Course 2023-2024 in Sustainable Finance Lecture 13. Exercise — Equity and Bond Portfolio Optimization with Green Preferences

Thierry Roncalli*

*Amundi Asset Management¹

*University of Paris-Saclay

March 2024

¹The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

Agenda

- Lecture 1: Introduction
- Lecture 2: ESG Scoring
- Lecture 3: Impact of ESG Investing on Asset Prices and Portfolio Returns
- Lecture 4: Sustainable Financial Products
- Lecture 5: Impact Investing
- Lecture 6: Engagement & Voting Policy
- Lecture 7: Extra-financial Accounting
- Lecture 8: Awareness of Climate Change Impacts
- Lecture 9: The Ecosystem of Climate Change
- Lecture 10: Economic Models & Climate Change
- Lecture 11: Climate Risk Measures
- Lecture 12: Transition Risk Modeling
- Lecture 13: Climate Portfolio Construction
- Lecture 14: Physical Risk Modeling
- Lecture 15: Climate Stress Testing & Risk Management

We consider an investment universe of 8 issuers. In the table below, we report the carbon emissions $\mathcal{CE}_{i,j}$ (in $ktCO_2e$) of these companies and their revenues Y_i (in \$ bn), and we indicate in the last row whether the company belongs to sector $\mathcal{S}ector_1$ or $\mathcal{S}ector_2$:

Issuer	#1	#2	#3	#4	#5	#6	#7	#8
$\overline{\mathcal{CE}_{i,1}}$	75	5 000	720	50	2 500	25	30 000	5
$\mathcal{CE}_{i,2}$	75	5 000	1 0 3 0	350	4 500	5	2000	64
$\mathcal{CE}_{i,3}$	24 000	15 000	1 2 1 0	550	500	187	30 000	199
Y_i	300	328	125	$-\frac{1}{100}$	200	-102		25
\mathcal{S} ector	1		$\overline{1}$		2	1		

The benchmark b of this investment universe is defined as:

$$b = (22\%, 19\%, 17\%, 13\%, 11\%, 8\%, 6\%, 4\%)$$

In what follows, we consider long-only portfolios.

Question 1

We want to compute the carbon intensity of the benchmark.

Question (a)

Compute the carbon intensities $\mathcal{CI}_{i,j}$ of each company i for the scopes 1, 2 and 3.

We have:

$$\mathcal{CI}_{i,j} = rac{\mathcal{CE}_{i,j}}{Y_i}$$

For instance, if we consider the 8^{th} issuer, we have²:

$$\mathcal{CI}_{8,1} = \frac{\mathcal{CE}_{8,1}}{Y_8} = \frac{5}{25} = 0.20 \text{ tCO}_2\text{e}/\$ \text{ mn}$$
 $\mathcal{CI}_{8,2} = \frac{\mathcal{CE}_{8,2}}{Y_8} = \frac{64}{25} = 2.56 \text{ tCO}_2\text{e}/\$ \text{ mn}$
 $\mathcal{CI}_{8,3} = \frac{\mathcal{CE}_{8,3}}{Y_8} = \frac{199}{25} = 7.96 \text{ tCO}_2\text{e}/\$ \text{ mn}$

²Because 1 ktCO₂e/\$ bn = 1 tCO₂e/\$ mn.

Since we have:

Issuer	#1	#2	#3	#4	#5	#6	#7	#8
$\overline{~\mathcal{CE}_{i,1}}$	75	5 000	720	50	2 500	25	30 000	5
$\mathcal{CE}_{i,2}$	75	5 000	1 0 3 0	350	4 500	5	2000	64
$\mathcal{CE}_{i,3}$	24 000	15 000	1 2 1 0	550	500	187	30 000	199
$Y_i = -$		328	125	100	200	102	107	25

we obtain:

Issuer	#1	#2	#3	#4	#5	#6	#7	#8
$\overline{\mathcal{CI}_{i,1}}$	0.25	15.24	5.76	0.50	12.50	0.25	280.37	0.20
$\mathcal{CI}_{i,2}$	0.25	15.24	8.24	3.50	22.50	0.05	18.69	2.56
$\mathcal{CI}_{i,3}$	80.00	45.73	9.68	5.50	2.50	1.83	280.37	7.96

Question (b)

Deduce the carbon intensities $\mathcal{CI}_{i,j}$ of each company i for the scopes 1+2 and 1+2+3.

We have:

$$\mathcal{CI}_{i,1-2} = rac{\mathcal{CE}_{i,1} + \mathcal{CE}_{i,2}}{Y_i} = \mathcal{CI}_{i,1} + \mathcal{CI}_{i,2}$$

and:

$$\mathcal{CI}_{i,1-3} = \mathcal{CI}_{i,1} + \mathcal{CI}_{i,2} + \mathcal{CI}_{i,3}$$

We deduce that:

Issuer	#1	#2	#3	#4	#5	#6	#7	#8
$\overline{\mathcal{CI}_{i,1}}$	0.25	15.24	5.76	0.50	12.50	0.25	280.37	0.20
$\mathcal{CI}_{i,1-2}$	0.50	30.49	14.00	4.00	35.00	0.29	299.07	2.76
$\mathcal{CI}_{i,1-3}$	80.50	76.22	23.68	9.50	37.50	2.12	579.44	10.72

Question (c)

Deduce the weighted average carbon intensity (WACI) of the benchmark if we consider the scope 1+2+3.

We have:

$$\mathcal{CI}(b) = \sum_{i=1}^{8} b_i \mathcal{CI}_i$$

= $0.22 \times 80.50 + 0.19 \times 76.2195 + 0.17 \times 23.68 + 0.13 \times 9.50 + 0.11 \times 37.50 + 0.08 \times 2.1275 + 0.06 \times 579.4393 + 0.04 \times 10.72$
= $76.9427 \text{ tCO}_2\text{e}/\$ \text{ mn}$

Question (d)

We assume that the market capitalization of the benchmark portfolio is equal to \$10 tn and we invest \$1 bn.

Question (d).i

Deduce the market capitalization of each company (expressed in \$ bn).

We have:

$$b_i = \frac{MC_i}{\sum_{k=1}^8 \mathrm{MC}_k}$$

and $\sum_{k=1}^{8} \mathrm{MC}_k = \10 tn. We deduce that:

$$MC_i = 10 \times b_i$$

We obtain the following values of market capitalization expressed in \$ bn:

Issuer	#1	#2	#3	#4	#5	#6	#7	#8
$\overline{\mathrm{MC}_{i}}$	2 200	1 900	1 700	1 300	1 100	800	600	400

Question (d).ii

Compute the ownership ratio for each asset (expressed in bps).

Let W be the wealth invested in the benchmark portfolio b. The wealth invested in asset i is equal to b_iW . We deduce that the ownership ratio is equal to:

$$\varpi_i = \frac{b_i W}{\mathrm{MC}_i} = \frac{b_i W}{b_i \sum_{k=1}^n \mathrm{MC}_k} = \frac{W}{\sum_{k=1}^n \mathrm{MC}_k}$$

When we invest in a capitalization-weighted portfolio, the ownership ratio is the same for all the assets. In our case, we have:

$$\varpi_i = \frac{1}{10 \times 1000} = 0.01\%$$

The ownership ratio is equal to 1 basis point.

Question (d).iii

Compute the carbon emissions of the benchmark portfolio^a if we invest \$1 bn and we consider the scope 1 + 2 + 3.

 a We assume that the float percentage is equal to 100% for all the 8 companies.

Using the financed emissions approach, the carbon emissions of our investment is equal to:

$$\mathcal{CE}$$
 (\$1 bn) = 0.01% × (75 + 75 + 24 000) + 0.01% × (5 000 + 5 000 + 15 000) + ... + 0.01% × (5 + 64 + 199) = 12.3045 ktCO₂e

Question (d).iv

Compare the (exact) carbon intensity of the benchmark portfolio with the WACI value obtained in Question 1.(c).

We compute the revenues of our investment:

$$Y (\$1 \text{ bn}) = 0.01\% \sum_{i=1}^{8} Y_i = \$0.1287 \text{ bn}$$

We deduce that the exact carbon intensity is equal to:

$$\mathcal{CI}(\$1 \text{ bn}) = \frac{\mathcal{CE}(\$1 \text{ bn})}{Y(\$1 \text{ bn})} = \frac{12.3045}{0.1287} = 95.6061 \text{ tCO}_2\text{e}/\$ \text{ mn}$$

We notice that the WACI of the benchmark underestimates the exact carbon intensity of our investment by 19.5%:

Question 2

We want to manage an equity portfolio with respect to the previous investment universe and reduce the weighted average carbon intensity of the benchmark by the rate \mathcal{R} . We assume that the volatility of the stocks is respectively equal to 22%, 20%, 25%, 18%, 40%, 23%, 13% and 29%. The correlation matrix between these stocks is given by:

$$\rho = \begin{pmatrix} 100\% \\ 80\% & 100\% \\ 70\% & 75\% & 100\% \\ 60\% & 65\% & 80\% & 100\% \\ 70\% & 50\% & 70\% & 85\% & 100\% \\ 50\% & 60\% & 70\% & 80\% & 60\% & 100\% \\ 70\% & 50\% & 70\% & 75\% & 80\% & 50\% & 100\% \\ 60\% & 65\% & 70\% & 75\% & 65\% & 70\% & 60\% & 100\% \end{pmatrix}$$

Carbon intensity of the benchmark

Equity portfolios

Bond portfolios

Question (a)

Compute the covariance matrix Σ .

The covariance matrix $\Sigma = (\Sigma_{i,j})$ is defined by:

$$\Sigma_{i,j} = \rho_{i,j}\sigma_i\sigma_j$$

We obtain the following numerical values (expressed in bps):

$$\Sigma = \begin{pmatrix} 484.0 & 352.0 & 385.0 & 237.6 & 616.0 & 253.0 & 200.2 & 382.8 \\ 352.0 & 400.0 & 375.0 & 234.0 & 400.0 & 276.0 & 130.0 & 377.0 \\ 385.0 & 375.0 & 625.0 & 360.0 & 700.0 & 402.5 & 227.5 & 507.5 \\ 237.6 & 234.0 & 360.0 & 324.0 & 612.0 & 331.2 & 175.5 & 391.5 \\ 616.0 & 400.0 & 700.0 & 612.0 & 1600.0 & 552.0 & 416.0 & 754.0 \\ 253.0 & 276.0 & 402.5 & 331.2 & 552.0 & 529.0 & 149.5 & 466.9 \\ 200.2 & 130.0 & 227.5 & 175.5 & 416.0 & 149.5 & 169.0 & 226.2 \\ 382.8 & 377.0 & 507.5 & 391.5 & 754.0 & 466.9 & 226.2 & 841.0 \end{pmatrix}$$

Question (b)

Write the optimization problem if the objective function is to minimize the tracking error risk under the constraint of carbon intensity reduction.

The tracking error variance of portfolio *w* with respect to benchmark *b* is equal to:

$$\sigma^{2}(w \mid b) = (w - b)^{\top} \Sigma(w - b)$$

The carbon intensity constraint has the following expression:

$$\sum_{i=1}^{8}w_{i}\mathcal{CI}_{i}\leq\left(1-\mathcal{R}
ight)\mathcal{CI}\left(b
ight)$$

where \mathcal{R} is the reduction rate and $\mathcal{CI}(b)$ is the carbon intensity of the benchmark. Let $\mathcal{CI}^* = (1 - \mathcal{R})\mathcal{CI}(b)$ be the target value of the carbon footprint. The optimization problem is then:

$$w^{\star} = \arg\min \frac{1}{2}\sigma^{2}(w \mid b)$$
s.t.
$$\begin{cases} \sum_{i=1}^{8} w_{i} \mathcal{C} \mathcal{I}_{i} \leq \mathcal{C} \mathcal{I}^{\star} \\ \sum_{i=1}^{8} w_{i} = 1 \\ 0 \leq w_{i} \leq 1 \end{cases}$$

We add the second and third constraints in order to obtain a long-only portfolio.

Carbon intensity of the benchmark Equity portfolios Bond portfolios

Question (c)

Give the QP formulation of the optimization problem.

The objective function is equal to:

$$f\left(w\right) = \frac{1}{2}\sigma^{2}\left(w\mid b\right) = \frac{1}{2}\left(w-b\right)^{\top}\Sigma\left(w-b\right) = \frac{1}{2}w^{\top}\Sigma w - w^{\top}\Sigma b + \frac{1}{2}b^{\top}\Sigma b$$

while the matrix form of the carbon intensity constraint is:

$$\mathcal{C}\mathcal{I}^{\top} w \leq \mathcal{C}\mathcal{I}^{\star}$$

where $\mathcal{CI} = (\mathcal{CI}_1, \dots, \mathcal{CI}_8)$ is the column vector of carbon intensities. Since $b^{\top}\Sigma b$ is a constant and does not depend on w, we can cast the previous optimization problem into a QP problem:

$$w^*$$
 = $\arg\min \frac{1}{2} w^\top Q w - w^\top R$
s.t.
$$\begin{cases} Aw = B \\ Cw \le D \\ w^- \le w \le w^+ \end{cases}$$

We have $Q = \Sigma$, $R = \Sigma b$, $A = \mathbf{1}_8^{\top}$, B = 1, $C = \mathcal{C}\mathcal{I}^{\top}$, $D = \mathcal{C}\mathcal{I}^{\star}$, $w^- = \mathbf{0}_8$ and $w^+ = \mathbf{1}_8$.

Question (d)

 \mathcal{R} is equal to 20%. Find the optimal portfolio if we target scope 1+2. What is the value of the tracking error volatility?

We have:

$$\mathcal{CI}(b) = 0.22 \times 0.50 + 0.19 \times 30.4878 + ... + 0.04 \times 2.76$$

= 30.7305 tCO₂e/\$ mn

We deduce that:

$$CI^* = (1 - R)CI(b) = 0.80 \times 30.7305 = 24.5844 \text{ tCO}_2e/\$ \text{ mn}$$

Therefore, the inequality constraint of the QP problem is:

We obtain the following optimal solution:

$$w^* = \begin{pmatrix} 23.4961\% \\ 17.8129\% \\ 17.1278\% \\ 15.4643\% \\ 10.4037\% \\ 7.5903\% \\ 4.0946\% \\ 4.0104\% \end{pmatrix}$$

The minimum tracking error volatility $\sigma(w^* \mid b)$ is equal to 15.37 bps.

Question (e)

Same question if \mathcal{R} is equal to 30%, 50%, and 70%.

Table 1: Solution of the equity optimization problem (scope \mathcal{SC}_{1-2})

$\overline{\mathcal{R}}$	0%	20%	30%	50%	70%
$\overline{w_1}$	22.0000	23.4961	24.2441	25.7402	30.4117
W_2	19.0000	17.8129	17.2194	16.0323	9.8310
W_3	17.0000	17.1278	17.1917	17.3194	17.8348
W_4	13.0000	15.4643	16.6964	19.1606	23.3934
W_5	11.0000	10.4037	10.1055	9.5091	7.1088
W_6	8.0000	7.5903	7.3854	6.9757	6.7329
W_7	6.0000	4.0946	3.1418	1.2364	0.0000
<i>W</i> 8	4.0000	4.0104	4.0157	4.0261	4.6874
$\mathcal{C}\mathcal{I}(w)$	30.7305	24.5844	$21.\overline{5}1\overline{14}$	15.3653	9.2192
$\sigma (w b)$	0.00	15.37	23.05	38.42	72.45

In Table 1, we report the optimal solution w^* (expressed in %) of the optimization problem for different values of \mathcal{R} . We also indicate the carbon intensity of the portfolio (in $tCO_2e/\$$ mn) and the tracking error volatility (in bps). For instance, if \mathcal{R} is set to 50%, the weights of assets #1, #3, #4 and #8 increase whereas the weights of assets #2, #5, #6 and #7 decrease. The carbon intensity of this portfolio is equal to 15.3653 $tCO_2e/\$$ mn. The tracking error volatility is below 40 bps, which is relatively low.

Question (f)

We target scope 1 + 2 + 3. Find the optimal portfolio if \mathcal{R} is equal to 20%, 30%, 50% and 70%. Give the value of the tracking error volatility for each optimized portfolio.

In this case, the inequality constraint $Cw \leq D$ is defined by:

$$C = \mathcal{C}\mathcal{I}_{1-3}^{ op} = egin{pmatrix} 80.5000 \\ 76.2195 \\ 23.6800 \\ 9.5000 \\ 37.5000 \\ 2.1275 \\ 579.4393 \\ 10.7200 \end{pmatrix}$$

and:

$$D = (1 - \mathcal{R}) \times 76.9427$$

We obtain the results given in Table 2.

Table 2: Solution of the equity optimization problem (scope \mathcal{SC}_{1-3})

$\overline{\mathcal{R}}$	0%	20%	30%	50%	70%
$\overline{w_1}$	22.0000	23.9666	24.9499	26.4870	13.6749
W_2	19.0000	17.4410	16.6615	8.8001	0.0000
W_3	17.0000	17.1988	17.2981	19.4253	24.1464
W_4	13.0000	16.5034	18.2552	25.8926	41.0535
W_5	11.0000	10.2049	9.8073	7.1330	3.5676
W_6	8.0000	7.4169	7.1254	7.0659	8.8851
W_7	6.0000	3.2641	1.8961	0.0000	0.0000
<i>W</i> 8	4.0000	4.0043	4.0065	5.1961	8.6725
$\mathcal{C}\mathcal{I}(w)$	76.9427	61.5541	53.8599	38.4713	23.0828
$\sigma(w b)$	0.00	21.99	32.99	104.81	414.48

Question (g)

Compare the optimal solutions obtained in Questions 2.(e) and 2.(f).

Figure 1: Impact of the scope on the tracking error volatility

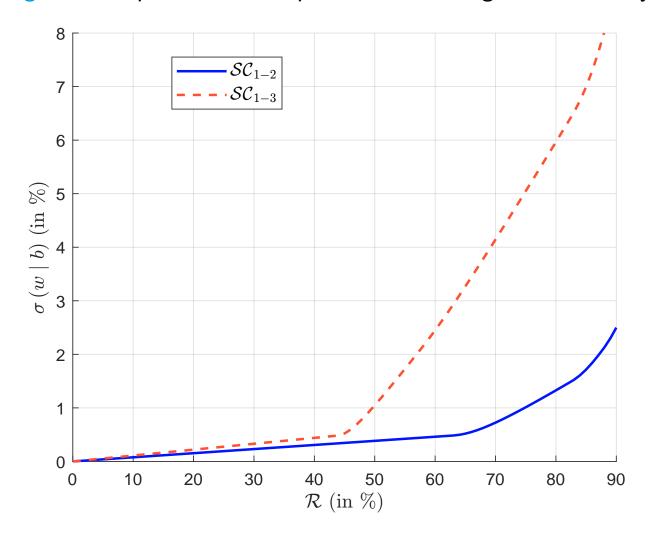
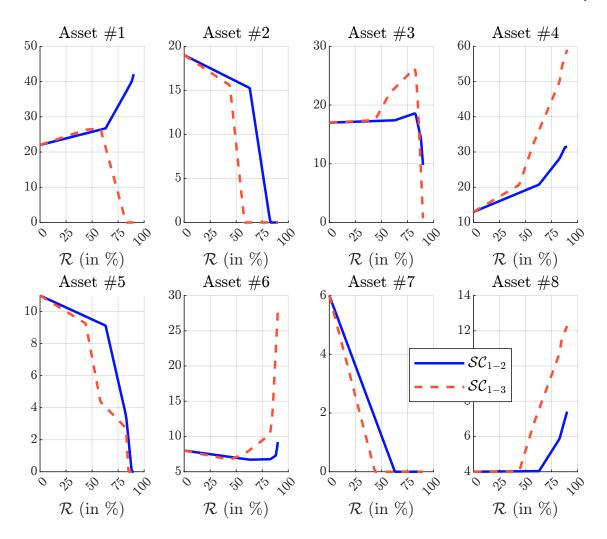


Figure 2: Impact of the scope on the portfolio allocation (in %)



In Figure 1, we report the relationship between the reduction rate \mathcal{R} and the tracking error volatility $\sigma(w \mid b)$. The choice of the scope has little impact when $\mathcal{R} \leq 45\%$. Then, we notice a high increase when we consider the scope 1+2+3. The portfolio's weights are given in Figure 2. For assets #1 and #3, the behavior is divergent when we compare scopes 1+2 and 1+2+3.

Question 3

We want to manage a bond portfolio with respect to the previous investment universe and reduce the weighted average carbon intensity of the benchmark by the rate \mathcal{R} . We use the scope 1+2+3. In the table below, we report the modified duration MD_i and the duration-times-spread factor DTS_i of each corporate bond i:

Asset	#1	#2	#3	#4	#5	#6	#7	#8
$\overline{\mathrm{MD}_{i}}$ (in years)	3.56	7.48	6.54	10.23	2.40	2.30	9.12	7.96
DTS_i (in bps)	103	155	75	796	89	45	320	245
${\mathcal S}$ ector	1		$ \frac{1}{1}$	1	$ \frac{1}{2}$	1		

Question 3 (Cont'd)

We remind that the active risk can be calculated using three functions. For the active share, we have:

$$\mathcal{R}_{\mathrm{AS}}\left(w\mid b
ight) = \sigma_{\mathrm{AS}}^{2}\left(w\mid b
ight) = \sum_{i=1}^{n}\left(w_{i}-b_{i}
ight)^{2}$$

We also consider the MD-based tracking error risk:

$$\mathcal{R}_{ ext{MD}}\left(w\mid b
ight) = \sigma_{ ext{MD}}^{2}\left(w\mid b
ight) = \sum_{j=1}^{n_{oldsymbol{\mathcal{S}ector}}} \left(\sum_{i\inoldsymbol{\mathcal{S}ector}_{j}} \left(w_{i}-b_{i}
ight) ext{MD}_{i}
ight)^{2}$$

and the DTS-based tracking error risk:

$$\mathcal{R}_{ ext{DTS}}\left(w\mid b
ight) = \sigma_{ ext{DTS}}^{2}\left(w\mid b
ight) = \sum_{j=1}^{n_{oldsymbol{\mathcal{S}ector}}} \left(\sum_{i\inoldsymbol{\mathcal{S}ector}_{j}} \left(w_{i}-b_{i}
ight) ext{DTS}_{i}
ight)^{2}$$

Question 3 (Cont'd)

Finally, we define the synthetic risk measure as a combination of AS, MD and DTS active risks:

$$\mathcal{R}\left(w\mid b\right) = \varphi_{\mathrm{AS}}\mathcal{R}_{\mathrm{AS}}\left(w\mid b\right) + \varphi_{\mathrm{MD}}\mathcal{R}_{\mathrm{MD}}\left(w\mid b\right) + \varphi_{\mathrm{DTS}}\mathcal{R}_{\mathrm{DTS}}\left(w\mid b\right)$$

where $\varphi_{\rm AS} \geq 0$, $\varphi_{\rm MD} \geq 0$ and $\varphi_{\rm DTS} \geq 0$ indicate the weight of each risk. In what follows, we use the following numerical values: $\varphi_{\rm AS} = 100$, $\varphi_{\rm MD} = 25$ and $\varphi_{\rm DTS} = 1$. The reduction rate ${\cal R}$ of the weighted average carbon intensity is set to 50% for the scope 1+2+3.

Question (a)

Compute the modified duration MD(b) and the duration-times-spread factor DTS(b) of the benchmark.

We have:

MD(b) =
$$\sum_{i=1}^{n} b_i \text{ MD}_i$$

= $0.22 \times 3.56 + 0.19 \times 7.48 + ... + 0.04 \times 7.96$
= 5.96 years

and:

DTS (b) =
$$\sum_{i=1}^{n} b_i \text{ DTS}_i$$

= $0.22 \times 103 + 0.19 \times 155 + ... + 0.04 \times 155$
= 210.73 bps

Question (b)

Let $w_{\rm ew}$ be the equally-weighted portfolio. Compute^a MD ($w_{\rm ew}$), DTS ($w_{\rm ew}$), $\sigma_{\rm AS}$ ($w_{\rm ew} \mid b$), $\sigma_{\rm MD}$ ($w_{\rm ew} \mid b$) and $\sigma_{\rm DTS}$ ($w_{\rm ew} \mid b$).

^aPrecise the corresponding unit (years, bps or %) for each metric.

We have:

$$\begin{cases} & \text{MD} (w_{\text{ew}}) = 6.20 \text{ years} \\ & \text{DTS} (w_{\text{ew}}) = 228.50 \text{ bps} \\ & \sigma_{\text{AS}} (w_{\text{ew}} \mid b) = 17.03\% \\ & \sigma_{\text{MD}} (w_{\text{ew}} \mid b) = 1.00 \text{ years} \\ & \sigma_{\text{DTS}} (w_{\text{ew}} \mid b) = 36.19 \text{ bps} \end{cases}$$

Question (c)

We consider the following optimization problem:

$$w^*$$
 = $\arg\min \frac{1}{2}\mathcal{R}_{\mathrm{AS}}(w \mid b)$

$$\begin{cases} \sum_{i=1}^{n} w_i = 1 \\ \mathrm{MD}(w) = \mathrm{MD}(b) \\ \mathrm{DTS}(w) = \mathrm{DTS}(b) \\ \mathcal{CI}(w) \leq (1 - \mathcal{R})\mathcal{CI}(b) \\ 0 \leq w_i \leq 1 \end{cases}$$

Give the analytical value of the objective function. Find the optimal portfolio w^* . Compute $\mathrm{MD}(w^*)$, $\mathrm{DTS}(w^*)$, $\sigma_{\mathrm{AS}}(w^* \mid b)$, $\sigma_{\mathrm{MD}}(w^* \mid b)$ and $\sigma_{\mathrm{DTS}}(w^* \mid b)$.

We have:

$$\mathcal{R}_{AS}(w \mid b) = (w_1 - 0.22)^2 + (w_2 - 0.19)^2 + (w_3 - 0.17)^2 + (w_4 - 0.13)^2 + (w_5 - 0.11)^2 + (w_6 - 0.08)^2 + (w_7 - 0.06)^2 + (w_8 - 0.04)^2$$

The objective function is then:

$$f(w) = \frac{1}{2} \mathcal{R}_{AS}(w \mid b)$$

The optimal solution is equal to:

$$w^* = (17.30\%, 17.41\%, 20.95\%, 14.41\%, 10.02\%, 11.09\%, 0\%, 8.81\%)$$

The risk metrics are:

$$\begin{cases} & \text{MD}(w^{\star}) = 5.96 \text{ years} \\ & \text{DTS}(w^{\star}) = 210.73 \text{ bps} \\ & \sigma_{\text{AS}}(w^{\star} \mid b) = 10.57\% \\ & \sigma_{\text{MD}}(w^{\star} \mid b) = 0.43 \text{ years} \\ & \sigma_{\text{DTS}}(w^{\star} \mid b) = 15.21 \text{ bps} \end{cases}$$

Question (d)

We consider the following optimization problem:

$$w^{\star} = \underset{2}{\operatorname{arg\,min}} \frac{\varphi_{\mathrm{AS}}}{2} \mathcal{R}_{\mathrm{AS}} (w \mid b) + \frac{\varphi_{\mathrm{MD}}}{2} \mathcal{R}_{\mathrm{MD}} (w \mid b)$$
s.t.
$$\begin{cases} \sum_{i=1}^{n} w_{i} = 1 \\ \mathrm{DTS} (w) = \mathrm{DTS} (b) \\ \mathcal{CI} (w) \leq (1 - \mathcal{R}) \mathcal{CI} (b) \\ 0 \leq w_{i} \leq 1 \end{cases}$$

Give the analytical value of the objective function. Find the optimal portfolio w^* . Compute $\mathrm{MD}(w^*)$, $\mathrm{DTS}(w^*)$, $\sigma_{\mathrm{AS}}(w^* \mid b)$, $\sigma_{\mathrm{MD}}(w^* \mid b)$ and $\sigma_{\mathrm{DTS}}(w^* \mid b)$.

We have³:

$$\mathcal{R}_{\text{MD}}(w \mid b) = \left(\sum_{i=1,3,4,6} (w_i - b_i) \,\text{MD}_i\right)^2 + \left(\sum_{i=2,5,7,8} (w_i - b_i) \,\text{MD}_i\right)^2$$

$$= \left(\sum_{i=1,3,4,6} w_i \,\text{MD}_i - \sum_{i=1,3,4,6} b_i \,\text{MD}_i\right)^2 + \left(\sum_{i=2,5,7,8} w_i \,\text{MD}_i - \sum_{i=2,5,7,8} b_i \,\text{MD}_i\right)^2$$

$$= \left(3.56w_1 + 6.54w_3 + 10.23w_4 + 2.30w_6 - 3.4089\right)^2 + \left(7.48w_2 + 2.40w_5 + 9.12w_7 + 7.96w_8 - 2.5508\right)^2$$

The objective function is then:

$$f(w) = \frac{\varphi_{\mathrm{AS}}}{2} \mathcal{R}_{\mathrm{AS}}(w \mid b) + \frac{\varphi_{\mathrm{MD}}}{2} \mathcal{R}_{\mathrm{MD}}(w \mid b)$$

 $^{^{3}}$ We verify that 3.4089 + 2.5508 = 5.9597 years.

The optimal solution is equal to:

$$w^* = (16.31\%, 18.44\%, 17.70\%, 13.82\%, 11.67\%, 11.18\%, 0\%, 10.88\%)$$

The risk metrics are:

$$\begin{cases} & \text{MD} (w^*) = 5.93 \text{ years} \\ & \text{DTS} (w^*) = 210.73 \text{ bps} \\ & \sigma_{\text{AS}} (w^* \mid b) = 11.30\% \\ & \sigma_{\text{MD}} (w^* \mid b) = 0.03 \text{ years} \\ & \sigma_{\text{DTS}} (w^* \mid b) = 3.70 \text{ bps} \end{cases}$$

Question (e)

We consider the following optimization problem:

$$w^{\star} = \arg\min \frac{1}{2}\mathcal{R}\left(w\mid b
ight)$$
s.t. $\begin{cases} \sum_{i=1}^{n}w_{i}=1 \\ \mathcal{CI}\left(w
ight)\leq\left(1-\mathcal{R}\right)\mathcal{CI}\left(b
ight) \\ 0\leq w_{i}\leq1 \end{cases}$

Give the analytical value of the objective function. Find the optimal portfolio w^* . Compute $\mathrm{MD}(w^*)$, $\mathrm{DTS}(w^*)$, $\sigma_{\mathrm{AS}}(w^* \mid b)$, $\sigma_{\mathrm{MD}}(w^* \mid b)$ and $\sigma_{\mathrm{DTS}}(w^* \mid b)$.

We have⁴:

$$\mathcal{R}_{\text{DTS}}(w \mid b) = \left(\sum_{i=1,3,4,6} (w_i - b_i) \text{DTS}_i\right)^2 + \left(\sum_{i=2,5,7,8} (w_i - b_i) \text{DTS}_i\right)^2$$

$$= (103w_1 + 75w_3 + 796w_4 + 45w_6 - 142.49)^2 + (155w_2 + 89w_5 + 320w_7 + 245w_8 - 68.24)^2$$

The objective function is then:

$$f\left(w\right) = \frac{\varphi_{\mathrm{AS}}}{2} \mathcal{R}_{\mathrm{AS}}\left(w \mid b\right) + \frac{\varphi_{\mathrm{MD}}}{2} \mathcal{R}_{\mathrm{MD}}\left(w \mid b\right) + \frac{\varphi_{\mathrm{DTS}}}{2} \mathcal{R}_{\mathrm{DTS}}\left(w \mid b\right)$$

 $^{^{4}}$ We verify that 142.49 + 68.24 = 210.73 bps.

The optimal solution is equal to:

$$w^* = (16.98\%, 17.21\%, 18.26\%, 13.45\%, 12.10\%, 9.46\%, 0\%, 12.55\%)$$

The risk metrics are:

$$\begin{cases} & \text{MD} (w^*) = 5.97 \text{ years} \\ & \text{DTS} (w^*) = 210.68 \text{ bps} \\ & \sigma_{\text{AS}} (w^* \mid b) = 11.94\% \\ & \sigma_{\text{MD}} (w^* \mid b) = 0.03 \text{ years} \\ & \sigma_{\text{DTS}} (w^* \mid b) = 0.06 \text{ bps} \end{cases}$$

Question (f)

Comment on the results obtained in Questions 3.(c), 3.(d) and 3.(e).

Table 3: Solution of the bond optimization problem (scope \mathcal{SC}_{1-3})

Problem	Benchmark	3.(c)	3.(d)	3.(e)
$\overline{w_1}$	22.0000	17.3049	16.3102	16.9797
W_2	19.0000	17.4119	18.4420	17.2101
W_3	17.0000	20.9523	17.6993	18.2582
W_4	13.0000	14.4113	13.8195	13.4494
W_5	11.0000	10.0239	11.6729	12.1008
W_6	8.0000	11.0881	11.1792	9.4553
W_7	6.0000	0.0000	0.0000	0.0000
<i>W</i> 8	4.0000	8.8075	10.8769	12.5464
$\overline{\mathrm{MD}}(w)$	5.9597	5.9597	5.9344	5.9683
$\mathrm{DTS}\left(w\right)$	210.7300	210.7300	210.7300	210.6791
$\sigma_{\mathrm{AS}}\left(w\mid b ight)$	0.0000	10.5726	11.3004	11.9400
$\sigma_{\mathrm{MD}}\left(\mathbf{w}\mid\mathbf{b}\right)$	0.0000	0.4338	0.0254	0.0308
$\sigma_{\mathrm{DTS}}\left(w\mid b\right)$	0.0000	15.2056	3.7018	0.0561
$\mathcal{CI}(w)$	76.9427	38.4713	38.4713	38.4713

Question (g)

How to find the previous solution of Question 3.(e) using a QP solver?

The goal is to write the objective function into a quadratic function:

$$f(w) = \frac{\varphi_{\text{AS}}}{2} \mathcal{R}_{\text{AS}}(w \mid b) + \frac{\varphi_{\text{MD}}}{2} \mathcal{R}_{\text{MD}}(w \mid b) + \frac{\varphi_{\text{DTS}}}{2} \mathcal{R}_{\text{DTS}}(w \mid b)$$
$$= \frac{1}{2} w^{\top} Q(b) w - w^{\top} R(b) + c(b)$$

where:

$$\mathcal{R}_{AS}(w \mid b) = (w_1 - 0.22)^2 + (w_2 - 0.19)^2 + (w_3 - 0.17)^2 + (w_4 - 0.13)^2 + (w_5 - 0.11)^2 + (w_6 - 0.08)^2 + (w_7 - 0.06)^2 + (w_8 - 0.04)^2$$

$$\mathcal{R}_{MD}(w \mid b) = (3.56w_1 + 6.54w_3 + 10.23w_4 + 2.30w_6 - 3.4089)^2 + (7.48w_2 + 2.40w_5 + 9.12w_7 + 7.96w_8 - 2.5508)^2$$

$$\mathcal{R}_{DTS}(w \mid b) = (103w_1 + 75w_3 + 796w_4 + 45w_6 - 142.49)^2 + (155w_2 + 89w_5 + 320w_7 + 245w_8 - 68.24)^2$$

We use the analytical approach which is described in Section 11.1.2 on pages 332-339. Moreover, we rearrange the universe such that the first fourth assets belong to the first sector and the last fourth assets belong to the second sector. In this case, we have:

$$w = \left(\underbrace{w_1, w_3, w_4, w_6}_{\mathcal{S}ector_1}, \underbrace{w_2, w_5, w_7, w_8}_{\mathcal{S}ector_2}\right)$$

The matrix Q(b) is block-diagonal:

$$Q\left(b
ight)=\left(egin{array}{cc}Q_1 & \mathbf{0}_{4,4}\ \mathbf{0}_{4,4} & Q_2\end{array}
ight)$$

where the matrices Q_1 and Q_2 are equal to:

$$Q_1 = \begin{pmatrix} 11\,025.8400 & 8\,307.0600 & 82\,898.4700 & 4\,839.7000 \\ 8\,307.0600 & 6\,794.2900 & 61\,372.6050 & 3\,751.0500 \\ 82\,898.4700 & 61\,372.6050 & 636\,332.3225 & 36\,408.2250 \\ 4\,839.7000 & 3\,751.0500 & 36\,408.2250 & 2\,257.2500 \end{pmatrix}$$

and:

$$Q_2 = \begin{pmatrix} 25\,523.7600 & 14\,243.8000 & 51\,305.4400 & 39\,463.5200 \\ 14\,243.8000 & 8\,165.0000 & 29\,027.2000 & 22\,282.6000 \\ 51\,305.4400 & 29\,027.2000 & 104\,579.3600 & 80\,214.8800 \\ 39\,463.5200 & 22\,282.6000 & 80\,214.8800 & 61\,709.0400 \end{pmatrix}$$

The vector R(b) is defined as follows:

$$R(b) = \begin{pmatrix} 15001.8621 \\ 11261.1051 \\ 114306.8662 \\ 6616.0617 \\ 11073.1996 \\ 6237.4080 \\ 22424.3824 \\ 17230.4092 \end{pmatrix}$$

Finally, the value of c(b) is equal to:

$$c(b) = 12714.3386$$

Using a QP solver, we obtain the following numerical solution:

$$\begin{pmatrix} w_1 \\ w_3 \\ w_4 \\ w_6 \\ w_2 \\ w_5 \\ w_7 \\ w_8 \end{pmatrix} = \begin{pmatrix} 16.9796 \\ 18.2582 \\ 13.4494 \\ 9.4553 \\ 17.2102 \\ 12.1009 \\ 0.0000 \\ 12.5464 \end{pmatrix} \times 10^{-2}$$

We observe some small differences (after the fifth digit) because the QP solver is more efficient than a traditional nonlinear solver.

Question 4

We consider a variant of Question 3 and assume that the synthetic risk measure is:

$$\mathcal{D}\left(w\mid b\right) = \varphi_{\mathrm{AS}}\mathcal{D}_{\mathrm{AS}}\left(w\mid b\right) + \varphi_{\mathrm{MD}}\mathcal{D}_{\mathrm{MD}}\left(w\mid b\right) + \varphi_{\mathrm{DTS}}\mathcal{D}_{\mathrm{DTS}}\left(w\mid b\right)$$

where:

$$egin{aligned} \mathcal{D}_{ ext{AS}}\left(w\mid b
ight) &=& rac{1}{2}\sum_{i=1}^{n}\left|w_{i}-b_{i}
ight| \ \mathcal{D}_{ ext{MD}}\left(w\mid b
ight) &=& \sum_{j=1}^{n_{oldsymbol{\mathcal{S}ector}}}\left|\sum_{i\inoldsymbol{\mathcal{S}ector}_{j}}\left(w_{i}-b_{i}
ight) ext{MD}_{i}
ight| \ \mathcal{D}_{ ext{DTS}}\left(w\mid b
ight) &=& \sum_{j=1}^{n_{oldsymbol{\mathcal{S}ector}}}\left|\sum_{i\inoldsymbol{\mathcal{S}ector}_{j}}\left(w_{i}-b_{i}
ight) ext{DTS}_{i}
ight| \end{aligned}$$

Question (a)

Define the corresponding optimization problem when the objective is to minimize the active risk and reduce the carbon intensity of the benchmark by \mathcal{R} .

The optimization problem is:

$$w^{\star} = \mathop{\arg\min} \mathcal{D}\left(w \mid b\right)$$
 s.t. $\left\{egin{array}{l} \mathbf{1}_{8}^{ op} w = 1 \ \mathcal{C}\mathcal{I}^{ op} w \leq (1 - \mathcal{R})\,\mathcal{C}\mathcal{I}\left(b
ight) \ \mathbf{0}_{8} \leq w \leq \mathbf{1}_{8} \end{array}
ight.$

Question (b)

Give the LP formulation of the optimization problem.

We use the absolute value trick and obtain the following optimization problem:

$$w^{\star} = \arg\min \frac{1}{2} \varphi_{\mathrm{AS}} \sum_{i=1}^{8} \tau_{i,w} + \varphi_{\mathrm{MD}} \sum_{j=1}^{2} \tau_{j,\mathrm{MD}} + \varphi_{\mathrm{DTS}} \sum_{j=1}^{2} \tau_{j,\mathrm{DTS}}$$

$$\begin{cases} \mathbf{1}_{8}^{\top} w = 1 \\ \mathbf{0}_{8} \leq w \leq \mathbf{1}_{8} \\ \mathcal{C} \mathcal{I}^{\top} w \leq (1 - \mathcal{R}) \mathcal{C} \mathcal{I}(b) \\ |w_{i} - b_{i}| \leq \tau_{i,w} \\ \left| \sum_{i \in \mathcal{S}ector_{j}} (w_{i} - b_{i}) \operatorname{MD}_{i} \right| \leq \tau_{j,\mathrm{MD}} \\ \left| \sum_{i \in \mathcal{S}ector_{j}} (w_{i} - b_{i}) \operatorname{DTS}_{i} \right| \leq \tau_{j,\mathrm{DTS}} \\ \tau_{i,w} \geq 0, \tau_{j,\mathrm{MD}} \geq 0, \tau_{j,\mathrm{DTS}} \geq 0 \end{cases}$$

We can now formulate this problem as a standard LP problem:

$$x^*$$
 = $\arg\min c^{\top} x$
s.t.
$$\begin{cases} Ax = B \\ Cx \le D \\ x^{-} \le x \le x^{+} \end{cases}$$

where x is the 20×1 vector defined as follows:

$$x = \left(egin{array}{c} w \ au_{
m W} \ au_{
m DTS} \end{array}
ight)$$

The 20×1 vector *c* is equal to:

$$c = \left(egin{array}{c} \mathbf{0}_8 \ rac{1}{2}arphi_{ ext{AS}}\mathbf{1}_8 \ arphi_{ ext{DTS}}\mathbf{1}_2 \end{array}
ight)$$

The equality constraint is defined by $A = (\mathbf{1}_8^\top \ \mathbf{0}_8^\top \ \mathbf{0}_2^\top \ \mathbf{0}_2^\top)$ and B = 1. The bounds are $x^- = \mathbf{0}_{20}$ and $x^+ = \infty \cdot \mathbf{1}_{20}$.

For the inequality constraint, we have⁵:

$$Cx \leq D \Leftrightarrow \begin{pmatrix} I_8 & -I_8 & \mathbf{0}_{8,2} & \mathbf{0}_{8,2} \\ -I_8 & -I_8 & \mathbf{0}_{8,2} & \mathbf{0}_{8,2} \\ C_{\text{MD}} & \mathbf{0}_{2,8} & -I_2 & \mathbf{0}_{2,2} \\ -C_{\text{MD}} & \mathbf{0}_{2,8} & -I_2 & \mathbf{0}_{2,2} \\ C_{\text{DTS}} & \mathbf{0}_{2,8} & \mathbf{0}_{2,2} & -I_2 \\ -C_{\text{DTS}} & \mathbf{0}_{2,8} & \mathbf{0}_{2,2} & -I_2 \\ C\mathcal{I}^{\top} & \mathbf{0}_{1,8} & 0 & 0 \end{pmatrix} x \leq \begin{pmatrix} b \\ -b \\ \text{MD}^{\star} \\ -MD^{\star} \\ DTS^{\star} \\ -DTS^{\star} \\ (1-\mathcal{R}) \mathcal{CI}(b) \end{pmatrix}$$

where:

and:

The 2×1 vectors MD^* and DTS^* are respectively equal to (3.4089, 2.5508) and (142.49, 68.24).

 5C is a 25 \times 8 matrix and D is a 25 \times 1 vector.

Question (c)

Find the optimal portfolio when \mathcal{R} is set to 50%. Compare the solution with this obtained in Question 3.(e).

We obtain the following solution:

$$w^* = (18.7360, 15.8657, 17.8575, 13.2589, 11, 9.4622, 0, 13.8196) \times 10^{-2}$$
 $\tau_w^* = (3.2640, 3.1343, 0.8575, 0.2589, 0, 1.4622, 6, 9.8196) \times 10^{-2}$
 $\tau_{\text{MD}} = (0, 0)$
 $\tau_{\text{DTS}} = (0, 0)$

Table 4: Solution of the bond optimization problem (scope \mathcal{SC}_{1-3})

Problem	Benchmark	3.(e)	4.(c)
$\overline{w_1}$	22.0000	16.9796	18.7360
W_2	19.0000	17.2102	15.8657
W_3	17.0000	18.2582	17.8575
W_4	13.0000	13.4494	13.2589
W_5	11.0000	12.1009	11.0000
W_6	8.0000	9.4553	9.4622
W ₇	6.0000	0.0000	0.0000
<i>W</i> 8	4.0000	12.5464	13.8196
$\overline{\mathrm{MD}}(w)$	5.9597	5.9683	5.9597
DTS(w)	210.7300	210.6791	210.7300
$\sigma_{\mathrm{AS}}(w \mid b)$	0.0000	11.9400	12.4837
$\sigma_{\mathrm{MD}}\left(oldsymbol{w} \mid oldsymbol{b} ight)$	0.0000	0.0308	0.0000
$\sigma_{\mathrm{DTS}}\left(w\mid b ight)$	0.0000	0.0561	0.0000
$\mathcal{D}_{\mathrm{AS}}(w b)$	-0.0000	25.6203	24.7964 _
$\mathcal{D}_{\mathrm{MD}}\left(w\mid b\right)$	0.0000	0.0426	0.0000
$\mathcal{D}_{\mathrm{DTS}}\left(w\mid b\right)$	0.0000	0.0608	0.0000
$\mathcal{C}\mathcal{I}(w)$	76.9427	38.4713	38.4713

In Table 4, we compare the two solutions⁶. They are very close. In fact, we notice that the LP solution matches perfectly the MD and DTS constraints, but has a higher AS risk $\sigma_{AS}(w \mid b)$. If we note the two solutions $w^*(\mathcal{L}_1)$ and $w^*(\mathcal{L}_2)$, we have:

$$\begin{cases} \mathcal{R}(w^{*}(\mathcal{L}_{2}) \mid b) = 1.4524 < \mathcal{R}(w^{*}(\mathcal{L}_{1}) \mid b) = 1.5584 \\ \mathcal{D}(w^{*}(\mathcal{L}_{2}) \mid b) = 13.9366 > \mathcal{D}(w^{*}(\mathcal{L}_{1}) \mid b) = 12.3982 \end{cases}$$

There is a trade-off between the \mathcal{L}_1 - and \mathcal{L}_2 -norm risk measures. This is why we cannot say that one solution dominates the other.

⁶The units are the following: % for the weights w_i , and the active share metrics $\sigma_{\mathrm{AS}}\left(w\mid b\right)$ and $\mathcal{D}_{\mathrm{AS}}\left(w\mid b\right)$; years for the modified duration metrics $\mathrm{MD}\left(w\right)$, $\sigma_{\mathrm{MD}}\left(w\mid b\right)$ and $\mathcal{D}_{\mathrm{MD}}\left(w\mid b\right)$; bps for the duration-times-spread metrics $\mathrm{DTS}\left(w\right)$, $\sigma_{\mathrm{DTS}}\left(w\mid b\right)$ and $\mathcal{D}_{\mathrm{DTS}}\left(w\mid b\right)$; $\mathrm{tCO_{2}e}$ mn for the carbon intensity $\mathrm{DTS}\left(w\right)$.