts’ intuitions
are directly plugged into severity and frequency estimations.

Experts’ intuition can be captured through scenario building. More precisely, a scenario is given by a potential
loss amount and the corresponding probability of occurrence. As an example, an expert may assert that a
loss of (say) one million euros or higher is expected to occur once every (say) 5 years. This is a valuable
information in many cases, either when loss data are rare and do not allow for statistically sound results or
when historical loss data are not sufficiently forward-looking. The issue which has to be addressed is how
one can extract useful information from experts’ scenarios and how it can be plugged into a conventional
LDA framework.

It is quite easy if we notice that scenarios can be translated into restrictions on the parameters of frequency
and severity distributions. Once these restrictions have been identified, a calibration strategy can be designed
where parameters are calibrated by maximizing some standard criterion (such as Maximum Likelihood)
subject to these restrictions being satisfied (at least approximately). As a result, parameter estimators can
be seen as a mixture of the loss-data-based estimator and the scenario-based implied estimator. The following
appendix details how it can be done provided one is able to weigh scenario-based information relatively to
loss-data-based information.

Technical Appendix 7 Let us consider a scenario defined as: “a loss of x or higher occurs once every d
years”. Let us also assume that the frequency distribution is a Poisson distribution (with parameter λ) and
that the severity distribution is a lognormal distribution (with parameters µ and σ). With these notations,
λ is the average number of losses per year, λ× (1− F (x; µ, σ)) is the average number of losses higher than
x and finally 1

λ×(1−F(x;µ,σ)) is the average duration3 between two losses exceeding x. As a result, for a given
scenario (x, d), parameters are restricted to satisfy:

d =
1

λ× (1− F (x; µ, σ))

It is obvious that three different scenarios suffice to calibrate the three parameters λ, µ, σ. Suppose that we
face to different scenarios {(xj , dj) , j = 1, . . . , p}. We may estimate the implied parameters underlying the
expert judgements using a quadratic creterion:

(µ̂, σ̂) = arg min
p∑

j=1

wj

(
dj − 1

λ× (1− F (xj ;µ, σ))

)2

3A rigourous proof of this result is given in the appendix.
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where wj is the weight associated to the jth scenario. Our experience shows that it works best with standard
optimal weights (ie. proportional to the inverse of the variance of dj). Let us consider the following example:

x (in millions of euros) 1 2.5 5 7.5 10 20
d (in years) 1

4 1 3 6 10 40

Using the standard optimal weights, we obtain λ̂ = 654, µ̂ = 8.60 and σ̂ = 2.08. We may compare directly
these estimates to those calibrated using loss data. Moreover, if loss data are available, calibration can be
achieved by maximizing some criterion4 obtained as a combination of maximum likelihood and the previous
restrictions:

max
(µ,σ)

(1−$) `n (µ, σ)−$

p∑

j=1

wj

(
dj − 1

λ× (1− F (xj ; µ, σ))

)2

where $ is a weight reflecting the confidence one places on expert’s judgements.

8 Conclusion

This chapter was aimed at providing a comprehensive survey of all technical issues raised in the course of
an LDA implementation. Though technical, these issues are nevertheless important as they have a major
impact on capital charges if incorrectly tackled. Our experience has taught us that reporting bias is probably
one of the most proeminent issues but fortunately can be overcome by appropriate maximum likelihood
techniques. Secondly, we have shown that confidence intervals are very useful tools to address some issues
like data sufficiency. Furthermore, we have derived an approximate though reliable way to compute this
confidence interval. Finally, further research will have to focus on scaling issues and goodness of fit tests as
databases become larger.

4It corresponds to the Penalized Maximum Likelihood method.
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A The Method of Maximum Likelihood

The method of maximum likelihood is a very popular estimation technique. We recall here some results
which can be found in every handbook on statistical estimation (see for example Davidson and MacKinnon,
1993).

Let θ be the vector of parameters to be estimated and Θ the parameter space. The likelihood for
the ith observation, that is the probability density of the observation i considered as a function of θ, is
denoted Li (θ). Let `i (θ) ≡ ln Li (θ) be the loglikelihood of Li (θ). Given n independent observations, the
loglikelihood function is

`n (θ) =
n∑

i=1

`i (θ)

θ̂n is the maximum likelihood estimator if

`n

(
θ̂n

)
≥ `n (θ) ∀ θ ∈ Θ

The main properties of the ML estimator are consistency, asymptotic normality and asymptotic efficiency.
In particular, we have √

n
(
θ̂n − θ0

)
−→ N (

0,J−1 (θ0)
)

with J (θ0) the Fisher information matrix and θ0 the ‘true’ value of the vector of parameters. We remind
that

J (θ0) = Eθ0

[
−∂2`i (θ0)

∂θ ∂θ>

]

Let h (θ) be a real function of the vector of parameters θ. Then, h
(
θ̂n

)
converges almost surely to h (θ0)

and we have √
n

(
h

(
θ̂n

)
− h (θ0)

)
−→ N

(
0,

∂h (θ0)
∂θ>

J−1 (θ0)
∂h (θ0)

∂θ

)

B The Distribution of the Duration between two losses exceeding
a given value x

We assume that the number of losses is a Poisson process with intensity λ. We note Ti the time when the
ith loss occurs. It means that the durations ei = Ti − Ti−1 between two consecutive losses are independent
and exponential with parameter λ. We assume that the losses ζi are i.i.d. with distribution F. We note now
dj the duration between two losses exceeding x. It is obvious that the durations are i.i.d. It suffice now to
characterize d1. We have5

Pr {d1 > t} =
∑

i≥1

Pr {Ti > t; ζ1 < x, . . . , ζi−1 < x; ζi ≥ x}

=
∑

i≥1

Pr {Ti > t}F (x)i−1 (1− F (x))

=
∑

i≥1

(1− F (x))F (x)i−1
i−1∑

k=0

e−λt (λt)k

k!

= (1− F (x))
∞∑

k=0

e−λt (λt)k

k!

∞∑

i=k

F (x)i

= e−λt
∞∑

k=0

(λt)k

k!
F (x)k

= e−λ(1−F(x))t

5To establish this result, we use the fact that a finite sum of exponential times is an Erlang distribution.
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It comes that d1 follows an exponential distribution with parameter λ (1− F (x)). The average duration
between two losses exceeding x is also the mean of d1 or 1

λ(1−F(x)) .

In the next figure, we have simulated a Poisson process with a parameter λ equal to 5. The losses are
lognormal distribution with µ = 9 and σ = 2. The circles indicate the times when the loss exceeds 100 000
euros.

Figure 5: An example of Poisson process
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