
Chapter 9
Model Risk of Exotic Derivatives

In Chapter 2, we have seen that options and derivative instruments present non-linear risks
that are more difficult to assess and measure than for a long-only portfolio of stocks or
bonds. Moreover, those financial instruments are traded in OTC markets, meaning that
their market value is not known with certainty. These issues imply that the current value is
a mark-to-model price and the risk factors depend on the pricing model and the underlying
assumptions. The pricing problem is then at the core of the risk management of derivative
instruments. However, risk management of such financial products cannot be reduced to a
pricing problem. Indeed, the main difficulty lies in managing dynamically the hedging of the
option in order to ensure that the replication cost is equal to the option price. In this case,
the real challenge is the model risk and concerns three levels: the model risk of pricing the
option, the model risk of hedging the option and the discrepancy risk between the pricing
model and the hedging model. Therefore, this chapter cannot be just a catalogue of pricing
models, but focuses more on pricing errors and hedging uncertainties.

9.1 Basics of option pricing
In this section, we present the basic models that are used for pricing derivatives instru-

ments: the Black-Scholes model, the Vasicek model and the HJM model. While the first one
is general and valid for all asset classes, the last two models concern interest rate derivatives.

9.1.1 The Black-Scholes model
9.1.1.1 The general framework

Black and Scholes (1973) assume that the dynamics of the asset price S (t) is given by
a geometric Brownian motion:{

dS (t) = µS (t) dt+ σS (t) dW (t)
S (t0) = S0

(9.1)

where S0 is the current price, µ is the drift, σ is the volatility of the diffusion and W (t)
is a standard Brownian motion. We consider a contingent claim that pays f (S (T )) at the
maturity T of the derivative contract. For example, if we consider an European option with
strike K, we have f (S (T )) = (S (T )−K)+.

Under some conditions, we can show that this contingent claim may be replicated by a
hedging portfolio, which is composed of the asset and a risk-free asset, whose instantaneous
return is equal to r (t). The price V of the contingent claim is then equal to the cost of
the hedging portfolio. In this case, Black and Scholes show that it is the solution of the
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following backward equation:{ 1
2σ

2S2∂2
SV (t, S) + (µ− λ (t)σ)S∂SV (t, S) + ∂tV (t, S)− r (t)V (t, S) = 0

V (T, S (T )) = f (S (T ))

This equation is called the fundamental pricing equation. The function λ (t) is interpreted
as the risk price of the Wiener process W (t). For an asset whose cost-of-carry is equal to
b (t), we have:

λ (t) = µ− b (t)
σ

The previous equation then becomes:{ 1
2σ

2S2∂2
SV (t, S) + b (t)S∂SV (t, S) + ∂tV (t, S)− r (t)V (t, S) = 0

V (T, S (T )) = f (S (T )) (9.2)

The current price of the derivatives contract is obtained by solving this partial differential
equation (PDE) and to take V (t0, S0).

A way to obtain the solution is to apply the Girsanov theorem1 to the SDE (9.1) with
g (t) = −λ (t). It follows that:{

dS (t) = b (t)S (t) dt+ σS (t) dWQ (t)
S (t0) = S0

(9.3)

where WQ (t) is a Brownian motion under the probability Q defined by:

dQ
dP = exp

(
−
∫ t

0 λ (s) dW (s)− 1
2
∫ t

0 λ
2 (s) ds

)
We may then apply the Feynman-Kac formula2 with h (t, x) = r (t) and g (t, x) = 0 to
obtain the martingale solution3:

V0 = EQ
[
e
−
∫ T

0
r(t) dt

f (S (T ))
∣∣∣∣F0

]
(9.4)

Remark 96 Q is called the risk-neutral probability (or martingale) measure, because the
option price V0 is the expected discounted value of the payoff4.

9.1.1.2 Application to European options

We consider an European call option whose payoff at maturity is equal to:

C (T ) = (S (T )−K)+

We assume that the interest rate r (t) and the cost-of-carry parameter b (t) are constant.
Then we obtain:

C0 = EQ
[
e
−
∫ T

0
r dt (S (T )−K)+

∣∣∣∣F0

]
= e−rTE

[(
S0e

(b− 1
2σ

2)T+σWQ(T ) −K
)+
]

= e−rT
∫∞
−d2

(
S0e

(b− 1
2σ

2)T+σ
√
Tx −K

)
φ (x) dx

= S0e
(b−r)TΦ (d1)−Ke−rTΦ (d2) (9.5)

1See Appendix A.3.5 on page 1072.
2See Appendix A.3.4 on page 1070.
3We assume that the current date t0 is equal to 0.
4See Exercise 9.4.1 on page 593 for more details.
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where:

d1 = 1
σ
√
T

(
ln S0

K
+ bT

)
+ 1

2σ
√
T

d2 = d1 − σ
√
T

Let us now consider an European put option with the following payoff:

P (T ) = (K − S (T ))+

We have:

C (T )−P (T ) = (S (T )−K)+ − (K − S (T ))+

= S (T )−K

We deduce that:

C0 −P0 = EQ
[
e
−
∫ T

0
r dt (S (T )−K)

∣∣∣∣F0

]
= EQ [e−rTS (T )

∣∣F0
]
−Ke−rT

= S0e
(b−r)T −Ke−rT

This equation is known as the put-call parity. It follows that:

P0 = C0 − S0e
(b−r)T +Ke−rT

= −S0e
(b−r)TΦ (−d1) +Ke−rTΦ (−d2) (9.6)

Remark 97 Equations (9.5) and (9.6) are the famous Black-Scholes formulas. Generally,
they are presented with b = r, that is for physical assets not paying dividends. The cost-of-
carry concept is explained in the next paragraphs.

We consider a call option on an asset, whose cost-of-carry is equal to 5%. We also assume
that the interest rate is equal to 5%. Figure 9.1 represents the option premium with respect
to the current value S0 of the asset. We notice that the price of the call option increases
with the current price S0, the volatility σ and the maturity T . In Figure 9.2, we report the
option premium of the put option. In both cases, it may be interesting to decompose the
option premium into two components:

• The intrinsic value is the value of exercising the option now:

IV (t) = f (S0)

For instance, the intrinsic value of the call option is equal to (S0 −K)+. If the intrinsic
value is positive, the option is said in-the-money (ITM). If the intrinsic value is equal
to zero, the option is at-the-money (ATM) or out-of-the-money (OTM).

• The time value is the difference between the option premium and the intrinsic value:

TV (t) = V (t0, S0)− IV (t)

This quantity is always positive and is related to the risk that the intrinsic value will
increase with the time-to-maturity.



494 Handbook of Financial Risk Management

FIGURE 9.1: Price of the call option

FIGURE 9.2: Price of the put option
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9.1.1.3 Principle of dynamic hedging

Self-financing strategy We consider n assets that do not pay dividends or coupons
during the period [0, T ] and we assume that the price vector S (t) follows a diffusion process.
For asset i, we have then:

Si (t) = Si (0) +
∫ t

0
µi (u) du+

∫ t

0
σi (u) dWi (u)

We set up a trading portfolio (φ1 (t) , . . . , φn (t)) invested in the assets (S1 (t) , . . . , Sn (t)).
We note X (t) the value of this portfolio:

X (t) =
n∑
i=1

φi (t)Si (t)

We say that the portfolio is self-financing if the following conditions hold:{
dX (t)−

∑n
i=1 φi (t) dSi (t) = 0

X (0) = 0

The first condition means that all trades are financed by selling or buying assets in the
portfolio, whereas the second condition implies that we don’t need money to set up the
initial portfolio. This implies that:

X (t) = X0 +
n∑
i=1

∫ t

0
φi (u) dSi (u)

=
n∑
i=1

φi (0)Si (0) +
n∑
i=1

∫ t

0
φi (u) dSi (u)

In the Black-Scholes model, we consider a stock that does not pay dividends or coupons
during the period [0, T ] and we assume that its price process S (t) follows a geometric
Brownian motion:

dS (t) = µS (t) dt+ σS (t) dW (t)
We also assume the existence of a risk-free asset B (t) that satisfies:

dB (t) = rB (t) dt

We set up a trading portfolio (φ (t) , ψ (t)) invested in the stock S (t) and the risk-free asset
B (t). We note V (t) the value of this portfolio:

V (t) = φ (t)S (t) + ψ (t)B (t)

We now form a strategy X (t) in which we are long the call option C (t, S (t)) and short the
trading portfolio V (t):

X (t) = C (t, S (t))− V (t)
= C (t, S (t))− φ (t)S (t)− ψ (t)B (t)

Using Itô’s lemma, we have:

dX (t) = ∂SC (t, S (t)) dS (t) +(
∂tC (t, S (t)) + 1

2σ
2S2 (t) ∂2

SC (t, S (t))
)

dt−

φ (t) dS (t)− ψ (t) dB (t)
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By assuming that φ (t) = ∂SC (t, S (t)), we obtain:

dX (t) =
(
∂tC (t, S (t)) + 1

2σ
2S2 (t) ∂2

SC (t, S (t))− rψ (t)B (t)
)

dt

X (t) is self-financing if dX (t) = 0 or:

ψ (t) =
∂tC (t, S (t)) + 1

2σ
2S2 (t) ∂2

SC (t, S (t))

rB (t)

We deduce that:

C (t, S (t)) = φ (t)S (t) + ψ (t)B (t)
= ∂SC (t, S (t))S (t) +

∂tC (t, S (t)) + 1
2σ

2S2 (t) ∂2
SC (t, S (t))

rB (t) B (t)

This implies that C (t, S (t)) satisfies the following PDE:

1
2σ

2S2∂2
SC (t, S) + rS∂SC (t, S) + ∂tC (t, S)− rC (t, S) = 0

Since X (t) is self-financing (X (t) = 0), we also deduce that the trading portfolio V (t) is
the replicating portfolio of the call option:

V (t) = φ (t)S (t) + ψ (t)B (t)
= C (t, S (t))−X (t)
= C (t, S (t))

If we define the replicating cost as follows:

C (t) =
∫ t

0
φ (u) dS (u) +

∫ t

0
ψ (u) dB (u)

=
∫ t

0
(µS (u)φ (u) + rB (u)ψ (u)) du+

∫ T

0
σS (u)φ (u) dW (u)

we have:

C (t) =
∫ t

0
µS (u) ∂SC (u, S (u)) du+

∫ T

0
σS (u) ∂SC (u, S (u)) dW (u)∫ t

0

(
∂tC (u, S (u)) + 1

2σ
2S2 (u) ∂2

SC (u, S (u))
)

du

=
∫ t

0
dC (u, S (u))

= C (t, S (t))− C (0, S0)

We verify that the replicating cost is exactly equal to the P&L of the long exposure on the
call option.
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Cost-of-carry When the stock does not pay dividends, the cost-of-carry parameter b is
equal to the interest rate r. Let us now consider a stock that pays a continuous dividend
yield δ, the self-financing portfolio is:

X (t) = C (t, S (t))− φ (t)S (t)− ψ (t)B (t)

We deduce that the change in the value of this portfolio is:

dX (t) = dC (t, S (t))− φ (t) dS (t)− ψ (t) dB (t)− φ (t) · δ · S (t) dt︸ ︷︷ ︸
dividend

Using the same rationale than previously, we obtain φ (t) = ∂SC (t, S (t)) and:

ψ (t) =
∂tC (t, S (t)) + 1

2σ
2S2 (t) ∂2

SC (t, S (t))− δS (t) ∂SC (t, S (t))

rB (t)

Finally, we obtain the following PDE:

1
2σ

2S2∂2
SC (t, S) + (r − δ)S∂SC (t, S) + ∂tC (t, S)− rC (t, S) = 0

The cost-of-carry parameter b is now equal to r − δ. It is the percentage cost required
to carry the asset. Generally, the cost is equal to the interest rate r, but a continuous
dividend reduces this cost. In the case of futures or forward contracts, the cost-of-carry is
equal to zero. Indeed, the price of such contracts already incorporates the cost-of-carry of
the underlying asset. For currency options, the cost-of-carry is the difference between the
domestic interest rate r and the foreign interest rate r?.

TABLE 9.1: Impact of the dividend on the option premium
Put option Call option

S0 / δ 0.00 0.02 0.05 0.07 0.00 0.02 0.05 0.07
90 1.28 1.44 1.73 1.94 13.50 12.67 11.48 10.72

100 4.42 4.83 5.50 5.97 6.89 6.31 5.50 5.00
110 10.19 10.87 11.91 12.63 2.91 2.59 2.16 1.90

In order to illustrate the impact of the cost-of-carry, we have calculated the option
premium in Table 9.1 with the following parameters: K = 100, r = 5% and a six-month
maturity. In the case of the put option, the price increases with the dividend yield δ whereas
it decreases in the case of the call option. In order to understand these figures, we have to
come back to the definition of the replicating portfolio. A call option is replicated using a
portfolio that is long on the asset. This implies that the replicating portfolio benefits from
the dividends paid by the asset. The self-financing property of the strategy induces that we
have to borrow less money. This is why the premium of the call option is lower when the
asset pays a dividend. For the put option, this is the contrary. The replicating portfolio is
short on the asset. Therefore, it does not receive the dividends, but pays them.

Remark 98 The value of dividends is an example of model risk. Indeed, future dividends
are uncertain, meaning that there is a risk of undervaluation of the option premium. In
the case of a call option, the risk is to use expected dividends that are higher than realized
values. In the case of put option, the risk is to use low dividends.
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Delta hedging The Black-Scholes model assumes that the replicating portfolio is rebal-
anced continuously. In practice, it is rebalanced at some fixed dates ti:

0 = t0 < t1 < · · · < tn = T

At the initial date, we have:

X (t0) = C (t0, S (t0))− V (t0) = 0

where:
V (t0) = φ (t0) · S (t0) + ψ (t0) ·B (t0)

Because we have φ (t0) = ∆ (t0) and X (t0) = 0, we deduce that5:

ψ (t0) = C (t0, S (t0))−∆ (t0)S (t0)

At time t1, the value of the replicating portfolio is then equal to:

V (t1) = ∆ (t0)S (t1) + (C (t0, S (t0))−∆ (t0)S (t0)) · (1 + r (t0) (t1 − t0)) (9.7)

It follows that:
X (t1) = C (t1, S (t1))− V (t1)

Therefore, we are note sure that X (t1) = 0 because it is not possible to hedge the jump
S (t1)− S (t0). We rebalance the portfolio and we have:

V (t1) = φ (t1) · S (t1) + ψ (t1) ·B (t1)

We deduce that:
φ (t1) = ∆ (t1)

and:
ψ (t1) = V (t1)−∆ (t1)S (t1)

At time t2, the value of the replicating portfolio is equal to:

V (t2) = ∆ (t1)S (t2) + (V (t1)−∆ (t1)S (t1)) · (1 + r (t1) (t2 − t1)) (9.8)

Equation (9.8) differs from Equation (9.7) because we don’t have V (t1) = C (t1, S (t1)).
More generally, we have:

X (ti) = C (ti, S (ti))− V (ti)

and:

V (ti) = ∆ (ti−1)S (ti)︸ ︷︷ ︸
VS(ti)

+ (V (ti−1)−∆ (ti−1)S (ti−1)) · (1 + r (ti−1) (ti − ti−1))︸ ︷︷ ︸
VB(ti)

where VS (ti) is the component due to the delta exposure on the asset and VB (ti) is the
component due to the cash exposure on the risk-free bond. We notice that:

VS (ti) = ∆ (ti−1) · S (ti)
= ∆ (ti−1) · S (ti−1) · (1 +RS (ti−1; ti))

5Without any loss of generality, we take the convention that B (ti) = 1.



Model Risk of Exotic Derivatives 499

and:

VB (ti) = (V (ti−1)−∆ (ti−1) · S (ti−1)) · (1 + r (ti−1) · (ti − ti−1))
= (V (ti−1)−∆ (ti−1) · S (ti−1)) · (1 +RB (ti−1; ti))

where RS (ti−1; ti) and RB (ti−1; ti) are the asset and bond returns between ti−1 and ti. At
the maturity, we obtain:

X (T ) = X (tn)
= (S (T )−K)+ − V (tn)

Π (T ) = −X (T ) is the P&L of the delta hedging strategy. To measure its efficiency, we
consider the ratio π defined as follows:

π = Π (T )
C (t0, S (t0))

Example 78 We consider the replication of 100 ATM call options. The current price of the
asset is 100 and the maturity of the option is 20 weeks. We consider the following parameter:
b = r = 5% and σ = 20%. We rebalance the replicating portfolio every week.

Since the maturity T is equal to 20/52 and the strike K is equal to 100, the current value
C (t0, S (t0)) of the call option is equal to $5.90. The replicating portfolio is rebalanced at
times ti:

ti = i

52
In Table 9.2, we have reported a simulated path of the underlying asset. We have S (t0) =
100, S (t1) = 95.63, S (t2) = 95.67, etc. At the maturity date, the price of the underlying
asset is equal to 101.83. In the Black-Scholes model, the delta is equal to:

∆ (t) = e(b−r)(T−t)Φ (d1)

where:
d1 = 1

σ
√
T − t

(
ln S (t)

K
+ b (T − t)

)
+ σ
√
T − t

At each rebalancing date ti−1, we compute the delta ∆ (ti−1) with respect to the price
S (ti−1) and the remaining maturity T − ti−1. We can then deduce the values of VS (ti),
VB (ti) and V (ti). We can also calculate the new value C (ti, S (ti)) of the call option and
compare it with V (ti) in order to define X (ti) and Π (ti) = −X (ti). We obtain Π (T ) =
−29.76, implying that:

π = −29.76
100× 5.90 = −5.04%

In this case, the delta hedging strategy has produced a negative P&L. If we consider another
path of the underlying asset, we can also obtain a positive P&L (see Table 9.3).

We now assume that S (t) is generated by the risk-neutral SDE:

dS (t) = rS (t) dt+ σS (t) dWQ (t)

We estimate the probability density function of π by simulating 10 000 trajectories of the
asset price and calculating the final P&L of the delta hedging strategy. We consider the
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TABLE 9.2: An example of delta hedging strategy (negative P&L)

i ti S (ti) ∆ (ti−1) VS (ti) VB (ti) V (ti) C (ti, S (ti)) X (ti) Π (ti)
0 0.00 100.00 0.00 0.00 590.90 590.90 590.90 0.00 0.00
1 0.02 95.63 58.59 5603.15 −5273.36 329.79 350.22 20.43 −20.43
2 0.04 95.67 43.72 4182.80 −3854.96 327.84 336.15 8.31 −8.31
3 0.06 94.18 43.24 4072.36 −3812.62 259.75 260.57 0.82 −0.82
4 0.08 92.73 37.29 3457.72 −3255.16 202.55 196.22 −6.33 6.33
5 0.10 96.59 31.34 3027.23 −2706.31 320.93 326.47 5.54 −5.54
6 0.12 101.68 44.63 4537.99 −3993.73 544.26 582.71 38.45 −38.45
7 0.13 101.41 63.39 6428.19 −5906.72 521.47 545.64 24.17 −24.17
8 0.15 100.22 62.36 6249.97 −5808.29 441.68 453.62 11.94 −11.94
9 0.17 99.32 57.57 5718.25 −5333.51 384.74 382.58 −2.16 2.16

10 0.19 101.64 53.46 5433.52 −4929.49 504.03 495.99 −8.04 8.04
11 0.21 101.81 63.27 6441.30 −5932.22 509.08 483.87 −25.21 25.21
12 0.23 102.62 64.10 6578.19 −6022.97 555.22 513.53 −41.69 41.69
13 0.25 107.56 67.97 7311.26 −6426.42 884.84 876.68 −8.16 8.16
14 0.27 102.05 86.90 8867.94 −8470.05 397.89 424.07 26.18 −26.18
15 0.29 100.88 66.19 6677.01 −6362.67 314.34 321.76 7.41 −7.41
16 0.31 106.90 59.86 6399.37 −5730.15 669.21 756.02 86.80 −86.80
17 0.33 107.66 90.32 9723.75 −8994.54 729.22 806.47 77.25 −77.25
18 0.35 101.79 94.74 9643.97 −9480.00 163.96 276.24 112.27 −112.27
19 0.37 101.76 69.88 7111.04 −6955.85 155.19 228.08 72.89 −72.89
20 0.38 101.83 75.10 7647.28 −7494.04 153.24 183.00 29.76 −29.76

TABLE 9.3: An example of delta hedging strategy (positive P&L)

i ti S (ti) ∆ (ti−1) VS (ti) VB (ti) V (ti) C (ti, S (ti)) X (ti) Π (ti)
0 0.00 100.00 0.00 0.00 590.90 590.90 590.90 0.00 0.00
1 0.02 98.50 58.59 5771.31 −5273.36 497.95 489.70 −8.25 8.25
2 0.04 97.00 53.45 5184.51 −4771.31 413.19 396.75 −16.44 16.44
3 0.06 95.47 47.89 4571.99 −4236.14 335.85 311.62 −24.24 24.24
4 0.08 98.17 41.87 4110.19 −3664.81 445.38 419.94 −25.44 25.44
5 0.10 100.48 51.10 5134.88 −4575.85 559.03 528.68 −30.35 30.35
6 0.12 102.92 59.19 6092.33 −5394.04 698.28 664.00 −34.29 34.29
7 0.13 105.50 67.69 7140.94 −6274.05 866.89 829.99 −36.90 36.90
8 0.15 101.81 76.13 7750.53 −7171.44 579.09 550.21 −28.88 28.88
9 0.17 100.65 63.86 6427.97 −5928.66 499.31 457.48 −41.83 41.83

10 0.19 98.86 59.15 5847.59 −5459.40 388.19 337.04 −51.15 51.15
11 0.21 99.26 50.91 5053.11 −4649.03 404.09 335.31 −68.78 68.78
12 0.23 101.78 52.25 5317.65 −4786.50 531.15 458.03 −73.12 73.12
13 0.25 99.28 64.14 6367.78 −6002.74 365.03 288.19 −76.84 76.84
14 0.27 99.19 51.19 5077.96 −4722.07 355.89 257.52 −98.36 98.36
15 0.29 95.53 49.97 4773.36 −4604.77 168.59 92.40 −76.18 76.18
16 0.31 98.02 26.47 2594.85 −2362.61 232.23 148.05 −84.19 84.19
17 0.33 97.03 39.61 3843.35 −3653.84 189.51 83.97 −105.54 105.54
18 0.35 96.64 29.34 2835.17 −2659.65 175.51 44.51 −131.01 131.01
19 0.37 95.01 21.11 2005.37 −1866.05 139.32 3.75 −135.56 135.56
20 0.38 93.67 3.62 338.73 −204.45 134.27 0.00 −134.27 134.27
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previous example, but the maturity is now fixed at 130 trading days6. Figure 9.3 repre-
sents the density function for different fixed rebalancing frequencies7. We notice that π is
approximately a Gaussian random variable, which is centered around 0. However, the vari-
ance depends on the rebalancing frequency. In Figure 9.4, we have reported the relationship
between the hedging efficiency σ (π) and the rebalancing frequency. We confirm that we can
perfectly replicate the option with a continuous rebalancing.

FIGURE 9.3: Probability density function of the hedging ratio π

Let us now understand how the hedging ratio is impacted by the dynamics of the un-
derlying asset. We consider again the previous example and simulate one trajectory (see the
first panel in Figure 9.5). We hedge the call option every half an hour. At the maturity, the
hedging ratio is equal to 1.8%. The maximum is reached at time t = 0.466 and is equal to
3.5%. We now introduce a jump at time t = 0.25. This jump induces a large negative P&L
for the trader, whatever the sign of the jump (see the second and third panels in Figure
9.5). If we introduce a jump later at time t = 0.40, the cost depends on the magnitude
and the sign of the jump (Figure 9.6). A positive jump has no impact on the cost of the
replicating portfolio, whereas a negative jump has an impact only if the jump is very large.
To understand these results, we have to analyze the delta coefficient. At time t = 0.40, the
option is in-the-money and the delta is close to 1. This implies that a positive jump has
low impact on the delta hedging, because the delta is bounded by one. If there is a negative
jump, the impact is also limited because the delta is lowly reduced. However, in the case of
a high negative jump, the impact may be important because the delta can be dramatically
reduced. We also observe the same results when the option is highly out-of-the-money and
the delta is close to zero. In this case, a negative jump has no impact, because it decreases

6We assume that a year corresponds to 260 trading days. This implies that the maturity of the option
is exactly one-half year.

7We note ti − ti−1 = dt.



502 Handbook of Financial Risk Management

FIGURE 9.4: Relationship between the hedging efficiency σ (π) and the hedging frequency

the delta but the delta is bounded by zero. Conversely, a positive jump may have an impact
if the magnitude is enough sufficiently large to increase the delta.

In the case of liquid markets with low transaction costs, a delta neutral hedging may be
efficiently implemented in a high frequency basis (daily or intra-day rebalancing). This is
not the case of less liquid markets. Moreover, we observe an asymmetry between call and
put options. The delta of call options is positive, implying that the replicating portfolio is
long on the asset. For put option, the delta is negative and the replicating portfolio is short
on the asset. We know that it is easier to implement a long position than a short position.
Sometimes, it is even impossible to be short. For instance, this explains that there exist call
options on mutual funds, but not put options on mutual funds. We understand that model
risk of derivatives does not only concern the right values of model parameters. In fact,
model risk also concerns the hedging management of the option including the feasibility
and efficiency of the delta hedging strategy. A famous example is the difference between a
put option on S&P 500 index and Eurostoxx 50 index. We know that the returns of the
Eurostoxx 50 index present more discontinuous patterns than those of the S&P 500 index.
The reason is that European markets react more strongly to American markets than the
opposite. This explains that the difference between the closing price and the opening price
is more higher in European markets than in American markets. Therefore, a put option on
the Eurostoxx 50 index contains an additional premium compared to a put option on the
S&P 500 index in order to take into account these stylized facts.

Greek sensitivities We have seen that the delta of the call option is defined by:

∆ (t) = ∂ C (t, S (t))
∂ S (t)
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FIGURE 9.5: Impact of a jump on the hedging ratio π (t)

FIGURE 9.6: Impact of a jump on the hedging ratio π (t)
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We have then:

C (t+ dt, S (t+ h))− C (t, S (t)) ≈∆ (t) · (S (t+ dt)− S (t))

This Taylor expansion can be extended to other orders and other parameters. For instance,
the delta-gamma-theta approximation is:

C (t+ dt, S (t+ h))− C (t, S (t)) ≈ ∆ (t) · (S (t+ dt)− S (t)) +
1
2Γ (t) · (S (t+ dt)− S (t))2 +

Θ (t) · ((t+ dt)− t)

where the gamma is the second-order derivative of the call option price with respect to the
underlying asset price:

Γ (t) = ∂2 C (t, S (t))
∂ S (t)2 = ∂∆ (t)

∂ S (t)

and the theta is the derivative of the call option price with respect to the time:

Θ (t) = ∂ C (t, S (t))
∂ t

= −∂ C (t, S (t))
∂ T

A positive theta coefficient implies that the option value increases if nothing changes, in
particular the price of the underlying asset. By construction, the theta is related to the
time value of the option. This is why the theta is generally low for options with a short
maturity. In fact, understanding theta effects is complicated, because the theta coefficient
is not monotonic in any of the parameters (underlying price, volatility and maturity). We
recall that the option price satisfies the PDE:

1
2σ

2S2Γ + bS∆ + Θ− rC = 0

We deduce that the theta of the option can be calculated as follows:

Θ = rC − 1
2σ

2S2Γ− bS∆

This equation shows that the different coefficients are highly related.

Example 79 We consider a call option, whose strike K is equal to 100. The risk-free rate
and the cost-of-carry parameter are equal to 5%. For the volatility coefficient, we consider
two cases: (a) σ = 20% and (b) σ = 50%.

In Figure 9.7, we have reported the option delta for different values of the asset price
S0 and different values of the maturity T . We have ∆ (t) ∈ [0, 1]. The delta is close to
zero when the asset price is far below the option strike, whereas it is close to one when
the option is highly in-the-money. We also notice that the coefficient ∆ is an increasing
function of the price of the underlying asset. The relationship between the option delta and
the maturity parameter is not monotonous and depends whether the option is in-the-money
or out-of-the-money. In a similar way, the impact of the volatility is not obvious, and may
be different if the option maturity is long or short.

Figure 9.8 represents the option gamma8. It is close to zero when the current price of
the underlying asset is far from the option strike. In this case, the option trader does not

8See Exercise 2.4.7 on page 121 for the analytical expression of the different sensitivity coefficients of the
call option.
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FIGURE 9.7: Delta coefficient of the call option

FIGURE 9.8: Gamma coefficient of the call option
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need to revise its delta exposure frequently. The gamma coefficient is maximum in the at-
the-money region or when the delta is close to 50%. In this situation, the delta can highly
vary and the trader must rebalance the replicating portfolio more frequently in order to
reduce the residual risk.

Let us assume a delta neutral hedging portfolio. The trader can face four configurations
of residual risk given by the following table:

Γ
− +

Θ − X
+ X

The configuration (Γ < 0,Θ < 0) is not realistic, because the trader will not accept to build
a portfolio, whose P&L is almost surely negative. The configuration (Γ > 0,Θ > 0) is also
not realistic, because it would mean that the P&L is always positive whatever the market.
Therefore, two main configurations are interesting:

(a) a negative gamma exposure with a positive theta;

(b) a positive gamma exposure with a negative theta.

We have represented these two cases in Figure 9.9, and we notice that they lead to different
P&L profiles9:

(a) If the gamma is negative, the best situation is obtained when the asset price does not
move. Any changes in the asset price reduce the P&L, which can be negative if the
gamma effect is more important than the theta effect. We also notice that the gain is
bounded and the loss is unbounded in this configuration.

(b) If the theta is negative, the loss is bounded and maximum when the asset price does
not move. Any changes in the asset price increase the P&L because the gamma is
positive. In this configuration, the gain is unbounded.

In order to understand these P&L profiles, we have represented the gamma and theta effects
in Figure 9.10 for the case (b). The portfolio is long on a call option and short on the delta
neutral hedging strategy. The parameters are the following: S0 = 98, K = 100, σ = 10%,
b = 5%, r = 5% and T = 0.25. The value of the option is equal to 1.601 and we have
∆ (t0) = 44.87%. In the first panel in Figure 9.10, we have reported the option price (solid
curve) and the delta hedging strategy (dashed line) at the current date t0 when the asset
price moves. The area between the two curves represents the gamma effect. We notice that
it is positive. For instance, we have Γ (t0) = 11.55%. We do not rebalance the portfolio
until time t = t0 + dt where dt = 0.15. The dashed curve indicates the value of the option
price10 at the date t. The area between C (t, S (t)) (dashed curve) and C (t0, S (t)) (solid
curve) represents the theta effect. We notice that it is negative11. In the second panel, we
have reported the resulting P&L. This is the difference between the first area (positive
gamma effect) and the second area (negative theta effect). We retrieve the results given in
the second panel in Figure 9.9.

9We have also indicated the case (a’) where the gamma is equal to zero. In this case, we obtain a gamma
neutral hedging portfolio and it is not necessary to adjust frequently the hedging portfolio.

10We use the same parameters, except that the maturity is now equal to 0.10.
11We have Θ (t0, S0) = −7.09.
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FIGURE 9.9: P&L of the delta neutral hedging portfolio

FIGURE 9.10: Illustration of the configuration (Γ > 0,Θ < 0)
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9.1.1.4 The implied volatility

Definition In the Black-Scholes formula, all the parameters are objective except the
volatility σ. To calibrate this parameter, we can use a historical estimate σ̂. However, the
option prices computed with the historical volatility σ̂ do not fit the option prices observed
in the market. In practice, we use the Black-Scholes formula to deduce the implied volatility
that gives the market prices:

fBS (S0,K, σimplied, T, b, r) = V (T,K)

where fBS is the Black-scholes formula and V (T,K) is the market price of the option, whose
maturity date is T and whose strike is K. By convention, the implied volatility is denoted
by Σ, and is a function of the parameters12 T and K:

σimplied = Σ (T,K)

Example 80 We consider a call option, whose maturity is one year. The current price of
the underlying asset is normalized and is equal to 100. Moreover, the risk-free rate and the
cost-of-carry parameter are equal to 5%. Below, we report the market price of European call
options of three assets for several strikes:

K 90 95 98 100 101 102 105 110
C1 (T,K) 16.70 13.35 11.55 10.45 9.93 9.42 8.02 6.04
C2 (T,K) 18.50 14.50 12.00 10.45 9.60 9.00 7.50 5.70
C3 (T,K) 18.00 14.00 11.80 10.45 9.90 9.50 8.40 7.40

TABLE 9.4: Implied volatility Σ (T,K)

K 90 95 98 100 101 102 105 110
Σ1 (T,K) 20.00 20.01 19.99 20.0 20.01 19.99 20.00 20.00
Σ2 (T,K) 26.18 23.41 21.24 20.0 19.14 18.90 18.69 19.14
Σ3 (T,K) 24.53 21.95 20.68 20.0 19.93 20.20 20.95 23.43

For each asset and each strike, we calculate Σ (T,K) and report the results in Table 9.4
and Figure 9.11. For the first set C1 of options, the implied volatility is constant. In the
case of the options C2, the implied volatility is decreasing with respect to the strike K. In
the third case, the implied volatility is decreasing for in-the-money options and increasing
for out-of-the-money options.

Remark 99 When the curve of implied volatility is decreasing and increasing, the curve is
called a volatility smile. When the curve of implied volatility is just decreasing, it is called a
volatility skew. If we consider the maturity dimension, the term structure of implied volatility
is known as the volatility surface.

Relationship between the implied volatility and the risk-neutral density Bree-
den and Litzenberger (1978) showed that volatility smile and risk-neutral density are related.
Let Ct (T,K, ) be the market price of the European call option at time t, whose maturity is

12Σ (T,K) also depends on the other parameters S0, b and r, but they are fixed values at the current
date t0.
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FIGURE 9.11: Volatility smile

T and strike is K. We have:

Ct (T,K) = EQ
[
e
−
∫ T
t
r ds (S (T )−K)+

∣∣∣∣Ft]
= e−r(T−t)

∫ ∞
−∞

(S −K)+
qt (T, S) dS

= e−r(T−t)
∫ ∞
K

(S −K) qt (T, S) dS

where qt (T, S) is the risk-neutral probability density function of S (T ) at time t. By defini-
tion, the risk-neutral cumulative distribution function Qt (T, S) is equal to13:

Qt (T, S) =
∫ S

−∞
qt (T, x) dx

We deduce that:

∂ Ct (T,K)
∂ K

= −e−r(T−t)
∫ ∞
K

qt (T, S) dS

= −e−r(T−t) (1−Qt (T,K))

and:
∂2 Ct (T,K)

∂ K2 = e−r(T−t)qt (T,K)

13We use the notations Qt (T, S) and qt (T, S) instead of Q (S) and q (S) because they will be convenient
when considering the local volatility model.



510 Handbook of Financial Risk Management

It follows that the risk-neutral cumulative distribution function is related to the first deriva-
tive of the call option price:

Qt (T,K) = Pr {S (T ) ≤ K | Ft}
= 1 + er(T−t) · ∂KCt (T,K)

We note Σt (T,K) the volatility surface and C?t (T,K,Σ) the Black-Scholes formula. It
follows that:

Qt (T,K) = 1 + er(T−t) · ∂KC?t (T,K,Σt (T,K)) +
er(T−t) · ∂ΣC?t (T,K,Σt (T,K)) · ∂KΣt (T,K)

where:
∂KC?t (T,K,Σ) = −e−r(T−t) · Φ (d2)

and:
∂ΣC?t (T,K,Σ) = S (t) · e(b−r)(T−t) ·

√
T − t · φ

(
d2 + Σ

√
T − t

)
If we are interested in the risk-neutral probability density function, we obtain:

qt (T,K) = ∂KQt (T,K)
= er(T−t) · ∂2

KCt (T,K)

where:

∂2
KCt (T,K) = ∂2

KC?t (T,K,Σt) +
2 · ∂2

K,ΣC?t (T,K,Σt) · ∂KΣt (T,K) +
∂ΣC?t (T,K,Σt) · ∂2

KΣt (T,K) +
∂2

ΣC?t (T,K,Σt) · (∂KΣt (T,K))2

and:

∂2
KC?t (T,K,Σ) = e−r(T−t)

φ (d2)
KΣ
√
T − t

∂2
K,ΣC?t (T,K,Σ) = e(b−r)(T−t)S (t) d1φ (d1)

ΣK

∂2
ΣC?t (T,K,Σ) = e(b−r)(T−t)S (t) d1d2

√
T − tφ (d1)

Σ

Example 81 We assume that S (t) = 100, T − t = 10, b = r = 5% and:

Σt (T,K) = 0.25 + ln
(

1 + 10−6 (K − 90)2 + 10−6 (K − 180)2
)

In Figure 9.12, we have represented the volatility surface and the associated risk-neutral
probability density function. In fact, they both contain the same information, but profes-
sionals are more familiar with implied volatilities than risk-neutral probabilities. We have
also reported the Black-Scholes risk-neutral distribution by considering the at-the-money
implied volatility. We notice that the Black-Scholes model underestimates the probability
of extreme events in this example.
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FIGURE 9.12: Risk-neutral probability density function

Robustness of the Black-Scholes formula El Karoui et al. (1998) assume that the
underlying price process is given by:

dS (t) = µ (t)S (t) dt+ σ (t)S (t) dW (t) (9.9)

whereas the trader hedges the call option with the implied volatility Σ (T,K), meaning that
the risk-neutral process is:

dS (t) = rS (t) dt+ Σ (T,K)S (t) dWQ (t) (9.10)

We reiterate that the dynamics of the replicating portfolio is:

dV (t) = φ (t) dS (t) + ψ (t) dB (t)

= φ (t) dS (t) + (V (t)− φ (t)S (t))
B (t) rB (t) dt

= φ (t) dS (t) + r (V (t)− φ (t)S (t)) dt
= rV (t) dt+ φ (t) (dS (t)− rS (t) dt)

Since C (t) = C (t, S (t)), we also have:

dC (t) =
(
∂tC (t, S (t)) + 1

2σ
2 (t)S2 (t) ∂2

SC (t, S (t))
)

dt+

∂SC (t, S (t)) dS (t)

Using the PDE (9.2), we notice that:

∂tC (t, S (t)) = rC (t, S (t))− rS (t) ∂SC (t, S (t))−
1
2Σ2 (T,K)S2 (t) ∂2

SC (t, S (t))
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We deduce that:

dC (t) = rC (t, S (t)) dt+
∂SC (t, S (t)) (dS (t)− rS (t) dt) +
1
2
(
σ2 (t)− Σ2 (T,K)

)
S2 (t) ∂2

SC (t, S (t)) dt

We consider the hedging error defined by:

e (t) = V (t)− C (t)

Since φ (t) = ∂SC (t, S (t)), we have:

de (t) = dV (t)− dC (t)
= rV (t) dt+ φ (t) (dS (t)− rS (t) dt)− rC (t, S (t)) dt−

∂SC (t, S (t)) (dS (t)− rS (t) dt) +
1
2
(
Σ2 (T,K)− σ2 (t)

)
S2 (t) ∂2

SC (t, S (t)) dt

= re (t) dt+ 1
2
(
Σ2 (T,K)− σ2 (t)

)
S2 (t) ∂2

SC (t, S (t)) dt

We deduce that14:

V (T )− C (T ) = 1
2

∫ T

0
er(T−t)Γ (t)

(
Σ2 (T,K)− σ2 (t)

)
S2 (t) dt (9.11)

This equation is know as the robustness formula of Black-Scholes hedging (El Karoui et al.,
1998). Formula (9.11) is one of the most important results of this chapter. Indeed, since the
gamma coefficient of a call option is always positive, we can obtain an almost sure P&L
if the implied volatility is larger than the realized volatility and if there is no jump. More
generally, the previous result is valid for all types of European options:

V (T )− f (S (T )) = 1
2

∫ T

0
er(T−t)Γ (t)

(
Σ2 (T,K)− σ2 (t)

)
S2 (t) dt (9.12)

where f (S (T )) is the payoff of the option. We obtain the following results:

• if Γ (t) ≥ 0, a positive P&L is achieved by overestimating the realized volatility:

Σ (T,K) ≥ σ (t) =⇒ V (T ) ≥ f (S (T ))

• if Γ (t) ≤ 0, a positive P&L is achieved by underestimating the realized volatility:

Σ (T,K) ≤ σ (t) =⇒ V (T ) ≥ f (S (T ))

• the variance of the hedging error is an increasing function of the absolute value of the
gamma coefficient:

|Γ (t)| ↗=⇒ var (V (T )− f (S (T )))↗

In terms of model risk, the robustness formula highlights the role of the implied volatility,
the realized volatility and the gamma coefficient. An important issue concerns the case when
the gamma can be positive and negative and changes sign during the life of the option. We
cannot then control the P&L by using a lower or an upper bound for the implied volatility15.

14Because we have e (0) = V (0)− C (0) = 0.
15This issue is solved on page 530.
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Example 82 We consider the replication of 100 ATM call options. The current price of the
asset is 100 and the maturity of the option is 6 months (or 130 trading days). We consider
the following parameters: b = r = 5%. We rebalance the delta hedging portfolio every trading
day. Moreover, we assume that the option is priced and hedged with a 20% implied volatility.

Figure 9.13 represents the density function of the hedging ratio π. In the case where the
realized volatility σ (t) is equal to the implied volatility, we retrieve the previous results:
π is centered around zero. However, if the realized volatility σ (t) is below (or above) the
implied volatility, π is shifted to the right (or the left). If σ (t) < Σ, then there is a higher
probability that the trader makes a profit. In our example, we obtain:

Pr {π > 0 | Σ = 20%, σ = 15%} = 99.04%

and:
Pr {π > 0 | Σ = 20%, σ = 25%} = 0.09%

FIGURE 9.13: Hedging error when the implied volatility is 20%

9.1.2 Interest rate risk modeling
Even if the Vasicek model is not used today by practitioners, it is interesting to study it

in order to understand the calibration challenge when considering fixed income derivatives.
Indeed, in the Black-Scholes model, the calibration consists in estimating a few number
of parameters and the main issue concerns the implied volatility. We will see that pricing
exotic fixed income derivatives is a more difficult task, because the choice of the risk factors
is not obvious and may depend on the tractability of the pricing model16.

16We invite the reader to refer to the book of Brigo and Mercurio (2006) for a more comprehensive
presentation on the pricing of fixed income derivatives.
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9.1.2.1 Pricing zero-coupon bonds with the Vasicek model

Vasicek (1977) assumes that the state variable is the instantaneous interest rate and
follows an Ornstein-Uhlenbeck process:{

dr (t) = a (b− r (t)) dt+ σ dW (t)
r (t0) = r0

We recall that a zero-coupon bond is a bond that pays $1 at the maturity date T . Therefore,
we have V (T, r) = 1 if we note V (t, r) the price of the zero-coupon bond at time t when
the interest rate r (t) is equal to r. The corresponding partial differential equation becomes
then:

1
2σ

2 ∂
2V (t, r)
∂ r2 + (a (b− r (t))− λ (t)σ) ∂ V (t, r)

∂ r
+ ∂ V (t, r)

∂ t
− r (t)V (t, r) = 0

By applying the Feynman-Kac representation theorem, we deduce that:

V (0, r0) = EQ
[
e
−
∫ T

0
r(t) dt

∣∣∣∣F0

]
(9.13)

where the risk-neutral dynamic of r (t) is:{
dr (t) = (a (b− r (t))− λ (t)σ) dt+ σ dWQ (t)
r (t0) = r0

Vasicek (1977) assumes that the risk price of the Wiener process is constant: λ (t) = λ. It
follows that the risk-neutral dynamic of r (t) is an Ornstein-Uhlenbeck process:{

dr (t) = a (b′ − r (t)) dt+ σ dWQ (t)
r (t0) = r0

where:
b′ = b− λσ

a

We note Z =
∫ T

0
r (t) dt. In Exercise 9.4.2 on page 593, we show that Z is a Gaussian

random variable where:
E [Z] = bT + (r0 − b)

(
1− e−aT

a

)
and:

var (Z) = σ2

a2

(
T −

(
1− e−aT

a

)
− 1

2a
(
1− e−aT

)2)
We deduce that:

V (0, r0) = EQ [e−Z∣∣F0
]

= exp
(
−EQ [Z] + 1

2 varQ (Z)
)

= exp
(
−r0β −

(
b′ − σ2

2a2

)
(T − β)− σ2β2

4a

)
where:

β = 1− e−aT

a
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If we use the standard notation B (t, T ), we have B (t, T ) = V (T − t, r (t)). We recall
that the zero-coupon rate R (t, T ) is defined by:

B (t, T ) = e−(T−t)R(t,T )

We deduce that:

R (t, T ) = − 1
T − t

lnB (t, T )

= rtβ

T − t
+
(
b′ − σ2

2a2

)(
T − t− β
T − t

)
+ σ2β2

4a (T − t)

=
(
b′ − σ2

2a2

)
+
(
rt − b′ +

σ2

2a2

)
β

T − t
+ σ2β2

4a (T − t)

Since we have:
R∞ = lim

T→∞
R (t, T ) = b′ − σ2

2a2

the zero-coupon rate has the following expression:

R (t, T ) = R∞ + (rt −R∞)
(

1− e−a(T−t)

a (T − t)

)
+
σ2 (1− e−a(T−t))2

4a3 (T − t) (9.14)

The yield curve can take three different forms (Figure 9.14). Vasicek (1977) shows that the

curve is increasing if rt ≤ R∞ −
σ2

4a2 and decreasing if rt ≥ R∞ + σ2

2a2 . Otherwise, it is a
bell curve.

FIGURE 9.14: Vasicek model (a = 2.5, b = 6% and σ = 5%)
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Let F (t, T1, T2) be the forward rate at time t for the period [T1, T2]. It verifies the
following relationship:

B (t, T2) = e−(T2−T1)F (t,T1,T2)B (t, T1)

We deduce that the expression of F (t, T1, T2) is:

F (t, T1, T2) = − 1
(T2 − T1) ln B (t, T2)

B (t, T1)

It follows that the instantaneous forward rate is given by this equation17:

f (t, T ) = F (t, T, T ) = −∂ lnB (t, T )
∂ T

Using Equation (9.14), we deduce another expression of the price of the zero-coupon bond:

B (t, rt) = exp
(
− (T − t)R∞ − (rt −R∞)

(
1− e−a(T−t)

a

)
−
σ2 (1− e−a(T−t))2

4a3

)

Therefore, the instantaneous forward rate in the Vasicek model is:

f (t, T ) = R∞ + (rt −R∞) e−a(T−t) +
σ2 (1− e−a(T−t)) e−a(T−t)

2a2

Remark 100 Forward rates are interest rates that are locked in forward rate agreements
(FRA). It involves two dates: T1 is the start of the period the rate will be fixed for, and T2
is the maturity date of the FRA. T2−T1 is the maturity of the locked interest rate. It is also
called the tenor of the interest rate that is being fixed. Therefore, F (t, T1, T2) is the forward
value of the spot rate R (t, T2 − T1).

9.1.2.2 The calibration issue of the yield curve

Hull and White (1990) propose to extend the Vasicek model by considering that the
three parameters a, b and σ are deterministic functions of time. Under the risk-neutral
probability measure, the dynamics of the interest rate is then:

dr (t) = a (t) (b (t)− r (t)) dt+ σ (t) dWQ (t)

The underlying idea is to fit the term structure of interest rates and other quantities, such
as the term structure of spot volatilities. However, the generalized Vasicek model produces
unrealistic volatility term structures. Therefore, Hull and White (1994) focused on this
extension:

dr (t) = a (b (t)− r (t)) dt+ σ dWQ (t)
= (θ (t)− ar (t)) dt+ σ dWQ (t)

17We also notice that B (t, T ) can be expressed in terms of instantaneous forward rates:

B (t, T ) = e
−
∫ T
t
f(t,u) du
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where θ (t) = a · b (t). If we want to fit exactly the yield curve, we can consider arbitrary
values for the parameters a and σ, because the calibration of the yield curve is done by the
time-varying mean-reverting parameter:

θ (t) = ∂ f (0, t)
∂ t

+ af (0, t) + σ2

2a
(
1− e−2at)

or:
b (t) = f (0, t) + 1

a
∂tf (0, t) + σ2

2a2

(
1− e−2at) (9.15)

We notice that b (t) depends on the instantaneous forward rate, which is the first derivative
of the price of the zero-coupon bond.

Example 83 We assume that the zero-coupon rates are given by the Nelson-Siegel model
with θ1 = 5.5%, θ2 = 0.5%, θ3 = −4.5% and θ4 = 1.8.

We reiterate that the spot rate R (t, T ) in the Nelson-Siegel model is equal to:

R (t, T ) = θ1 + θ2

(
1− e−(T−t)/θ4

(T − t) /θ4

)
+ θ3

(
1− e−(T−t)/θ4

(T − t) /θ4
− e−(T−t)/θ4

)
We deduce that the instantaneous forward rate corresponds to the following expression:

f (t, T ) = ∂ (T − t)R (t, T )
∂ T

= θ1 + θ2e
−(T−t)/θ4 + θ3 (T − t)

θ4
e−(T−t)/θ4

For the slope, we have:

∂ f (t, T )
∂ T

=
(

(θ3 − θ2)
θ4

− θ3 (T − t)
θ2

4

)
e−(T−t)/θ4

Fitting exactly the Nelson-Siegel yield curve is then equivalent to define the time-varying
mean-reverting parameter b (t) of the extended Vasicek model as follows:

b (t) = θ1 + θ2e
−t/θ4 + θ3t

θ4
e−t/θ4 + σ2

2a2

(
1− e−2at)+

1
a

(
(θ3 − θ2)

θ4
− θ3t

θ2
4

)
e−t/θ4

= θ1 +
((

θ2 + θ3t

θ4

)(
1− 1

aθ4

)
+ θ3

aθ4

)
e−t/θ4 +

σ2

2a2

(
1− e−2at)

In Figure 9.15, we have represented the yield curve obtained with the Nelson-Siegel model
in the top/left panel. We have also reported the curve of instantaneous forward rates in
the top/right panel. The bottom/left panel corresponds to the time-varying mean-reverting
parameter b (t). We have used three set of parameters (a, σ). Finally, we have recalculated
the yield curve of the extended Vasicek model in the bottom/right panel. We retrieve the
original yield curve. We can compare this solution with those obtained by minimizing the
sum of the squared residuals:(

r̂0, â, b̂, σ̂
)

= arg min
∑
i

(
RNS (t, Ti)−R (t, Ti; r0, a, b, σ)

)2
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where RNS (t, Ti) is the Nelson-Siegel spot rate, R (t, Ti; r0, a, b, σ) is the theoretical spot rate
of the Vasicek model and i denotes the ith observation. By considering all the maturities
between zero and twenty years with a step of one month, we obtain r̂0 = 6%, â = 16.88,
b̂ = 7.47% and σ̂ = 3.91%. Unfortunately, the fitted Vasicek model (curve #2) does not
reproduce the original yield curve contrary to the fitted extended Vasicek model (curve #1).

FIGURE 9.15: Calibration of the Vasicek model

The yield curve is not the only market information to calibrate. More generally, the
calibration set of an interest rate model also includes caplets, floorlets and swaptions (Brigo
and Mercurio, 2006). This explains that pricing interest rate exotic options is more difficult
than pricing equity exotic options, and one-factor models based on the short rate are not
sufficient, because it is not possible to calibrate caps, floors and swaptions.

9.1.2.3 Caps, floors and swaptions

We consider a number of future dates T0, T1, . . . , Tn, and we assume that the period
between two dates Ti and Ti−1 is approximately constant (e.g. 3M or 6M). A caplet is
the analog of a call option, whose underlying asset is a forward rate. It is defined by
the payoff (Ti − Ti−1) (F (Ti−1, Ti−1, Ti)−K)+, where K is the strike of the caplet and
F (Ti−1, Ti−1, Ti) is the forward rate at the future date Ti−1. δi−1 = Ti − Ti−1 is then the
tenor of the caplet, Ti−1 is the resetting date (or the fixing date) of the forward rate whereas
Ti is the maturity date of the caplet. A cap is a portfolio of successive caplets18:

Cap (t) =
n∑
i=1

Caplet (t, Ti−1, Ti)

18We have t ≤ T0.
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Similarly, a floor is a portfolio of successive floorlets:

Floor (t) =
n∑
i=1

Floorlet (t, Ti−1, Ti)

where the payoff of the floorlet is (Ti − Ti−1) (K − F (Ti−1, Ti−1, Ti))+.
A par swap rate is the fixed rate of an interest rate swap19:

Sw (t) = B (t, T0)−B (t, Tn)∑n
i=1 (Ti − Ti−1) ·B (t, Ti)

Then, we define the payoff of a payer swaption as20:

(Sw (T0)−K)+
n∑
i=1

(Ti − Ti−1)B (T0, Ti)

where Sw (T0) is the forward swap rate.

Remark 101 Generally, caps, floors and swaptions are written on the Libor rate, which is
defined as a simple forward rate:

L (t, Ti−1, Ti) = 1
Ti − Ti−1

(
B (t, Ti−1)
B (t, Ti)

− 1
)

In order to price these interest rate products, we can use the risk-neutral probability
measure Q, and we have21:

Caplet (t, Ti−1, Ti) = EQ
[
e
−
∫ Ti
t

r(s) ds
δi−1 (L (Ti−1, Ti−1, Ti)−K)+

∣∣∣∣Ft]
and:

Swaption (t) = EQ

[
e
−
∫ Tn
t

r(s) ds (Sw (T0)−K)+
n∑
i=1

δi−1B (T0, Ti)

∣∣∣∣∣Ft
]

We face here a problem because the discount factor is stochastic and is not independent
from the forward rate L (Ti−1, Ti−1, Ti) or the forward swap rate Sw (T0). Therefore, the
risk-neutral transform does not help to price interest rate derivatives.

9.1.2.4 Change of numéraire and equivalent martingale measure

We recall that the price of the contingent claim, whose payoff is V (T ) = f (S (T )) at
time T , is given by:

V (0) = EQ
[
e
−
∫ T

0
r(s) ds · V (T )

∣∣∣∣F0

]
where Q is the risk-neutral probability measure. We can rewrite this equation as follows:

V (0)
M (0) = EQ

[
V (T )
M (T )

∣∣∣∣F0

]
(9.16)

19T0 = t corresponds to a spot swap, whereas T0 > t corresponds to a forward start swap.
20The payoff of a receiver swaption is:

(K − Sw (T0))+
n∑
i=1

(Ti − Ti−1)B (T0, Ti)

21We recall that δi−1 is equal to Ti − Ti−1.
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where22:
M (t) = exp

(∫ t

0
r (s) ds

)
Under the probability measure Q, we know that Ṽ (t) = V (t) /M (t) is an Ft-martingale.
The money market accountM (t) is then the numéraire when the martingale measure is the
risk-neutral probability measure23, but other numéraires can be used in order to simplify
pricing problems:

“The use of the risk-neutral probability measure has proved to be very powerful
for computing the prices of contingent claims [...] We show here that many
other probability measures can be defined in the same way to solve different
asset-pricing problems, in particular option pricing. Moreover, these probability
measure changes are in fact associated with numéraire changes” (Geman et al.,
1995, page 443).

Let us consider another numéraire N (t) > 0 and the associated probability measure given
by the Radon-Nikodym derivative:

dQ?

dQ = N (T ) /N (0)
M (T ) /M (0)

= e
−
∫ T

0
r(s) ds · N (T )

N (0)

We have:

EQ?
[
V (T )
N (T )

∣∣∣∣F0

]
= EQ

[
V (T )
N (T ) ·

dQ?

dQ

∣∣∣∣Ft]
= M (0)

N (0) · E
Q
[
V (T )
M (T )

∣∣∣∣F0

]
= M (0)

N (0) · V (0)

We deduce that:
V (0)
N (0) = EQ?

[
V (T )
N (T )

∣∣∣∣F0

]
(9.17)

We notice that Equation (9.17) is similar to Equation (9.16), except that we have changed
the numéraire (M (t)→ N (t)) and the probability measure (Q→ Q?). More generally, we
have:

V (t) = N (t) · EQ?
[
V (T )
N (T )

∣∣∣∣Ft]
Thanks to Girsanov theorem, we also notice that e−

∫ t
0
r(s) ds

N (t) is an Ft-martingale.

Example 84 The forward numéraire is the zero-coupon bond price of maturity T :

N (t) = B (t, T )

In this case, the probability measure is called the forward probability and is denoted by
Q? (T ). This martingale measure has been originally used by Jamshidian (1989) for pricing
bond options with the Vasicek model. Another important result is that forward rates are
martingales under the forward probability measure (Brigo and Mercurio, 2006).

22We note that M (0) = 1.
23M (t) is also called the spot numéraire.
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By noticing that N (T ) = B (T, T ) = 1, Equation (9.17) becomes:

V (t) = B (t, T )EQ?(T ) [V (T )| Ft]

For instance, in the case of a caplet, we obtain:

Caplet (t, Ti−1, Ti) = δi−1EQ
[
M (t)
M (Ti)

(L (Ti−1, Ti−1, Ti)−K)+
∣∣∣∣Ft]

= δi−1EQ?(Ti)
[
N (t)
N (Ti)

(L (Ti−1, Ti−1, Ti)−K)+
∣∣∣∣Ft]

= δi−1B (t, Ti)EQ?(Ti)
[

(L (Ti−1, Ti−1, Ti)−K)+
∣∣∣Ft]

where L (t, Ti−1, Ti) is an Ft-martingale under the forward probability measure Q? (Ti). If
we use the standard Black model, we obtain:

Caplet (t, Ti−1, Ti) = δi−1B (t, Ti) (L (t, Ti−1, Ti) Φ (d1)−KΦ (d2)) (9.18)

where24:
d1 = 1

σi−1
√
Ti−1 − t

ln L (t, Ti−1, Ti)
K

+ 1
2σi−1

√
Ti−1 − t

and:
d2 = d1 − σi−1

√
Ti−1 − t

If we consider other models, the general formula of the caplet price is25:

Caplet (t, Ti−1, Ti) = B (t, Ti)EQ?(Ti)

[(
1

B (Ti−1, Ti)
− (1 + δi−1K)

)+
∣∣∣∣∣Ft
]

Example 85 The annuity numéraire is equal to:

N (t) =
n∑
i=1

(Ti − Ti−1)B (t, Ti)

While the forward swap rate is a martingale under the annuity probability measure Q?, the
annuity numéraire is used to price a swaption (Brigo and Mercurio, 2006).

24σi−1 is the volatility of the Libor rate L (t, Ti−1, Ti).
25We have:

δi−1 (L (t, Ti−1, Ti)−K)+ =
(
B (t, Ti−1)
B (t, Ti)

− (1 + δi−1K)
)+

=
(B (t, Ti−1)− (1 + δi−1K)B (t, Ti))+

B (t, Ti)

and:

δi−1 (L (Ti−1, Ti−1, Ti)−K)+ =
(

1
B (Ti−1, Ti)

− (1 + δi−1K)
)+
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We deduce the following pricing formula for the swaption:

Swaption (t) = EQ

[
M (t)
M (Tn) (Sw (T0)−K)+

n∑
i=1

δi−1B (T0, Ti)

∣∣∣∣∣Ft
]

= EQ?
[
N (t)
N (T0) (Sw (T0)−K)+

n∑
i=1

δi−1B (T0, Ti)

∣∣∣∣∣Ft
]

= N (t)EQ?
[

(Sw (T0)−K)+
∣∣∣Ft] (9.19)

= N (t)EQ?
[(

1−B (T0, Tn)
N (T0) −K

)+
∣∣∣∣∣Ft
]

Using Equation (9.19), we can also find a Black formula for the swaption, in exactly the same
way as caps and floors. However, we face here an issue. Indeed, it is equivalent to assume
that all the forward rates are log-normal under the different forward probability measures
Q? (Ti) and the swap rates are also log-normal under the annuity probability measures Q?.
The problem is that these different forward and swap rates are related, and their dynamics
are not independent.

9.1.2.5 The HJM model

Until the beginning of the nineties, the state variable of fixed income models is the in-
stantaneous interest rate r (t). For instance, it is the case of the models of Vasicek (1977) and
Cox et al. (1985). However, we have seen that we face some calibration issues when consid-
ering such framework. Heath et al. (1992) propose then that the state variables are forward
rates, and not spot rates. Under the risk-neutral probability measure Q, the dynamics of
the instantaneous forward rate for the maturity T is given by:

f (t, T ) = f (0, T ) +
∫ t

0
α (s, T ) ds+

∫ t

0
σ (s, T ) dWQ (s)

where f (0, T ) is the current forward rate. Therefore, the stochastic differential equation is:

df (t, T ) = α (t, T ) dt+ σ (t, T ) dWQ (t) (9.20)

Bond pricing We recall that:

B (t, T ) = e
−
∫ T
t
f(t,u) du

If we note X (t) = −
∫ T
t
f (t, u) du, we have:

dX (t) = f (t, t) dt−
∫ T

t

df (t, u) du

= f (t, t) dt−
(∫ T

t

α (t, u) du
)

dt−
(∫ T

t

σ (t, u) du
)

dWQ (t)

= (f (t, t) + a (t, T )) dt+ b (t, T ) dWQ (t)

where:
a (t, T ) = −

∫ T

t

α (t, u) du
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and:
b (t, T ) = −

∫ T

t

σ (t, u) du

We deduce that:

dB (t, T ) = eX(t) dX (t) + 1
2e

X(t) 〈dX (t) ,dX (t)〉

=
(
f (t, t) + a (t, T ) + 1

2b
2 (t, T )

)
B (t, T ) dt+

b (t, T )B (t, T ) dWQ (t)

Since f (t, t) is equal to the spot rate r (t), the HJM model implies the following restriction26:

α (t, T ) = σ (t, T )
∫ T

t

σ (t, u) du (9.21)

Equation (9.21) is known as the ‘drift restriction’ and is necessary to ensure no-arbitrage
opportunities. In this case, we verify that the discounted zero-coupon bond is a martingale
under the risk-neutral probability measure Q:

dB (t, T ) = r (t)B (t, T ) dt+ b (t, T )B (t, T ) dWQ (t)

Dynamics of spot and forward rates The drift restriction implies that the dynamics
of the instantaneous forward rate f (t, T ) is given by:

df (t, T ) =
(
σ (t, T )

∫ T

t

σ (t, u) du
)

dt+ σ (t, T ) dWQ (t)

Therefore, we have:

f (t, T ) = f (0, T ) +
∫ t

0

(
σ (s, T )

∫ T

s

σ (s, u) du
)

ds+
∫ t

0
σ (s, T ) dWQ (s)

If we are interested in the instantaneous spot rate r (t), we obtain:

r (t) = f (t, t)

= r (0) +
∫ t

0

(
σ (s, t)

∫ t

s

σ (s, u) du
)

ds+
∫ t

0
σ (s, t) dWQ (s)

Forward probability measure We now consider the dynamics of the forward rate
f (t, T1) under the forward probability measure Q? (T2) with T2 ≥ T1. We reiterate that
the new numéraire N (t) is given by:

N (t) = B(t, T2) = e
−
∫ T2
t

f(t,u) du

26Indeed, we must have:
a (t, T ) +

1
2
b2 (t, T ) = 0

or:
∂T a (t, T ) = −b (t, T ) · ∂T b (t, T )
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In Exercise 9.4.5 on page 596, we show that:

df (t, T1) = −
(
σ (t, T1)

∫ T2

T1

σ (t, u) du
)

dt+ σ (t, T1) dWQ?(T2) (t)

It follows that f (t, T1) is a martingale under the forward probability measure Q? (T1):

df (t, T1) = σ (t, T1) dWQ?(T1) (t)

We can also show that B (t, T2) /B (t, T1) is a martingale under Q? (T1) and we have:

B (T1, T2) = B (t, T2)
B (t, T1) exp

(∫ T1

t

g (u) dWQ?(T1) (u)− 1
2

∫ T1

t

g2 (u) du
)

where:
g (t) = b (t, T2)− b (t, T1)

Some examples If we assume that σ (t, T ) is constant and equal to σ, we obtain:

f (t, T ) = f (0, T ) + σ2
(
T − t

2

)
t+ σWQ (t)

and:
r (t) = f (0, t) + σ2 t

2

2 + σWQ (t)

This case corresponds to the Gaussian model of Ho and Lee (1986).
Brigo and Mercurio (2006) consider the case of separable volatility:

σ (t, T ) = ξ (t)ψ (T )

We have:

dr (t) =
(
∂tf (0, t) + ψ2 (t)

∫ t

0
ξ2 (s) ds+ (r (t)− f (0, t))

ψ (t) ψ′ (t)
)

dt+

ξ (t)ψ (t) dWQ (t)

For example, if we set σ (t, T ) = σe−a(T−t), we have ξ (t) = σeat, ψ (T ) = e−aT and27:

dr (t) =
(
∂tf (0, t) + σ2

(
1− e−2at

2a

)
+ a (f (0, t)− r (t))

)
dt+ σ dWQ (t)

We retrieve the generalized Vasicek model proposed by Hull and White (1994):

dr (t) = a (b (t)− r (t)) dt+ σ dWQ (t)

where b (t) is given by Equation (9.15) on page 517.

27We have:

ψ2 (t)
∫ t

0
ξ2 (s) ds = σ2e−2at

∫ t

0
e2as ds

= σ2
(

1− e−2at

2a

)
and:

ψ′ (t)
ψ (t)

= −a
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Ritchken and Sankarasubramanian (1995) have identified necessary and sufficient con-
ditions on the functions ξ and ψ in order to obtain a Markovian short-rate process. They
showed that they must satisfy the following conditions:

ξ (t) = σ (t) e
∫ t

0
κ(s) ds

and:
ψ (T ) = e

−
∫ T

0
κ(s) ds

where σ (t) and κ (t) are two Ft-adapted processes. In this case, we obtain:

σ (t, T ) = σ (t) e−
∫ T
t
κ(s) ds

For instance, the generalized Vasicek model is a special case of this framework where the
two functions σ (t) and κ (t) are constant28.

Extension to multi-factor models We can show that the previous results can be ex-
tended when we assume that the instantaneous forward rate is given by the following SDE:

df (t, T ) = α (t, T ) dt+ σ (t, T )> dWQ (t)

where WQ (t) =
(
WQ

1 (t) , . . . ,WQ
n (t)

)
is a n-dimensional Brownian motion and ρ is the

correlation matrix of WQ (t). For instance, the drift restriction (9.21) becomes:

α (t, T ) = σ (t, T )> ρ
∫ T

t

σ (t, u) du

In the two-dimensional case, we obtain:

df (t, T ) =
(
σ1 (t, T )

∫ T

t

σ1 (t, u) du
)

dt+
(
σ2 (t, T )

∫ T

t

σ2 (t, u) du
)

dt

+ρ1,2

(
σ1 (t, T )

∫ T

t

σ2 (t, u) du+ σ1 (t, T )
∫ T

t

σ2 (t, u) du
)

dt

σ1 (t, T ) dWQ
1 (t) + σ2 (t, T ) dWQ

2 (t)

For example, Heath et al. (1992) extend the Vasicek model by assuming that σ1 (t, T ) = σ1,
σ2 (t, T ) = σ2e

−a2(T−t) and ρ1;2 = 0. In this case, we obtain:

r (t) = f (0, t) + σ2
1
t2

2 + σ2
2
a2

2

((
1− e−a2t

)
− 1

2
(
1− e−2a2t

))
+

σ1W
Q
1 (t) + σ2

∫ t

0
e−a2(t−s) dWQ

2 (s)

9.1.2.6 Market models

One of the disadvantages of short-rate and HJM models is that they focus on instanta-
neous spot or forward interest rates. However, these quantities are unobservable. At the end
of the nineties, academics have developed two families of models in order to bypass these
disadvantages: the Libor market model (LMM) and the swap market model (SMM).

28We have σ (t) = σ and κ (t) = a.
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The Libor market model The Libor market model has been introduced by Brace et al.
(1997) and is also known as the BGM model in reference to the names of Brace, Gatarek
and Musiela. We recall that the Libor rate is defined as a simple forward rate:

L (t, Ti, Ti+1) = 1
Ti+1 − Ti

(
B (t, Ti)
B (t, Ti+1) − 1

)
In order to simplify the notation, we write Li (t) = L (t, Ti, Ti+1). Under the forward prob-
ability measure Q? (Ti+1), the Libor rate Li (t) is a martingale:

dLi (t) = γi (t)Li (t) dWQ?(Ti+1)
i (t) (9.22)

Then, we can use the Black formula (9.18) on page 521 to price caplets and floorlets where
the volatility σi is defined by:

σ2
i = 1

Ti − t

∫ Ti

t

γ2
i (s) ds

Therefore, we can price caps and floors because they are just a sum of caplets and floorlets.

Flat or spot implied volatility We can define two surfaces of implied volatilities. Since
we observe the market prices of caps and floors, we can deduce the corresponding implied
volatilities by assuming that the volatility in the Black model is constant. Thus, we have:

Capn (t) = Cap (t, T0, T1, . . . , Tn)

=
n∑
i=1

Caplet (t, Ti−1, Ti)

=
n∑
i=1

Capleti (t)

where Capleti (t) = C (Li−1 (t) ,K, σi−1, Ti) and C (L,K, σ, T ) is the Black formula with
volatility σ. The implied volatility Σ (K,T ) is then obtained by solving the following equa-
tion:

n∑
i=1

C (Li−1 (t) ,K,Σ, Ti) = Capn (t)

The implied volatility is also called the ‘flat’ volatility and is denoted by Σflat (K,Tn). In this
case, there is a flat implied volatility for each strike K and each maturity Tn of caps/floors.
However, we can also compute an implied volatility Σ (K,T ) for each caplet. We have:

Capn (t) = Cap (t, T0, T1, . . . , Tn)

=
n∑
i=1

Caplet (t, Ti−1, Ti)

=
n∑
i=1

C (Li−1 (t) ,K,Σ (K,Ti−1) , Ti)

The estimation of the implied volatility surface is obtained by minimizing the sum of squared
residuals between observed and theoretical prices. In this case, the implied volatility is called
the ‘spot’ volatility and is denoted by Σspot (K,Ti−1).
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Example 86 We consider 6 caplets on the 3M Libor rate, whose strike is equal to 3%. The
tenor structures are respectively (3M,6M), (6M,9M), (9M,12M), (12M,15M), (15M,18M)
and (18M,21M). In the following table, we indicate the price of the six caps29, whose notional
is equal to $1 m.

Maturity of the cap 6M 9M 12M 15M 18M 21M
Cap price 151.50 529.74 1259.38 2221.82 3295.31 4594.40

We indicate below the current value of the forward Libor rate, and also the value of the
zero-coupon rate.

Start date Ti−1 3M 6M 9M 12M 15M 18M
Maturity Ti 6M 9M 12M 15M 18M 21M
Forward Libor rate 3.05% 3.15% 3.30% 3.40% 3.45% 3.55%
Zero-coupon rate 3.05% 3.10% 3.15% 3.20% 3.25% 3.30%

Given the term structure of the volatility, we can price the caplets and the caps30. Since
we have the price of the caps, we can calibrate the flat and spot implied volatilities. We
obtain the results given in Table 9.5.

TABLE 9.5: Calibration of Σflat (K,Tn), Σspot (K,Ti) and γi
Tn Σflat (K,Tn) Ti Σspot (K,Ti) Ti γi
6M 5.000% 3M 5.000% 3M 5.000%
9M 5.083% 6M 5.199% 6M 5.391%
12M 5.130% 9M 5.449% 9M 5.918%
15M 5.158% 12M 5.497% 12M 5.637%
18M 5.192% 15M 5.557% 15M 5.794%
21M 5.214% 18M 5.616% 18M 5.899%

We consider that the functions γi (t) are the same and are equal to γ (t). If we assume that
γ (t) is a piecewise constant function, we have:

γ (t) =
{
γ0 if t ∈ [0, T0[
γi if t ∈ [Ti−1, Ti[

It follows that: ∫ Ti

0
γ2 (s) ds =

∫ Ti−1

0
γ2 (s) ds+

∫ Ti

Ti−1
γ2 (s) ds

or:
TiΣspot (K,Ti)2 = Ti−1Σspot (K,Ti−1)2 + (Ti − Ti−1) γ2

i

We deduce that:
γ0 = Σspot (K,T0)

29The ith cap is the sum of the first i caplets.
30For instance, if we assume that the volatility σi for the second caplet is 5%, we obtain:

Caplet (0, 6M, 9M) = 106 × 0.25× e−0.75×3.05% × (3.15%× Φ (d1)− 3%× Φ (d2)) = $394.48

where:
d1 =

1
5%×

√
0.5

ln
(3.15%

3%

)
+

1
2
× 5%×

√
0.5 = 1.3977

and:
d2 = d1 − 5%×

√
0.5 = 1.3623



528 Handbook of Financial Risk Management

and:

γi =

√
TiΣspot (K,Ti)2 − Ti−1Σspot (K,Ti−1)2

Ti − Ti−1

Therefore, we can use the spot volatilities to calibrate the function γ (t) (see Table 9.5 and
Figure 9.16).

FIGURE 9.16: Flat and spot implied volatilities

Remark 102 There is a lag between the flat volatility and the spot volatility, because we
use the convention that the flat volatility is measured at the maturity date of the cap while
the spot volatility is measured at the fixing date. In the previous example, the first flat
volatility corresponds to the 6-month maturity date of the cap, whereas the first spot volatility
corresponds to the 3-month fixing date of the caplet.

Dynamics under other probability measures The dynamics (9.22) is valid for the
Libor forward rate L (t, Ti, Ti+1). Then, we have:

dL0 (t) = γ0 (t)L0 (t) dWQ?(T1)
0 (t)

...
dLn−1 (t) = γn−1 (t)Ln−1 (t) dWQ?(Tn)

n−1 (t)

It is obvious that the Wiener processes (W0, . . . ,Wn−1) are correlated. We can show that
the dynamics of Li (t) under the probability measure Q? (Tk+1) is equal to:

dLi (t)
Li (t) = µi,k (t) dt+ γi (t) dWQ?(Tk+1)

k (t)
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where31:

µi,k (t) = −γi (t)
k∑

j=i+1
ρi,jγj (t) (Tj+1 − Tj)Lj (t)

1 + (Tj+1 − Tj)Lj (t) if k > i

and ρi,j is the correlation between WQ?(Ti+1)
i and WQ?(Tj+1)

j .
Brigo and Mercurio (2006) derive the risk-neutral dynamics of the forward Libor rate

Li (t) when we use the spot numéraire M (t) = exp
(∫ t

0 r (s) ds
)
. However, the expression

is complicated and it is not very useful from a practical point of view. This is why they
define another version of the spot numéraire, when the money market account is rebalanced
only on the resetting dates T0, T1, . . . , Tn−1. Let ϕ (t) be the next resetting date index after
time t, meaning that ϕ (t) = i if Ti−1 < t < Ti. The spot Libor numéraire is then defined
as follows:

M† (t) = B
(
t, Tϕ(t)−1

) ϕ(t)−1∏
j=0

(1 + δjLj (Tj))

and we have:

dLi (t)
Li (t) =

γi (t)
i∑

j=ϕ(t)

ρi,jγj (t) δjLj (t)
1 + δjLj (t)

 dt+ γi (t) dWQ
k (t)

where WQ
k (t) is a Brownian motion when the numéraire is M† (t).

The swap market model Since forward Libor rates Li (t) are log-normal distributed,
the forward swap rate Sw (t) cannot be log-normal. Then, the Black formula cannot be
applied to price swaptions32. However, we can always price swaptions using Monte Carlo
methods by considering the spot measure (Glasserman, 2003). To circumvent this issue,
Jamshidian (1997) proposed a model where the swap rate is a martingale under the annuity
probability measure Q?:

d Sw (t) = η (t) Sw (t) dWQ? (t)
Again, we can use the Black formula for pricing swaptions. However, we face the same
problem as previously, because forward swap and Libor rates cannot be both log-normal.

9.2 Volatility risk
In the first section of this chapter, we have seen canonical models (Black-Scholes, Black,

HJM and LMM) used to price options. In fact, they are not really ‘option’ pricing models in
the sense that European options such as calls, puts, caps, floors and swaptions are observed
in the market. Indeed, they are more ‘volatility’ pricing models, because they give a price
to the implied volatility of European options. Knowing the implied volatility surface, the
trader can then price exotic or OTC derivatives, and more importantly, define corresponding
hedging portfolios.

31If k < i, we have:

µi,k (t) = γi (t)
i∑

j=k+1

ρi,jγj (t)
(Tj+1 − Tj)Lj (t)

1 + (Tj+1 − Tj)Lj (t)

32Nevertheless, there exist several approximations for pricing swaptions (Rebonato, 2002).
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9.2.1 The uncertain volatility model
On page 512, we have seen that the P&L of the replicating strategy is given by the

formula of El Karoui et al. (1998):

V (T )− f (S (T )) = 1
2

∫ T

0
er(T−t)Γ (t)

(
Σ2 (T,K)− σ2 (t)

)
S2 (t) dt

If we assume that σ (t) ∈ [σ−, σ+], we obtain a simple rule for achieving a positive P&L:

• if Γ (t) ≥ 0, we have to hedge the portfolio by considering an implied volatility that
is equal to the upper bound σ+;

• if Γ (t) ≤ 0, we set the implied volatility to the lower bound σ−.

This rule is valid if the gamma of the option is always positive or negative, that is when
the payoff is convex. Avellaneda et al. (1995) extend this rule when the gamma can change
its sign during the life of the option. This is the case of many exotic options, which depend
on conditional events (butterfly, barrier, call spread, ratchet, etc.).

9.2.1.1 Formulation of the partial differential equation

We assume that the dynamics of the underlying price is given by the following SDE:

dS (t) = r (t)S (t) dt+ σ (t)S (t) dWQ (t) (9.23)

where:
σ− ≤ σ (t) ≤ σ+ (9.24)

Let V (t, S (t)) be the option price, whose payoff is f (S (T )). Avellaneda et al. (1995) show
that V (t, S (t)) is bounded:

V − (t, S (t)) ≤ V (t, S (t)) ≤ V + (t, S (t))

where V − (t, S (t)) = infQ(σ) EQ(σ)
[
exp

(
−
∫ T
t
r (s) ds

)
f (S (T ))

]
, V + (t, S (t)) =

supQ(σ) EQ(σ)
[
exp

(
−
∫ T
t
r (s) ds

)
f (S (T ))

]
and Q (σ) denotes all the probability measures

such that Equations (9.23) and (9.24) hold. We can then show that V − and V + satisfy the
HJB equation:

sup / inf
σ−≤σ(t)≤σ+

(
1
2σ

2 (t)S2 ∂
2 V (t, S)
∂ S2 + b (t)S ∂ V (t, S)

∂ S

)
+

∂ V (t, S)
∂ t

− r (t)V (t, S) = 0

Solving the HJB equation is equivalent to solve the modified Black-Scholes PDE:{ 1
2σ

2 (Γ (t, S))S2∂2
SV (t, S) + b (t)S∂SV (t, S) + ∂tV (t, S)− r (t)V (t, S) = 0

V (T, S (T )) = f (S (T ))

where:
σ (x) =

{
σ+ if x ≥ 0
σ− if x < 0 for V (t, S (t)) = V + (t, S (t))

and:
σ (x) =

{
σ− if x > 0
σ+ if x ≤ 0 for V (t, S (t)) = V − (t, S (t))
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Since Γ (t, S) = ∂2
SV (t, S) may change its sign during the time interval [t, T ], we have to

solve the PDE numerically. A solution consists in using finite difference methods described
in Appendix A.1.2.4 on page 1041.

Let umi be the numerical solution of V (tm, Si). At each iteration m, we approximate the
gamma coefficient by the central difference method:

Γ (tm, Si) '
umi+1 − 2umi + umi+1

h2

By assuming that:
sign (Γ (tm, Si)) ≈ sign (Γ (tm+1, Si))

we can compute the values taken by σ (Γ (t, S)) and solve the PDE for the next iteration
m+ 1.

9.2.1.2 Computing lower and upper pricing bounds

If we consider the European call option, we have Γ (t, S) > 0, meaning that:

V + (t, S (t)) = CBS
(
t, S (t) , σ+)

and:
V − (t, S (t)) = CBS

(
t, S (t) , σ−

)
where CBS (t, S, σ) is the Black-Scholes price at time t when the underlying price is equal
to S and the implied volatility is equal to Σ. Then, the worst-case scenario occurs when the
volatility σ (t) reaches the upper bound σ+.

This result is obtained because the delta of the option is a monotone function with
respect to the underlying price. However, this property does not hold for many derivative
contracts, in particular when the payoff is path dependent. In this case, the payoff depends
on the trajectory of the underlying asset. For instance, the payoff of a barrier option depends
on whether a certain barrier level was touched (or not touched) at some time during the life
of the option. We give here the payoff associated to the four main types of single barrier33:

• down-and-in call and put options (DIC/DIP):

fBarrier (S (T )) = 1

{
S0 > L,min

t∈T
S (t) ≤ L

}
· fVanilla (S (T ))

• down-and-out call and put option (DOC/DOP):

fBarrier (S (T )) = 1

{
S0 > L,min

t∈T
S (t) > L

}
· fVanilla (S (T ))

• up-and-in call and put options (UIC/UIP):

fBarrier (S (T )) = 1

{
S0 < H,max

t∈T
S (t) ≥ H

}
· fVanilla (S (T ))

33We have:

fVanilla (S (T )) =
{

(S (T )−K)+ for the call option
(K − S (T ))+ for the put option
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• up-and-out call and put options (UOC/UOP):

fBarrier (S (T )) = 1

{
S0 < H,max

t∈T
S (t) < H

}
· fVanilla (S (T ))

In the case of knocked-out barrier payoffs (DOC/DOP, UOC/UOP), the option termi-
nates the first time the barrier is crossed, whereas knocked-in barrier options (DIC/DIP,
UIC/UIP), the payoff is paid only if the underlying asset crosses the barrier. These barriers
can also be combined in order to obtain double barrier options:

• double knocked-in call and put options (KIC/KIP):

fBarrier (S (T )) = 1 {S (t) /∈ [L,H] , t ∈ T } · fVanilla (S (T ))

• double knocked-out call and put option (KOC/KOP):

fBarrier (S (T )) = 1 {S (t) ∈ [L,H] , t ∈ T } · fVanilla (S (T ))

These options also depend on the time monitoring t ∈ T of the barriers. In particular, we
distinguish continuous (T = [0, T ]), window (T ⊂ [0, T ]) and discrete (T = {t1, t2, . . . , tn})
barriers.

Example 87 We consider a double KOC barrier option with the following parameters:
K = 100, L = 80, H = 120, T = 1, b = 5% and r = 5%. We assume that the volatility σ (t)
lies in the range of 15% and 25%.

In the first and second panels of Figure 9.17, we report the price V (T, S) of the call
option for the continuous barrier (T = [0, 1]). If we use the Black-Scholes model34, the
upper bound is reached when σ (t) = σ− = 15% whereas the lower bound is reached when
σ (t) = σ+ = 25%. We have the feeling that the barrier price is a decreasing function of
the volatility. However, this is not true. Indeed, a high volatility increases the time value
of the final payoff (S (T )−K)+, but also decreases the probability to remain within the
barrier interval [L,H]. Therefore, there is a trade-off between these two opposite effects.
If we consider the uncertain volatility model (UVM), the upper bound is larger than this
obtained with the BS model, because the worst-case scenario is to have a low volatility
when the asset price is close to one barrier and a high volatility when the asset price is
far way from the barriers. Therefore, the worst-case scenario at time t depends on the
relative position of S (t) with respect to L, H and K. If we consider a window barrier with
T = [0.25, 0.75], we obtain the third and fourth panels of Figure 9.17. We notice that the
BS price is not monotone with respect to the volatility. When the current asset price S0 is
equal to the strike K, the BS price is higher when σ (t) = σ− = 15%. This is not the case
when S0 = 150. The reason is that a high volatility increases the probability than the asset
price is below the up barrier H when the window is triggered. A high volatility is also good
when the window ends.

9.2.1.3 Application to ratchet options

Ratchet or cliquet options are financial derivatives that provide a minimum return in
exchange for capping the maximum return. They are used by investors because they may

34Prices can be computed by numerically solving the PDE, or using the closed-form formulas of Rubinstein
and Reiner (1991).
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FIGURE 9.17: Comparing BS and UVM prices of the double KOC barrier option

protect them against downside risk. Let us see an example to understand the underlying
mechanism of such derivative contracts.

We consider a cliquet option with a 3-year maturity on an equity index S (t). The fixing
dates corresponds to the end of each calendar year. We assume that the initial value S0 of
the index is equal to 100. The payoff of the cliquet option is:

f (S (T )) = N ·

 3∑
j=1

max
(

0, S (Tj)− S (Tj−1)
S (Tj−1)

)
where {T1, T2, T3} are the fixing dates and N is the notional of the cliquet option. This
cliquet option accumulates positive annual returns. In the following table, we have report
four trajectories of S (Tj):

S (Tj) #1 #2 #3 #4
S (0) 100 100 100 100
S (1) 120 110 95 90
S (2) 85 125 95 50
S (3) 90 135 75 70

Coupon 25.9% 31.6% 0% 40%

More generally, the payoff of a ratchet is:

f (S (T )) = N ·min

Cg,max

Fg, n∑
j=1

max (F`,min (C`, Rj −K`))−Kg


where Cg is the global cap, Fg is the global floor, Kg is the global strike, C` is the local cap,
F` is the local floor and K` is the local strike. Here, Rj is the return between two fixing
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dates:
Rj = S (Tj)− S (Tj−1)

S (Tj−1)
At the maturity, the buyer of the cliquet option receives the sum of periodic returns subject
to local and global caps, floors and strikes. In the market, one of the most common payoffs
is the following:

f (S (T )) = N ·max

Fg, n∑
j=1

max
(

0,min
(
C`,

S (Tj)
S (Tj−1) − 1

))
With this payoff, the option buyer is hedged against the fall of the asset price and has the
guarantee to have a minimum return that is equal to the global floor Fg. On the contrary,
the option buyer limits the upside risk by introducing the local cap C`. Therefore, the price
of the option is bounded:

e−rT · Fg ≤ f (S (T )) ≤ e−rT ·max (Fg, nC`)

The fundamental issue of cliquet option pricing is the choice of the volatility model to
price the forward call option:

E

[(
S (Tj)
S (Tj−1) − 1

)+
∣∣∣∣∣F0

]

At first sight, we might consider the following solutions:

• we may use the implied forward volatility between Tj−1 and Tj , which is calculated
as follows:

Tj · Σ2 (Tj) = Tj−1 · Σ2 (Tj−1) + (Tj − Tj−1) · Σ2 (Tj−1, Tj)

• we may also use the implied volatility of maturity Tj − Tj−1 at the date Tj−1; this
implies to have a dynamic model of the implied volatility surface.

Since the payoff is locally non-convex, it is not possible to calculate a conservative price using
the Black-Scholes model. In this case, the choice of a good implied volatility is inappropriate.

Wilmott (2002) illustrates the difficulty of pricing cliquet options by comparing Black-
Scholes and uncertain volatility models. The BS price can be calculated using the Monte
Carlo method35. Another solution is to derive the corresponding PDE. In this case, we have
to introduce two additional variables: S′ = S (Tj−1) is the value of S (t) at the previous
fixing date and Q is a variable to keep track of the payoff:

Q =
n∑
j=1

max
(

0,min
(
C`,

S (Tj)
S (Ttj−1) − 1

))
The value of the option depends then on four state variables:

V = V (t, S, S′, Q)

35For that, we simulate the asset price at the fixing dates {0, T0, . . . , Tn, T} using the risk-neutral prob-
ability measure Q and we calculate the mean of the discounted payoff.
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We deduce that V (t, S, S′, Q) satisfies the following PDE between two fixing dates Tj−1
and Tj :

1
2σ

2S2∂2
SV (·) + b (t)S∂SV (·) + ∂tV (·)− r (t)V (·) = 0

whereas the final condition is:

V (T, S, S′, Q) = N ·max (Fg, Q)

As noted by Wilmott (2002), V (t, S, S′, Q) must also satisfy the jump condition at the
fixing date Tj :

V (Tj , S, S′, Q) = V

(
T+
j , S, S,Q+ max

(
0,min

(
C`,

S

S′
− 1
)))

This jump condition initializes the new value of S′ for the next period [Tj−1, Tj ] and update
the payoff Q. By introducing the state variable x = S/S′, Wilmott reduces the dimension
of the problem to three variables t, x and Q:

1
2σ

2x2∂2
xV (t, x,Q) + b (t)x∂xV (t, x,Q) + ∂tV (t, x,Q)− r (t)V (t, x,Q) = 0

V (Tj , x,Q) = V
(
T+
j , 1, Q+ max (0,min (C`, x− 1))

)
V (T, x,Q) = N ·max (Fg, Q)

This PDE can easily be solved numerically and the price of the cliquet option is equal to
V (0, 1, 0). For the uncertain volatility model, we have exactly the same PDE, except that
the quadratic term is replaced by 1

2σ
2 (Γ (t, x))x2∂2

xV (t, x,Q).

Example 88 We consider a cliquet option with the following parameters: r = 5%, b = 5%,
Fg = 10%, C` = 12% and N = 1. The maturity is equal to 5 years, and there are 5 annual
fixing dates. The volatility σ (t) lies in the range 20% to 30%.

In Figure 9.18, we show the PDE solution V (0, x, 0) for constant volatility and volatility
ranges. We notice that the BS price is not very sensitive to the volatility. With respect to
the mid volatility σ = 25%, the BS price increases by 1.35% if the volatility is 30% and
decreases by 1.57% if the volatility is 20%. On the contrary, the UVM price range (V + − V −)
represents 34% of the BS price. This result depends on the values of the global floor and the
local cap. An illustration is provided in Figure 9.19, which gives the relationship36 between
the cliquet option price V (0, 1, 0) and the local cap C`.

9.2.2 The shifted log-normal model
This model assumes that the asset price S (t) is a linear transformation of a log-normal

random variable X (t):
S (t) = α (t) + β (t)X (t)

where β (t) ≥ 0. Then, the payoff of the European call option is:

f (S (T )) = (S (T )−K)+

= (α (T ) + β (T )X (T )−K)+

= β (T )
(
X (T )− K − α (T )

β (T )

)+

36The parameters are those given in Example 88.
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FIGURE 9.18: Comparing BS and UVM prices of the cliquet option

FIGURE 9.19: Influence of the local cap on the cliquet option price
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This type of approach is interesting because the pricing of options can then be done using
the Black-Scholes formula:

C (0, S0) = β (T )CBS

(
X0,

K − α (T )
β (T ) , σX , T, bX , r

)
where bX and σX are the drift and diffusion coefficients of X (t) under the risk-neutral
probability measure Q. This modeling framework has been introduced by Rubinstein (1983)
and popularized by Damiano Brigo and Fabio Mercurio in a series of working papers written
between 2000 and 200337. This model was originally used in order to generate a volatility
skew, but it is now extensively used in interest rate derivatives because it extends the Black
model when facing negative interest rates.

9.2.2.1 The fixed-strike parametrization

Let us suppose that:

S (t) = α+ β exp
((

bQ (t)− 1
2σ

2
)
t+ σWQ (t)

)
We have S0 = α+ β meaning that:

S (t) = α+ (S0 − α) exp
((

bQ (t)− 1
2σ

2
)
t+ σWQ (t)

)
(9.25)

Let b the cost-of-carry parameter of the asset. Under the risk-neutral probability measure,
the martingale condition is:

EQ [e−btS (t) | F0
]

= S0

Since we have EQ [S (t)] = α + (S0 − α) ebQ(t)t, we deduce that the no-arbitrage condition
implies that:

α+ (S0 − α) eb
Q(t)t = S0e

bt

or:
bQ (t) = 1

t
ln
(
S0e

bt − α
S0 − α

)
The payoff of the European call option is:

f (S (T )) = (S (T )−K)+

= ((S (T )− α)− (K − α))+

We deduce that the price of the option is given by:

C (0, S0) = CBS
(
S0 − α,K − α, σ, T, bQ (T ) , r

)
(9.26)

In Figure 9.20, we report the volatility skew generated by the SLN model when the
current price S0 of the asset is 100, the maturity T is one year, the cost-of-carry b is 5%
and the interest rate 5 is 5%. We notice that the parameter σ of the SLN model is not of
the same magnitude than the implied volatility of the BS model. This is due to the shift α.
When α is positive (or negative), we have σ > Σ (T,K) (or σ < Σ (T,K)).

37See Brigo and Mercurio (2002a) for a survey of their different works.
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FIGURE 9.20: Volatility skew generated by the SLN model (fixed-strike parametrization)

9.2.2.2 The floating-strike parametrization

Let us now suppose that:

S (t) = αeϕt + βe(b−
1
2σ

2)t+σWQ(t)

We have S0 = α + β and EQ [S (t)] = αeϕt + βebt. We deduce that the stochastic process
e−btS (t) is a Ft-martingale if it is equal to:

S (t) = αebt + (S0 − α) e(b−
1
2σ

2)t+σWQ(t) (9.27)

The payoff of the European call option becomes:

f (S (T )) = (S (T )−K)+

=
((
S (T )− αebT

)
−
(
K − αebT

))+
It follows that the option price is equal to:

C (0, S0) = CBS
(
S0 − α,K − αebT , σ, T, b, r

)
(9.28)

Examples of Volatility skew are given in Figure 9.21 with the same parameters than those
we have used in Figure 9.20.

Remark 103 At first sight, the floating-strike parametrization seems to be different than
the fixed-strike parametrization. In practice, the parameters (α, σ) are calibrated for each
maturity T . This explains that the two parametrizations are very close.
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FIGURE 9.21: Volatility skew generated by the SLN model (floating-strike parametriza-
tion)

9.2.2.3 The forward parametrization

If we consider the forward price F (t) instead of the spot price S (t), the two models
coincide because we have b = 0. In this case, the dynamics of the forward price is:

dF (t) = σ (F (t)− α) dWQ (t) (9.29)

and the price of the option is given by the Black formula38:

C (0, S0) = CBlack (F0 − α,K − α, σ, T, r) (9.30)

In Equations (9.29) and (9.30), we impose that α < F0 and α < K. This implies that
F (t) ∈ [α,∞). This model is appealing for fixed income derivatives, because the interest
rate may be negative when α is negative. In this case, we have:

dF (t) = (σF (t)− ασ) dWQ (t)
= (σ1F (t) + σ2) dWQ (t)

where σ1 = σ and σ2 = −ασ > 0. We obtain a stochastic differential equation whose
diffusion coefficient is a mix of log-normal and Gaussian volatilities.

38We recall that the Black formula can be viewed as a special case of the Black-Scholes formula when the
cost-of-carry parameter b is equal to zero:

CBlack (x,K, σ, T, r) = CBS (x,K, σ, T, 0, r)
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Lee and Wang (2012) prove the following results:

• monotonicity in strike:

sign
(
∂ Σ (T,K)

∂ K

)
= signα

• upper and lower bounds: {
Σ (T,K) < σ if α > 0
Σ (T,K) > σ if α < 0

• sharpness of bound:
lim
K→∞

Σ (T,K) = σ

• short-expiry behavior:

lim
T→0

Σ (T,K) =


σ ln (F0/K)

ln ((F0 − α) / (K − α)) if K 6= F0

σ
(
1− αF−1

0
)

if K = F0

The implied volatility formula does not depend on the maturity T and is only valid
when T is equal to zero. However, it is a good approximation for other maturities as shown
in Table 9.6. We use the previous parameters and three different maturities (one-month,
one-year and five-year).

TABLE 9.6: Error of the SLN implied volatility formula (in bps)

K
(α = 22, σ = 25%) (α = −70, σ = 12%)
1M 1Y 5Y 1M 1Y 5Y

80 1.0 11.1 57.0 −0.9 −12.9 −66.0
90 0.7 10.6 54.1 −1.0 −11.9 −61.4

100 0.9 10.2 51.6 −1.1 −11.3 −57.3
110 1.0 9.7 49.6 −0.8 −10.8 −53.8
120 0.7 9.3 47.7 −0.6 −10.3 −51.3

9.2.2.4 Mixture of SLN distributions

One limitation of the SLN model is that it only produces a volatility skew, and not a
volatility smile. In order to obtain a U -shaped curve, Brigo and Mercurio (2002b) suggest
that the (risk-neutral) probability density function f (x) of the asset price density is given
by the mixture of known basic densities:

f (x) =
m∑
j=1

pjfj (x)

where fj is the jth basic density, pj > 0 and
∑m
j=1 pj = 1. Let G (S (T )) be the payoff of

an European option. We have:

C (0, S0) = EQ [e−rTG (S (T ))
∣∣F0

]
=

∫
e−rTG (S (T )) f (x) dx
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We deduce that:

C (0, S0) =
∫
e−rTG (S (T ))

m∑
j=1

pjfj (x) dx

=
m∑
j=1

pj

∫
e−rTG (S (T )) fj (x) dx

=
m∑
j=1

pjEQj
[
e−rTG (S (T ))

∣∣F0
]

where Qj is the jth probability measure. It is then straightforward to price an European
option using formulas of basic models. If we consider a mixture of two shifted log-normal
models, the price of the European call option is equal to:

C (0, S0) = p · CSLN (S0,K, σ1, T, b, r, α1) +
(1− p) · CSLN (S0,K, σ2, T, b, r, α2)

where CSLN is the formula of the SLN model39. The model has five parameters: σ1, σ2, α1,
α2 and p.

Example 89 We consider a calibration set of five options, whose strike and implied volatil-
ities are equal to:

Kj 80 90 100 110 120
Σ (1,Kj) 21% 19% 18.25% 18.5% 19%

The current value of the asset price is equal to 100, the maturity of options is one year, the
cost-of-carry parameter is set to 0 and the interest rate is 5%.

The parameters are estimated by minimizing the weighted least squares:

min
n∑
j=1

wj

(
Ĉj − CSLN (S0,Kj , σ1, σ2, Tj , b, r, α1, α2, p)

)2

where:
Ĉj = CBS (S0,Kj ,Σ (Tj ,Kj) , Tj , b, r)

and wj is the weight of the jth option. We consider three parameterizations: (#1) the
weights wj are uniform, and we impose that α1 = α2 and p = 50%; (#2) the weights wj
are uniform, and p is set to 25%; (#3) the weights wj are inversely proportional to option
prices Ĉj , and p is set to 50%. Results are given in Table 9.7 and Figure 9.22. We notice
that α1 and α2 can take large values. Shifted log-normal models are generally presented as
a low perturbation of the Black-Scholes model. In practice, they are very different.

9.2.2.5 Application to binary, corridor and barrier options

One of the difficulties when using the Black-Scholes model with exotic options is the
choice of the implied volatility. In the case of an European call option, it is obvious to
use the implied volatility Σ (T,K) that corresponds to the strike and the maturity of the
option. In the case of a double barrier option, we can use the implied volatility Σ (T,K)

39It corresponds to one of the three expressions (9.26), (9.28), and (9.30).
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TABLE 9.7: Calibrated parameters of the mixed SLN model
Model #1 #2 #3
σ1 16.5% 8.2% 10.2%
σ2 7.3% 17.2% 21.7%
α1 −53.3 −289.7 −145.2
α1 −53.3 19.6 47.4
p 50.0% 25.0% 50.0%

FIGURE 9.22: Implied volatility (in %) of calibrated mixed SLN models

that corresponds to the strike of the option, the implied volatility Σ (T, L) that corresponds
to the lower barrier of the option, the implied volatility Σ (T,H) that corresponds to the
higher barrier of the option, or another implied volatility. In fact, there is no satisfactory
answer.

Let S (t) be the asset price at time t. The payoff of the binary cash-or-nothing call option
is:

f (S (T )) = 1 {S (T ) > K}

We deduce that:

BCC (0, S0) = EQ
[
e
−
∫ T

0
r(s) ds · 1 {S (T ) > K}

∣∣∣∣F0

]
If we consider the Black-Scholes model, we obtain:

BCC (0, S0) = e−rTΦ (d2)

We can replicate this option by using the classical dynamic delta hedging approach pre-
sented on page 495. Here, we consider another framework, which is called the static hedging
method. The hedging portfolio consists in:
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• a long position on the European call option with strike K;

• a short position on the European call option with strike K + ε.

If the notional of each option is set to ε, the value of the hedging portfolio at time t is equal
to:

V (t) = 1
ε
· C (t, S (t) ,K)− 1

ε
· C (t, S (t) ,K + ε)

It follows that the value of the hedging strategy is equal to:

X (t) = BCC (t, S (t))− V (t)

We notice that:

lim
ε→0

X (T ) = BCC (T, S (T ))− lim
ε→0

V (T )

= 1 {S (T ) > K} − lim
ε→0

(S (t)−K)+ − (S (T )−K − ε)+

ε
= 1 {S (T ) > K} − 1 {S (T ) > K}
= 0

The no-arbitrage condition implies that:

BCC (t, S (t)) = lim
ε→0

C (t, S (t) ,K)− C (t, S (t) ,K + ε)
ε

= − lim
ε→0

C (t, S (t) ,K + ε)− C (t, S (t) ,K)
ε

= −∂ C (t, S (t) ,K)
∂ K

This result is valid only if the volatility is constant. If the volatility is not constant, the
price BCC (t, S (t)) becomes:

lim
ε→0

C (t, S (t) ,K,Σ (T,K))− C (t, S (t) ,K + ε,Σ (T,K + ε))
ε

= −∂ C (t, S (t) ,K,Σ (T,K))
∂ K

− ∂ C (t, S (t) ,K,Σ (T,K))
∂ Σ · ∂ Σ (T,K)

∂ K
= BCCBS (t, S (t) ,Σ (T,K))− υBS (t, S (t) ,Σ (T,K))ω (T,K)

where BCCBS (t, S (t) ,Σ (T,K)) is the Black-Scholes price with implied volatility Σ (T,K),
υBS (t, S (t) ,Σ (T,K)) is the Black-Scholes vega for the European call option and ω (T,K)
is the skew of the volatility surface:

ω (T,K) = ∂ Σ (T,K)
∂ K

This framework, called the skew-method (SM) model, shows that taking into account the
volatility smile cannot be reduced to choosing the right implied volatility, because we have:

BCCSM (t, S (t)) 6= BCCBS (t, S (t) ,Σ (T,K))

Example 90 We price a binary call option when the underlying asset price is 100, the
maturity of the option is 6 months, and the parameters b and r are equal to 5%. The skew
ω (T,K) of the implied volatility can take the values 0, −20 and +20 bps. We consider two
cases for the implied volatility: (1) Σ (T,K) is equal to 20%, (2) Σ (T,K) is a linear function
with respect to K:

Σ (T,K) = Σ (T, S0) + ω (T,K) · (K − S0)
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FIGURE 9.23: Impact of the implied volatility skew on the binary option price

Figure 9.23 represents the relationship between the binary call option price BCC (0, S0)
and the strike K. The first panel assumes that the implied volatility Σ (T,K) is equal to
20%. We verify that:{

ω (T,K) < 0⇒ BCCSM (0, S0) < BCCBS (0, S0,Σ (T,K))
ω (T,K) > 0⇒ BCCSM (0, S0) > BCCBS (0, S0,Σ (T,K))

However, the results shown in the first panel may be misleading, because it is not possi-
ble to compare the price for two different strikes. Indeed, if K2 > K1 and ω (T,K) > 0
for every strike K, this implies that Σ (T,K2) > Σ (T,K1), BCCBS (0, S0,Σ (T,K2)) >
BCCBS (0, S0,Σ (T,K1)), but υBS (0, S0,Σ (T,K2)) > υBS (0, S0,Σ (T,K1)). A higher im-
plied volatility increases the binary option price thanks to the impact on the Black-Scholes
price, but also reduces it thanks to the impact on the vega. Therefore, the second and third
panels are more useful to understand the dynamics of the binary option price with respect
to the strike. We observe that it is more complex because of the two contrary effects.

We now assume that the shifted log-normal model is the right model. We have:

1 {S (T ) > K} ⇔ 1 {α (T ) + β (T )X (T ) > K}

⇔ 1
{

(S0 − α) e(b−
1
2σ

2)T+σWQ(T ) > K − αebT
}

We deduce that:

BCCSLN (0, S0) = fBS
(
S0 − α,K − αebT , σ, T, b, r

)
(9.31)

where fBS is the Black-Scholes formula of the BCC option. Equation (9.31) is equivalent to
shift the current price and the option strike.
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TABLE 9.8: Price of the binary call option (α = −50, σ = 15%)

K Σ (T,K) ω (T,K) BS SLN SM
80 23.64 −5.47 0.8087 0.8184 0.8184
90 23.14 −4.57 0.6761 0.6895 0.6895

100 22.72 −3.87 0.5160 0.5306 0.5306
110 22.36 −3.34 0.3582 0.3715 0.3715
120 22.05 −2.92 0.2271 0.2374 0.2374

TABLE 9.9: Price of the binary call option (α = 50, σ = 40%)

K Σ (T,K) ω (T,K) BS SLN SM
80 16.71 17.25 0.8937 0.8780 0.8780
90 18.21 13.13 0.7390 0.7055 0.7055

100 19.39 10.51 0.5364 0.4971 0.4971
110 20.34 8.69 0.3546 0.3202 0.3202
120 21.14 7.35 0.2209 0.1953 0.1953

We consider the following parameters: S0 = 100, T = 1, b = 5% and r = 5%. The
SLN parameters α and σ are equal to −50 and 15%. In Table 9.8, we price the binary
call option with three models: the Black-Scholes model with the implied volatility Σ (T,K),
the SLN model and the SM approximation using the implied volatility Σ (T,K) and the
volatility skew ω (T,K). We remark that the Black-Scholes model produces bad option
prices, whereas the SM prices are equal to those obtained with the SLN model. We obtain
the same conclusion with an increasing smile as shown in Table 9.9.

The previous analysis can be extended to many other payoffs including corridor and
barrier options. For instance, the holder of a corridor option receives a coupon at maturity,
the magnitude of which depends on the behavior of a specified spot rate during the lifetime
of the corridor. A special case is the range binary corridor option that pays a fixed coupon
c if the asset stays within the range [L,H]:

f (S (T )) = c
n∑
j=1

1 {S (Tj) ∈ [L,H]}

where {T1, . . . , Tn} are the fixing dates of the corridor option. Since we have:

1 {S (Tj) ∈ [L,H]} ⇔ 1 {L ≤ S (Tj) ≤ H}
⇔ 1 {S (Tj) ≥ L} − 1 {S (Tj) ≥ H}

we deduce that the price CC (0, S0) is related to a series of BCC cash flows:

CC (0, S0) = c
n∑
j=1

(BCC (0, S0, L)−BCC (0, S0, H))

where BCC (0, S0,K) is the price of the cash-or-nothing binary call option, whose strike
is K. We can then use SLN, mixed-SLN or SM models in order to take into account the
volatility smile.
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Remark 104 In the case of barrier options, we can use the Black-Scholes formulas of
Rubinstein and Reiner (1991) by shifting the parameters S0, K, L and H:

S0 → S0 − α
K → K − α0e

bT

L→ L− α0e
bT

H → H − α0e
bT

9.2.3 Local volatility model
The local volatility model has been proposed by Dupire (1994) using continuous-time

modeling and, Derman and Kani (1994) in a binomial tree framework. It is one of the
most famous smile models with Heston and SABR models. We assume that the risk-neutral
dynamics of the asset price is given by the following SDE:

dS (t) = bS (t) dt+ σ (t, S (t))S (t) dWQ (t)

We can then retrieve the local volatility surface σ (t, S) from the implied volatility surface
Σ (T,K), because the knowledge of all European option prices is sufficient to estimate the
unique risk-neutral diffusion (Dupire, 1994).

9.2.3.1 Derivation of the forward equation

The Fokker-Planck equation Using Appendix A.3.6 on page 1072, the risk-neutral
probability density function qt (T, S) of the asset price S (T ) satisfies the forward Chapman-
Kolmogorov equation:

∂ qt (T, S)
∂ T

= −∂ [bSqt (T, S)]
∂ S

+ 1
2
∂2 [σ2 (T, S)S2qt (T, S)

]
∂ S2

The initial condition is:
qt (t, S) = 1 {S = St}

where St is the value of S (t) that is known at time t.

The Breeden-Litzenberger formulas On page 508, we have seen that the risk-neutral
probability measure is related to the prices of European options. In particular, we have
found that:

Ct (T,K) = e−r(T−t)
∫ ∞
K

(S −K) qt (T, S) dS

∂ Ct (T,K)
∂ K

= −e−r(T−t)
∫ ∞
K

qt (T, S) dS

∂2 Ct (T,K)
∂ K2 = e−r(T−t)qt (T,K)

Main result We also have:

∂ Ct (T,K)
∂ T

= −rCt (T,K) + e−r(T−t)
∫ ∞
K

(S −K) ∂ qt (T, S)
∂ T

dS

= −rCt (T,K) + e−r(T−t)I
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Using the Fokker-Planck equation, we obtain:

I =
∫ ∞
K

(S −K)
(

1
2
∂2 [σ2 (T, S)S2qt (T, S)

]
∂ S2 − ∂ [bSqt (T, S)]

∂ S

)
dS

= 1
2

∫ ∞
K

(S −K)
∂2 [σ2 (T, S)S2qt (T, S)

]
∂ S2 dS −∫ ∞

K

(S −K) ∂ [bSqt (T, S)]
∂ S

dS

= 1
2I1 − I2

Using an integration by parts, we have:

I1 =
∫ ∞
K

(S −K)
∂2 [σ2 (T, S)S2qt (T, S)

]
∂ S2 dS

=
[

(S −K)
∂
[
σ2 (T, S)S2qt (T, S)

]
∂ S

]∞
K

−

∫ ∞
K

∂
[
σ2 (T, S)S2qt (T, S)

]
∂ S

dS

= 0−
[
σ2 (T, S)S2qt (T, S)

]∞
K

= σ2 (T,K)K2qt (T,K)

We notice that40:

I2 =
∫ ∞
K

(S −K) ∂ [bSqt (T, S)]
∂ S

dS

=
[

(S −K) bSqt (T, S)
]∞
K

− b
∫ ∞
K

Sqt (T, S) dS

= −b
∫ ∞
K

Sqt (T, S) dS

= −ber(T−t)
(
Ct (T,K) +K

∂ Ct (T,K)
∂ K

)
The expression of I is then equal to:

I = 1
2σ

2 (T,K)K2qt (T,K) + ber(T−t)
(
Ct (T,K)−K∂ Ct (T,K)

∂ K

)
40Using Breeden-Litzenberger formulas, we have:

er(T−t)Ct (T,K) =
∫ ∞
K

(S −K) qt (T, S) dS

=
∫ ∞
K

Sqt (T, S) dS −K
∫ ∞
K

qt (T, S) dS

=
∫ ∞
K

Sqt (T, S) dS −Ker(T−t)
∂ Ct (T,K)

∂ K
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It follows that:

∂ Ct (T,K)
∂ T

= −rCt (T,K) + 1
2σ

2 (T,K)K2 ∂
2 Ct (T,K)
∂ K2 +

b

(
Ct (T,K)−K∂ Ct (T,K)

∂ K

)
We conclude that:

1
2σ

2 (T,K)K2 ∂
2 Ct (T,K)
∂ K2 − bK ∂ Ct (T,K)

∂ K
−

∂ Ct (T,K)
∂ T

+ (b− r)Ct (T,K) = 0 (9.32)

Differences between backward and forward PDE approaches Equation (9.32) is
very important because it can be interpreted as the dual of the backward PDE (9.2):{ 1

2σ
2 (t, S)S2∂2

SV (t, S) + bS∂SV (t, S) + ∂tV (t, S)− rV (t, S) = 0
V (T, S (T )) = f (T, S (T ) ,K)

where V (t, S) is the price of the European option, whose terminal payoff is f (T, S (T ) ,K).
In the case of Dupire model, the pricing formula becomes:

1
2σ

2 (T,K)K2∂2
KV (T,K)− bK∂KV (T,K)−

∂TV (T,K) + (b− r)V (T,K) = 0
V (t,K) = f (t, St,K)

where V (T, S) is the price of the European option, whose initial payoff is f (t, St,K). In
the backward formulation, the state variables are t and S, whereas the fixed variables are
T and K. In the backward formulation, the state variables become T and K, whereas the
fixed variables are now the current time41 t and the current asset price St. This is not the
only difference between the two approaches. Indeed, the backward PDE approach suggests
that we can hedge the option using a dynamic portfolio of the underlying asset, whereas
the forward PDE approach suggests that we can hedge the option using a static portfolio
of call and put options.

We consider the pricing of an European call option with the following parameters: S0 =
100, K = 100, σ (t, S) = 20%, T = 0.5, b = 2% and r = 5%. In the case of the backward
PDE, we consider the usual boundary conditions:{

C (t, S) = 0
∂SC (t,+∞) = 1

For the forward PDE, the boundary conditions are42:{
∂KC (T, 0) = −1
C (T,+∞) = 0

In Figure 9.24, we show the relative error (expressed in bps) of numerical solutions when
considering the Crank-Nicholson scheme. In the case of the backward PDE, the state variable

41t can be equal to zero.
42We can also use the following specifications:{

C (T, 0) = e(b−r)TS0
∂KC (T,+∞) = 0
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is the current asset price S0, and we obtain all the option prices when the strike is equal to
100. In the case of the forward PDE, the state variable is the strike K, and we obtain all the
option prices when the current asset price is equal to 100. We notice that the relative errors
are equivalent when S0 is equal to K. In fact, the efficiency of the numerical algorithms will
depend on the relative position between S0 and K.

FIGURE 9.24: Relative error of backward and forward PDE numerical solutions

9.2.3.2 Duality between local volatility and implied volatility

We can inverse Equation (9.32) in order to relate the expression of the local volatility
and the price of the call option:

σ2 (T,K) = 2bK∂KC (T,K) + ∂TC (T,K)− (b− r)C (T,K)
K2∂2

KC (T,K)

In Exercise 9.4.8 on page 599, we show that σ (T,K) can also be written with respect to
the implied volatility Σ (T,K):

σ (T,K) =

√
A (T,K)
B (T,K) (9.33)

where:

A (T,K) = Σ2 (T,K) + 2bKTΣ (T,K) ∂KΣ (T,K) +
2TΣ (T,K) ∂TΣ (T,K)

and:

B (T,K) = 1 + 2K
√
Td1∂KΣ (T,K) +K2TΣ (T,K) ∂2

KΣ (T,K) +
K2Td1d2 (∂KΣ (T,K))2
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Equation (9.33) is the key finding of Dupire (1994). Indeed, knowing the implied volatility
surface, we can retrieve the unique local volatility function that matches the set of all
European call and put option prices.

Many results have been derived from Equation (9.33). For instance, if there is no skew43,
the local volatility function does not depend on the strike44:

σ2 (T ) = Σ2 (T ) + 2TΣ (T ) ∂ Σ (T )
∂ T

(9.34)

On the contrary, the local volatility always depends on the maturity T even if there is no
time-variation in the implied volatility45.

FIGURE 9.25: Calibrated local volatility σ (T, S) (in %)

Example 91 We assume that the implied volatility is equal to:

Σ (T,K) = Σ0 + α (S0 −K)2

where Σ0 = 20%, α = 1 bp, S0 = 100 and b = 5%.

Figure 9.25 shows the calibrated local volatility for different values of T . We verify the
time-variation property of the local volatility. We notice that Equation (9.34) is equivalent
to:

σ2 (T ) = ∂ TΣ2 (T )
∂ T

or:
Σ2 (T ) = 1

T

∫ T

0
σ2 (t) dt

The implied variance is then the time series average of the local variance.
43We have Σ (T,K) = Σ (T ).
44This result is obtained by setting ∂KΣ (T,K) and ∂2

KΣ (T,K) equal to 0 in Equation (9.33).
45We have Σ (T,K) = Σ (K).
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Another important result concerns the behavior of the implied volatility near expiry.
Let x be the log-moneyness:

x = ϕ (T,K)

= ln S0

K
+ bT

We introduce the functions Σ̃ and σ̃ such that Σ (T,K) = Σ̃ (T, ϕ (T,K)) and σ (T,K) =
σ̃ (T, ϕ (T,K)). Berestycki et al. (2002) showed that the implied volatility is the harmonic
mean of the local volatility46:

1
Σ̃ (0, x)

=
∫ 1

0

dy
σ̃ (0, xy)

It follows that:
∂ Σ̃ (0, 0)
∂ x

= 1
2
∂ σ̃ (0, 0)
∂ x

The ATM slope of the implied volatility near expiry is equal to one half the slope of the
local volatility.

9.2.3.3 Dupire model in practice

One of the problems is the availability of the call/put prices for all maturities and all
strikes. In practice, we only know the option price for some maturities Tm and some strikes
Ki. This is why we have to use a calibration method to obtain the continuous volatility
surface Σ (T,K).

Time interpolation We note υ (T,K) the total implied variance:

υ (T,K) = TΣ2 (T,K)

The linear interpolation of the total implied variance gives:

υ (T,K) = w · υ (Tm,Km (T )) + (1− w) · υ (Tm+1,Km+1 (T ))

where T ∈ [Tm, Tm+1] and:
w = Tm+1 − T

Tm+1 − Tm
We deduce that:

Σ2 (T,K) = Tm (Tm+1 − T )
T (Tm+1 − Tm)Σ2 (Tm,Km (T )) +

Tm+1 (T − Tm)
T (Tm+1 − Tm)Σ2 (Tm+1,Km+1 (T ))

= am (T ) Σ2 (Tm,Km (T )) + bm+1 (T ) Σ2 (Tm+1,Km+1 (T ))

where:
am (T ) = Tm (Tm+1 − T )

T (Tm+1 − Tm)

46See Exercise 9.4.8 on page 599 for the proof of this result.
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and:
bm+1 (T ) = Tm+1 (T − Tm)

T (Tm+1 − Tm) = 1− am (T )

In the previous scheme, we interpolate the total variance for the strikeK and the maturity T
by considering the pairs (Tm,Km (T )) and (Tm+1,Km+1 (T )). Generally, the strikes Km (T )
and Km+1 (T ) are a translation of the strike K:{

Km (T ) = km · (T )K
Km+1 (T ) = km+1 · (T )K

with km (Tm) = 1 and km+1 (Tm+1) = 1. The simplest rule is km (T ) = km+1 (T ) = 1.
Another method is to define km (Tm) = e−b(T−Tm) ≤ 1 and km+1 (Tm+1) = eb(Tm+1−T ) ≥ 1.

Example 92 We assume that the implied volatility is equal to:

Σ (Tm,K) = Σm + αm (K − 100)2

where Σm = 20% + 0.005 · (Tm − 1.0), αm = 0.05 · Tm bps and Tm is equal to 1, 2, 3, 4 and
5 years. The cost-of-carry parameter b is set to 5%.

We have represented the implied volatility Σ (Tm,K) in the first panel in Figure 9.26. We
can then compute the volatility surface. When T is lower than the first observed maturity or
higher than the last observed maturity, we can extrapolate the implied volatility in several
ways. The simplest method is to assume that the implied volatility is constant. In the third
panel, we have reported the interpolated implied volatility with respect to the maturity T
for three different strikes. We notice that it is curved between two interpolating knots due
to the effect of the square root transformation.

FIGURE 9.26: Time interpolation of the implied volatility
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Non-parametric interpolation We note Sm (K) the non-parametric function that give
the value of Σ (Tm,K) for all values of strike K. The calculation of the local volatility
surface implies to calculate the quantities ∂KΣ (T,K), ∂2

KΣ (T,K) and ∂TΣ (T,K). We
use the shortened notations: Sm = Sm (Km (T )), S ′m = S ′m (Km (T )), S ′′m = S ′′m (Km (T )),
Sm+1 = Sm+1 (Km+1 (T )), S ′m+1 = S ′m+1 (Km+1 (T )) and S ′′m+1 = S ′′m+1 (Km+1 (T )). We
have:

Σ (T,K) ∂KΣ (T,K) = 1
2∂KΣ2 (T,K)

= am (T ) km (T )SmS ′m +
bm+1 (T ) km+1 (T )Sm+1S ′m+1

For the second term, we obtain:

Σ (T,K) ∂2
KΣ (T,K) = 1

2∂
2
KΣ2 (T,K)− (∂KΣ (T,K))2

= am (T ) k2
m (T )

(
SmS ′′m + (S ′m)2

)
+

bm+1 (T ) k2
m+1 (T )

(
Sm+1S ′′m+1 +

(
S ′m+1

)2)−
(∂KΣ (T,K))2

Since we have:
a′m (T ) = −TmTm+1

T 2 (Tm+1 − Tm)
and:

b′m+1 (T ) = TmTm+1

T 2 (Tm+1 − Tm)
we deduce that the last term is equal to47:

Σ (T,K) ∂TΣ (T,K) = 1
2∂TΣ2 (T,K)

= 1
2a
′
m (T ) Σ2 (Tm,Km (T )) +

1
2b
′
m+1 (T ) Σ2 (Tm+1,Km+1 (T )) +

am (T ) Σ (Tm,Km (T )) ∂TΣ (Tm,Km (T )) +
bm+1 (T ) Σ (Tm+1,Km+1 (T )) ∂TΣ (Tm+1,Km+1 (T ))

= 1
2 (Sm+1 − Sm) TmTm+1

T 2 (Tm+1 − Tm) +

am (T )SmS ′mK∂T km (T ) +
bm (T )Sm+1S ′m+1K∂T km+1 (T )

In the case where km (T ) = km+1 (T ) = 1, the previous formula reduces to:

Σ (T,K) ∂TΣ (T,K) = 1
2 (Sm+1 − Sm) TmTm+1

T 2 (Tm+1 − Tm)

In practice, we don’t observe the function Sm (K), but only few values of Σ (Tm,Ki) for
some maturities Tm and some strikes Ki. An example is given in Table 9.10. We assume that

47We use the fact that ∂TKm (T ) = K∂T km (T ) and ∂TKm+1 (T ) = K∂T km+1 (T ).
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TABLE 9.10: Calibration set
Tm = 1/12

Ki 87.0 92.0 96.0 98.0 100.0 103.0 106.0 110.0 116.0
Σ (Tm,Ki) 13.7 13.7 13.3 13.2 13.0 13.1 13.2 13.5 13.5

Tm = 3/12
Ki 77.0 85.0 93.0 97.0 101.0 106.0 111.0 121.0 134.0

Σ (Tm,Ki) 14.9 14.9 14.1 14.0 13.5 13.8 14.2 15.1 15.1
Tm = 6/12

Ki 66.0 78.0 89.0 96.0 102.0 111.0 119.0 136.0 161.0
Σ (Tm,Ki) 16.8 16.8 15.5 15.0 14.5 15.0 15.5 16.8 16.8

Tm = 1
Ki 53.0 69.0 86.0 96.0 104.0 119.0 133.0 166.0 217.0

Σ (Tm,Ki) 19.0 19.0 17.0 16.0 15.5 16.5 17.5 18.5 18.5
Tm = 2

Ki 37.0 56.0 80.0 96.0 103.0 137.0 163.0 229.0 347.0
Σ (Tm,Ki) 21.9 21.9 20.0 18.5 18.5 19.0 19.5 20.8 20.8

five maturities are quoted (1M, 3M, 6M, 1Y and 2Y). For each maturity, we observe the
implied volatility (expressed in %) for 9 strikes. This is why we have to use an interpolation
method. In Figure 9.27, we have represented the function Sm (K) obtained with the cubic
spline method48. One of the issues is the interpolated implied volatility on the wings. Here,
we have chosen to keep the cubic spline values, but an alternative approach is to assume
that the smile is constant before the first strike and after the last strike. Let us assume
that S0 = 100, b = 5% and r = 5%. Using the time approximation approach, we obtain
the implied volatility surface given in Figure 9.28. The implied volatility is constant when
T ≤ 1/12 and T ≥ 2. Finally, the local volatility surface is reported in Figure 9.29. We
notice that it is not a smooth function. This is why we can use cubic spline approximation
or other smoothing methods in place of cubic spline interpolation49. However, we not not
retrieve exactly the quoted implied volatilities with this approach.

Remark 105 In real life, the number of strikes may be different from one maturity to
another, and may be smaller. For example, in the case of currency options50, we generally
have 5 quoted options (ATM, 10-delta call, 25-delta call, 10-delta put and 25-delta put).

Parametric calibration In the previous section, Σ (T,K) and σ (T,K) are calibrated us-
ing non-parametric approaches such as the cubic spline method. This produces a disorderly
local volatility surface. In order to avoid this problem, we can use a parametric framework.
For instance, we can calibrate Σ (T,K) using the SABR model. Another popular approach
is to consider the stochastic volatility inspired or SVI parametrization.

We recall that the total implied variance is equal to:

υ (T,K) = TΣ2 (T,K)

We assume that υ (T,K) = υ̃ (T, x) and Σ (T,K) = Σ̃ (T, x) where x is the log-moneyness:

x = ϕ (T,K) = ln K

F (T ) = ln K

S0ebT

48See Appendix A.1.2.1 on page 1035.
49See Crépey (2003) and Fengler (2009).
50FX vanilla options are generally quoted in terms of volatility with respect to a fixed delta, and not in

terms of premium with respect to a given strike.
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FIGURE 9.27: Cubic spline interpolation Sm (K) (in %)

FIGURE 9.28: Implied volatility surface Σ (T,K) (in %)
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FIGURE 9.29: Local volatility surface σ (T,K) (in %)

Let υ̃T (x) = υ̃ (T, x) be the total implied variance for a given maturity slice. Gatheral
(2004) introduces the following SVI parametrization:

υ̃T (x) = α+ β

(
ρ (x−m) +

√
(x−m)2 + σ2

)
where β > 0, σ > 0 and ρ ∈ [−1, 1]. We have:

υ̃T (m) = α+ βσ

and: {
limx→−∞ υ̃T (x) = α− β (1− ρ) (x−m)
limx→∞ υ̃T (x) = α+ β (1 + ρ) (x−m)

Gatheral deduces that α controls the general level, β influences the slope of the wings, σ
changes the curvature of the smile, ρ impacts the symmetry of the smile while m shifts the
smile.

Example 93 We assume that α = 2%, β = 0.3, σ = 10%, ρ = −40% and m = 0. Figure
9.30 shows the impact of each parameter on the total variance υ̃T (x).

Gatheral and Jacquier (2014) show that a volatility surface is free of static arbitrage if
and only if it is free of calendar spread arbitrage51 and each time slice is free of butterfly
arbitrage52. The first property implies that:

∂T υ̃ (T, x) ≥ 0

51This means that the price of an European option is monotone with the maturity.
52This means that the probability density function is non-negative for any given maturity T .
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FIGURE 9.30: Impact of SVI parameters on the total variance υ̃T (x)

for all x ∈ R. Thanks to Breeden and Litzenberger (1978), the second property is equivalent
to verify that53:

∂2 C (T,K)
∂ K2 ≥ 0

These authors deduce then how the absence of static arbitrage impacts SVI parameters.
We consider the calibration set defined in Table 9.10 on page 554. We delete the two

extreme strikes of each maturity54. In Figure 9.31, we show the SVI parametrization for
each maturity. By considering the time interpolation presented previously, we can define the
implied volatility surface Σ (T,K) and then calculate the local σ (T,K). These two volatility
surfaces are reported in Figure 9.31.

Hedging coefficients Let Σ (T,K, St) and σ (T,K, St) be the implied and local volatil-
ity surfaces that depend on the current price St. We also write the value of the option
V (T,K, St) as a function of the maturity T , the strike K and the current price St. The
delta of the option is then equal to:

∆t = ∂ V (T,K, St)
∂ St

If we use the finite difference approximation, we obtain:

∆ ≈ V (T,K, St + ε)− V (T,K, St − ε)
2ε

53See Section 9.1.1.4 on page 508.
54In fact, we have added these two points in the calibration set in order to stabilize the non-parametric

calibration. However, this approach is not adequate because volatility smile is linear and not constant at
extreme strikes (Lee, 2004).
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FIGURE 9.31: SVI parametrization, implied volatility Σ (T,K) and local volatility
σ (T,K) (in %)

Computing the option price and its corresponding delta require then to calculate three local
volatility surfaces55 and solve the forward PDE three times56. This method can also be used
to calculate the gamma of the option, because we have:

Γ ≈ V (T,K, St + ε)− 2V (T,K, St) + V (T,K, St − ε)
ε2

The vega coefficient in a local volatility model is not well-defined. It can be measured with
respect to the local volatility σ (T,K, St) or the implied volatility Σ (T,K, St). The most
frequent approach is to measure the vega as the sensitivity of the price to a parallel shift of
Σ (T,K, St). We have:

υ = V ′ (T,K, St)− V (T,K, St)
ε′

where V ′ (T,K, St) is the option price obtained when the implied volatility surface is
Σ (T,K, St) + ε′.

One of the issues with the local volatility model is that greeks are not easy to compute
and are not stable in the time and across strikes. This is a severe disadvantage, since the
hedging of the option is not straightforward and generally less efficient than the hedging
portfolio given by the Black-Scholes model:

“Market smiles and skews are usually managed by using local volatility models
a la Dupire. We discover that the dynamics of the market smile predicted by
local vol models is opposite of observed market behavior: when the price of the
underlying decreases, local vol models predict that the smile shifts to higher

55We have to calculate σ (T,K, St − ε), σ (T,K, St) and σ (T,K, St + ε).
56We have to calculate V (T,K, St − ε), V (T,K, St) and V (T,K, St + ε).
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prices; when the price increases, these models predict that the smile shifts to
lower prices. Due to this contradiction between model and market, delta and
vega hedges derived from the model can be unstable and may perform worse
than naive Black-Scholes’ hedges” (Hagan et al., 2002, page 84).

9.2.3.4 Application to exotic options

Another shortcoming of the local volatility model is the unrealistic probability distribu-
tion of the conditional random variable S (t2) | S (t1). This is why this model is only used
for European options, and not for path-dependent derivatives. In particular, it has been
popular in the 1990s and 2000s for pricing European barrier options.

We consider the calibration set given in Table 9.10 on page 554. We assume that S0,
b = 5% and 5 = 5%. We price different payoffs given in Table 9.11, whose parameters are
K = 100, L = 90 and H = 115. The maturity is set to one year. Prices are calculated with
a Crank-Nicholson scheme with 2 000 discretization points57 in space, 2 000 discretization
points in time and traditional boundary conditions58. Results are given in column LV. We
can compare them with Black-Scholes prices calculated with implied volatilities59 Σ1 = 16%
and Σ2 = 15.5%. For each payoff and each value of implied volatility, we report two values
of the option price: one obtained by solving the PDE and another one calculated with the
analytical formulas of Rubinstein and Reiner (1991). We observe some differences between
the two prices, because the PDE price depends on the choice of the discretization scheme and
the boundary conditions. We notice that the prices DOC, UOC, KOC and BCC calculated
with the local volatility model are not in the interval of BS prices.

TABLE 9.11: Barrier option pricing with the local volatility model

Option Payoff LV BS-PDE BS-RR
Σ1 Σ2 Σ1 Σ2

Call (S (T )−K)+ 8.85 8.96 8.78 8.96 8.78
Put (K − S (T ))+ 3.97 4.08 3.90 4.08 3.90
DOC 1 {S (t) > L} · (S (T )−K)+ 7.98 8.14 8.05 8.11 8.02
DOP 1 {S (t) > L} · (K − S (T ))+ 0.26 0.27 0.28 0.25 0.27
UOC 1 {S (t) < H} · (S (T )−K)+ 0.99 0.88 0.94 0.83 0.89
UOP 1 {S (t) < H} · (K − S (T ))+ 3.81 3.90 3.75 3.89 3.74
KOC 1 {S (t) ∈ [L,H]} · (S (T )−K)+ 0.65 0.56 0.64 0.52 0.59
KOP 1 {S (t) ∈ [L,H]} · (K − S (T ))+ 0.20 0.20 0.22 0.19 0.21
BCC 1 {S (T ) ≥ K} 0.58 0.56 0.57 0.56 0.57
BCP 1 {S (T ) ≤ K} 0.37 0.39 0.38 0.39 0.38

57We assume that S (t) ∈ [0, 200].
58We use the following Dirichlet and Neumann conditions:

V
(
t, S−

)
= 0 V

(
t, S+

)
= 0 ∂SV

(
t, S−

)
= −1 ∂SV

(
t, S+

)
= 0

Call, BCC Put, BCP Put, BCP Call, BCC
DOC, DOP, UOC DOP, UOC, UOP UOP DOC

KOC, KOP KOC, KOP

where S− = 0 and S+ = 200.
59Σ1 = 16% and Σ2 = 15.5% correspond to the two implied volatilities of strikes 96 and 104 for the

one-year maturity.
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9.2.4 Stochastic volatility models
The most popular approach to model the volatility smile is to consider that the volatility

is not constant, but stochastic. In this case, we obtain a model with two state variables,
which are the spot price S (t) and the volatility σ (t). After deriving the general formula of
the fundamental pricing equation, we present Heston and SABR models, which are the two
most important parametrizations of this class of models.

9.2.4.1 General analysis

Pricing formula We assume that the joint dynamics of the spot price S (t) and the
stochastic volatility σ (t) is:{

dS (t) = µ (t)S (t) dt+ σ (t)S (t) dW1 (t)
dσ (t) = ζ (σ (t)) dt+ ξ (σ (t)) dW2 (t)

where E [W1 (t)W2 (t)] = ρ t. S (t) is a geometric Brownian motion with time-varying pa-
rameters µ (t) and σ (t), whereas σ (t) follows a general diffusion that does not depend on
S (t). In the Black-Scholes model, the volatility has the status of parameter. In this new
approach, the volatility is a second state variable. The SV model is defined by the functions
ζ (y) and ξ (y).

Using Itô’s lemma, we can show that the fundamental pricing equation defined on page
492 becomes60:

1
2σ

2S2∂2
SV (t, S, σ) + ρσSξ (σ) ∂2

S,σV (t, S, σ) + 1
2ξ

2 (σ) ∂2
σV (t, S, σ)

+ (µ− λSσ)S∂SV (t, S, σ) + (ζ (σ)− λσξ (σ)) ∂σV (t, S, σ)
+∂tV (t, S, σ)− rV (t, S, σ) = 0

where V (t, S, σ) is the price of the contingent claim, V (T, S (T )) = f (S (T )) and f (S (T ))
is the option payoff. As previously, the market price of the spot risk W1 (t) is:

λS (t) = µ (t)− b (t)
σ (t)

By introduction the function ζ ′ (y):

ζ ′ (σ (t)) = ζ (σ (t))− λσ (t) ξ (σ (t))

we obtain the following PDE:

1
2σ

2S2∂2
SV (t, S, σ) + ρσSξ (σ) ∂2

S,σV (t, S, σ) + 1
2ξ

2 (σ) ∂2
σV (t, S, σ)

+bS∂SV (t, S, σ) + ζ ′ (σ) ∂σV (t, S, σ) + ∂tV (t, S, σ)− rV (t, S, σ) = 0
(9.35)

Equation (9.35) is the equivalent of Equation (9.2) on page 492 when the volatility is
stochastic.

Using the Girsanov theorem, we deduce that the risk-neutral dynamics is:{
dS (t) = b (t)S (t) dt+ σ (t)S (t) dWQ

1 (t)
dσ (t) = ζ ′ (σ (t)) dt+ ξ (σ (t)) dWQ

2 (t)

60We omit the dependence in t in order to simplify the notation.
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The martingale solution is then equal to:

V0 = EQ
[
e
−
∫ T

0
r(t) dt

f (S (T ))
∣∣∣∣F0

]
We retrieve the formula obtained in the one-dimensional case. However, the computation
of the expected value is now more complex since S (T ) depends on the trajectory of the
volatility σ (t).

Hedging portfolio The computation of greek coefficients is more complex in SV models.
This is why the definition of the hedging portfolio is not straightforward and depends on
the assumption on the smile dynamics. In the case of the Black-Scholes model, delta and
vega sensitivities are equal to:

∆BS = ∂ VBS (S0,K,Σ, T )
∂ S0

and:
υBS = ∂ VBS (S0,K,Σ, T )

∂ Σ
In the case of the stochastic volatility model, we have:

∆SV = ∂ VSV (S0,K, σ0, T )
∂ S0

If we assume that VSV (S0,K, σ0, T ) = VBS (S0,K,ΣSV (T, S0) , T ), we obtain:

∆SV = ∂ VBS (S0,K,ΣSV, T )
∂ S0

+ ∂ VBS (S0,K,ΣSV, T )
∂ ΣSV

· ∂ ΣSV (T, S0)
∂ S0

= ∆BS + υBS ·
∂ ΣSV (T, S0)

∂ S0

Therefore, the delta of the SV model depends on the BS vega. Generally, we have
∂S0ΣSV (T, S0) ≥ 0 implying that ∆SV ≥∆BS.

The calculation of the vega coefficient is a second issue. Indeed, the natural hedging
portfolio should consist in two long/short exposures since we have two risk factors S (t) and
σ (t). Therefore, we can define the vega sensitivity as follows:

υSV = ∂ VSV (S0,K, σ0, T )
∂ σ0

However, this definition has no interest since the stochastic volatility σ (t) cannot be directly
or even indirectly trade. This is why most of traders prefer to use a BS vega:

υSV = ∂ VBS (S0,K,ΣSV (T, S0) , T )
∂ ΣSV

Here, we make the assumption that the vega is calculated with respect to the implied
volatility ΣSV (T, S0) deduced from the stochastic volatility model. It can be viewed as a
pure Black-Scholes vega, but most of times, it corresponds to a shift of the implied volatility
surface. This approach requires a new calibration of the stochastic volatility parameters. In
some sense, the vega can be viewed as the difference between the prices obtained with two
stochastic volatility models.
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9.2.4.2 Heston model

Heston (1993) assumes that the stochastic differential equation of the spot price is equal
to: {

dS (t) = µS (t) dt+
√
v (t)S (t) dW1 (t)

dv (t) = κ (θ − v (t)) dt+ ξ
√
v (t) dW2 (t)

where S (0) = S0, v (0) = v0 and W (t) = (W1 (t) ,W2 (t)) is a two-dimensional Wiener
process with E [W1 (t)W2 (t)] = ρ t. We notice that the stochastic variance v (t) follows a
CIR process: θ is the long-run variance, κ is the mean-reverting parameter and ξ is the
volatility of the variance (also called the vovol parameter).

Remark 106 We have σ (t) =
√
v (t) and:

dσ (t) =
((

κθ

2 −
ξ2

8

)
1

σ (t) −
1
2κσ (t)

)
dt+ 1

2ξ dW2 (t)

The stochastic volatility is then an Ornstein-Uhlenbeck process if we impose θ = ξ2/ (4κ).

As the second state variable of the Heston model is the stochastic variance v (t), the
price V (t, S, v) of the option must satisfy the PDE61:

1
2vS

2∂2
SV + ρξvS∂2

S,vV + 1
2ξ

2v∂2
vV

+bS∂SV + (κ (θ − v (t))− λv) ∂vV + ∂tV − rV = 0

It follows that the risk-neutral dynamics is:{
dS (t) = bS (t) dt+

√
v (t)S (t) dWQ

1 (t)
dv (t) = (κ (θ − v (t))− λv (t)) dt+ ξ

√
v (t) dWQ

2 (t)

In the case of European call and put options, Heston (1993) gives a closed-form solution of
the price:

C0 = S0e
(b−r)TP1 −Ke−rTP2

P0 = S0e
(b−r)T (P1 − 1)−Ke−rT (P2 − 1)

where the probabilities P1 and P2 satisfy:

Pj = 1
2 + 1

π

∫ ∞
0

Re
(
e−iφ lnKϕj (S0, v0, T, φ)

iφ

)
dφ

ϕj (S0, v0, T, φ) = exp (Cj (T, φ) +Dj (T, φ) v0 + iφ lnS0)

Cj (T, φ) = ibφT + aj
ξ2

(
(bj − iρξφ+ dj)T − 2 ln

(
1− gjedjT

1− gj

))
Dj (T, φ) = bj − iρξφ+ dj

ξ2

(
1− edjT

1− gjedjT

)
gj = bj − iρξφ+ dj

bj − iρξφ− dj

dj =
√

(iρξφ− bj)2 − ξ2 (2iujφ− φ2)

where a1 = a2 = κθ, b1 = κ+ λ− ρξ, b2 = κ+ λ, u1 = 1/2 and u2 = −1/2.

61Heston (1993) makes the assumption that λv (t) ∝
√
v.
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The existence of these semi-analytical formulas for European options is one of the main
factors for explaining the popularity of the Heston model. However, the implementation of
the formulas is not straightforward since it requires computing the integral of the inverse
Fourier transform. In particular, Kahl and Jäckel (2005) show that the evaluation of loga-
rithms with complex arguments may produce a numerical instability. Numerical softwares
will generally do the following computation:

ln
(

1− gjedjT

1− gj

)
= ln |r|+ iϕ

where:
r =

∣∣∣∣1− gjedjT1− gj

∣∣∣∣
and:

ϕ = arg
(

1− gjedjT

1− gj

)
However, the fact that ϕ ∈ [−π, π] will create a discontinuity when integrating the function.
In order to circumvent this problem, we note:

gj = r (gj) eiϕ(gj)

and:
dj = a (dj) + ib (dj)

Kahl and Jäckel (2005) deduce that:

gj − 1 = r (gj) eiϕ(gj) − 1
= r̃ei(ϕ̃j+2πm̃)

where m̃ =
⌊
(2π)−1 (ϕ (gj) + π)

⌋
, ϕ̃j = arg (gj − 1) and r̃ = |gj − 1|. They also found that:

gje
djT − 1 = r (gj) eiϕ(gj)ea(dj)T+ib(dj)T − 1

= r (gj) ea(dj)T ei(ϕ(gj)+b(dj)T ) − 1
= r̆ei(ϕ̆j+2πm̆)

where m̆ =
⌊
(2π)−1 (ϕ (gj) + b (dj)T + π)

⌋
, ϕ̆j = arg

(
gje

djT − 1
)
and r̆ =

∣∣gjedjT − 1
∣∣.

Finally, they obtain:

ln
(

1− gjedjT

1− gj

)
= ln r̆

r̃
+ i (ϕ̆j − ϕ̃j + 2πm̆− 2πm̃)

In Figure 9.32, we show the functions f1 (u) and f2 (u) defined by:

fj (u) = Re
(
e−iu lnKϕj (S0, v0, T, u)

iu

)
The parameters are S0 = 100, K = 100, T = 30, b = 0.00, v0 = 0.2, κ = 1, θ = 0.2, ξ = 0.5
and λ = 0. For f1 (u), we use ρ = 30% whereas ρ is set to −30% for the function f2 (u). We
see the discontinuity produced by numerical softwares. The Kahl-Jäckel method produces
continuous functions without jumps. The problem can sometimes affect the two functions
f1 (u) and f2 (u). This is the case in Figure 9.33 with the following parameters S0 = 100,
K = 100, T = 30, b = 0.05, v0 = 4%, κ = 0.5, θ = 4%, ξ = 0.7, ρ = −0.80 and λ = 0.
Again, the Kahl-Jäckel method performs the good correction.
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FIGURE 9.32: Functions f1 (u) and f2 (u) (κ = 1)

FIGURE 9.33: Functions f1 (u) and f2 (u) (κ = 0.5)
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FIGURE 9.34: Implied volatility of the Heston model (in %)

Example 94 The parameters are equal to S0 = 100, b = r = 5%, v0 = θ = 4%, κ = 0.5,
ξ = 0.9 and λ = 0. We consider the pricing of the European call option, whose maturity is
three months.

Figure 9.34 shows the implied volatility for different values of the strike K and the
correlation ρ. We notice that the Heston model can produce different shapes of the volatility
surface. In Figure 9.35, we have reported the skew of the implied volatility defined by:

ω (T,K) = ∂ Σ (T,K)
∂ K

Several authors have proposed approximations of the Heston implied volatility Σt (T,K).
We can cite Schönbucher (1999), Forde and Jacquier (2009), and Gatheral and Jacquier
(2011). A more general approach has been proposed by Durrleman (2010), who assumes
that the dynamics of St is Markovian with:

S (t) = S0 exp
(∫ t

0
σ (s) dW (s)− 1

2

∫ t

0
σ2 (s) ds

)
and: 

dσ2 (t) = µ (t) dt− 2σ (t)
(
a (t) dW (t) + ã (t) dW̃ (t)

)
dµ (t) = (·) dt+ ω (t) dW (t) + (·) dW̃ (t)
da (t) = m (t) dt+ u (t) dW (t) + ũ (t) dW̃ (t)
dã (t) = (·) dt+ v (t) dW (t) + (·) dW̃ (t)
du (t) = (·) dt+ x (t) dW (t) + (·) dW̃ (t)

where (·) is a generic symbol for a continuous adapted process. Durrleman (2010) shows
that:

Σ2
t (T,K) ' σ2 (t) + a (t) s (t) + b (t) τ

2 + c (t) s2 (t)
2 + d (t) s (t) τ

2 + e (t) s3 (t)
6
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FIGURE 9.35: Skew of the Heston model (in bps)

where τ = T − t and s (t) = lnS (t) − lnK. The coefficients b (t), c (t), d (t) and e (t) are
given by:

b (t) = µ (t)− a2 (t)
2 − 2ã2 (t)

3 − a (t)σ2 (t) + 2u (t)σ (t)
3

and:

c (t) = −2u (t)
3σ (t) −

a2 (t)
2σ2 (t) + 2ã2 (t)

3σ2 (t)

d (t) = 2m (t)
3 − ω (t)

3σ (t) −
x (t)

2 − a (t)µ (t)
3σ2 (t) + ã (t) ũ (t)

6σ (t) + ã (t) v (t)
σ (t) +

2a (t) ã2 (t)
3σ2 (t) + 2u (t)σ (t)

3 − a2 (t)
3

e (t) = x (t)
2σ2 (t) + 2a (t)u (t)

σ3 (t) − 3ã (t) ũ (t)
2σ3 (t) − ã (t) v (t)

σ3 (t) + 3a3 (t)
2σ4 (t) −

4a (t) ã2 (t)
σ4 (t)

In the case of the Heston model, we have:{
dS (t) = σ (t)S (t) dW (t)
dσ2 (t) = κ

(
θ − σ2 (t)

)
dt+ ξσ (t)

(
ρ dWt +

√
1− ρ2 dW̃t

)



Model Risk of Exotic Derivatives 567

It follows that a (t) = − ξρ2 , ã (t) = − ξ
√

1−ρ2

2 and ω (t) = m (t) = u (t) = ũ (t) = v (t) =
x (t) = 0. We deduce that:

b (t) = κ
(
θ − σ2 (t)

)
+ ξρσ2 (t)

2 − ξ2

6

(
1− ρ2

4

)
c (t) = ξ2

6σ2 (t)

(
1− 7ρ2

4

)
d (t) = κξρ

6

(
θ

σ2
t

− 1
)
− ξ2ρ

12

(
ρ+

ξ
(
1− ρ2)
σ2 (t)

)

e (t) = ξ3ρ

2σ4 (t)

(
1− 11ρ2

8

)
In Figure 9.36, we have generated the volatility surface using the Durrleman formula of
the Heston model approximation. The parameters are S (t) = 100, σ (t) = 20%, κ = 0.5,
θ = 4% and ξ = 0.2. We consider different values for the correlation parameter ρ and the
maturity T . We notice that the Durrleman formula does not fit correctly the Heston smile
when the absolute value |ρ| of the correlation is high.

FIGURE 9.36: Implied volatility of the Durrleman formula (in %)

Example 95 We assume that S (t) = 100 and T = 0.5. The volatility smile is given by the
following values:

K 90.00 95.00 100.00 105.00 110.00
Σt (T,K) (in %) 20.25 19.92 19.67 19.49 19.38
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FIGURE 9.37: Calibration of the smile by the Heston model and the Durrleman formula

The calibration of the smile gives the following result62:

Model σ (t) κ θ ξ ρ
Heston 0.201 0.980 0.040 0.192 −0.207
Durrleman 0.222 1.000 0.014 0.191 −0.193

The volatility surface of each calibrated model is represented in Figure 9.37. The results are
very similar.

Remark 107 The Heston model was very popular in the 2000s. Nevertheless, even if we
have an analytical formula for the call and put prices, the absence of a true implied volatility
formula was an obstacle of its development, and the use of the Heston model is today less
frequent. The Heston model has then been replaced by the SABR model, because of the
availability of an implied volatility formula.

9.2.4.3 SABR model

Hagan et al. (2002) suggest using the SABR63 model to take into account the smile
effect. The dynamics of the forward rate F (t) is given by:{

dF (t) = α (t)F (t)β dWQ
1 (t)

dα (t) = να (t) dWQ
2 (t)

where E
[
WQ

1 (t)WQ
2 (t)

]
= ρ t. Since β ∈ [0, 1], α (t) is not necessarily the instantaneous

volatility of F (t) except in the cases β = 0 (Gaussian volatility) and β = 1 (log-normal

62It consists of minimizing the sum of squared errors between observed implied volatilities and theoretical
implied volatilities deduced from the option model.

63This is the acronym of stochastic−α− β − ρ.
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volatility). The model has also 4 parameters: α the current value of α (t), β the exponent
of the forward rate, ν the log-normal volatility of α (t) and ρ the correlation between the
two Brownian motions. One of the big interests of the SABR model is that we have an
approximate formula of the implied Black volatility:

ΣB (T,K) = α

(F0K)(1−β)/2
(

1 + (1−β)2

24 ln2 F0
K + (1−β)4

1920 ln4 F0
K

) ( z

χ (z)

)
·

(
1 +

(
(1− β)2

α2

24 (F0K)1−β + ρανβ

4 (F0K)(1−β)/2 + 2− 3ρ2

24 ν2

)
T

)

where z = να−1 (F0K)(1−β)/2 ln F0

K
and χ (z) = ln

(√
1− 2ρz + z2 + z − ρ

)
− ln (1− ρ).

Let us see the interpretation of the parameters64. We have represented their impact in
Figures65 9.38 and 9.39. The parameter β allows to define a stochastic log-normal model
when β is equal to 1, or a stochastic normal model when β is equal to 0, or an hybrid model.
The choice of β is generally exogenous. The main reason is that β is highly related to the
dynamics of the ATM implied volatility. If β is equal to 1, we observe a simple translation
of the smile when the forward rate moves (first panel in Figure 9.38). If β is equal to 0, the
ATM implied volatility decreases when the forward rates increases (second panel in Figure
9.38). This explains the behavior of the backbone, which represents the dynamics of the
ATM implied volatility when the forward rate varies (third panel in Figure 9.38).

FIGURE 9.38: Impact of the parameter β

64In the following examples, we consider a one-year option, whose current forward rate F0 is equal to 5%.
65The default values are α = 10%, β = 1, ν = 50% and ρ = 0.
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FIGURE 9.39: Impact of the parameters α, ν and ρ

The parameter α controls the level of implied volatilities (see Panel 1 in Figure 9.39).
In particular, α is close to the value of the ATM volatility when β is equal to one66. ν is
called the vovol (or vol-vol) parameter, because it measures the volatility of the volatility. ν
impacts then the stochastic property of the volatility α (t). The limit case ν = 0 corresponds
to the constant volatility and we obtain the classical Black model67. An increase of ν tends
to increase the slope of the implied volatility (see Panel 2 in Figure 9.39). The asymmetry
of the smile is due to the parameter ρ. For instance, if ρ is negative, the skew is more
important in the left side than in the right side (see Panel 3 in Figure 9.39).

Remark 108 The parameters β and ρ impact the slope of the smile in a similar way.
Then, they cannot be jointly identifiable. For example, let us consider the following smile
when F0 is equal to 5%: ΣB (1, 3%) = 13%, ΣB (1, 4%) = 10%, ΣB (1, 5%) = 9% and
ΣB (1, 7%) = 10%. If we calibrate this smile for different values of β, we obtain the following
solutions:

β α ν ρ
0.0 0.0044 0.3203 0.2106
0.5 0.0197 0.3244 0.0248
1.0 0.0878 0.3388 −0.1552

We have represented the corresponding smiles in Figure 9.40 and we verify that the three
sets of calibrated parameters give the same smile.

66In this case, we have:

ΣB (T, F0) = α

(
1 +
(
ραν

4
+

2− 3ρ2

24
ν2
)
T

)
It follows that ΣB (T, F0) is exactly equal to α when ρ is equal to zero.

67When β is equal to one of course.
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FIGURE 9.40: Implied volatility for different parameter sets (β, ρ)

We have seen that the choice of β is not important for calibrating the SABR model for
a given maturity. We have already seen that the parameter β has a great impact on the
dynamics on the backbone. Therefore, there are two approaches for estimating β:

1. β can be chosen from prior beliefs (β = 0 for the normal model, β = 0.5 for the CIR
model and β = 1 for the log-normal model);

2. β can be statistically estimated by considering the dynamics of the forward rate.

TABLE 9.12: Calibration of the parameter β in the SABR model

Rate Level Difference Empirical quantile of β̂t,t+h
β̂ R2

c β̂ R2
c 10% 25% 50% 75% 90%

1y1y −0.06 0.91 0.59 0.15 −2.01 −0.14 0.71 1.00 2.17
1y5y −0.29 0.87 0.32 0.27 −1.80 −0.28 0.73 1.11 2.76
1y10y −0.37 0.80 0.34 0.22 −2.04 −0.23 0.71 1.11 2.69
5y1y 0.42 0.29 0.35 0.22 −1.58 −0.31 0.71 1.00 2.38
5y5y −0.01 0.73 0.23 0.28 −2.12 −0.36 0.61 1.00 2.52
5y10y −0.10 0.69 0.27 0.23 −1.99 −0.30 0.70 1.05 2.58
10y1y 0.96 0.00 0.28 0.20 −1.88 −0.20 0.80 1.07 2.43
10y5y −0.10 0.65 0.28 0.20 −2.02 −0.29 0.73 1.02 2.76
10y10y −0.47 0.73 0.27 0.20 −1.71 −0.24 0.85 1.07 2.93

The second approach is based on the approximation of the ATM volatility:

Σt (T, Ft) '
α

F 1−β
t

We have:
ln Σt (T, Ft) = lnα+ (β − 1) lnFt + ut (9.36)
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We can then estimate β by considering the linear regression of the logarithm of the ATM
volatility on the logarithm of the forward rate. However, these two variables are generally
integrated of order one or I (1). A better approach is then to consider the alternative linear
regression68:

ln Σt+h (T, Ft+h)− ln Σt (T, Ft) = c+ (β − 1) (lnFt+h − lnFt) + ut (9.37)

where c is a constant. In this case, the linear regression is performed using the difference
and not the level of implied volatilities. Using the Libor EUR rates between 2000 and 2003,
we obtain results given in Table 9.12. In the first column, we indicate the maturity and the
tenor of the forward rate. The next two columns report the estimate β̂ and the R-squared
coefficient R2

c for the regression model (9.36). Then, we have the values of β̂ and R2
c for the

regression model69 (9.37). We observe some strong differences between the two approaches
(see also the probability density function of β̂ in Figure 9.41). These results show that the
regression model (9.36) produces bad results. However, it does not mean that the second
regression model (9.36) is more robust. Indeed, we can calculate the exact value β̂t,t+h that
explains the dynamics of the ATM volatility from time t to time t+ h:

β̂t,t+h = ln (Ft+h · Σt+h (T, Ft+h))− ln (Ft · Σt (T, Ft))
lnFt+h − lnFt

In Table 9.12, we notice the wide dispersion of β̂t,t+h. On average, the parameter β is around
70%, but it can also take some large negative or positive values. This is why β is generally
chosen from prior beliefs.

Once we have set the value of β, we estimate the parameters (α, ν, ρ) by fitting the
observed implied volatilities. However, we have seen that α is highly related to the ATM
volatility. Indeed, we have:

ΣB (T, F0) = α

F 1−β
0

(
1 +

(
(1− β)2

α2

24F 2−2β
0

+ ρανβ

4F 1−β
0

+ 2− 3ρ2

24 ν2

)
T

)

We deduce that:

α3

(
(1− β)2

T

24F 2−2β
0

)
+ α2

(
ρνβT

4F 1−β
0

)
+ α

(
1 + 2− 3ρ2

24 ν2T

)
− ΣB (T, F0)F 1−β

0 = 0

Let α = gα (ΣB (T, F0) , ν, ρ) be the positive root of the cubic equation. Therefore, imposing
that the smile passes through the ATM volatility ΣB (T, F0) allows to reduce the calibration
to two parameters (ν, ρ).

Example 96 We consider the following smile:

K (in %) 2.8 3.0 3.5 3.7 4.0 4.5 5.0 7.0
Σ (T,K) (in %) 13.2 12.8 12.0 11.6 11.0 10.0 9.0 10.0

The maturity T is equal to one year and the forward rate F0 is set to 5%.

68We have:
Σt+h (T, Ft+h)

Σt (T, Ft)
'
(
Ft+h
Ft

)β−1

69In this case, we set h to one trading day.
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FIGURE 9.41: Probability density function of the estimate β̂ (SABR model)

If we consider a stochastic log-normal model (β = 1), we obtain the following results:

Calibration α (in %) β ν ρ (in %) RSS ΣATM (in %)
#1 9.466 1.00 0.279 −23.70 0.630 9.51
#2 8.944 1.00 0.322 −22.90 1.222 9.00

RSS indicates the residual sum of squares (expressed in bps). In the first calibration, we
estimate the three parameters α, ν and ρ. In this case, the residual sum of squares is equal to
0.63 bps, but the SABR ATM volatility is equal to 9.51%, which is far from the market ATM
volatility. In the second calibration, we estimate the two parameters ν and ρ, whereas α is
the solution of the cubic equation that fits the ATM volatility. We notice that the residual
sum of squares has increased from 0.63 bps to 1.222 bps, but the SABR ATM volatility
is exactly equal to the market ATM volatility. The two calibrated smiles are reported in
Figure 9.42.

Remark 109 One of the issues with implied volatility calibration is that we generally have
more market prices for the put (or left) wing of the smile than its call (or right) wing. This
implies that the put wing is better calibrated than the call wing, and we may observe a large
difference between the calibrated ATM volatility and the market ATM volatility. Therefore,
professionals prefer the second calibration.

The sensitivities correspond to the following formulas70:

∆ = ∂ CB
∂ F0

+ ∂ CB
∂ Σ · ∂ ΣB (T,K)

∂ F0

70If we consider the parametrization α = gα (ΣATM, ν, ρ), we have:

∆ =
∂ CB
∂ F0

+
∂ CB
∂ Σ

·
(
∂ ΣB (T,K)

∂ F0
+
∂ ΣB (T,K)

∂ α
·
∂ gα (ΣATM, ν, ρ)

∂ F0

)
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FIGURE 9.42: Calibration of the SABR model

and:
υ = ∂ CB

∂ Σ · ∂ ΣB (T,K)
∂ α

To obtain these formulas, we apply the chain rule on the Black formula by assuming that
the volatility Σ is not constant and depends on F0 and α.

Remark 110 We notice that the vega is defined with respect to the parameter α. This
approach is little used in practice, because it is difficult to hedge this model parameter. This
is why traders prefer to compute the vega with respect to the ATM volatility:

υ = ∂ CB
∂ Σ · ∂ ΣB (T,K)

∂ α
· ∂ α

∂ ΣATM

where ΣATM = ΣB (T, F0).

Remark 111 Bartlett (2006) proposes a refinement for computing the delta. Indeed, a shift
in F0 produces a shift in α, because the two processes F (t) and α (t) are correlated. Since
we have:

dα (t) = να (t) dWQ
2 (t)

= να (t)
(
ρdWQ

1 (t) +
√

1− ρ2 dW (t)
)

and:
dWQ

1 (t) = dF (t)
α (t)F (t)β

we deduce that:
dα (t) = νρ

F (t)β
dF (t) + να (t)

√
1− ρ2 dW (t)
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The new delta is then:

∆? = ∂ CB
∂ F0

+ ∂ CB
∂ Σ

(
∂ ΣB (T,K)

∂ F0
+ ∂ ΣB (T,K)

∂ α
· ∂ α
∂ F0

)
= ∂ CB

∂ F0
+ ∂ CB

∂ Σ

(
∂ ΣB (T,K)

∂ F0
+ νρ

F (t)β
∂ ΣB (T,K)

∂ α

)
= ∆ + νρ

F (t)β
υ

Therefore, this approach is particularly useful when we consider a delta hedging instead of
a delta-vega hedging, since the new delta risk incorporates a part of the vega risk.

9.2.5 Factor models
Factor models are extensively used for modeling fixed income derivatives (Vasicek, CIR,

HJM, etc.). They assume that interest rates are linked to some factors X (t), which can be
observable or not observable. For instance, the factor is directly the instantaneous interest
rate r (t) in Vasicek or CIR models. However, a one-factor model is generally limited and
is not enough rich to fit the yield curve and the basic asset prices (caplets and swaptions).
During a long time, academics have developed multi-factor models by considering explicit
factors (level, slope, convexity, etc.). For instance, Brennan and Schwartz (1979) consider
the short-term interest rate and the long-term interest rate, whereas Longstaff and Schwartz
(1992) use the short-term interest rate and its volatility. Today, this type of approach is
outdated and is replaced by a more pragmatic approach based on non-explicit factors.

9.2.5.1 Linear and quadratic Gaussian models

Let us assume that the instantaneous interest rate r (t) is linked to the factors X (t)
under the risk-neutral probability Q as follows:

r (t) = α (t) + β (t)>X (t) +X (t)> Γ (t)X (t)

where α (t) is a scalar, β (t) is a n×1 vector and Γ (t) is a n×n matrix. This parametrization
encompasses different specific cases: one-factor model, affine model and quadratic model71.
We also assume that the factors follow an Ornstein-Uhlenbeck process:

dX (t) = (a (t) +B (t)X (t)) dt+ Σ (t) dWQ (t)

where a (t) is a n× 1 vector, B (t) is a n× n matrix, Σ (t) is a n× n matrix and WQ (t) is
a standard n-dimensional Brownian motion.

El Karoui et al. (1992a) show that there exists a family of α̂ (t, T ), β̂ (t, T ) and Γ̂ (t, T )
such that the price of the zero-coupon bond B (t, T ) is given by:

B (t, T ) = exp
(
−α̂ (t, T )− β̂ (t, T )>X (t)−X (t)> Γ̂ (t, T )X (t)

)
71As shown by Filipović (2002), it is not necessary to use higher order because the only consistent

polynomial term structure approaches are the affine and quadratic term structure models.
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where α̂ (t, T ), β̂ (t, T ) and Γ̂ (t, T ) solve a system of Riccati equations. If we assume that
the matrix Γ̂ (t, T ) is symmetric, we obtain:72:

∂tα̂ (t, T ) = − tr
(

Σ (t) Σ (t)> Γ̂ (t, T )
)
− β̂ (t, T )> a (t) +

1
2 β̂ (t, T )> Σ (t) Σ (t)> β̂ (t, T )− α (t)

∂tβ̂ (t, T ) = −B (t)> β̂ (t, T ) + 2Γ̂ (t, T ) Σ (t) Σ (t)> β̂ (t, T )−
2Γ̂ (t, T ) a (t)− β (t)

∂tΓ̂ (t, T ) = 2Γ̂ (t, T ) Σ (t) Σ (t)> Γ̂ (t, T )−
2Γ̂ (t, T )B (t)− Γ (t)

with the boundary conditions α̂ (T, T ) = β̂ (T, T ) = Γ̂ (T, T ) = 0. We notice that the
expression of the forward interest rate F (t, T1, T2) is given by:

F (t, T1, T2) = − 1
T2 − T1

ln B (t, T2)
B (t, T1)

=
α̂ (t, T2)− α̂ (t, T1) +

(
β̂ (t, T2)− β̂ (t, T2)

)>
X (t)

T2 − T1
+

X (t)>
(

Γ̂ (t, T2)− Γ̂ (t, T1)
)
X (t)

T2 − T1

We deduce that the instantaneous forward rate is equal to:

f (t, T ) = α (t, T ) + β (t, T )>X (t) +X (t)> Γ (t, T )X (t)

where α (t, T ) = ∂T α̂ (t, T ), β (t, T ) = ∂T β̂ (t, T ) and Γ (t, T ) = ∂T Γ̂ (t, T ). It follows that
α (t) = α (t, t) = ∂tα̂ (t, t), β (t) = β (t, t) = ∂tβ̂ (t, t) and Γ (t) = Γ (t, t) = ∂tΓ̂ (t, t).

Let V (t,X) be the price of the option, whose payoff is f (x). It satisfies the following
PDE:

1
2 trace

(
Σ (t) ∂2

XV (t,X) Σ (t)>
)

+ (a (t) +B (t)X) ∂XV (t,X) +

∂tV (t,X)−
(
α (t) + β (t)>X +X>Γ (t)X

)
V (t,X) = 0

(9.38)

Once we have specified the functions α (t), β (t), Γ (t), a (t), B (t) and Σ (t), we can then price
the option by solving numerically the previous multidimensional PDE with the terminal
condition V (T,X) = f (X). Most of the time, the payoff is not specified with respect to the
state variables X, but depends on the interest rate r (t). In this case, we use the following
transformation:

f (r) = f
(
α (T ) + β (T )>X +X>Γ (T )X

)
Remark 112 We can also calculate the price of the option by Monte Carlo methods. This
approach is generally more efficient when the number of factors is larger than 2.

72See Exercise 9.4.10 on page 601 and Ahn et al. (2002) for the derivation of the Riccati equations.
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9.2.5.2 Dynamics of risk factors under the forward probability measure

We have:
dB (t, T )
B (t, T ) = r (t) dt−

(
2Γ̂ (t, T )X (t) + β̂ (t, T )

)>
Σ (t) dWQ (t)

We deduce that:

WQ?(T ) (t) = WQ (t) +
∫ t

0
Σ (s)>

(
2Γ̂ (s, T )X (s) + β̂ (s, T )

)
ds

defines a Brownian motion under Q? (T ). It follows that:

dX (t) =
(
ã (t) + B̃ (t)X (t)

)
dt+ Σ (t) dWQ?(T ) (t)

where:
ã (t) = a (t)− Σ (t) Σ (t)> β̂ (t, T )

and:
B̃ (t) = B (t)− 2Σ (t) Σ (t)> Γ̂ (t, T )

We conclude that X (t) is Gaussian under any forward probability measure Q? (T ):

X (t) ∼ N (m (0, t) , V (0, t))

El Karoui et al. (1992a) show that the conditional mean and variance satisfies the following
forward differential equations:

∂Tm (t, T ) = a (T ) +B (T )m (t, T )− 2V (t, T ) Γ (T )m (t, T )−
V (t, T )β (T )

∂TV (t, T ) = V (t, T )B (T )> +B (T )V (t, T )− 2V (t, T ) Γ (T )V (t, T ) +
Σ (T ) Σ (T )>

If t is equal to zero, the initial conditions are m (0, 0) = X (0) = 0 and V (0, 0) = 0. If t 6= 0,
we proceed in two steps: first, we calculate numerically the solutions m (0, t) and V (0, t),
and second, we initialize the system with m (t, t) = m (0, t) and V (t, t) = V (0, t).

Remark 113 In fact, the previous forward differential equations are not obtained under the
traditional forward probability measure Q? (T ), but under the probability measure Q? (t, T )
defined by the following Radon-Nykodin derivative:

dQ? (t, T )
dP = e

−
∫ T

0
r(s) ds

e

∫ T
t
f(t,s) ds

The reason is that we would like to price at time t any caplet with maturity T . Therefore,
this is the maturity T and not the filtration Ft that moves.

9.2.5.3 Pricing caplets and swaptions

We reiterate that the formula of the Libor rate L (t, Ti−1, Ti) at time t between the dates
Ti−1 and Ti is:

L (t, Ti−1, Ti) = 1
Ti − Ti−1

(
B (t, Ti−1)
B (t, Ti)

− 1
)

It follows that the price of the caplet is given by:

Caplet = B (0, t)EQ?(t)
[
(B (t, Ti−1)− (1 + (Ti − Ti−1)K)B (t, Ti))+

]
where Q? (t) is the forward probability measure. We can then calculate the price using two
approaches:
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1. we can solve the partial differential equation;

2. we can calculate the mathematical expectation using numerical integration.

In the first approach, we consider the PDE (9.38) with the following payoff:

f (X) = max (0, g (X))

where:

g (X) = exp
(
−α̂ (t, Ti−1)− β̂ (t, Ti−1)>X −X>Γ̂ (t, Ti−1)X

)
−

(1 + δi−1K) exp
(
−α̂ (t, Ti)− β̂ (t, Ti)>X −X>Γ̂ (t, Ti)X

)
In the second approach, we have X (t) ∼ N (m (0, t) , V (0, t)) under the forward probability
Q? (t). We deduce that:

Caplet (t, Ti−1, Ti) = B (0, t)
∫
f (x)φn (x;m (0, t) , V (0, t)) dx

This integral can be computed numerically using Gauss-Legendre quadrature methods.
For the swaption, the payoff is:

f (X) = (Sw (T0)−K)+
n∑
i=1

(Ti − Ti−1)B (T0, Ti)

=
(
B (T0, T0)−B (T0, Tn)−K

n∑
i=1

(Ti − Ti−1)B (T0, Ti)
)+

= max (0, g (X))

where:

g (X) = exp
(
−α̂ (T0, T0)− β̂ (T0, T0)>X −X>Γ̂ (T0, T0)X

)
−

exp
(
−α̂ (T0, Tn)− β̂ (T0, Tn)>X −X>Γ̂ (T0, Tn)X

)
−

K
n∑
i=1

δi−1 exp
(
−α̂ (T0, Ti)− β̂ (T0, Ti)>X −X>Γ̂ (T0, Ti)X

)
As previously, we can price the swaption by solving the PDE with the payoff f (X) or by
calculating the following integral:

Swaption = B (0, T0)
∫
f (x)φn (x;m (0, T0) , V (0, T0)) dx

9.2.5.4 Calibration and practice of factor models

The calibration of the model consists in fitting the functions α (t), β (t), Γ (t), a (t),
B (t) and Σ (t). Generally, professionals assume that a (t) = 0 and B (t) = 0. Indeed, if we
consider the following transformation:

X̃ (t) = e
−
∫ t

0
B(s) ds

X (t)−
∫ t

0
a (s) e−

∫ s
0
B(u) du ds
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we obtain:

dX̃ (t) = e
−
∫ t

0
B(s) dsΣ (t) dWQ (t)

= Σ̃ (t) dW (t)

Without loss of generality, we can then set dX (t) = Σ (t) dWQ (t), and the Riccati equations
are simplified as follows:

∂tα̂ (t, T ) = − tr
(

Σ (t) Σ (t)> Γ̂ (t, T )
)

+ 1
2 β̂ (t, T )> Σ (t) Σ (t)> β̂ (t, T )− α (t)

∂tβ̂ (t, T ) = 2Γ̂ (t, T )>Σ (t) Σ (t)> β̂ (t, T )− β (t)
∂tΓ̂ (t, T ) = 2Γ̂ (t, T )>Σ (t) Σ (t)> Γ̂ (t, T )− Γ (t)

If we consider an affine model, we retrieve the formula of Duffie and Huang (1996):

B (t, T ) = exp
(
−α̂ (t, T )− β̂ (t, T )>X (t)

)
where73: {

∂tα̂ (t, T ) = 1
2 β̂ (t, T )> Σ (t) Σ (t)> β̂ (t, T )− α (t)

∂tβ̂ (t, T ) = −β (t)

First, we must fit the initial yield curve, which is noted B (0, T ). If we assume that
X (0) = 0, we obtain:

α̂ (t, T ) = − ln B (0, T )
B (0, t)

We notice that the computation of α̂ (t, T ) allows to define α (t):

α (t) = − tr
(

Σ (t) Σ (t)> Γ̂ (t, T )
)

+ 1
2 β̂ (t, T )>Σ (t) Σ (t)> β̂ (t, T )− ∂tα̂ (t, T )

because ∂tα̂ (t, T ) can be calculated using finite differences. Therefore, the problem dimen-
sion is reduced and the calibration depends on β (t), Γ (t) and Σ (t). In order to calibrate
these functions, we need to fit other products like caplets and swaptions. We have shown
that these products can be priced using numerical integration. Therefore, the calibration of
β (t), Γ (t) and Σ (t) can be done without solving the PDE, which is time-consuming.

Let us now see what type of volatility smile is generated by quadratic and linear Gaussian
factor models. We assume that the functions β (t), Γ (t) and Σ (t) are piecewise constant
functions, whose knots are t?1 = 0.5 and t?2 = 0.5. For instance, the function β (t) is given by:

β (t) =

 β1 if t ∈ [0, 0.5[
β2 if t ∈ [0.5, 1[
β3 if t ∈ [1,∞)

where β1, β2 and β3 are three scalars. Therefore, β (t) is defined by the vector (β1, β2, β3).
In a similar way, Γ (t) and Σ (t) are defined by the vectors (Γ1,Γ2,Γ3) and (Σ1,Σ2,Σ3). We

73In the general case a (t) 6= 0 and B (t) 6= 0, we have:{
∂tα̂ (t, T ) = −β̂ (t, T )> a (t) + 1

2 β̂ (t, T )> Σ (t) Σ (t)> β̂ (t, T )− α (t)
∂tβ̂ (t, T ) = −B (t)> β̂ (t, T )− β (t)
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FIGURE 9.43: Volatility smiles generated by the quadratic Gaussian model

consider 4 parameter sets74:

Set (β1, β2, β3) (Γ1,Γ2,Γ3) (Σ1,Σ2,Σ3)
#1 (0.3, 0.4, 0.5) (−20,−10, 10) (3, 3.2, 3.5)
#2 (0.3, 0.4, 0.5) (20, 15, 10) (3, 3.2, 3.5)
#3 (0.3, 0.4, 0.5) (5, 5, 5) (4, 3.5, 3)
#4 (0.3, 0.4, 0.5) (−10,−10,−10) (6, 5, 4)

We also assume that the yield curve is flat and is equal to 5%. We consider the pricing of a
caplet with T0 = T1 − 2/365, T1 = 0.5 and T2 = 1.5 for different strikes Ki = K?

i · Sw (T0)
where K?

i ∈ [0.8, 1.2]. In Figure 9.43, we have reported the implied Black volatilities (in %)
generated by the quadratic Gaussian model with the four parameter sets. We notice that
the quadratic Gaussian model can generate different forms of volatility smiles. Since it is
a little more flexible than the linear Gaussian model, we can obtained U-shaped and even
reverse U-shaped volatility smiles.

9.3 Other model risk topics
In this section, we consider other risks than the volatility risk. In particular, we study

the impact of dividends on option premia, the pricing of basket options and the liquidity
risk.

74The volatilities (Σ1,Σ2,Σ3) are normalized by the factor
√

260× 10−4.
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9.3.1 Dividend risk
9.3.1.1 Understanding the impact of dividends on option prices

Let us consider that the underlying asset pays a continuous dividend yield d during the
life of the option. We have seen that the risk-neutral dynamics become:

dS (t) = (r − d)S (t) dt+ σS (t) dW (t)

We deduce that the Black-Scholes formula is equal to:

C0 = S0e
−dTΦ (d1)−Ke−rTΦ (d2)

where:

d1 = 1
σ
√
T

(
ln S0

K
+ (r − d)T

)
+ 1

2σ
√
T

d2 = d1 − σ
√
T

We can also show that limd→∞ C0 = 0. In Figure 9.44, we report the price of the option
when K = 100, σ = 20%, r = 5% and T = 0.5. We consider different level of the dividend
yield d. We notice that the call price is a decreasing function of the continuous dividend. If
we consider put options instead of call options, the function becomes increasing.

FIGURE 9.44: Impact of dividends on the call option price

We generally explain the impact of dividends because stock prices generally fall by the
amount of the dividend on the ex-dividend date. Let S (t) denote the value of the underlying
asset at time t and D the discrete dividend paid at time tD. We have:

S (tD) = S
(
t−D
)
−D
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The impact on the payoff is not the unique effect. Indeed, we recall that the option price is
the cost of the replication portfolio. When the trader hedges the call option, he has a long
exposure on the asset since the delta is positive. This implies that he receives the dividend
of the asset. Therefore, the hedging cost of the call option is reduced. In the case of a put
option, the trader has a short exposure and has to pay the dividend. As a result, the hedging
cost of the put option is increased.

9.3.1.2 Models of discrete dividends

We denote by S (t) the market price and Y (t) an additional process that is assumed to
be a geometric Brownian motion:

dY (t) = rY (t) dt+ σY (t) dWQ (t)

Following Frishling (2002), there are three main approaches to take into account discrete
dividends. In the first approach, Y (t) is the capital price process excluding the dividends
and the market price S (t) is equal to the sum of the capital price and the discounted value
of future dividends:

S (t) = Y (t) +
∑

tk∈[t,T ]

D (tk) e−r(tk−t)

To price European options, we then replace the price S0 by the adjusted price Y0 =
S0 −

∑
tk≤T D (tk) e−rtk . In the second approach, we define D (t) as the sum of capital-

ized dividends paid until time t:

D (t) =
∑

1 {tk < t} ·D (tk) er(t−tk)

The market price S (t) is equal to the difference between the cum-dividend price Y (t) and
the capitalized dividends (Haug et al., 2003):

S (t) = Y (t)−D (t)

We deduce that:

(S (T )−K)+ = (Y (T )−D (T )−K)+

= (Y (T )− (K +D (T )))+

= (Y (T )−K ′)+

In the case of European options, we replace the strike K by the adjusted strike K ′ =
K +

∑
tk≤T

D (tk) er(T−tk). The last approach considers the market price process as a
discontinuous process:{

dS (t) = rS (t) dt+ σS (t) dWQ (t) if tk−1 < t < tk
S (t) = S

(
t−k
)
−D (tk) if t = tk

Therefore, we calculate the option price using finite differences or Monte Carlo simulations.

Remark 114 The three models can be used to price exotic options, and not only European
options. Generally, we do not have closed-form formulas and we calculate the price with nu-
merical methods. For that, we have to define the risk-neural dynamics of S (t). For instance,
we have for the second model75:

dS (t) =
(
rS (t)−

∑
1 {tk = t} ·D (tk) er(t−tk)

)
dt+ σ (S (t) +D (t)) dWQ (t)

75We notice that:
dD (t) =

(
rD (t) +

∑
1 {tk = t} ·D (tk) er(t−tk)

)
dt



Model Risk of Exotic Derivatives 583

Example 97 We assume that S0 = 100, K = 100, σ = 30%, T = 1, r = 5% and b = 5%.
A dividend D (t1) will be paid at time t1 = 0.5.

Table 9.13 compares option prices when we use the three previous models. When D (t1)
is equal to zero, the three models give the same price: the call option is equal to 14.23
whereas the put option is equal to 9.35. When the asset pays a dividend, the three models
give different option prices. For instance, if the dividend is equal to 3, the call option is equal
to 12.46 for Model #1, 12.81 for Model #2 and 12.69 for Model #3. We notice that the
three models produce very different option prices76. Therefore, the choice of the dividend
model has a big impact on the pricing of derivatives.

TABLE 9.13: Impact of the dividend on the option price
Call Put

D (t1) (#1) (#2) (#3) (#1) (#2) (#3)
0 14.23 14.23 14.23 9.35 9.35 9.35
3 12.46 12.81 12.69 10.51 10.86 10.64
5 11.34 11.92 11.69 11.34 11.92 11.59

10 8.78 9.93 9.42 13.66 14.80 14.20

Remark 115 The previous models assume that dividends are not random at the inception
date of the option. In practice, only the first dividend can be known if it has been announced
before the inception date. This implies that dividends are generally unknown. Some authors
have proposed option models with stochastic dividends, but they are not used by professionals.
Most of the time, they use a very basic model. For instance, the Gordon growth model
assumes that dividends increase at a constant rate g:

D (tk) = (1 + g)(tk−t1)
D (t1)

The parameter g can be calibrated in order to match the forward prices.

9.3.2 Correlation risk
Until now, we have studied the pricing and hedging of options that are based on one

underlying asset. Banks have also developed derivatives with several underlying assets. In
this case, the option price is sensitive to the covariance risk, which may be split between
volatility risk and correlation risk. Here, we face two issues: the determination of implied
correlations, and the hedging of the correlation risk.

9.3.2.1 The two-asset case

Pricing of basket options We consider the example of a basket option on two assets.
Let Si (t) be the price process of asset i at time t. According to the Black-Scholes model,
we have: {

dS1 (t) = b1S1 (t) dt+ σ1S1 (t) dWQ
1 (t)

dS2 (t) = b2S2 (t) dt+ σ2S2 (t) dWQ
2 (t)

where bi and σi are the cost-of-carry and the volatility of asset i. Under the risk-neutral
probability measure Q, WQ

1 (t) and WQ
2 (t) are two correlated Brownian motions:

E
[
WQ

1 (t)WQ
2 (t)

]
= ρ t

76We also notice that the price given by the third model is between the two prices calculated with the
first and second models.
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The option price associated to the payoff (α1S1 (T ) + α2S2 (T )−K)+ is the solution of the
two-dimensional PDE:

1
2σ

2
1S

2
1∂

2
S1
C + 1

2σ
2
2S

2
2∂

2
S2
C + ρσ1σ2S1S2∂

2
S1,S2

C+

b1S1∂S1C + b2S2∂S2C + ∂tC − rC = 0

with the terminal condition:

C (T, S1, S2) = (α1S1 + α2S2 −K)+

Using the Feynman-Kac representation theorem, we have:

C0 = EQ
[
e
−
∫ T

0
r dt (α1S1 (T ) + α2S2 (T )−K)+

]
The value C0 can be calculated using numerical integration techniques such as Gauss-
Legendre or Gauss-Hermite quadrature methods. In some cases, the two-dimensional prob-
lem can be reduced to one-dimensional integration. For instance, if α1 < 0, α2 > 0 and
K > 0, we obtain77:

C0 =
∫
R

BS (S? (x) ,K? (x) , σ?, T, b?, r)φ (x) dx

where S? (x) = α2S2 (0) eρσ2
√
Tx, K? (x) = K − α1S1 (0) e(b1−

1
2σ

2
1)T+σ1

√
Tx, σ? =

σ2
√

1− ρ2 and b? = b2 −
1
2ρ

2σ2
2 .

Example 98 We assume that S1 (0) = S2 (0) = 100, σ1 = σ2 = 20%, b1 = 10%, b2 = 0 and
r = 5%. We calculate the price of a basket option, whose maturity T is equal to one year.
For the other characteristics (α1, α2,K), we consider different set of parameters: (1,−1, 1),
(1,−1, 5), (0.5, 0.5, 100), (0.5, 0.5, 110) and (0.1, 0.1,−5).

TABLE 9.14: Impact of the correlation on the basket option price
α1 1.0 1.0 0.5 0.5 0.1
α2 −1.0 −1.0 0.5 0.5 0.1
K 1 5 100 110 −5
−0.90 20.41 18.23 5.39 0.66 24.78
−0.75 19.81 17.62 6.06 1.35 24.78
−0.50 18.76 16.55 6.97 2.31 24.78
−0.25 17.61 15.37 7.73 3.12 24.78

ρ 0.00 16.35 14.08 8.39 3.83 24.78
0.25 14.94 12.61 8.99 4.46 24.78
0.50 13.30 10.88 9.54 5.05 24.78
0.75 11.29 8.66 10.05 5.59 24.78
0.90 9.78 6.81 10.34 5.90 24.78

Using Gauss-Legendre quadratures, we obtain the prices of the basket option given in
Table 9.14. We notice that the price can be an increasing, decreasing or independent function
of the correlation parameter ρ.

77See Exercise 9.4.11 on page 602.
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Remark 116 We can extend the previous framework to other payoff functions. The PDE
is the same, only the terminal condition changes:

C (T, S1, S2) = f (S1 (T ) , S2 (T ))

where f (S1 (T ) , S2 (T )) is the payoff function.

Cega sensitivity The correlation risk studies the impact of the parameter ρ on the option
price C0. For instance, Rapuch and Roncalli (2004) show that the price of the spread option,
whose payoff is (S1 (T )− S2 (T )−K)+, is a decreasing function of the correlation param-
eter ρ. They also extend this result to an arbitrary European payoff f (S1 (T ) , S2 (T )). In
particular, they demonstrate that, if the cross-derivative ∂2

1,2f is a negative (resp. positive)
measure, then the option price is decreasing (resp. increasing) with respect to ρ. For in-
stance, the payoff function of the call option on the maximum of two assets is defined as
f (S1, S2) = (max (S1, S2)−K)+. Since ∂2

1,2f (S1, S2) = −1 {S1 = S2, S1 > K} is a nega-
tive measure, the option price decreases with respect to ρ. In the case of a Best-of call/call
option, the payoff function is f (S1, S2) = max

(
(S1 −K1)+

, (S2 −K2)+
)
and we have:

∂2
1,2f (S1, S2) = −1 {S2 −K2 − S1 +K1 = 0, S1 > K1, S2 > K2}

We have the same behavior than the Max option. For the Min option, we remark that
min (S1, S2) = S1 + S2 −max (S1, S2). So, the option price is an increasing function of ρ.
Other results could be found in Table 9.15.

TABLE 9.15: Relationship between the basket option price and the correlation parameter
ρ

Option type Payoff Increasing Decreasing
Spread (S2 − S1 −K)+ X
Basket (α1S1 + α2S2 −K)+

α1α2 > 0 α1α2 < 0
Max (max (S1, S2)−K)+ X
Min (min (S1, S2)−K)+ X

Best-of call/call max
(

(S1 −K1)+
, (S2 −K2)+

)
X

Best-of put/put max
(

(K1 − S1)+
, (K2 − S2)+

)
X

Worst-of call/call min
(

(S1 −K1)+
, (S2 −K2)+

)
X

Worst-of put/put min
(

(K1 − S1)+
, (K2 − S2)+

)
X

The sensitivity of the option price with respect to the correlation parameter ρ is called
the cega:

c = ∂ C0

∂ρ

Generally, it is difficult to fix a particular value of ρ, because a correlation is not a stable
parameter. Moreover, the value of ρ used for pricing the option must reflect the risk-neutral
distribution. Then, it is not obvious that the ‘risk-neutral correlation’ is equal to the ‘his-
torical correlation’. Most of the time, we only have an idea about the correlation range
ρ ∈ [ρ−, ρ+]. The previous analysis leads us to define the lower and upper bounds of the
option price when the cega is either positive or negative. We have:

C0 ∈
{

[C0 (ρ−) ,C0 (ρ+)] if c ≥ 0
[C0 (ρ+) ,C0 (ρ−)] if c ≤ 0

We can define the conservative price by taking the maximum between C0 (ρ−) and C0 (ρ+).
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Remark 117 In the case where ρ− = −1 and ρ+ = 1, the bounds satisfy the one-
dimensional PDE:{ 1

2σ
2
1S

2∂2
SC (t, S) + b1S∂SC (t, S) + ∂tC (t, S)− rC (t, S) = 0

C (T, S) = f (S, g (S))

where:

g (S) = S2 (0)
(

S

S1 (0)

)±σ2/σ1

exp
((

b2 −
1
2σ

2
2 ±

(
1
2σ1σ2 −

σ2

σ1
b1

))
T

)
The implied correlation Like the implied volatility, the implied correlation is the
value we put into the Black-Scholes formula to get the true market price. At first
sight, the concept of implied correlation seems to be straightforward. For instance,
let us consider composite options, whose payoff is defined by (S1 (T )− kS2 (T ))+. It
is a special case of the general payoff (α1S1 (T ) + α2S2 (T )−K)+ where α1 = 1,
α2 = k and K = 0. The parameters are those given in Example 98. The val-
ues (k,C0) taken by the relative strike k and the market price C0 are respectively
equal to (0.10, 95.61), (0.20, 86.10), (0.30, 76.59), (0.40, 67.08), (0.50, 57.57), (0.60, 48.06),
(0.70, 38.62), (0.80, 29.46), (0.90, 21.12), (1.00, 14.32), (1.10, 9.45) and (1.20, 6.30). Using
these 12 market prices, we deduce the correlation smile with respect to k in Figure 9.45. We
now consider the option, whose payoff is

( 1
2S1 (T ) + 1

2S2 (T )− 100
)+. Which correlation

should be used? There is no obvious answer. Indeed, we notice that a correlation smile is al-
ways associated to a given payoff. This is why it is generally not possible to use a correlation
smile deduced from one payoff function to price the option with another payoff function.
Contrary to volatility, the concept of implied correlation makes sense, but not the concept
of correlation smile.

Riding on the smiles Until now, we have assumed that the volatilities of the two assets
are given. In practice, the two volatilities are unknown and must be deduced from the volatil-
ity smiles Σ1 (K1, T ) and Σ2 (K2, T ) of the two assets. The difficulty is then to find the corre-
sponding strikes K1 and K2. In the case of the general payoff (α1S1 (T ) + α2S2 (T )−K)+,
we have: {

(α1 = 1, α2 = 0,K ≥ 0)⇒ K1 = K
(α1 = −1, α2 = 0,K ≤ 0)⇒ K1 = −K

and: {
(α1 = 0, α2 = 1,K ≥ 0)⇒ K2 = K
(α1 = 0, α2 = −1,K ≤ 0)⇒ K2 = −K

The payoff of the spread option can be written as follows:

(S1 (T )− S2 (T )−K)+ = ((S1 (T )−K1) + (K2 − S2 (T )))+

≤ (S1 (T )−K1)+︸ ︷︷ ︸
Call

+ (K2 − S2 (T ))+︸ ︷︷ ︸
Put

where K1 = K2 + K. Therefore, the price of the spread option can be bounded above by
a call price on S1 plus a put price on S2. However, the implicit strikes can take different
values. Let us assume that S1 (0) = S2 (0) = 100 and K = 4. Below, we give five pairs
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FIGURE 9.45: Correlation smile

(K1,K2) and the associated implied volatilities (Σ1 (K1, T ) ,Σ2 (K2, T )):

Pair #1 #2 #3 #4 #5
K1 104 103 102 101 100
K2 100 99 98 97 96

Σ1 (K1, T ) 16% 17% 18% 19% 20%
Σ2 (K2, T ) 20% 22% 24% 26% 28%

C0 10.77 11.37 11.99 12.61 13.24

We also compute the price of the spread option78 and report it in the last row of the above
table. We notice that the price varies from 10.77 to 13.24, even if we use the same correlation
parameter. We face here an issue, because this simple example shows that two-dimensional
option pricing is not just an extension of one-dimensional option pricing, and the concept
of implied volatility becomes blurred.

9.3.2.2 The multi-asset case

How to define a conservative price? In the multivariate case, the PDE becomes:

1
2

n∑
i=1

σ2
i S

2
i ∂

2
SiC +

n∑
i<j

ρi,jσiσjSiSj∂
2
Si,SjC+

n∑
i=1

biSi∂iC + ∂tC − rC = 0

with the terminal value:

C (T, S1, . . . , Sn) = f (S1 (T ) , . . . , Sn (T ))

78The parameters are b1 = 10%, b2 = 0%, r = 5%, ρ = 50% and T = 1.
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Here, ρi,j is the correlation between the Brownian motions of Si and Sj . Most of the time,
the trader uses the same value ρ for all asset correlations ρi,j .

Rapuch and Roncalli (2004) show that the price is increasing (resp. decreasing) with
respect to ρ if

∑n
i<j σiσj∂

2
Si,Sj

f is a positive (resp. negative) measure. Let us consider the
payoff function f (S1, S2,S3) = (S1 + S2 − S3 −K)+, we have:

n∑
i<j

σiσj∂
2
Si,Sjf = (σ1σ2 − σ1σ3 − σ2σ3) · 1 {S1 + S2 − S3 −K = 0}

Hence, if σ1σ2−σ1σ3−σ2σ3 > 0, the price increases with respect to ρ, and if σ1σ2−σ1σ3−
σ2σ3 < 0, the price decreases with respect to ρ. As a result, it is more difficult to define
conservative prices for multi-asset options.

Issues with constant correlation matrices We consider a basket of n stocks. The
basket volatility is given by:

σB =

√√√√ n∑
i=1

w2
i σ

2
i + 2

n∑
i>j

ρi,jwiwjσiσj

where wi is the weight of asset i in the basket, σi the volatility of asset i and ρi,j the
correlation between asset i and asset j. The implied correlation ρimp of the basket is defined
as the root of the following equation:

σ2
B −

n∑
i=1

w2
i σ

2
i − 2ρimp

n∑
i>j

wiwjσiσj = 0

Skintzi and Refenes (2003) deduce that:

ρimp =
σ2
B −

∑n
i=1 w

2
i σ

2
i

2
∑n
i>j wiwjσiσj

Another expression of the implied correlation is79:

ρimp =
σ2
B −

∑n
i=1 w

2
i σ

2
i

(
∑n
i=1 wiσi)

2 −
∑n
i=1 w

2
i σ

2
i

The concept of implied correlation has been very popular before the Global Financial Crisis.
It was at the heart of a strategy known as volatility dispersion trading, which consists in
selling variance swaps on an index and buying variance swaps on index components.

The previous analysis assumes a constant correlation matrix Cn (ρ) for modeling the
dependance between asset returns. Over time, it has become the standard for pricing basket

79Indeed, we have:

σmax =

√√√√ n∑
i=1

w2
i σ

2
i + 2

∑
i>j

wiwjσiσj =
n∑
i=1

wiσi

implying that:

2
n∑
i>j

wiwjσiσj =

(
n∑
i=1

wiσi

)2

−
n∑
i=1

w2
i σ

2
i
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options with several assets. However, this approach implies a specific factor model. It is
equivalent to assume that the underlying assets depend on a common risk factor with the
same sensitivity. With such assumption, it is extremely difficult to estimate the conservative
price of basket options with barriers, best-of/worst-of options, etc. To illustrate this problem,
we consider the following payoff:

(S1 (T )− S2 (T ) + S3 (T )− S4 (T )−K)+ · 1 {S5 (T ) > L}

We calculate the option price of maturity 3 months using the Black-Scholes model. We
assume that Si (0) = 100 and Σi = 20% for the five underlying assets, the strike K is equal
to 5, the barrier L is equal to 105, and the interest rate r is set to 5%. In Figure 9.46,
we report the option price when the correlation matrix is C5 (ρ). Since the option price
decreases with respect to ρ, it can be bounded above by 2.20. If we simulate correlation
matrices with uniform singular values, we notice that the maximum price of 2.20 is not a
conservative price. For instance, if we consider the correlation matrix below, we obtain an
option price of 3.99:

C =


1.0000 0.2397 0.7435 −0.1207 0.0563
0.2397 1.0000 −0.0476 −0.0260 −0.1958
0.7435 −0.0476 1.0000 0.2597 0.1153
−0.1207 −0.0260 0.2597 1.0000 −0.7568

0.0563 −0.1958 0.1153 −0.7568 1.0000



FIGURE 9.46: Price of the basket option with respect to the constant correlation

9.3.2.3 The copula method

Using Sklar’s theorem, it comes that the multivariate risk-neutral distribution has the
following canonical representation:

Q (S1 (t) , . . . , Sn (t)) = CQ (Q1 (S1 (t)) , . . . ,Qn (Sn (t)))
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CQ is called the risk-neutral copula (Cherubini and Luciano, 2002). The copula approach has
been extensively used in order to derive the bounds of basket options. For instance, Rapuch
and Roncalli (2004) extend the results presented in Section 9.3.2.1 on page 583 to the copula
approach. In particular, they show that if the payoff function f is supermodular80, then the
option price increases with respect to the concordance order. More explicitly, we have:

C1 ≺ C2 ⇒ C0 (S1, S2; C1) ≤ C0 (S1, S2; C2)

Therefore, the previous results hold if we replace the Black-Scholes model with the Normal
copula model. Thus, the spread option is a decreasing function of the Normal copula pa-
rameter ρ even if we use a local or stochastic volatility model in place of the Black-Scholes
model. In a similar way, one can find lower and upper bounds of multi-asset option prices
by considering lower and upper Fréchet copulas. As shown by Tankov (2011), these bounds
can be improved significantly when partial information is available such as the prices of
digital basket options.

In practice, the Normal copula model is extensively used for pricing multi-asset
European-style option for two reasons:

1. The first one is that multi-asset option prices must be ‘compatible’ with single-asset
option prices. This means that it would be inadequate to price single-asset options
with a complex model, e.g. the SABR model, and in the same time to price multi-asset
options with the multivariate Black-Scholes model. Indeed, this decoupling approach
creates arbitrage opportunities at the level of the bank itself.

2. The Normal copula model is a natural extension of the multivariate Black-Scholes
model since the dependence function is the same.

Nevertheless, we face an issue because the pricing of the payoff f (S1 (T ) , . . . , Sn (T )) re-
quires knowing the joint distribution of the random vector (S1 (T ) , . . . , Sn (T )), whose an
analytical expression does not generally exist81. This is why multi-asset options are priced
using the Monte Carlo method. However, the analytical distribution of the marginals are
generally unknown. Therefore, we have to implement the method of empirical quantile func-
tions described on page 806:

1. for each random variable Si (T ), simulate m1 random variates S?i,m and estimate the
empirical distribution F̂i;

2. simulate a random vector (u1,j , . . . , un,j) from the copula function C (u1, . . . , un);

3. simulate the random vector (S1,j , . . . , Sn,j) by inverting the empirical distributions
F̂i:

Si,j ← F̂−1
i (ui,j)

or equivalently:

Si,j ← inf
{
x

∣∣∣∣ 1
m1

∑m1

m=1
1
{
x ≤ S?i,m

}
≥ ui

}
80The function f is supermodular if and only if:

∆(2)f := f (x1 + ε1, x2 + ε2)− f (x1 + ε1, x2)− f (x1, x2 + ε2) + f (x1, x2) ≥ 0

for all (x1, x2) ∈ R2 and (ε1, ε2) ∈ R2
+.

81An exception concerns the SABR model for which we have found an expression of the probability
distribution thanks to the Breeden-Litzenberger representation.
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4. repeat steps 2 and 3 m2 times;

5. the MC estimate of the option price is equal to:

Ĉ0 = e−rT

 1
m2

m2∑
j=1

f (S1,j , . . . , Sn,j)


It follows that the first step is used for estimating the distribution of Si (T ). For this
step, we use m1 simulations of the single-asset option model. However, this step generates
independent random variables. Therefore, the steps 2 and 3 are used in order to create the
right dependence between (S1 (T ) , . . . , Sn (T )).

Example 99 We consider the two-asset option with the following payoff:

f (F1 (T ) , F2 (T )) = 100 ·
(

max
(
F1 (T )
F1 (0) − 1, F2 (T )

F2 (0) − 1
)
−K

)+

where F1 (t) and F2 (t) are two forward rates. We assume that F1 (0) = 5% and F2 (0) = 6%.
The maturity of the option is equal to one year, whereas the strike of the option is set to
2%. Using the SABR model, we have calibrated the volatility smiles and we have obtained
the following estimates:

α β ν ρ
F1 8.944% 1.00 0.322 −22.901%
F2 12.404% 1.00 0.280 16.974%

In Figure 9.47, we have reported the price of the two-asset option with respect to the
dependence parameter ρ. For the Black-Scholes model, we use the ATM implied volatilities82
and the parameter ρ represents the implied correlation. For the SABR model, we use the
Normal copula model, and ρ is the copula parameter. We notice that the Black-Scholes
model overestimates the option price compared to the SABR model. We also verified that
the option price is a decreasing function with respect to ρ.

9.3.3 Liquidity risk
Liquidity risk can be incorporated in the theory of option pricing, but it requires solving

a stochastic optimal control problem (Çetin et al., 2004, 2006; Jarrow and Protter, 2007;
Çetin et al., 2010). In practice, these approaches are not used by professionals, but some
theoretical results help to understand the impact of liquidity risk on option pricing. However,
there is no satisfactory solution, and ‘cooking recipes’ differ from one bank to another one,
one trading desk to another one, one trader to another one. But the issue here is not to
solve this problem, but to understand the model risk from a risk management perspective.

It is obvious that liquidity risk impacts trading costs, in particular the price of the
replication strategy because of bid-ask spreads. Here, we don’t want to focus on ‘normal’
liquidity risk, but on ‘trading’ liquidity risk. Option theory assumes that we can replicate the
option, meaning that we can sell or buy the underlying asset at any time. For liquid assets,
this assumption is almost verified even if we can face high bid-ask spread. For less liquid
assets, this assumption is not verified. Let us consider one of the most famous examples,
which concerns call options on Sharpe ratio. Starting from 2004, some banks proposed

82They are equal to 9% for F1 and 12.5% for F2.
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FIGURE 9.47: Comparison of the option price obtained with Black-Scholes and copula-
SABR models

to investors a payoff of the form (SR (0;T )−K)+ where SR (0;T ) is the Sharpe ratio of
the underlying asset during the option period. This payoff is relatively easy to replicate.
However, most of call options on Sharpe ratio have been written on mutual funds and hedge
funds. The difficulty comes from the liquidity of these underlying assets. For instance, the
trader does not know exactly the price of the asset when he executes his order because of
the notice period83. This can be a big issue when the fund offers weekly or monthly liquidity.
The second problem comes from the fact that the fund manager can impose lock-up period
and gates. For instance, a gate limits the amount of withdrawals. During the 2008/2009
hedge fund crisis, many traders faced gate provisions and were unable to adjust their delta.
This crisis marketed the end of call options on Sharpe ratio.

The previous example is an extreme case of the impact of liquidity on option trading.
However, this type of problems is not unusual even with liquid markets, because liquidity is
time-varying and may impact delta hedging at the worst possible time. Let us consider the
replication of a call option. If the price of the underlying asset decreases sharply, the delta
is reduced and the option trader has to sell asset shares. Because of their trend-following
aspect, option traders generally buy assets when the market goes up and sell assets when
the market goes down. However, we know that liquidity is asymmetric between these two
market regimes. Therefore, it is more difficult to adjust the delta exposure when the market
goes down, because of the lack of liquidity. This means that some payoffs are more sensitive
to others.

83A subscription/redemption notice period requires that the investor informs the fund manager a certain
period in advance before buying/selling fund shares.
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9.4 Exercises
9.4.1 Option pricing and martingale measure

We consider the Black-Scholes model. The price process S (t) follows a Geometric Brow-
nian motion:

dS (t) = µS (t) dt+ σS (t) dW (t)
and the risk-free asset B (t) satisfies:

dB (t) = rB (t) dt

We consider a portfolio (φ (t) , ψ (t)) invested in the stock S and the risk-free bond B. We
note V (t) the value of this portfolio.

1. Show that:
dV (t) = rV (t) dt+ φ (t) (dS (t)− rS (t) dt)

2. We note Ṽ (t) = e−rtV (t) and S̃ (t) = e−rtS (t). Show that:

dṼ (t) = φ (t) dS̃ (t)

3. Show that Ṽ (t) is a martingale under the risk measure Q. Deduce that:

V (t) = e−r(T−t)EQ [V (T )| Ft]

4. Define the corresponding martingale measure.

5. Calculate the price of the binary option 1 {S (T ) ≥ K}.

9.4.2 The Vasicek model
Vasicek (1977) assumes that the instantaneous interest rate follows an Ornstein-

Uhlenbeck process: {
dr (t) = a (b− r (t)) dt+ σ dW (t)
r (t0) = r0

and the risk price of the Wiener process is constant:

λ (t) = λ

We consider the pricing of a zero-coupon bond, whose maturity is equal to T .

1. Write the partial differential equation of the zero-coupon bond B (t, r) when the in-
terest rate r (t) is equal to r.

2. Using the solution of the Ornstein-Uhlenbeck process given on page 1075, show that
the random variable Z defined by:

Z =
∫ T

0

r (t) dt

is Gaussian.

3. Calculate the first two moments.

4. Deduce the price of the zero-coupon bond.
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9.4.3 The Black model
In the model of Black (1976), we assume that the price F (t) of a forward or futures

contract evolves as follows:
dF (t) = σF (t) dW (t)

1. Write the PDE equation associated to the call option payoff:

C (T ) = max (F (T )−K, 0)

when the interest rate is equal to r.

2. Using the Feynman-Kac representation theorem, deduce the current price of the call
option.

3. We assume that the stock price S (t) follows a geometric Brownian motion:

dS (t) = µS (t) dt+ σS (t) dW (t)

Show that the Black formula can be used to price an European option, whose under-
lying asset is the futures contract of the stock.

4. What does the Black formula become if we assume that the interest rate r (t) is
stochastic and is independent of the forward price F (t)?

5. What is the problem if we consider that the interest rate r (t) and the forward price
F (t) are not independent?

6. We reiterate that the price of the zero-coupon bond is given by:

B (t, T ) = EQ
[
e
−
∫ T
t
r(s) ds

∣∣∣∣Ft]
The instantaneous forward rate f (t, T ) is defined as follows:

f (t, T ) = −∂ lnB (t, T )
∂ T

We consider that the numéraire is the bond price B (t, T ) and we note Q? the associ-
ated forward probability measure.

(a) Show that:
∂ B (t, T )
∂ T

= −B (t, T ) · EQ? [f (T, T )| Ft]

(b) Deduce that f (t, T ) is an Ft-martingale under the forward probability measure
Q?.

(c) Find the price of the call option, whose payoff is equal to:

C (T ) = max (f (T, T )−K, 0)

9.4.4 Change of numéraire and Girsanov theorem
Part one

Let X (t) and Y (t) be two Ft-adapted processes.

1. Calculate the stochastic differentials d (X (t)Y (t)) and d (1/Y (t)).

2. We note Z (t) the ratio of X (t) and Y (t). Show that:
dZ (t)
Z (t) = dX (t)

X (t) −
dY (t)
Y (t) + 〈dY (t) ,dY (t)〉

Y 2 (t) − 〈dX (t) ,dY (t)〉
X (t)Y (t)
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Part two

Let S (t) be the price of an asset. Under the probability measureQ, S (t) has the following
dynamics:

dS (t) = µS (t)S (t) dt+ σS (t)S (t) dWQ (t)

The corresponding numéraire is denoted by M (t) and we have:

dM (t) = µM (t)M (t) dt+ σM (t)M (t) dWQ (t)

We now consider another numéraire N (t) whose dynamics is given by:

dN (t) = µN (t)N (t) dt+ σN (t)N (t) dWQ (t)

and we note Q? the probability measure associated to N (t). We assume that:

dS (t) = µ?S (t)S (t) dt+ σS (t)S (t) dWQ? (t)

1. Why can we assume that the diffusion coefficient of S (t) is the same under the two
probability measures Q and Q??

2. Find the process g (t) such that:

dWQ? (t) = dWQ (t)− g (t) dt

Let Z (t) be the Radon-Nikodym derivative defined by:

Z (t) = dQ?

dQ

Show that:
dZ (t)
Z (t) = g (t) dWQ (t)

3. We recall that another expression of Z (t) is:

Z (t) = N (t) /N (0)
M (t) /M (0)

Deduce that:
g (t) = σN (t)− σM (t)

Find the expression of µN (t).

4. Show that changing the numéraire is equivalent to change the drift:

µ?S (t) = µS (t) + σS (t) (σN (t)− σM (t))

5. Deduce that:

µ?S (t) dt−
〈

dS (t)
S (t) ,

dN (t)
N (t)

〉
= µS (t) dt−

〈
dS (t)
S (t) ,

dM (t)
M (t)

〉
and:

µ?S (t) dt = µS (t) dt+
〈

dS (t)
S (t) ,d lnN (t)

M (t)

〉
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Part three

Under the risk-neutral probability measure Q, we assume that the asset price and the
numéraire are given by the following stochastic differential equations:

dS (t) = r (t)S (t) dt+ σS (t)S (t) dWQ
S (t)

and:
dN (t) = r (t)N (t) dt+ σN (t)N (t) dWQ

N (t)

where N (0) = 1,WQ
S (t) andWQ

N (t) are two Wiener processes and E
[
WQ
S (t)WQ

N (t)
]

= ρ t.
We note S̃ (t) = S (t) /N (t) the asset price expressed in the numéraire N (t).

1. Find the stochastic differential equation of S̃ (t):

S̃ (t) = S (t)
N (t)

2. Let Q? be the martingale measure associated to the numéraire N (t).

(a) We assume that σN (t) = 0. Show that the discounted asset price is an Ft-
martingale under the risk-neutral probability measure.

(b) We consider the case WQ
S (t) = WQ

N (t). Using Girsanov theorem, show that:

dS̃ (t) = σ̃ (t) S̃ (t) dWQ? (t)

where WQ? is a Brownian motion under the probability measure Q? and σ̃ (t) is
a function to be defined.

(c) What does this result become in the general case?

9.4.5 The HJM model and the forward probability measure
We assume that the instantaneous forward rate f (t, T1) is given by the following stochas-

tic differential equation:

df (t, T1) = α (t, T1) dt+ σ (t, T1) dWQ (t)

where Q is the risk-neutral probability measure.

1. We consider the forward probability measure Q? (T2) where T2 ≥ T1. Define the
corresponding numéraire N (t) and show that the Radon-Nikodym derivative is equal
to:

dQ?

dQ = e
−
∫ T2

0
(r(t)−f(0,t)) dt

2. We recall that the dynamics of the instantaneous spot rate r (t) is:

r (t) = r (0) +
∫ t

0

(
σ (s, t)

∫ t

s

σ (s, u) du
)

ds+
∫ t

0
σ (s, t) dWQ (s)

Show that:
dQ?

dQ = e

∫ T2
0

a(t,T2) dt+
∫ T2

0
b(t,T2) dWQ(t)
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where:
a (t, T2) = −

∫ T2

t

(
σ (t, v)

∫ v

t

σ (t, u) du
)

dv

and:
b (t, T2) = −

∫ T2

t

σ (t, v) dv

3. Using the drift restriction in the HJM model, show that:

WQ?(T2) (t) = WQ (t)−
∫ t

0
b (s, T2) ds

is a Brownian motion under the forward probability measure Q? (T2).

4. Find the dynamics of f (t, T1) under the forward probability measure Q? (T2).

5. Show that f (t, T1) is a martingale under the forward probability measure Q? (T1).

6. We recall that the price of the zero-coupon bond satisfies the SDE:

dB (t, T ) = r (t)B (t, T ) dt+ b (t, T )B (t, T ) dWQ (t)

(a) Show that:
B (t, T2)
B (t, T1) = B (s, T2)

B (s, T1)e
X(s,t)

where X (s, t) is a random variable to define.
(b) Deduce that B (t, T2) /B (t, T1) is a martingale under Q? (T1).

9.4.6 Equivalent martingale measure in the Libor market model
Let Li (t) = L (t, Ti, Ti+1) be the forward Libor rate when resetting and maturity dates

are respectively equal to Ti and Ti+1. Under the forward probability measure Q? (Ti+1), the
dynamics of Li (t) is given by the following SDE:

dLi (t) = γi (t)Li (t) dWQ?(Ti+1)
i (t)

1. Using the definition of the Libor rate, find the relationship betweenB (t, Tj+1) /B (t, Tj)
and Lj (t). Let Tk+1 > Ti+1. Deduce an expression of the ratio:

B (t, Tk+1)
B (t, Ti+1)

in terms of Libor rates Lj (t) (j = i+ 1, . . . , k).

2. We change the probability measure fromQ? (Ti+1) toQ? (Tk+1). Define the numéraires
M (t) and N (t) associated to Q? (Ti+1) to Q? (Tk+1). Deduce an expression of Z (t):

Z (t) = dQ? (Tk+1)
dQ? (Ti+1)

in terms of Libor rates Lj (t) (j = i+ 1, . . . , k).

3. Calculate d lnZ (t).
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4. Calculate the drift ζ defined by:

ζ =
〈

dLi (t)
Li (t) ,d lnZ (t)

〉
5. Show that the dynamics of Li (t) under the forward probability measure Q? (Tk+1) is

given by:
dLi (t)
Li (t) = µi,k (t) dt+ γi (t) dWQ?(Tk+1)

k (t)

where µi,k (t) is a drift to determine.

6. What does the previous results become if Tk+1 < Ti+1?

9.4.7 Displaced diffusion option pricing
Brigo and Mercurio (2002a) consider the diffusion process X (t) given by:{

dX (t) = µ (t,X (t)) dt+ σ (t,X (t)) dWQ (t)
X (0) = X0

They assume that the asset price S (t) is an affine transformation of X (t):
S (t) = α (t) + β (t) ·X (t)

where β (t) > 0.
1. By applying Itô’s lemma to S (t), find the condition on α (t) and β (t) in order to

satisfy the martingale condition:
EQ [e−bt · S (t) | F0

]
= S0

where b is the cost-of-carry parameter.

2. We consider the CEV process:
dX (t) = µ (t)X (t) dt+ σ (t)X (t)γ dWQ (t)

where γ ∈ [0, 1]. Show that the solutions of α (t) and β (t) are:{
α (t) = α0 · exp (bt)
β (t) = β0 · exp

(∫ t
0 (b− µ (s)) ds

)
3. Deduce the SDE of S (t).

4. We consider the case γ = 1. Give the SDE of X (t). Calculate the solutions of X (t)
and S (t).

5. Give the price of the European call option, whose payoff is equal to (S (T )−K)+.

6. We now assume that σ (t) = σ.

(a) Using the formula of Lee and Wang (2012), give an approximation of the implied
volatility Σ (T,K).

(b) Calculate the volatility skew:

ω (T,K) = ∂ Σ (T,K)
∂ K

(c) Give the price of the binary call option in the case of the BS model.
(d) Deduce the BCC price when we consider the SLN model.
(e) Give an approximation of the BCC price based on the implied volatility skew.
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9.4.8 Dupire local volatility model
We assume that:

dS (t) = bS (t) dt+ σ (t, S (t))S (t) dWQ (t)

1. Give the forward equation for pricing the call option C (T,K). Deduce the expression
of the local variance σ2 (T,K).

2. Using the Black-Scholes formula, find the relationship between the local volatility
σ (T,K) and the implied volatility Σ (T,K).

3. We consider the discounted payoff function:

f̃ (T, S (T )) = e−r(T−t) (S (T )−K)+

Using Itô’s lemma, calculate the derivative of the call option with respect to the
maturity:

∂TC (T,K) =
E
[
df̃ (T, S (T ))

∣∣Ft]
dT

4. Calculate ∂KC (T,K) and ∂2
KC (T,K) using the discounted payoff function. Retrieve

the forward equation84 of Dupire (1994).

5. We introduce the log-moneyness x:

x = ϕ (T,K)

= ln S0

K
+ bT

and the functions σ̃ (T, x) and Σ̃ (T, x), which are defined by the relationships:

Σ (T,K) = Σ̃ (T, ϕ (T,K))

and:
σ (T,K) = σ̃ (T, ϕ (T,K))

(a) Calculate d1, d2 and d1d2.
(b) Write the derivatives ∂KΣ (T,K), ∂TΣ (T,K) and ∂2

KΣ (T,K) using the variables
T and x.

(c) Deduce the relationship between σ̃ (T, x) and Σ̃ (T, x).
(d) Show that:

∂xΣ̃ (0, 0) = 1
2∂xσ̃ (0, 0)

9.4.9 The stochastic normal model
Let F (t) be the forward rate. We assume that the dynamics of F (t) is given by the

SABR model: {
dF (t) = α (t)F (t)β dWQ

1 (t)
dα (t) = να (t) dWQ

2 (t)

where E
[
WQ

1 (t)WQ
2 (t)

]
= ρ t. In what follows, we consider the special case β = 0.

84This approach has also been proposed by Derman et al. (1996).
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1. How to transform the Black volatility ΣB (T,K) into the implied normal volatility
ΣN (T,K)?

2. Give the expression of the implied normal volatility85 ΣN (T,K) for the general case
β ∈ [0, 1].

3. Deduce the formula of ΣN (T,K) when β = 0.

4. What is the ATM normal volatility?

5. Calculate ∂KΣN (T,K).

6. Recall the price of the call option for the normal model, whose volatility is σN .

7. We now assume that σN is equal to the SABR normal volatility ΣN (T,K). Deduce
the cumulative distribution function of F (T ).

8. By considering the following approximation86:√
F0K ln F0

K
' F0 −K

calculate the probability density function of F (T ).

9. Show that:

F (t) = F0 + α

ν

∫ ν2t

0
exp

(
−1

2s+W2 (s)
)

dW1 (s)

where W1 (t) and W2 (t) have the same properties as WQ
1 (t) and WQ

2 (t).

10. We note:
X (t) =

∫ t

0
exp

(
−1

2s+W2 (s)
)

dW1 (s)

and:
Ma (t) = exp

(
−1

2at+ aW2 (t)
)

Let us introduce the function Ψn,a (t):

Ψn,a (t) = E [Xn (t)Ma (t)]

where n ∈ N and a ∈ R+. Verify that Ψn,a (t) satisfies the ordinary differential
equation:

dΨn,a (t)
dt = a(a− 1)

2 Ψn,a (t) + nρaΨn−1,a+1 (t) + n(n− 1)
2 Ψn−2,a+2 (t)

where Ψn,a (0) = 0. What is the link between Ψn,a (t) and the statistical moments of
F (t)?

11. Calculate Ψ0,a (t), Ψ1,a (t), Ψ2,a (t), Ψ3,0 (t) and Ψ4,0 (t). Deduce the first four central
moments of F (t).

12. Calculate an approximation of the volatility, skewness and kurtosis of F (t) when
t ' 0.

85Hagan et al. (2002) calculate this expression in Appendix A.4 on page 102.
86Hagan et al. (2002), Equations (A67b) and (A68a), page 102.
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13. We assume that F0 = 10% and T = 1, and we consider the following smile:

K 7% 10% 13%
ΣB (T,K) 30% 20% 30%

(a) Calculate the equivalent normal volatility ΣN (T,K).
(b) Calibrate the parameters of the stochastic normal model.
(c) Draw the cumulative distribution function of F (T ). What is the problem?
(d) Draw the probability density function of F (T ) when we consider the approxi-

mation
√
F0K ln F0

K
' F0 −K.

(e) Calculate the skewness and the kurtosis of F (T ). Comment on these results.

9.4.10 The quadratic Gaussian model
We consider the quadratic Gaussian model:

r (t) = α (t) + β (t)>X (t) +X (t)> Γ (t)X (t)

where the state variables X (t) follow an Ornstein-Uhlenbeck process:

dX (t) = (a (t) +B (t)X (t)) dt+ Σ (t) dWQ (t)

1. Find the PDE associated to the zero-coupon bond B (t, T ).

2. We assume that the solution of B (t, T ) has the following form:

B (t, T ) = exp
(
−α̂ (t, T )− β̂ (t, T )>X (t)−X (t)> Γ̂ (t, T )X (t)

)
where Γ̂ (t, T ) is a symmetric matrix. Show that α̂ (t, T ), β̂ (t, T ) and Γ̂ (t, T ) satisfy
a system of ODEs.

3. Find a condition that Γ̂ (t, T ) is a symmetric matrix. Why do we need this hypothesis?

4. Let Q? (T ) be the forward probability measure. Recall the dynamics of X (t) under
Q? (T ). Using the explicit solution, demonstrate that X (t) is Gaussian:

X (t) ∼ N (m (0, t) , V (0, t))

Find the dynamics of m (0, t) and V (0, t). Compare these results with those obtained
by El Karoui et al. (1992a).

5. Define the Libor rate L (t, Ti−1, Ti).

6. Demonstrate that the pricing formula of the caplet is equal to:

Caplet = B (0, t) · EQ?(t) [max (0, g (X))]

where Q? (t) is the forward probability measure and g (x) is a function to define.

7. Show that:
Caplet = B (0, t)

∫
E
h (x) dx

where h (x) = g (x)φ (x;m (0, t) , V (0, t)) and E is a set to define.
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8. We consider the following function:

J (a, b, c,m, V, x1, x2) =
∫ x2

x1

e−ax
2−bx−c
√

2πV
e−

1
2V (x−m)2

dx

Find the analytical expression of J .

9. Deduce the analytical expression of the caplet.

9.4.11 Pricing two-asset basket options
We assume that the risk-neutral dynamics of S1 (t) and S2 (t) are given by:{

dS1 (t) = b1S1 (t) dt+ σ1S1 (t) dWQ
1 (t)

dS2 (t) = b2S2 (t) dt+ σ2S2 (t) dWQ
2 (t)

where WQ
1 (t) and WQ

2 (t) are two correlated Brownian motions:

E
[
WQ

1 (t)WQ
2 (t)

]
= ρ t

1. By considering the following payoff (α1S1 (T ) + α2S2 (T )−K)+, show that the price
of the option can be expressed as a double integral.

2. We consider the computation of I = E
[(
Aeb+c·ε −D

)+] where ε ∼ N (0, 1), and A,
b, c and D are four scalars.

(a) Find the value of I when A > 0 and D > 0.
(b) Deduce the value of I in the other cases.

3. We assume that α1 < 0, α2 > 0 and K > 0. Using the Cholesky decomposition,
reduce the computation of the double integral to a single integral.

4. Extend this result to the case α1 > 0, α2 < 0 and K > 0.

5. Discuss the general case.
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