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Abstract

In this paper, we consider Hopscotch methods for solving two-state financial models. We first derive
a solution algorithm for two-dimensional partial differential equations with mixed boundary conditions.
We then consider a number of financial applications including stochastic volatility option pricing, term
structure modelling with two states and elliptic irreversible investment problems.

1 Introduction

The contributions of Black and Scholes [1973] and Merton [1973] to contingent claims pricing theory are
clearly some of the most significant in the development of finance theory. The consistent use of arbitrage the-
ory leading to their well known solution for pricing options.Vasicek [1977], using his term structure model,
provided another important development in the area of contingent claims deriving a solution for a bond
price that has to satisfy a particular partial differential equation. To obtain the solution, Vasicek used the
Feynman-Kac representation and the Girsanov theorem and showed the link between the partial differential
equation and martingale approaches. This relationship has subsequently been extensively exploited to find
symbolic solutions for a number of contingent claim valuation problems. Moreover, the link is fundamental
for numerical solutions based on Monte Carlo methods.

Both these models however only consider one state variable whereas option and bond pricing theory
has now been extended to take into account more state variables. For example, in the famous model of
Longstaff and Schwartz [1992], both the instantaneous interest rate r (t) and the volatility measure
V (t) are stochastic. Balduzzi, Das, Foresi and Sundaram [1996] present a term structure model with
a third state variable, the mean reversion parameter and Canabarro [1995] describes why in general more
than one state variable may be needed in term structure modelling. One of the main difficulties in option
theory has been to capture the smile curve and number of authors have introduced stochastic volatility
(Hull and White [1987], Wiggins [1987]). However, explicit analytic solutions are available for only a few
models and Monte Carlo methods have been used extensively to find numerical solutions. These methods,
however fail to provide accurate solutions for the greeks and delta/gamma hedging. Moreover, they can
not be used for American option pricing, because there is no Feynman-Kac representation and a variational
inequality problem has to be solved (Lamberton and Lapeyre [1997]).

Gordon [1965] and Gourlay [1970] introduced a class of, so called, Hopscotch algorithms to solve
parabolic and elliptic partial differential equations in two or more state variables although their utility in
financial applications has not yet been realised. The purpose of this paper is then to present Hopscotch
methods and to demonstrate how they can be used to solve financial models with two-state variables.

∗We thank Eric Bouyé and Mark Salmon for their helpful comments.
†email: kurpiel@montesquieu.u-bordeaux.fr
‡email: t.roncalli@city.ac.uk
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The paper is organized as follows. In section two, we present the Hopscotch algorithm. In particular,
we formulate a problem which is more general than those considered by Gourlay. Moreover, we show how
to take mixed boundary conditions into account1. We then analyse the stability issue and propose efficient
programming methods. In section three, we consider a number of financial models and solve them with the
hopscotch algorithm. Section four concludes and suggests directions for further research.

2 Hopscotch methods

We consider the linear parabolic equation

∂ u (t, x, y)
∂ t

+ f (t, x, y)u (t, x, y) = Atu (t, x, y) + g (t, x, y) (1)

where At is the general two dimensional differential operator

Atu (t, x, y) = a (t, x, y)
∂2 u (t, x, y)

∂ x2
+ 2b (t, x, y)

∂2 u (t, x, y)
∂ x∂ y

+ c (t, x, y)
∂2 u (t, x, y)

∂ y2
+

d (t, x, y)
∂ u (t, x, y)

∂ x
+ e (t, x, y)

∂ u (t, x, y)
∂ y

(2)

The idea is to solve (1) in a region of the (t, x, y) space given by T × R where R is a closed region of the
(x, y) plane with a continuous boundary ∂ R. In particular, for convenient computation, we propose that

R =
[
x−, x+

]× [
y−, y+

]

T =
[
t−, t+

]

To solve (1) numerically , we need to impose some boundary conditions. For t = t−, we consider a Dirichlet
condition. For the other boundary, we could choose between a Dirichlet or a Neumann condition.

u
(
t−, x, y

)
= u(t−) (x, y)

u
(
t, x−, y

)
= u(x−) (t, y)

∨ ∂ u (t, x, y)
∂ x

∣∣∣∣
x=x−

= u′(x−) (t, y)

u
(
t, x+, y

)
= u(x+) (t, y)

∨ ∂ u (t, x, y)
∂ x

∣∣∣∣
x=x+

= u′(x+) (t, y)

u
(
t, x, y−

)
= u(y−) (t, x)

∨ ∂ u (t, x, y)
∂ y

∣∣∣∣
y=y−

= u′(y−) (t, x)

u
(
t, x, y+

)
= u(y+) (t, x)

∨ ∂ u (t, x, y)
∂ y

∣∣∣∣
y=y+

= u′(y+) (t, x) (3)

There are several differences here compared to Gourlay [7,8,9]. First, we have changed the problem (1)
in order to take account of the first derivatives in the At operator. Moreover, we have introduced a new
term f (t, x, y) u (t, x, y) in the Partial Differential Equation. These modifications are necessary to ensure
that the fundamental equation of finance can be written in this form. Gourlay did not in fact consider how
to introduce boundary conditions into the algorithm.

1This is important because mixed boundary conditions frequently arise when solving financial models. For instance, consider
the Black and Scholes problem. Let C (t, S) be the call option price at time t on an asset whose current price is S. Then, we
have a Dirichlet boundary condition for S equal to 0

C (t, 0) = 0

and a Neumann boundary condition for S equal to ∞
CS (t,∞) = 1
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2.1 The Hopscotch algorithm

Hopscotch methods are based on a vec form of finite difference methods. In other words the idea exploits the
same formulation as used when multidimensional arrays are stored in a computing language, where matrices
do not exist physically, but are in fact stored in rows.

2.1.1 Notation

In order to develop a numerical solution for (1), we need to discretise the process u (t, x, y) in both time and
space dimensions. Let Nt, Nx and Ny be the number of discretisation points for t, x and y respectively. We
denote by k, hx and hy the mesh spacings in time and space in the x and y directions respectively. Then,
we have

k =
t+ − t−

Nt − 1

hx =
x+ − x−

Nx − 1

hy =
y+ − y−

Ny − 1

We note

tm = t− + m · k
xi = x− + i · hx

yj = y− + j · hy

Let um
i,j be the approximate solution to (1) at the grid point (tm, xi, yj) and u (tm, xi, yj) the exact solution

of the Partial Differencial Equation at this point.

Let M be the matrix with (i, j) entry (Mi,j) and denote vec (M) by m..

2.1.2 The Algorithm

The explicit form of equation (1) is

um+1
i,j − um

i,j

k
+ fm

i,ju
m
i,j = Am

i,j + gm
i,j (4)

while the implicit form is
um+1

i,j − um
i,j

k
+ fm+1

i,j um+1
i,j = Am+1

i,j + gm+1
i,j (5)

Introducing theta-schemes gives
(
1 + kθm+1

i,j fm+1
i,j

)
um+1

i,j − kθm+1
i,j

(
Am+1

i,j + gm+1
i,j + pm+1

i,j

)

=
(
1− kθm

i,jf
m
i,j

)
um

i,j + kθm
i,j

(
Am

i,j + gm
i,j + pm

i,j

)
(6)

with
θm+1

i,j + θm
i,j = 1 (7)

We can show that there exists a square matrix Hm and a vector pm such that

Am = Hmum + pm (8)

We call pm
i,j the residual absortion function. Then, we have

[I + kΘm+1fm+1 − kΘm+1Hm+1]um+1 = [I − kΘmfm + kΘmHm]um +
k [Θm+1gm+1 + Θmgm] + k [Θm+1pm+1 + Θmpm] (9)
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with
Θm = diag (θm)

and
θm =

(
θm

i,j

)

The equation (9) is the general vec form of finite difference methods for two-dimensional Partial Differential
Equations. We have now to specify Am

i,j and Θm. Following Gourlay and McGuire [1971], we do not for
the moment fix the choice of Am

i,j and the choice of Θm .

2.1.3 Discretisation schemes and the choice of the filling hopscotch method

We first present the general scheme and show how to take account of boundary conditions. Then ,we propose
two specific discretisation schemes in the spirit of Gourlay and McKee [1977].

2.1.3.1 The general scheme. We have

Am
i,j = am

i,jδxxum
i,j + 2bm

i,jδxyum
i,j + cm

i,jδyyum
i,j + dm

i,jδxum
i,j + em

i,jδyum
i,j (10)

One difficulty is the choice of the five operators δxx, δxy, δyy, δx and δy.

We consider the following three operators δ−x , δ0
x and δ+

x

δ−x um
i,j =

um
i,j − um

i−1,j

hx
(11)

δ+
x um

i,j =
um

i+1,j − um
i,j

hx
(12)

δ0
xum

i,j =
1
2

(
δ−x um

i,j + δ+
x um

i,j

)
=

um
i+1,j − um

i−1,j

2hx
(13)

We have a choice between these three alternatives for the discretisation of the first derivatives.The most
common operator in numerical analysis is δ0

x. For the second derivatives - there are many possibilities. For
example, we could choose the traditional scheme

δxxum
i,j = δ+

x δ−x um
i,j = δ−x δ+

x um
i,j =

um
i+1,j − 2um

i,j + um
i−1,j

h2
x

(14)

but we could also consider other possibilities such as, δ+
x δ+

x , δ0
xδ0

x or δ−x δ0
x. For the mixed derivatives, choice

between the alternatives is very important. Gourlay and McKee [1977] made the following choice :

δx δy δxx δyy δxy

original “ordered odd-even” hopscotch X X δ+
x δ−x δ+

y δ−y
1
2

(
δ+

x δ−y + δ−x δ+
y

)

original “line” hopscotch X X δ+
x δ−x δ+

y δ−y δ0
xδ0

y

The general form of Am
i,j is

Am
i,j =

2∑

ı̃=−2

2∑

̃=−2

δm
i,j,̃ı,̃u

m
i+ı̃,j+̃ (15)

Then, we can write the matrix Am ,with elements (Am
i,j), in the following form

Am = ∆mum + qm (16)
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In this case, the structure of the ∆m matrix is the following

∆m =




∆m
1,0 ∆m

1,1 ∆m
1,2

∆m
2,−1 ∆m

2,0 ∆m
2,1 ∆m

2,2

∆m
3,−2 ∆m

3,−1 ∆m
3,0 ∆m

3,1 ∆m
3,2

. . .

∆m
j,−2 ∆m

j,−1 ∆m
j,0 ∆m

j,1 ∆m
j,2

. . .

∆m
Ny−2,−2 ∆m

Ny−2,−1 ∆m
Ny−2,0 ∆m

Ny−2,1 ∆m
Ny−2,2

∆m
Ny−1,−2 ∆m

Ny−1,−1 ∆m
Ny−1,0 ∆m

Ny−1,1

∆m
Ny,−2 ∆m

Ny,−1 ∆m
Ny,0




(17)

and the residual absortion vector, qm acts just like an adjustment

qm := Am −∆mum (18)

In fact, qm reflects the boundary conditions. When we use them, we can split the vector qm and have

qm = Λmum + pm (19)

Then, it is clear that Hm in equation (9) is

Hm = ∆m + Λm (20)

The nature of the boundary condition is important, because a Dirichlet condition will influence the pm

vector while a Neuman condition will affect the Λm matrix.

Now, let us consider the problem of boundary conditions in the 2D problem. For the Dirichlet conditions,
we have

Boundary conditions Numerical approximation
u (t, x−, y) = u(x−) (t, y) um

0,j = u(x−) (tm, yj)
u (t, x+, y) = u(x+) (t, y) um

Nx+1,j = u(x+) (tm, yj)
u (t, x, y−) = u(y−) (t, x) um

i,0 = u(y−) (tm, xi)
u (t, x, y+) = u(y+) (t, x) um

i,Ny+1 = u(y+) (tm, xi)

and for the Neuman conditions, we suggest the following numerical substitutions

Boundary conditions Numerical approximaiton

∂ u(t,x,y)
∂ x

∣∣∣
x=x−

= u′(x−) (t, y)
um

0,j = um
1,j − hxúm

0,j

úm
0,j = u′(x−) (tm, yj)

∂ u(t,x,y)
∂ x

∣∣∣
x=x+

= u′(x+) (t, y)
um

Nx+1,j = um
Nx,j + hxúm

Nx+1,j

úm
Nx+1,j = u′(x+) (tm, yj)

∂ u(t,x,y)
∂ y

∣∣∣
y=y−

= u′(y−) (t, x)
um

i,0 = um
i,1 − hyúm

i,0

úm
i,0 = u′(y−) (tm, xi)

∂ u(t,x,y)
∂ y

∣∣∣
y=y+

= u′(y+) (t, x)
um

i,Ny+1 = um
i,Ny

+ hyúm
i,Ny+1

úm
i,Ny+1 = u′(y+) (tm, xi)
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We note that we face some restrictions when we define the five operators δxx, δxy, δyy, δx and δy given
to the decomposition qm = Λmum + pm. It is necessary that the absolute values of ı̃ and ̃ are different
from 2. That implies that the ∆m

j,−2 and ∆m
j,2 matrices are null matrices and that ∆m

j,−1, ∆m
j,0 and ∆m

j,1 are
tridiagonal matrices. In this case, we note that this implies there is only one possible scheme for the second
order derivatives,δxx = δ+

x δ−x , and all the other schemes are excluded2. However there are no restrictions on
the first derivatives and the mixed derivatives schemes. It is also clear that ∆m corresponds to the following
specification

∆m
j,̃ =




δm
1,j,0,̃ δm

1,j,1,̃

δm
2,j,−1,̃ δm

2,j,0,̃ δm
2,j,1,̃

δm
3,j,−1,̃ δm

3,j,0,̃ δm
3,j,1,̃

. . .

δm
i,j,−1,̃ δm

i,j,0,̃ δm
i,j,1,̃

. . .

δm
Nx−2,j,−1,̃ δm

Nx−2,j,0,̃ δm
Nx−2,j,1,̃

δm
Nx−1,j,−1,̃ δm

Nx−1,j,0,̃ δm
Nx−1,j,1,̃

δm
Nx,j,−1,̃ δm

Nx,j,0,̃




(21)

To determine Λm and pm, we integrate the boundary conditions. These matrices could be determined by
initially setting them to null matrices and updated sequentially. We however need to be careful with the
2D case unlike the one-dimensional case which is straight forward because it only concerns two points. In
2D case, ∂ R is a square, i.e. 4 segments and 4 corners3. So, we have to distinguish the segments case
(2 ≤ i ≤ Nx − 1 and 2 ≤ j ≤ Ny − 1) and the corners case (i = 1, Nx and j = 1, Nx).

For the segments case, we have :

• Conditions on x−

– u (t, x−, y) = u(x−) (t, y)

(pm)1+(j−1)Nx
← δm

1,j,−1,−1u
m
0,j−1 + δm

1,j,−1,0u
m
0,j + δm

1,j,−1,1u
m
0,j+1

– ∂ u(t,x,y)
∂ x

∣∣∣
x=x−

= u′(x−) (t, y)

λm
1,j,0,−1 ← δm

1,j,−1,−1

λm
1,j,0,0 ← δm

1,j,−1,0

λm
1,j,0,1 ← δm

1,j,−1,1

(pm)1+(j−1)Nx
← −hx

(
δm
1,j,−1,−1ú

m
0,j−1 + δm

1,j,−1,0ú
m
0,j + δm

1,j,−1,1ú
m
0,j+1

)

• Conditions on x+

– u (t, x+, y) = u(x+) (t, y)

(pm)Nx+(j−1)Nx
← δm

Nx,j,1,−1u
m
Nx+1,j−1 + δm

Nx,j,1,0u
m
Nx+1,j + δm

Nx,j,1,1u
m
Nx+1,j+1

2They are δ−x δ−x , δ0
xδ0

x, δ+
x δ+

x , δ0
xδ−x and δ+

x δ0
x.

3And the problem becomes very complicated in 3D case, because ∂ R is a box with 6 planes, 12 edges and 8 corners.
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– ∂ u(t,x,y)
∂ x

∣∣∣
x=x+

= u′(x+) (t, y)

λm
Nx,j,0,−1 ← δm

Nx,j,1,−1

λm
Nx,j,0,0 ← δm

Nx,j,1,0

λm
Nx,j,0,1 ← δm

Nx,j,1,1

(pm)Nx+(j−1)Nx
← hx

(
δm

Nx,j,−1,−1ú
m
Nx+1,j−1 + δm

Nx,j,−1,0ú
m
Nx+1,j + δm

Nx,j,−1,1ú
m
Nx+1,j+1

)

• Conditions on y−

– u (t, x, y−) = u(y−) (t, x)

(pm)i ← δm
i,1,−1,−1u

m
i−1,0 + δm

i,1,0,−1u
m
i,0 + δm

i,1,1,−1u
m
i+1,0

– ∂ u(t,x,y)
∂ y

∣∣∣
y=y−

= u′(y−) (t, x)

λm
i,1,−1,0 ← δm

i,1,−1,−1

λm
i,1,0,0 ← δm

i,1,0,−1

λm
i,1,1,0 ← δm

i,1,1,−1

(pm)i ← −hy

(
δm

i,1,−1,−1ú
m
i−1,0 + δm

i,1,0,−1ú
m
i,0 + δm

i,1,1,−1ú
m
i+1,0

)

• Conditions on y+

– u (t, x, y+) = u(y+) (t, x)

(pm)i+Nx(Ny−1) ← δm
i,Ny,−1,1u

m
i−1,Ny+1 + δm

i,Ny,0,1u
m
i,Ny+1 + δm

i,Ny,1,1u
m
i+1,Ny+1

– ∂ u(t,x,y)
∂ y

∣∣∣
y=y+

= u′(y+) (t, x)

λm
i,Ny,−1,0 ← δm

i,Ny,−1,1

λm
i,Ny,0,0 ← δm

i,Ny,0,1

λm
i,Ny,1,0 ← δm

i,Ny,1,1

(pm)i+Nx(Ny−1) ← hy

(
δm

i,Ny,−1,1ú
m
i−1,Ny+1 + δm

i,Ny,0,1ú
m
i,Ny+1 + δm

i,Ny,1,1ú
m
i+1,Ny+1

)

For the corners case, we have :

• Conditions on x− and y−

– ∂ u(t,x,y)
∂ x

∣∣∣
x=x−

= u′(x−) (t, y)
∧

∂ u(t,x,y)
∂ y

∣∣∣
y=y−

= u′(y−) (t, x)

λm
1,1,0,0 ← δm

1,1,−1,−1

(pm)1 ← δm
1,1,−1,−1

(−hxúm
0,0 − hyúm

1,0

)
∨

δm
1,1,−1,−1

(−hxúm
0,1 − hyúm

0,0

)

∨ 1
2
δm
1,1,−1,−1

(−hx

(
úm

0,0 + úm
0,1

)− hy

(
úm

0,0 + úm
1,0

))
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– ∂ u(t,x,y)
∂ x

∣∣∣
x=x−

= u′(x−) (t, y)
∧

u (t, x, y−) = u(y−) (t, x)

(pm)1 ← δm
1,1,−1,−1

(
um

1,0 − hxúm
0,0

)∨
δm
1,1,−1,−1u

m
0,0

– ∂ u(t,x,y)
∂ y

∣∣∣
y=y−

= u′(y−) (t, x)
∧

u (t, x−, y) = u(x−) (t, y)

(pm)1 ← δm
1,1,−1,−1

(
um

0,1 − hyúm
0,0

)∨
δm
1,1,−1,−1u

m
0,0

– u (t, x−, y) = u(x−) (t, y)
∧

u (t, x, y−) = u(y−) (t, x)

(pm)1 ← δm
1,1,−1,−1u

m
0,0

• Conditions on x− and y+

– ∂ u(t,x,y)
∂ x

∣∣∣
x=x−

= u′(x−) (t, y)
∧

∂ u(t,x,y)
∂ y

∣∣∣
y=y+

= u′(y+) (t, x)

λm
1,Ny,0,0 ← δm

1,Ny,−1,1

(pm)1+Nx(Ny−1) ← δm
1,Ny,−1,1

(
−hxúm

0,Ny+1 + hyúm
1,Ny+1

)

∨
δm
1,Ny,−1,1

(
−hxúm

0,Ny
+ hyúm

0,Ny+1

)

∨ 1
2
δm
1,Ny,−1,1

(
−hx

(
úm

0,Ny
+ úm

0,Ny+1

)
+ hy

(
úm

0,Ny+1 + úm
1,Ny+1

))

– ∂ u(t,x,y)
∂ x

∣∣∣
x=x−

= u′(x−) (t, y)
∧

u (t, x, y+) = u(y+) (t, x)

(pm)1+Nx(Ny−1) ← δm
1,Ny,−1,1

(
um

1,Ny+1 − hxúm
0,Ny+1

) ∨
δm
1,Ny,−1,1u

m
0,Ny+1

– ∂ u(t,x,y)
∂ y

∣∣∣
y=y+

= u′(y+) (t, x)
∧

u (t, x−, y) = u(x−) (t, y)

(pm)1+Nx(Ny−1) ← δm
1,Ny,−1,1

(
um

0,Ny
+ hyúm

0,Ny+1

) ∨
δm
1,Ny,−1,1u

m
0,Ny+1

– u (t, x−, y) = u(x−) (t, y)
∧

u (t, x, y+) = u(y+) (t, x)

(pm)1+Nx(Ny−1) ← δm
1,Ny,−1,1u

m
0,Ny+1

• Conditions on x+ and y−

– ∂ u(t,x,y)
∂ x

∣∣∣
x=x+

= u′(x+) (t, y)
∧

∂ u(t,x,y)
∂ y

∣∣∣
y=y−

= u′(y−) (t, x)

λm
Nx,1,0,0 ← δm

Nx,1,1,−1

(pm)Nx
← δm

Nx,1,1,−1

(
hxúm

Nx+1,0 − hyúm
Nx,0

)
∨

δm
Nx,1,1,−1

(
hxúm

Nx+1,1 − hyúm
Nx+1,0

)

∨ 1
2
δm

Nx,1,1,−1

(
hx

(
úm

Nx+1,0 + úm
Nx+1,1

)− hy

(
úm

Nx,0 + úm
Nx+1,0

))
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– ∂ u(t,x,y)
∂ x

∣∣∣
x=x+

= u′(x+) (t, y)
∧

u (t, x, y−) = u(y−) (t, x)

(pm)Nx
← δm

Nx,1,1,−1

(
um

Nx,0 + hxúm
Nx+1,0

)∨
δm

Nx,1,1,−1u
m
Nx+1,0

– ∂ u(t,x,y)
∂ y

∣∣∣
y=y−

= u′(y−) (t, x)
∧

u (t, x+, y) = u(x+) (t, y)

(pm)Nx
← δm

Nx,1,1,−1

(
um

Nx+1,1 − hyúm
Nx+1,0

) ∨
δm

Nx,1,1,−1u
m
Nx+1,0

– u (t, x+, y) = u(x+) (t, y)
∧

u (t, x, y−) = u(y−) (t, x)

(pm)Nx
← δm

Nx,1,1,−1u
m
Nx+1,0

• Conditions on x+ and y+

– ∂ u(t,x,y)
∂ x

∣∣∣
x=x+

= u′(x+) (t, y)
∧

∂ u(t,x,y)
∂ y

∣∣∣
y=y+

= u′(y+) (t, x)

λm
Nx,Ny,0,0 ← δm

Nx,Ny,1,1

(pm)NxNy
← δm

Nx,Ny,1,1

(
hxúm

Nx+1,Ny+1 + hyúm
Nx,Ny+1

)

∨
δm

Nx,Ny,1,1

(
hxúm

Nx+1,Ny
+ hyúm

Nx+1,Ny+1

)

∨ 1
2
δm

Nx,Ny,1,1

(
hx

(
úm

Nx+1,Ny
+ úm

Nx+1,Ny+1

)
+ hy

(
úm

Nx,Ny+1 + úm
Nx+1,Ny+1

))

– ∂ u(t,x,y)
∂ x

∣∣∣
x=x+

= u′(x+) (t, y)
∧

u (t, x, y+) = u(y+) (t, x)

(pm)NxNy
← δm

Nx,Ny,1,1

(
um

Nx,Ny+1 + hxúm
Nx+1,Ny+1

) ∨
δm

Nx,Ny,1,1u
m
Nx+1,Ny+1

– ∂ u(t,x,y)
∂ y

∣∣∣
y=y+

= u′(y+) (t, x)
∧

u (t, x+, y) = u(x+) (t, y)

(pm)NxNy
← δm

Nx,Ny,1,1

(
um

Nx+1,Ny
+ hxúm

Nx+1,Ny+1

) ∨
δm

Nx,Ny,1,1u
m
Nx+1,Ny+1

– u (t, x+, y) = u(x+) (t, y)
∧

u (t, x, y+) = u(y+) (t, x)

(pm)NxNy
← δm

Nx,Ny,1,1u
m
Nx+1,Ny+1

2.1.3.2 Two specific discretisation schemes. Gourlay and McKee [1977] proposed two specific
hopscotch algorithms. For each case, there is a correspondence between the choice of the Θm matrix and the
definition of the δm

i,j,·,· values. In fact, the link is not necessary4. We could split this choice into two separate
decisions. Then, we have a θ hopscotch method for some choice of the Θm matrix and a filling hopscotch
method following from the δm

i,j,·,· definition. In the spirit of the Gourlay’s work, we define two specific filling
methods5,6 :

4But it could be justified in term of algorithm performance.
5For all schemes, we have δx = δ0

x, δy = δ0
y, δxx = δ+

x δ−x and δyy = δ+
y δ−y .

6We will see later on that the exact choice of the method is important because of computational considerations.
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• The left-right method. Suppose that δxy = 1
2

(
δ+

x δ−y + δ−x δ+
y

)
, then we may verify that

δm
i,j,−1,−1 = 0

δm
i,j,0,−1 =

bm
i,j

hxhy
+

cm
i,j

h2
y

− em
i,j

2hy

δm
i,j,1,−1 = − bm

i,j

hxhy

δm
i,j,−1,0 =

am
i,j

h2
x

+
bm
i,j

hxhy
− dm

i,j

2hx

δm
i,j,0,0 = −2

(
am

i,j

h2
x

+
bm
i,j

hxhy
+

cm
i,j

h2
y

)

δm
i,j,1,0 =

am
i,j

h2
x

+
bm
i,j

hxhy
+

dm
i,j

2hx

δm
i,j,−1,1 = − bm

i,j

hxhy

δm
i,j,0,1 =

bm
i,j

hxhy
+

cm
i,j

h2
y

+
em
i,j

2hy

δm
i,j,1,1 = 0

• The center method. If we choose δxy = δ0
xδ0

y, then we have

δm
i,j,−1,−1 =

bm
i,j

2hxhy

δm
i,j,0,−1 =

cm
i,j

h2
y

− em
i,j

2hy

δm
i,j,1,−1 = − bm

i,j

2hxhy

δm
i,j,−1,0 =

am
i,j

h2
x

− dm
i,j

2hx

δm
i,j,0,0 = −2

(
am

i,j

h2
x

+
cm
i,j

h2
y

)

δm
i,j,1,0 =

am
i,j

h2
x

+
dm

i,j

2hx

δm
i,j,−1,1 = − bm

i,j

2hxhy

δm
i,j,0,1 =

cm
i,j

h2
y

+
em
i,j

2hy

δm
i,j,1,1 =

bm
i,j

2hxhy

2.1.4 The choice of the θ hopscotch method

Gourlay and McKee [1977] defined two hopscotch methods:

1. the “ordered odd-even” hopscotch scheme

θm
i,j =

{
1 if m + i + j is odd
0 if m + i + j is even

10



2. the “line” hopscotch scheme

θm
i,j =

{
1 if m + j is odd
0 if m + j is even

The ordered odd-even hopscotch was used by Gourlay and MacKee with the left-right method and the line
method was associated to the center method. We note that these schemes introduce more sparcity in the
system (9). This is not the case when we employ the Crank-Nicholson method (θm

i,j = 1
2 ) or the usual

θ-scheme
θm

i,j = 1− θ and θm+1
i,j = θ

2.2 Stability

Because Hopscotch methods are a special case of general θ-schemes, these methods satisfy the following
proposition:

Proposition 1 The stability assumption7 is verified if

k → 0
∧

h → 0
∧ k

h2
→ 0 (22)

for h equal to hx and hy.

It is difficult to demonstrate this proposition for the general problem but Gourlay [1971] shows that the
Hopscotch algorithm may be regarded as an A.D.I. method. Using this observation, he demonstrated that
the algorithm is stable and converges under weak conditions on Hm matrix and on the mesh ratios k

h2 .

We can illustrate the stability issue with an example. Consider the linear parabolic PDE system defined
by

a (t, x, y) =
1
2
x2 + y2

b (t, x, y) = −1
2

(
x2 + y2

)

c (t, x, y) = x2 +
1
2
y2

d (t, x, y) = x

e (t, x, y) = −y

f (t, x, y) = 1
g (t, x, y) = 2xy2e−t

R is set to [0, 1]× [0, 1] and we have

u (t, 0, y) = 0
u (t, 1, y) =

(
y + y2

)
e−t + 1

u (t, x, 0) = x

u (t, x, 1) =
(
x + x2

)
e−t + x

The solution of the cauchy problem with u (0, x, y) = x2y + xy2 + x is

u (t, x, y) =
(
x2y + xy2

)
e−t + x

We have solved this for t+ equal to 5 by considering a left-right filling method and an ordered odd-even
method. We consider three different cases:

7see for example Thomée [1990].
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Figure 1: Illustration of the stability property

k hx hy rx,x rx,y ry,y

(a) 1
4

1
8

1
8 16 16 16

(b) 1
4

1
16

1
16 64 64 64

(c) 1
4

1
8

1
16 16 32 64

We report the numerical solutions u (t+, x, y) in the figure 1. It is important to note that stability depends
on the values of the three mesh ratios, not only on the value of the central mesh ratio rx,y. For (b) and (c),
the algorithm is instable and produces bad solutions. This issue is clearly important, because if we increase
the mesh spacings in x and y space, we also have to increase the mesh spacing in time space. In this
situation, it is important to work with constant mesh ratios.

Let the mesh ratios be constant. If the algorithm is stable, then convergence is obtained if k → 0.
Experience shows in fact that ∃ (

h̄x, h̄y

) ∈ R2
+ such that for hx 6 h̄x and hy 6 h̄y, it is not possible to

decrease the numerical error. That is why the most important parameter is k.

If we consider the numerical error for the central node x = 1
2 and y = 1

2 for the previous problem with
hx = hy = 1

10 we can see clearly that the numerical error decreases8 with the number of steps Nt (figure 2).

8We note however that the decreases is not necessary monotone.
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Figure 2: Illustration of the accuracy problem

2.3 Computational considerations

We note that equation (9) is of the form

Ψm+1um+1 = φm+1 (23)

where Ψ is both a band and sparse matrix. The method of solving (9) exploits both these properties. First,
it is more efficient to work with the band form for matrix operations and then transform the band system
into a sparse system.

2.3.1 Efficient computation

We adopt a different version of Golub and Van Loan [1989,page 21] for the band storage of the matrices
(see appendix A). Let band be the process which transform the band matrix Ψ into a band storage matrix.
We have

Ψ.band = band (Ψ)

The table below shows the importance of the band storage in term of memory management.
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Nx = Ny 10 20 50 100 1000
rows (Ψ) 100 400 2500 10000 1000000
cols (Ψ) 100 400 2500 10000 1000000
cells (Ψ) 104 1.6×105 6.25×106 108 1012

mem (Ψ) 80 Kbytes 1.28 Mbytes 50 Mbytes 800 Mbytes 8000 Gbytes
rows (Ψ.band) 100 400 2500 10000 1000000
cols (Ψ.band) 9 9 9 9 9
cells (Ψ.band) 900 3600 2.25×104 9×104 9×106

mem (Ψ.band) 7.2 Kbytes 28.8 Kbytes 180 Kbytes 720 Kbytes 72 Mbytes

For differents values of Nx and Ny, we have reported the number of rows, columns, cells of the matrix Ψ for
the dense and band forms. We also report the memory required to store these two matrices. For example,
for Nx = Ny = 100, we need 800 Mbytes to store the dense form matrix and it requires 720 Kbytes for the
band form matrix.

The band form is not only useful from the memory management point of view but it also facilitates the
computation of the matrix Ψm+1 and the vector φm+1 because we can use the following algorithms that are
more efficient9 than the corresponding matrix operations:

1. Notice that we can replace matrix-vector multiplication with the Hadamard product. For instance we
have

V1v2 := diag (v1)v2 = v1 ¯ v2

2. We can replace the matrix addition Ψ = Ψ1 + Ψ2 by

for i = 1 : NxNy

for j = 1 : 9
Ψ.band (i, j) = Ψ1.band (i, j) + Ψ2.band (i, j)

end
end

3. We can replace the matrix addition Υ = Ψ + diag (v) by

for i = 1 : NxNy

for j = 1 : 9
if j = 5

Υ.band (i, j) = Ψ.band (i, j) + v (i)
else

Υ.band (i, j) = Ψ.band (i, j)
end

end
end

4. We could replace the scalar-matrix multiplication Υ = αΨ by

for i = 1 : NxNy

for j = 1 : 9
Υ.band (i, j) = αΨ.band (i, j)

end
end

9In dense form, matrix operation rules are N2 process. With these algorithm, they becomes 9N process.
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5. We could replace the matrix multiplication Υ = diag (v)Ψ by

for i = 1 : NxNy

for j = 1 : 9
Υ.band (i, j) = v (i)Ψ.band (i, j)

end
end

6. and finally we can replace the matrix-vector multiplication v2 = Ψv1 by

for i = 1 : NxNy

v2 (i) = Ψ.band (i, 1)v1 (i−Nx − 1) + Ψ.band (i, 2)v1 (i−Nx) +
Ψ.band (i, 3)v1 (i−Nx + 1) + Ψ.band (i, 4)v1 (i− 1)+
Ψ.band (i, 5)v1 (i) + Ψ.band (i, 6)v1 (i + 1) +
Ψ.band (i, 7)v1 (i + Nx − 1) + Ψ.band (i, 8)v1 (i + Nx)+
Ψ.band (i, 9)v1 (i + Nx + 1)

with
v1 (k) = 0 if k < 1or k > NxNy

end

2.3.2 Methods for solving sparse systems

The system (23) could of course be solved by an exact non-symmetric band algorithm. But this method is not
computationally efficient. It is better to use sparse methods. In figure 3, we draw the sparse representation
of the Ψ matrices. We notice that Hopscotch schemes introduce more sparcity into the system (9). So,
the most efficient way to solve this problem is certainly to use iterative methods (for example Richardson
or Conjugate Gradient methods). These iterative algorithms are not exact, but converges very quickly in
practice. Moreover, we can use the vector um for the initial estimate of the solution. In this case, we replace
the problem (23) by the following

Ψm+1vm+1 = Υm+1 (24)

with Υm+1 := φm+1 −Ψm+1um. The solution is also given by um+1 = um + vm+1.

3 Application to two-state financial models

In this section, we apply the Hopscotch methods described above to two-state variable financial models.
First, we present the fundamental equation in finance and show that it corresponds to the problem set up
in section two. Then, we consider particular cases: option pricing, term structure modelling and financial
elliptic problems. Note that for all these problems we use the ordered odd-even method with a left-right
center discretisation scheme. In most cases, it is less accurate, but it is faster.

3.1 General framework for contingent claims valuation

We make the following assumptions :

1. The market permits continuous and frictionless trading. Moreover, the market is complete and no
arbitrage opportunities exist.

2. The price of the financial asset P (t) is completely determined by the vector X (t) of the M state
variables. We have

P (t) = P (t,X (t)) (25)

3. The M -dimensional state vector X (t) is a diffusion process defined by the following Stochastic Differ-
ential Equation {

dX (t) = µ (t,X (t)) dt + Σ (t,X (t)) dW (t)
X (t0) = X0

(26)
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Figure 3: Sparse representation of the Ψ matrices

where W (t) is a N -dimensional Wiener process defined on the fundamental probability space (Ω,F ,P)
with the covariance matrix

E
[
W (t)W (t)>

]
= ρt (27)

4. There is a risk-free asset whose return r depends on the state variables X (t). So we have

r = r (t, X (t)) (28)

5. The maturity date of the asset is T . The delivery value B depends on the values taken by the state
variables at the maturity date

B = P (T ) = B (T, X (T )) (29)

and the asset pays a continuous dividend b which is a function of the state vector

b = b (t,X (t)) (30)

Theorem 2 In the M-factor arbitrage model which satisfies the previous assumptions, the price of the fi-
nancial asset P (t) satisfies the following Partial Differential Equation





1
2 trace

(
Σ(t,X)> PXX (t,X)Σ (t,X) ρ

)

+
[
µ (t,X)> − λ (t,X)>Σ(t,X)>

]
PX (t,X)

+Pt (t,X)− r (t,X)P (t,X) + b (t,X) = 0
P (T ) = B (T,X (T ))

(31)

16



Most of the two-state variable models impose N = 2. In this case, equation (26) becomes
[

dX1 (t)
dX2 (t)

]
=

[
µ1 (t, X1, X2)
µ2 (t, X1, X2)

]
dt +

[
σ1,1 (t,X1, X2) σ1,2 (t,X1, X2)
σ2,1 (t,X1, X2) σ2,2 (t,X1, X2)

] [
dW1 (t)
dW2 (t)

]
(32)

with

ρ =
[

1 ρ1,2

1

]
(33)

Then, the fundamental equation takes the following form
[
1
2
σ2

1,1 + ρ1,2σ1,1σ1,2 +
1
2
σ2

1,2

]
PX1,X1 +

[
1
2
σ2

2,1 + ρ1,2σ2,1σ2,2 +
1
2
σ2

2,2

]
PX2,X2

+
[
σ1,1σ2,1 + ρ1,2σ1,1σ2,2 + σ1,2σ2,2 + ρ1,2σ1,2σ2,1

]
PX1,X2 (34)

+ [µ1 − λ1σ1,1 − λ2σ1,2]PX1 + [µ2 − λ1σ2,1 − λ2σ2,2] PX2

+Pt − rP + b = 0

Let τ = T − t be the time to maturity of the asset. We see that equation (34) could be put in the form (1).
In this case, τ takes the role of the variable t and X1 and X2 correspond to the x and y variables. We have

a (τ , X1, X2) =
1
2
σ2

1,1 + ρ1,2σ1,1σ1,2 +
1
2
σ2

1,2

b (τ , X1, X2) =
1
2

(
σ1,1σ2,1 + ρ1,2σ1,1σ2,2 + σ1,2σ2,2 + ρ1,2σ1,2σ2,1

)

c (τ , X1, X2) =
1
2
σ2

2,1 + ρ1,2σ2,1σ2,2 +
1
2
σ2

2,2

d (τ , X1, X2) = µ1 − λ1σ1,1 − λ2σ1,2

e (τ , X1, X2) = µ2 − λ1σ2,1 − λ2σ2,2

f (τ , X1, X2) = r (T − τ ,X1, X2)
g (τ , X1, X2) = b (T − τ , X1, X2)
u (0, X1, X2) = B (T, X1, X2)

3.2 Option pricing

This research into numerical methods was in fact driven by a desire to solve Stochastic Volatility option
problems. In particular, we wanted to analyse the impact of Stochastic Volatility on American options (see
Kurpiel and Roncalli [1998a]).

3.2.1 Black-Scholes models

Let K and τ be the exercise price and the time to maturity of an European option on the underlying asset
price S (t). In the Black-Scholes framework, the call option price C (τ , S) satisfies the following equation

{
1
2σ2S2CSS + bCS = Cτ + rC
C (0, S) = (S −K)+

(35)

The parameter b is the cost-of-carry rate10. To solve this problem numerically using Hopscotch methods,
we have to add two boundary conditions for the extreme values S− and S+ taken by the S variable. For S
equal to S−, we chose the following condition

u
(
t, S−, y

)
= 0 (36)

because the option price tends to be zero when the underlying asset price decreases (out-of-the-money call
options). For S equal to S+, we choose between three boundary conditions:

10For a currency option, b is equal to the differential interest rate r− r? (Garman and Kohlhagen [1993]), for an option on
futures, b is set to 0 (Black [1976]), and for an option on a dividend paying stock, b corresponds to the difference between the
instantaneous interest rate and the annual dividend yield d.

17



Figure 4: Influence of boundary conditions

1. We impose a Dirichlet condition
u

(
t, S+, y

)
= S+ −K (37)

We can use this boundary condition because of the nature of in-the-money options. When the under-
lying asset price increases, the time value of the option decreases and the intrinsic value increases and
the time value tends to 0 when S tends to +∞.

2. We consider the usual Neumann condition

uS

(
t, S+, y

)
= 0 (38)

This boundary condition is often used in numerical analysis.

3. We could also choose the following user-defined Neumann condition

uS

(
t, S+, y

)
= 1 (39)

The argument is pratically the same as for the first choice.

Consider an option with the following parameters K = 100, τ = 0.25, σ = 0.20, r = 0.08 and b = −0.04.
We take S− = 50 and S+ = 150. We set the mesh spacing in S equal to 0.5 and the mesh spacing in τ
equal to 1

1825 , that is approximately 1
5 day. The figure 4 illustrates the solution for the different boundary

conditions. We can clearly see how the choice influences the solution and we note that a bad choice of the
boundary condition clearly produces poor results. However it is important to notice that the main errors are
to be found near the boundary region, not in the central part of the domain for S. For example, we obtain
the following values for the centered nodes
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S u (t, S+, y) = S+ −K uS (t, S+, y) = 0 uS (t, S+, y) = 1 “True value”
95 1.5701527 1.5701457 1.5701523 1.569
100 3.4227318 3.4226425 3.4227264 3.421
105 6.2218521 6.2210601 6.2217987 6.220

In this example, the choice of boundary condition has little effect on the centered nodes. This is very
important for financial modelling since in many cases, we do not know four boundary conditions. Sometimes,
a simple guess is used as a prior for a boundary condition. This example shows that we may however use
“incorrect” boundary conditions and still consider numerical solutions in the central region of R. Of course,
we must be careful and we have to verify the behaviour of the numerical solution when we change the
boundary function.

The American case is interesting, because we do not know of any other example of numerical American
option pricing with stochastic volatility. Before we apply the algorithm to this problem, we show how to
modify the Hopscotch algorithm in order to take into account the special nature of the American option.
For an American option, we have to verify that

C (τ , S) > (S −K)+ (40)

for each value of τ . In this case, the problem has no Feynman-Kac representation, but becomes a variational
inequalities problem. Lamberton and Lapeyre [1997] show that it could be solved by finite difference
methods. At each iteration m, the solution um+1

i,j given by the equation (9) is replaced by the following value

max
(
um+1

i,j , (Si −K)+
)

(41)

The intuition is that the intrinsic option value must be the payoff of the option, because the seller of the
option could exercise at any moment.

The table below reproduces the results of the table I (call options) and the table II (put options) of
Barone-Adesi and Whaley [1987]. We report values for the European (eu) and American (am) cases.
In this last case, we used the Barone-Adesi-Whaley quadratic approximation (baw), the Hopscotch method
(h) and the implicit Finite differences methods (fd) to compute the option prices11. For the Hopscotch
method, we use the same parameters as above. The values of the put options for b = −0.04 and the call
options for b = 0.04 are not reported because these two cases are not very interesting (we could show that
the American price is the same as the European price). The Hopscotch American option prices are very
close to the American options prices computed by the Barone-Adesi and Whaley (FD method).

11The values for the fd method are those calculated by Barone-Adesi and Whaley [1987].
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Call options (b = −0.04) Put options (b = 0.04)

Options parameters S0 CEU CBAW
AM CH

AM CFD
AM PEU PBAW

AM PH
AM PFD

AM

80 0.029 0.032 0.029 0.03 18.868 20 20 20

r = 0.08 90 0.57 0.59 0.579 0.58 9.765 10.183 10.223 10.22

σ = 0.2 100 3.421 3.525 3.524 3.52 3.455 3.544 3.547 3.55

τ = 0.25 110 9.847 10.315 10.356 10.35 0.777 0.798 0.788 0.79

120 18.618 20 20 20 0.112 0.118 0.113 0.11

80 0.029 0.032 0.029 0.03 18.680 20 20 20

r = 0.12 90 0.564 0.587 0.574 0.58 9.667 10.161 10.197 10.20

σ = 0.2 100 3.387 3.506 3.501 3.5 3.421 3.525 3.523 3.52

τ = 0.25 110 9.749 10.288 10.326 10.32 0.769 0.794 0.782 0.78

120 18.433 20 20 20 0.111 0.118 0.112 0.11

80 1.046 1.067 1.052 1.06 20.105 20.528 20.586 20.59

r = 0.08 90 3.232 3.284 3.269 3.27 12.738 12.297 12.957 12.95

σ = 0.4 100 7.291 7.411 7.41 7.4 7.364 7.456 7.458 7.46

τ = 0.25 110 13.248 13.502 13.53 13.52 3.910 3.958 3.944 3.95

120 20.728 21.233 21.298 21.29 1.927 1.954 1.931 1.94

80 0.21 0.229 0.214 0.21 18.077 20 20 20

r = 0.08 90 1.312 1.387 1.359 1.36 10.041 10.706 10.756 10.75

σ = 0.2 100 4.465 4.724 4.709 4.71 4.555 4.772 4.767 4.77

τ = 0.50 110 10.163 10.955 10.998 11.00 1.681 1.760 1.736 1.74

120 17.851 20 20 20 0.514 0.546 0.526 0.53

3.2.2 Stochastic volatility option models

A general stochastic volatility option model is defined by the following diffusion equations for the state
variables {

dS (t) = µS (t, S (t)) dt + ΣS (t, S (t) , V (t)) dW1 (t)
dV (t) = µV (t, V (t)) dt + ΣV (t, S (t) , V (t)) dW2 (t) (42)

with
E [W1 (t)W2 (t)] = ρt (43)

For example, Hull and White [1987] assume that
[

dS (t)
dV (t)

]
=

[
µSS (t)
µV V (t)

]
dt +

[ √
V (t)S (t) 0

0 σV V (t)

] [
dW1 (t)
dW2 (t)

]
(44)

Wiggins [1987] uses a similar model where the trend function of the V (t) process is not µV V (t) but a
general function f (V (t)) of the second state variable. The model used by Heston [1973] is defined by the
following EDS

[
dS (t)
dV (t)

]
=

[
µS (t)

κ (θ − V (t))

]
dt +

[ √
V (t)S (t) 0

0 σV

√
V (t)

] [
dW1 (t)
dW2 (t)

]
(45)

The dynamic of the underlying asset is very close to the geometric brownian motion used by Black and
Scholes [1973], except that the volatility is not constant but stochastic. Heston chooses the “square root
process” introduced by Cox, Ingersoll and Ross [1985b]. This process is very close to the Ornstein-
Uhlenbeck process, but the diffusion function is not constant and equals σ2

V V (t). For solving the European
option case, Heston uses characteristic function techniques with the following market prices

λ1 (t, S, V ) =
µ− r√

V
(46)

and
λ2 (t, S, V ) =

λ

σV

√
V (47)
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The market price of the first risk (that is the first Wiener process) is the same as considered by Black and
Scholes. It could be easily found using an asset duplication argument. For the second market price, Heston
follows Cox, Ingersoll and Ross [1995] and assumes the form (47).

ρ = −0.5
S0 CEU CHe

EU,SV CH
EU,SV CBAW

AM CH
AM,SV

80 0.0291 0.0169 0.0168 0.0322 0.0170

85 0.1545 0.1170 0.1166 0.1624 0.1185

90 0.5700 0.5040 0.5034 0.5896 0.5133

95 1.5689 1.5030 1.5026 1.6151 1.5401

100 3.4211 3.3961 3.3958 3.5249 3.5038

105 6.2204 6.2496 6.2492 6.4448 6.5016

110 9.8470 9.9094 9.9087 10.3146 10.4123

115 14.0596 14.1251 14.1242 15 15.0156

120 18.6180 18.6682 18.6675 20 20

ρ = 0.5
S0 CEU CHe

EU,SV CH
EU,SV CBAW

AM CH
AM,SV

80 0.0291 0.0484 0.0482 0.0322 0.0487

85 0.1545 0.1992 0.1989 0.1624 0.2017

90 0.5700 0.6354 0.6354 0.5896 0.6465

95 1.5689 1.6240 1.6241 1.6151 1.6606

100 3.4211 3.4298 3.4298 3.5249 3.5319

105 6.2204 6.1768 6.1763 6.4448 6.4223

110 9.8470 9.7773 9.7764 10.3146 10.3006

115 14.0596 13.9958 13.9950 15 15

120 18.6180 18.5756 18.5756 20 20

The tables above have been obtained with the following parameters:

b r κ θ σV λ
−0.04 0.08 0.9 0.04 0.10 0.0

We report in the tables the values of an option defined by K = 100 and τ = 0.25. We assume that V0 is equal
to 0.04. For the Hopscotch method, we use the following parameters S− = 50, S+ = 150, V − = 0.002 and
V + = 0.122. For the mesh spacing in S, V and τ , we take the following values 0.5, 0.002 and 1

1835 . CHe
EU,SV

corresponds to the value given by the Heston formula, CH
EU,SV and CH

AM,SV are the values for European and
American options obtained with the Hopscotch method. Note that the boundary conditions for V are12

CV

(
τ , S, V −)

= CV

(
τ , S, V +

)
= 0 (48)

We note that the closed formula of Heston gives very accurate results. In general, the difference between
the Heston solution and the Hopscotch method occurs after the second digit. We also stress the difference
between the negative ρ case and the positive ρ case in our example, because of the impact of this parameter
on in-the-money and out-of-the-money options. Of course, we could have used other specifications for the
stochastic volatility process and solved the problem with Hopscotch methods when we are unable to compute
the analytic solution.

Hull and White suggest the use of Monte Carlo methods to solve this type of problem. A first difficulty
is that they can’t be used for the American option case. The second problem is more important and is that
option models are not just used for pricing. In practice, they are used for computing the greeks and for
derivatives hedging (Kurpiel and Roncalli [1998b]). Monte Carlo mehtods are not stable enough for these

12For a discussion of the choice of boundary conditions, see Kurpiel and Roncalli [1998a].
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computations as the results depend critically on the simulation paths. This problem does not arise with
Hopscotch methods. For example, we can approximate, with good degree of accuracy, the delta, gamma,
theta and vega coefficients using the following formulas

∆ (S = Si, V = Vj , τ = τm) =
um

i+1,j − um
i−1,j

2hS
(49)

Γ (S = Si, V = Vj , τ = τm) =
um

i+1,j − 2um
i,j + um

i−1,j

h2
S

(50)

Θ (S = Si, V = Vj , τ = τm) =
um+1

i,j − um−1
i,j

2k
(51)

ϑ (S = Si, V = Vj , τ = τm) =
um

i,j+1 − um
i,j−1

2hV
(52)

The third problem with Monte Carlo methods concerns the implied volatility. With MC methods, we have to
employ a Newton-Raphson procedure with a numerical gradient, but we have found again that this doesn’t
produce accurate results. With Hopscotch methods, on the other hand, you just have to search after solving
the Hopscotch problem with a sort algorithm. In this case, we don’t have to invert the pricing formula13.

3.3 Term structure modelling

2D term structure models are generally based on the following model
[

dr (t)
dχ (t)

]
=

[
µr (t, r (t) , χ (t))
µχ (t, r (t) , χ (t))

]
dt +

[
σr (t, r (t) , χ (t)) 0

0 σχ (t, r (t) , χ (t))

] [
dW1 (t)
dW2 (t)

]
(53)

with
E [W1 (t)W2 (t)] = ρt (54)

For example, Longstaff and Schwartz [1992] use the instantaneous volatility in the second state. Other
models are based on the model of vasicek [1977]. He assumed that the instantaneous interest rate is an
Ornstein-Uhlenbeck process

dr (t) = a (b− r (t)) dt + σ dW (t) (55)

This Vasicek model has stimulated a number of extensions. For example, we could introduce a stochastic
mean reversion {

dr (t) = a (b (t)− r (t)) dt + σr (r (t)) dW1 (t)
db (t) = µb (r (t) , b (t)) dt + σb (b (t)) dW2 (t) (56)

Brennan and Schwartz suggest to use a long rate l (t) as the second state variable. For example, we could
choose to model the term structure with the following EDS

{
dr (t) = [ar (br − r (t)) + α (bl − l (t))] dt + σr dW1 (t)
dl (t) = al (bl − l (t)) dt + σl dW2 (t) (57)

Figure 5 shows the impact of introducing this second state variable in the Vasicek model. We have used
the following values

ar br σr λr

1.3 0.15 0.25 −0.3
al bl σl λl

0.8 0.10 0.15 0

ρ was set equal to 1
2 . In the figure, we show the solution for different values of α, al and bl where r and l

are equal to 0.15. In order to solve the problem with Hopscotch methods, we use the following parameters

r− = l− r+ = l+ hr = hl k
0.000 0.300 0.01 1

1825

13Readers will find examples and results on smile curve with SV options in Kurpiel and Roncalli [1998a,1998b].
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Figure 5: A Brennan and Schwartz example

Of course, for α = 0, we obtain the Vasicek solution. In the figure, the Vasicek formula and the numerical
solution could not be distinguished. We verify also that the yield rate corresponds to the instantaneous
interest rate for a null maturity. We note that small differences in the term structure of a zero coupon P c (τ)
produce big differences in the term structure of interest rates R (τ) = − ln P c(τ)

τ . This is another argument
for preferring the accuracy provided by Hopscotch methods to the speed of Monte Carlo methods14.

3.4 Financial elliptic problems

We can also apply the algorithm described in the second section to elliptic problems15. In finance, elliptic
problems generally arise in the pricing of a perpetual option. This option is like an American option but
without any specified maturity. In this case, equation (31) becomes

1
2

trace
(
Σ(X)> PXX (X) Σ (X) ρ

)
+

[
µ (X)> − λ (X)>Σ(X)>

]
PX (X)− r (X)P (X) + b (X) = 0 (58)

and the option price is not a function of time t. The first derivative Pt and the payoff boundary condition
disappear. This latter condition is replaced by other conditions based on the state variables which depend
on the particular problem at hand.

For example, Nickell, Perraudin and Varotto [1998] use this analysis for an equity-based credit risk
model. They consider two states variables, V (t) the underlying asset value and D (t) the firm’s liabilities.
The solution is of the form (58). If we consider a transformation to the variable k = V

D , the problem becomes

14We could also use this argument for computing forward rates F (τ , m) = − 1
m

ln
�

P c(τ+m)
P c(τ)

�
and f (τ) = F (τ , m) =

− ∂ ln P c(τ+m)
∂ τ

.
15see the example 3 page 204 of Gourlay and McKee [1977].
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a one-dimensionnal PDE problem and a solution can be found. They were able to use this transformation
technique, because they assumed that the state variables followed two geometric brownian motions. However
with other stochastic processes (mean-reversion for example), it is not obvious that this approach will work.
Once again, in this case, Hopscotch methods can easily be applied to solve the problem numerically.

However, we must be careful when solving financial elliptic problems numerically, because they are in
general more difficult than pure elliptic problems. To illustrate this difficulty, we will apply the Hopscotch
method to the model of McDonald and Siegel [1985]. This model considers the problem of irreversible
investment. Pindyck [1988] explains the problem as follows:

“When investment is irreversible and future demand or cost conditions are uncertainty, an invest-
ment expenditure involves the exercising, or “killing” of an option — the option to productivity
invest at any time in the future. One gives up the possibility of waiting for new information that
might affect the desirability or timing of the expenditure; one cannot disinvest should market
conditions change adversely. This lost option value must be included as part of the cost of the
investment.”

In this case, the irreversible investment problem could be view as a perpetuel option problem. Let V be the
Net Present Value. The authors suppose that V follows a geometric brownian motion.

{
dV (t) = αV (t) dt + σV (t) dW (t)
V (t0) = V0

(59)

Let C (V ) be the value of the firm’s option to invest. We can show that it satisfies the following set of
conditions 




1
2σ2V 2CV V + (r − δ)V CV − rC = 0
C (0) = 0
C (V ?) = V ? − I
CV (V ?) = 1

(60)

This EDP equation is just the same as in the perpetual option case given earlier with one state variable.
The boundary condition reflects the investment rule. We invest if V ? > V > I with I the initial cost of the
project, and, for V = V ?, we exercise the option. The option value is then equal to the payoff of the option
(V ? − I)+. The authors show also that the non-arbitrage condition imposes another boundary condition,
well-known as the smooth-pasting condition CV (V ?) = 1.

Let see how we can solve this problem. Suppose that we know the value V ?. Then, the elliptic problem
(60) is equivalent to this following parabolic problem:





1
2σ2V 2C

(t)
V V (t, V ) + (r − δ) V C

(t)
V (t, V ) = C

(t)
t (t, V ) + rC(t) (t, V )

C(t) (t, 0) = 0
C(t) (t, V ?) = V ? − I

C
(t)
t (t, V ) = 0

(61)

We can apply Hopscotch methods to solve this problem (61) by intializing C(t) (0, V ) with initial estimates
and by stopping the algorithm when the condition C

(t)
t (t, V ) = 0 is satisfied. Let us consider the example

of Dixit and Pyndick [1994], page 153. The parameter values are

r δ σ
0.04 0.04 0.20

I is set to 1 and V ? is equal to 2. The figure 6 shows the convergence of the numerical solution to the exact
solution. Note that we have taken uniform random numbers for the initial estimate of the solution values.

This problem (60), even if it is an elliptic problem, presents difficulties however because of the specific
boundary conditions. In fact, we don’t know the optimal rule V ?. In what follows, we suggest a method to
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Figure 6: Convergence of the numerical solution

solve this problem. Consider a slighty different version of the previous problem




1
2σ2V 2CV V + (r − δ)V CV − rC = 0
C (0) = 0
C (V +) = V + − I

(62)

Now, we may discover V ? using a grid search. We know that V ? > I. So, we could solve the problem (62)
successively for different values of V + and find the value of V + that verifies the smooth-pasting condition
CV (V +) = 1. We use 21 discretisation points for V and k = 0.1 and obtain the following results for
V + = {1 : 0.1 : 3}
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V + ∂ C
∂ V

∣∣
V =V +

1 -0.005
...

1.5 0.6476

1.6 0.7256

1.7 0.7994

1.8 0.8695

1.9 0.9214

2.0 0.9733

2.1 1.0172

2.2 1.0612

2.3 1.0981

2.4 1.1356

2.5 1.1671
...

3.0 1.2977

We can now guess that V ? ∈ [2.0, 2.1]. For V + = {2 : 0.01 : 2.1}, we have

V + ∂ C
∂ V

∣∣
V =V +

2.01 0.9763

2.02 0.9815

2.03 0.9858

2.04 0.9907

2.05 0.9971

2.06 0.9991

2.07 1.0051

2.08 1.0085

2.09 1.0150

If we stop the grid seach now, we obtain the solution V ? = 2.06. This numerical solution is in fact very close
to the exact solution. To obtain more accuracy, we have to increase the number of discretisation points for
V . Of course, we could also apply the grid search method using the following problem





1
2σ2V 2CV V + (r − δ)V CV − rC = 0
C (0) = 0
CV (V +) = 1

(63)

and find the value of V + such that C (V +) = V + − I. In this case, we find that the optimal value is
V ? = 2.07.

V + V + − I C (V +)
2.01 1.01 1.038

2.02 1.02 1.042

2.03 1.03 1.048

2.04 1.04 1.053

2.05 1.05 1.055

2.06 1.06 1.065

2.07 1.07 1.067

2.08 1.08 1.075

2.09 1.09 1.081
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Figure 7: A Dixit and Pindyck example

Hopscotch methods could also be used to find numerical solutions for these type of models with alternative
stochastic processes. For example, Dixit and Pindyck suppose that V follows the mean-reverting process

dV (t) = η
(
V̄ − V (t)

)
V (t) dt + σV (t) dW (t) (64)

In this case, the solution is very complicated. It is given by a confluent hypergeometric function and we need
to determine some parameters numerically (see Dixit and Pindyck [1994], page 163). We have solved this
problem with Hopscotch methods for I = 1 with

r µ η V̄ σ
0.04 0.04 0.1 1.5 0.20

We have also considered another mean-reverting process for which we believe we can not find a symbolic
solution

dV (t) = η
(
V̄ − V (t)

)
V (t) dt + σ

√
V (t) dW (t) (65)

We find the following critical values for V ?: 1.68 for the first process and 1.585 for the second process. The
solution of C (V ) is reported on the figure 7 which can be compared with figure 5.12 of Dixit and Pindyck.

We are also tempted to develop two-state variable models for the irreversibility problem. Suppose that
we introduce another state variable Y (t) in the model. In this case, we could suppose that the critical value
V ? will depend on the state of Y . So, for each value of Y , the value of V ? will change and this is the
reason why we can not use the algorithms presented here to solve the irreversibility problem with two state
variables, because the boundary conditions are defined for fixed values, and can not support different values.
These considerations show clearly that we have to be careful when we employ Hopscotch methods to solve
elliptic problems in finance.
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4 Conclusion

In this paper, we have put forward the use of Hopscotch methods in order to solve a large class of Partial
Differential Equation problems in finance. We have extended the work of Gourlay in two directions. First,
we have considered a more general problem that can be viewed as a Feynman-Kac representation problem.
Secondly, we have shown how to take boundary conditions into account, and especially how to mix Dirichlet
and Neumann conditions.

We have also demonstrated the algorithm in several important appplications in finance. We have consid-
ered option pricing with stochastic volatility, term structure modelling with two state variables and elliptic
problems. In fact, the Hopscotch method could be used to solve any general two-state variable financial
model.

It would be interesting to improve the algorithm for the case where we have no knowledge about boundary
conditions. A possible approach would be to develop a prediction-correction method. The idea is the
following. We could use the numerical solution {um,m 6 M − 1} to predict (for example by interpolation)
the boundary functions for m = M . Then, we could find the solution uM from equation (9). We could then

use these values uM for the region
◦
R to improve the boundary functions. Finally, solve equation (9) with

these new values. We leave this development for a later paper.
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A Form of the Ψ.band matrix

Ψ.band takes the following form

Ψ.band =
[

(Ψ.band)−
... (Ψ.band)0

... (Ψ.band)+

]

with

(Ψ.band)− =




0 0 0
0 0 0
0 0 0

...
0 0 0
0 ΨNx+1,1 ΨNx+1,2

ΨNx+2,1 ΨNx+2,2 ΨNx+2,3

...
Ψ2Nx,Nx−1 Ψ2Nx,Nx 0

...

Ψl,l−Nx−1 Ψl,l−Nx Ψl,l−Nx+1

...

ΨNx(Ny−1)+1,Nx(Ny−1) ΨNx(Ny−1)+1,Nx(Ny−1)+1 ΨNx(Ny−1)+1,Nx(Ny−1)+2

...
ΨNxNy−1,Nx(Ny−1)−2 ΨNxNy−1,Nx(Ny−1)−1 ΨNxNy−1,Nx(Ny−1)

ΨNxNy,Nx(Ny−1)−1 ΨNxNy,Nx(Ny−1) 0




(Ψ.band)0 =




0 Ψ1,1 Ψ1,2

Ψ2,1 Ψ2,2 Ψ2,3

Ψ3,2 Ψ3,3 Ψ3,4

...
ΨNx,Nx−1 ΨNx,Nx 0

0 ΨNx+1,Nx+1 ΨNx+1,Nx+2

ΨNx+2,Nx+1 ΨNx+2,Nx+2 ΨNx+2,Nx+3

...
Ψ2Nx,2Nx−1 Ψ2Nx,2Nx 0

...

Ψl,l−1 Ψl,l Ψl,l+1

...

0 ΨNxNy+1,NxNy+1 ΨNxNy+1,NxNy+2

...
ΨNxNy−1,NxNy−2 ΨNxNy−1,NxNy−1 ΨNxNy−1,NxNy

ΨNxNy,NxNy−1 ΨNxNy,NxNy 0
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(Ψ.band)+ =




0 Ψ1,Nx+1 Ψ1,Nx+2

Ψ2,Nx+1 Ψ2,Nx+2 Ψ2,Nx+3

Ψ3,Nx+2 Ψ3,Nx+3 Ψ3,Nx+4

...
ΨNx,2Nx−1 ΨNx,2Nx 0

0 ΨNx+1,2Nx+1 ΨNx+1,2Nx+2

ΨNx+2,2Nx+1 ΨNx+2,2Nx+2 ΨNx+2,2Nx+2

...
Ψ2Nx,3Nx−1 Ψ2Nx,3Nx

0

...

Ψl,l+Nx−1 Ψl,l+Nx
Ψl,l+Nx+1

...

0 0 0
...

0 0 0
0 0 0
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B Gauss implementation

PDE2D is a Gauss implementation of Hopscotch methods described in this paper. The library and its manual
(Roncalli and Kurpiel [1998]) could be downloaded at the following url:

http://www.thierry-roncalli.com/#gauss l8

32

http://www.thierry-roncalli.com/#gauss_l8�

