
Chapter 7
Asset Liability Management Risk

Asset liability management (ALM) corresponds to the processes that address the mismatch
risk between assets and liabilities. These methods concern financial institutions, which are
mainly defined by a balance sheet. For example, this is the case of pension funds and
insurance companies. In this chapter, we focus on ALM risks in banks, and more precisely
ALM risks of the banking book. Previously, we have already seen some risks that impact
the banking book such as credit or operational risk. In what follows, we consider the four
specific ALM risks: liquidity risk1, interest rate risk, option risk and currency risk.

Generally, ALM risks are little taught in university faculties because they are less known
by academics. In fact, asset liability management is a mix of actuarial science, accounting
and statistical modeling, and seems at first sight less mathematical than risk management.
Another difference is that the ALM function is generally within the finance department
and not within the risk management department. This is because ALM implies to take
decisions that are not purely related to risk management considerations, but also concerns
commercial choices and business models.

7.1 General principles of the banking book risk management
Before presenting the tools to manage the ALM risks, we define the outlines of the

asset and liability management. In particular, we show why ALM risks are so specific if we
compare them to market and credit risks. In fact, asset and liability management has two
components. The first component is well-identified and corresponds to the risk measurement
of ALM operations. The second component is much more vague, because it concerns both
risk management and business development. Indeed, banking business is mainly a financial
intermediation business, since banks typically tend to borrow short term and lend long
term. The mismatch between assets and liabilities is then inherent to banking activities.
Similarly, the balance sheet of a bank and its income statement are highly related, implying
that future income may be explained by the current balance sheet. The debate on whether
the ALM department is a profit center summarizes this duality between risk and business
management.

1Liquidity risk was the subject of the previous chapter. However, we have discussed this topic from a
risk management point of view by focusing on the regulatory ratios (LCR and NSFR). In this chapter, we
tackle the issue of liquidity risk from an ALM perspective.
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7.1.1 Definition
7.1.1.1 Balance sheet and income statement

The ALM core function is to measure the asset liability mismatch of the balance sheet
of the bank. In Table 7.1, we report the 2018 balance sheet of FDIC-insured commercial
banks and savings institutions as provided by FDIC (2019). It concerns 5 406 financial
institutions in the US. We notice that the total assets and liabilities are equal to $17.9
tn. The most important items are loans and leases, investment securities and cash & due
from depository institutions on the asset side, deposits and equity capital on the liability

TABLE 7.1: Assets and liabilities of FDIC-insured commercial banks and savings institu-
tions (Amounts in $ bn)

Total Assets 17 943 Total liabilities and capital 17 943

  Loans secured by real estate 4 888   Deposits 13 866

    1-4 Family residential mortgages 2 119     Foreign office deposits 1 253

    Nonfarm nonresidential 1 446     Domestic office deposits 12 613

    Construction and development 350       Interest-bearing deposits 9 477

    Home equity lines 376       Noninterest-bearing deposits 3 136

    Multifamily residential real estate 430       Estimated insured deposits 7 483

    Farmland 105       Time deposits 1 971

    Real estate loans in foreign offices 62       Brokered deposits 1 071

  Commercial & industrial loans 2 165   Federal funds purchased & repos 240

  Loans to individuals 1 743   FHLB advances 571

    Credit cards 903   Other borrowed money 557

    Other loans to individuals 839   Subordinated debt 69

        Auto loans 455   Trading account liabilities 236

  Farm loans 82   Other liabilities 381

  Loans to depository institutions 84   Total liabilities 15 921

  Loans to foreign gov. & official inst. 11   Total equity capital 2 023

  Obligations of states in the U.S. 188     Total bank equity capital  2 019

  Other loans 862       Perpetual preferred stock 9

  Lease financing receivables 133       Common stock 43

  Gross total loans and leases 10 155       Surplus 1 277

    Less: Unearned income 2       Undivided profits 759

  Total loans and leases 10 152       Other comprehensive income -68

    Less: Reserve for losses 125         Net unrealized P&L on AFS 0

  Net loans and leases 10 028

  Securities 3 723

    Available for sale (fair value) 2 590

    Held to maturity (amortized cost) 1 129

    U.S. Treasury securities 549

    Mortgage-backed securities 2 187

    State and municipal securities 330

    Equity securities 3

  Cash & due from depos. instit. 1 694

  Fed.  funds sold and reverse repos 622

  Bank premises and fixed assets 130

  Other real estate owned 7

  Trading account assets 572

  Intangible assets 399

    Goodwill 334

  Other Assets 769

Source: Federal Deposit Insurance Corporation (2019), www.fdic.gov/bank/analytical/qbp.

http://www.fdic.gov/
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side. Table 7.2 shows a simplified version of the balance sheet. The bank collects retail and
corporate deposits and lends money to households and firms.

TABLE 7.2: A simplified balance sheet
Assets Liabilities
Cash Due to central banks
Loans and leases Deposits
Mortgages Deposit accounts
Consumer credit Savings
Credit cards Term deposits

Interbank loans Interbank funding
Investment securities Short-term debt
Sovereign bonds Subordinated debt
Corporate bonds Reserves

Other assets Equity capital

Some deposits have a fixed maturity (e.g. a certificate of deposit), while others have an
undefined maturity. This is for example the case of demand deposits or current accounts.
These liabilities are then called non-maturity deposits (NMD), and include transaction
deposits, NOW (negotiable order of withdrawal) accounts, money market deposit accounts
and savings deposits. Term deposits (also known as time deposits or certificates of deposit)
are deposits with a fixed maturity, implying that the customer cannot withdraw his funds
before the term ends. Generally, the bank considers that the core deposits correspond to
deposits of the retail customers and are a stable source of its funding. On the asset side,
the bank proposes credit, loans and leases, and holds securities and other assets such as
real estate, intangible assets2 and goodwill3. In Chapter 3 on page 125, we have seen that
loans concern both individuals, corporates and sovereigns. We generally distinguish loans
secured by real estate, consumer loans, commercial and industrial loans. Leases correspond
to contract agreements, where the bank purchases the asset on behalf of the customer, and
the customer uses the asset in return and pays to the bank a periodic lease payment for
the duration of the agreement4. Investment securities include repos, sovereign bonds, asset-
backed securities, debt instruments and equity securities. We reiterate that the balance sheet
does not concern off-balance sheet items. Indeed, the risk of credit lines (e.g. commitments,
standby facilities or letters of credit) is measured by the credit risk5, while derivatives
(swaps, forwards, futures and options) are mainly managed within the market risk and the
counterparty credit risk.

Another difference between assets and liabilities is that they are not ‘priced’ at the
same interest rate since the primary business of the bank is to capture the interest rate
spread between its assets and its liabilities. The bank receives income from the loans and
its investment portfolio, whereas the expenses of the bank concern the interest it pays
on deposits and its debt, and the staff and operating costs. In Table 7.3, we report the
2018 income statement of FDIC-insured commercial banks and savings institutions. We
can simplify the computation of this income statement and obtain the simplified version

2Intangible assets are non-physical assets that have a multi-period useful life such as servicing rights or
customer lists. They are also intellectual assets (patents, copyrights, softwares, etc).

3Goodwill is the excess of the purchase price over the fair market value of the net assets acquired. The
difference can be explained because of the brand name, good customer relations, etc.

4At the end of the contract, the customer may have the option to buy the asset.
5In this case, the difficult task is to estimate the exposure at default and the corresponding CCF param-

eter.
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TABLE 7.3: Annual income and expense of FDIC-insured commercial banks and savings
institutions (Amounts in $ mn)

Total interest income 660 988

  Domestic office loans 492 201

  Foreign office loans 21 965

  Lease financing receivables 5 192

  Balances due from depository institutions 24 954

  Securities 92 908

  Trading accounts 11 025

  Federal funds sold 8 347

  Other interest income 4 397

Total interest expense 119 799

  Domestic office deposits 74 781

  Foreign office deposits 8 877

  Federal funds purchased 4 108

  Trading liabilities and other borrowed money 28 629

  Subordinated notes and debentures 2 780

Net interest income 541 189

Provision for loan and lease losses 49 998

Total noninterest income 266 165

  Fiduciary activities 37 525

  Service charges on deposit accounts 35 745

  Trading account gains and fees 26 755

    Interest rate exposures 7 148

    Foreign exchange exposures 12 666

    Equity security and index exposures 4 750

    Commodity and other exposures 1 299

    Credit exposures 367

  Investment banking, advisory, brokerage

   and underwriting fees and commissions 12 522

  Venture capital revenue 60

  Net servicing fees 10 680

  Net securitization income 230

  Insurance commission fees and income 4 574

  Net gains (losses) on sales of loans 12 593

  Net gains (losses) on sales of other real estate owned -99

  Net gains (losses) on sales of other assets (except securities) 1 644

  Other noninterest income 123 938

Total noninterest expense 459 322

  Salaries and employee benefits 217 654

  Premises and equipment expense 45 667

  Other noninterest expense 190 944

    Amortization expense and goodwill impairment losses 5 058

Securities gains (losses) 328

Income (loss) before income taxes and extraordinary items 298 362

Applicable income taxes 61 058

Extraordinary gains (losses), net -267

Net charge-offs 47 479

Cash dividends 164 704

Retained earnings 72 045

Net operating income 237 059

Source: Federal Deposit Insurance Corporation (2019), www.fdic.gov/bank/analytical/qbp.

http://www.fdic.gov/
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given in Table 7.4. Net interest income corresponds to the income coming from interest
rates, whereas non-interest income is mainly generated by service fees and commissions.
The income statement depends of course on the balance sheet items, but also on off-balance
sheet items. Generally, loans, leases and investment securities are called the earning assets,
whereas deposits are known as interest bearing liabilities.

TABLE 7.4: A simplified income statement
Interest income

− Interest expenses
= Net interest income
+ Non-interest income
= Gross income
− Operating expenses
= Net income
− Provisions
= Earnings before tax
− Income tax
= Profit after tax

7.1.1.2 Accounting standards

We understand that the goal of ALM is to control the risk of the balance sheet in order to
manage and secure the future income of the bank. However, the ALM policy is constrained
by accounting standards since the bank must comply with some important rules that dis-
tinguish banking and trading books. Accounting systems differ from one country to another
country, but we generally distinguish four main systems: US GAAP6, Japanese combined
system7, Chinese accounting standards and International Financial Reporting Standards
(or IFRS). IFRS are standards issued by the IFRS Foundation and the International Ac-
counting Standards Board (IASB) to provide a global accounting system for business affairs
and capital markets. In March 2019, there were 144 jurisdictions that required the use of
IFRS Standards for publicly listed companies and 12 jurisdictions that permitted its use.
IFRS is then the world’s most widely used framework. For example, it is implemented in
European Union, Australia, Middle East, Russia, South Africa, etc. Since January 2018,
IFRS 9 has replaced IAS 39 that was considered excessively complicated and inappropriate.

Financial instruments IAS 39 required financial assets to be classified in the four fol-
lowing categories:

• financial assets at fair value through profit and loss (FVTPL);

• available-for-sale financial assets (AFS);

• loans and receivables (L&R);

• held-to-maturity investments (HTM).

6GAAP stands for Generally Accepted Accounting Principles.
7Companies may choose one of the four accepted financial reporting frameworks: Japanese GAAP (which

is the most widespread system), IFRS standards, Japan’s modified international standards (JMIS) and US
GAAP.
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The FVTPL category had two subcategories. The first category (designated) included any
financial asset that was designated on initial recognition as one to be measured at fair
value with fair value changes in profit and loss. The second category (held-for-trading or
HFT) included financial assets that were held for trading. Depending on the category, the
bank measured the financial asset using the fair value approach8 (AFS and FVTPL) or the
amortized cost approach (L&R and HTM). In IFRS 9, the financial assets are divided into
two categories:

• amortized cost (AC);

• fair value (FV).

For FV assets, we distinguish fair value through profit and loss (FVTPL) and fair value
through other comprehensive income (FVOCI). Category changes between AC, FVTPL
and FVOCI are recognized when the asset is derecognized or reclassified. In fact, the clas-
sification of an asset depends on two tests: the business model (BM) test and the solely
payments of principal and interest (SPPI) test. In the BM test, the question is to know “if
the objective of the bank is to hold the financial asset to collect the contractual cash flows”
or not. In the SPPI test, the question is rather to understand if “the contractual terms of the
financial asset give rise on specified dates to cash flows that are solely payments of principal
and interest on the principal amount outstanding”. It is obvious that the classification of
an asset affects the ALM policy because it impacts differently the income statement.

On the liability side, there is little difference between IAS 39 and IFRS 9. All equity
investments are measured at fair value, HFT financial liabilities are measured at FVTPL
and all other financial liabilities are measured at amortized cost if the fair value option is
applied.

Remark 69 The main revision of IFRS 9 concerns impairment of financial assets since
it establishes new models of expected credit loss for receivables and loans. This implies that
banks can calculate loss provisioning as soon as the loan is entered the banking book.

Hedging instruments Hedge accounting is an option and not an obligation. It considers
that some financial assets are not held for generating P&L, but are used in order to offset
a given risk. This implies that the hedging instrument is fully related to the hedged item.
IAS 39 and IFRS 9 recognize three hedging strategies:

• a fair value hedge (FVH) is a hedge of the exposure to changes in fair value of a
recognized asset or liability;

• a cash flow hedge (CFH) is a hedge of the exposure to variability in cash flows that
is attributable to a particular risk;

• a net investment hedge (NIH) concerns currency risk hedging.

In the case of FVH, fair value of both the hedging instrument and the hedged item are
recognized in profit and loss. In the case of CFH or NIH, the effective portion of the gain
or loss on the hedging instrument is recognized in equity (other comprehensive income9 or
OCI), while the ineffective portion of the gain or loss on the hedging instrument is recognized
in profit and loss.

8In the AFS case, gains and losses impact the equity capital and then the balance sheet, whereas gains
and losses of FVTPL assets directly concerns the income statement.

9See Table 7.1 on page 370.
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7.1.1.3 Role and importance of the ALCO

Remark 69 shows that IFRS 9 participates to the convergence of risk, finance and ac-
counting that we recently observe. In fact, ALM is at the junction of these three concepts.
This is why we could discuss how to organize the ALM function. Traditionally, it is located
in the finance department because the ALM committee (ALCO) is in charge of both risk
management and income management. In particular, it must define the funds transfer pric-
ing (FTP) policy. Indeed, resources concerning interest and liquidity risks are transferred
from business lines to the ALM portfolio. The ALCO and the ALM unit is in charge to
manage the risks of this portfolio, and allocate the P&L across business lines:

“A major purpose of internal prices is to determine the P&L of the business
lines. Transfer prices are internal prices of funds charged to business units or
compensating cheap resources such as deposits. [...] Transfer pricing systems
are notably designed for the banking book, for compensating resources collected
from depositors and for charging funds used for lending. Internal prices also
serve for exchanging funds between units with deficits of funds and units with
excesses of funds. As they are used for calculating the P&L of a business line,
they perform income allocation across business lines” (Bessis, 2015, pages 109-
110).

Funding
Excess

Funding
Deficit

Funding
Price

Funding
Cost

Business
Line A ALM

Business
Line B

Market

FIGURE 7.1: Internal and external funding transfer

This means that business lines with a funding excess will provide the liquidity to business
lines with a funding deficit. For example, Figure 7.1 shows the relationships between the
ALM unit and two business lines A and B. In this case, the business line Amust be rewarded
and receives the funding price, whereas the business B pays the funding cost. Internal funds
transfer system avoids that business lines A and B directly go to the market. However,
the ALM unit has access to the market for both lending the funding liquidity excess or
borrowing the funding liquidity deficit of the bank. At first sight, we can assume that the
internal funding price is equal to the external funding price and the internal funding cost is
equal to the external funding cost. In this case, the ALM unit captures the bid/ask spread
of the funding liquidity. In the real life, it is not possible and it is not necessarily desirable.
Indeed, we reiterate that the goal of a bank is to perform liquidity transformation. This
means that the liquidity excess of the business line A does not match necessarily the liquidity
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deficit of the business line B. Second, the role of the ALM is also to be sure that business
lines can pilot their commercial development. In this situation, it is important that internal
funding prices and costs are less volatile than external funding prices and costs in order to
better stabilize commercial margins. Since the funds transfer pricing policy is decided by
the ALCO, we notice that the role of ALM cannot be reduced to a risk management issue.
Even if the risk transfer is intentionally rational and fair, meaning that internal prices are
related to market prices, the ALM remains a business issue because the assets and liabilities
are generally not tradable and there are not always real market prices for these items. For
example, what is the price of a $100 deposit? It depends on the behavior of the customer,
but also on the risk appetite of the bank. What is the margin of a $100 loan? It is not
the spread between the loan interest rate and the market interest rate, because there is no
perfect matching between the two interest rates. In this case, the margin will depend on
the risk management policy. This duality between income generation and risk management
is the specificity of asset liability management. Therefore, the role of the ALCO is essential
for a bank, because it impacts the risk management of its balance sheet, but also the income
generated by its banking book.

7.1.2 Liquidity risk
In this section, we define the concept of liquidity gap, which is the main tool for mea-

suring the ALM liquidity risk. In particular, we make the distinction between static and
dynamic liquidity gap when we consider the new production and future projections. In order
to calculate liquidity gaps, we also need to understand asset and liability amortization, and
liquidity cash flow schedules. Finally, we present liquidity hedging tools, more precisely the
standard instruments for managing the ALM liquidity risk.

7.1.2.1 Definition of the liquidity gap

Basel III uses two liquidity ratios (LCR and NSFR), which are related to the ALM
liquidity risk. More generally, financial institutions (banks, insurance companies, pension
funds and asset managers) manage funding risks by considering funding ratios or funding
gaps. The general expression of a funding ratio is:

FR (t) = A (t)
L (t) (7.1)

where A (t) is the value of assets and L (t) is the value of liabilities at time t, while the
funding gap is defined as the difference between asset value and liability value:

FG (t) = A (t)− L (t) (7.2)

If FR (t) > 1 or FG (t) > 0, the financial institution does not need funding because the
selling of the assets covers the repayment of the liabilities. Equations (7.1) and (7.2) corre-
spond to the bankruptcy or the liquidation point of view: if we stop the activity, are there
enough assets to meet the liability requirements of the financial institution? Another point
of view is to consider that the case A (t) > L (t) requires financing the gap A (t) − L (t),
implying that the financial institution has to raise liability funding to match the assets.
From that point of view, Equations (7.1) and (7.2) becomes10:

LR (t) = L (t)
A (t) (7.3)

10We use the letter L (liquidity) instead of F (funding) in order to make the difference between the two
definitions.
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and:
LG (t) = L (t)−A (t) (7.4)

In what follows, we consider the liquidity gap LG (t) instead of the funding gap FG (t),
meaning that a positive (resp. negative) gap corresponds to a liquidity excess (resp. liquidity
deficit).

Example 66 We consider a simplified balance sheet with few items. The assets A (t) are
composed of loans that are linearly amortized in a monthly basis during the next year. Their
values are equal to 120. The liabilities L (t) are composed of three short-term in fine debt
instruments, and the capital. The corresponding debt notional is respectively equal to 65, 10
and 5 whereas the associated remaining maturity is equal to two, seven and twelve months.
The amount of capital is stable for the next twelve months and is equal to 40.

In Table 7.5, we have reported the asset and liability values A (t) and L (t). Since the
loans are linearly amortized in a monthly basis, A (t) is equal to 110 after one month, 100
after two months, etc. The value of the first debt instrument remains 65 for the first and
second months, and is then equal to zero because the maturity has expired. It follows that
the value of the total debt is a piecewise constant function. It is equal to 80 until two months,
15 between three and seven months and 5 after. We can then calculate the liquidity gap. At
the initial date, it is equal to zero by definition. At time t = 1, we deduce that LG (1) = +10
because we have A (1) = 110 and L (1) = 120.

TABLE 7.5: Computation of the liquidity gap
Period 0 1 2 3 4 5 6 7 8 9 10 11 12
Loans 120 110 100 90 80 70 60 50 40 30 20 10 0
Assets 120 110 100 90 80 70 60 50 40 30 20 10 0
Debt #1 65 65 65
Debt #2 10 10 10 10 10 10 10 10
Debt #3 5 5 5 5 5 5 5 5 5 5 5 5 5
Debt (total) 80 80 80 15 15 15 15 15 5 5 5 5 5
Equity 40 40 40 40 40 40 40 40 40 40 40 40 40
Liabilities 120 120 120 55 55 55 55 55 45 45 45 45 45
LG (t) 0 10 20 −35 −25 −15 −5 5 5 15 25 35 45

The time profile of the liquidity gap is given in Figure 7.2. We notice that it is positive
at the beginning, implying that the bank has an excess of liquidity funding in the short-run.
Then, we observe that the liquidity gap is negative and the bank needs liquidity funding.
From the seventh month, the liquidity gap becomes again positive. At the end, the liquidity
gap is always positive since assets and liabilities are fully amortized, implying that the
balance sheet is only composed of the capital.

7.1.2.2 Asset and liability amortization

In order to calculate liquidity gaps, we need to understand the amortization of assets
and liabilities, in particular the amortization of loans, mortgages, bonds and other debt
instruments. The general rules applied to debt payment are the following:

• The annuity amount A (t) at time t is composed of the interest payment I (t) and the
principal payment P (t):

A (t) = I (t) + P (t)
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FIGURE 7.2: An example of liquidity gap

This implies that the principal payment at time t is equal to the annuity A (t) minus
the interest payment I (t):

P (t) = A (t)− I (t)

It corresponds to the principal or the capital which is amortized at time t.

• The interest payment at time t is equal to the interest rate i (t) times the outstand-
ing principal balance (or the remaining principal) at the end of the previous period
N (t− 1):

I (t) = i (t)N (t− 1)

• The outstanding principal balance N (t) is the remaining amount due. It is equal
to the previous outstanding principal balance N (t− 1) minus the principal payment
P (t):

N (t) = N (t− 1)− P (t) (7.5)

At the initial date t = 0, the outstanding principal balance is equal to the notional
of the debt instrument. At the maturity t = n, we must verify that the remaining
amount due is equal to zero.

• The outstanding principal balance N (t) is equal to the present value C (t) of forward
annuity amounts:

N (t) = C (t)

We can distinguish different types of debt instruments. For instance, we can assume that the
capital is linearly amortized meaning that the principal payment P (t) is constant over time
(constant amortization debt). We can also assume that the annuity amount A (t) is constant
during the life of the debt instrument (constant payment debt). In this case, the principal
payment P (t) is an increasing function with respect to the time t. Another amortization
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scheme corresponds to the case where the notional is fully repaid at the time of maturity
(bullet repayment debt). This is for example the case of a zero-coupon bond.

Let us consider the case where the interest rate i (t) is constant. For the constant amor-
tization debt, we have:

P (t) = 1
n
N0

where n is the number of periods and N0 is the notional of the mortgage. The cumulative
principal payment Q (t) is equal to:

Q (t) =
∑
s≤t

P (s) = t

n
N0

We deduce that the outstanding principal balance N (t) verifies:

N (t) = N0 −Q (t) =
(

1− t

n

)
N0

We also have I (t) = iC (t− 1) where C (t− 1) = N (t− 1) and:

A (t) = I (t) + P (t) =
(

1
n

+ i

(
1− t− 1

n

))
N0

In Exercise 7.4.1 on page 449, we derive the formulas of the constant payment debt. The
constant annuity is equal to:

A (t) = A = i

1− (1 + i)−n
N0

It is composed of the interest payment:

I (t) =
(

1− 1
(1 + i)n−t+1

)
A

and the principal payment:
P (t) = 1

(1 + i)n−t+1A

Moreover, we show that the outstanding principal balance N (t) verifies:

N (t) =
(

1− (1 + i)−(n−t)

i

)
A

Finally, in the case of the bullet repayment debt, we have I (t) = iN0, P (t) = 1 {t = n}·N0,
A (t) = I (t) + P (t) and N (t) = 1 {t 6= n} ·N0.

Example 67 We consider a 10-year mortgage, whose notional is equal to $100. The annual
interest rate i is equal to 5%, and we assume annual principal payments.

Results are given in Tables 7.6, 7.7 and 7.8. For each payment structure, we have reported
the value of the remaining capital C (t− 1) at the beginning of the period, the annuity paid
at time t, the split between the interest payment I (t) and the principal payment P (t), the
cumulative principal payment Q (t). When calculating liquidity gaps, the most important
quantity is the outstanding principal balance N (t) given in the last column, because it
corresponds to the amortization of the debt.
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TABLE 7.6: Repayment schedule of the constant amortization mortgage
t C (t− 1) A (t) I (t) P (t) Q (t) N (t)
1 100.00 15.00 5.00 10.00 10.00 90.00
2 90.00 14.50 4.50 10.00 20.00 80.00
3 80.00 14.00 4.00 10.00 30.00 70.00
4 70.00 13.50 3.50 10.00 40.00 60.00
5 60.00 13.00 3.00 10.00 50.00 50.00
6 50.00 12.50 2.50 10.00 60.00 40.00
7 40.00 12.00 2.00 10.00 70.00 30.00
8 30.00 11.50 1.50 10.00 80.00 20.00
9 20.00 11.00 1.00 10.00 90.00 10.00

10 10.00 10.50 0.50 10.00 100.00 0.00

TABLE 7.7: Repayment schedule of the constant payment mortgage
t C (t− 1) A (t) I (t) P (t) Q (t) N (t)
1 100.00 12.95 5.00 7.95 7.95 92.05
2 92.05 12.95 4.60 8.35 16.30 83.70
3 83.70 12.95 4.19 8.77 25.06 74.94
4 74.94 12.95 3.75 9.20 34.27 65.73
5 65.73 12.95 3.29 9.66 43.93 56.07
6 56.07 12.95 2.80 10.15 54.08 45.92
7 45.92 12.95 2.30 10.65 64.73 35.27
8 35.27 12.95 1.76 11.19 75.92 24.08
9 24.08 12.95 1.20 11.75 87.67 12.33

10 12.33 12.95 0.62 12.33 100.00 0.00

TABLE 7.8: Repayment schedule of the bullet repayment mortgage
t C (t− 1) A (t) I (t) P (t) Q (t) N (t)
1 100.00 5.00 5.00 0.00 0.00 100.00
2 100.00 5.00 5.00 0.00 0.00 100.00
3 100.00 5.00 5.00 0.00 0.00 100.00
4 100.00 5.00 5.00 0.00 0.00 100.00
5 100.00 5.00 5.00 0.00 0.00 100.00
6 100.00 5.00 5.00 0.00 0.00 100.00
7 100.00 5.00 5.00 0.00 0.00 100.00
8 100.00 5.00 5.00 0.00 0.00 100.00
9 100.00 5.00 5.00 0.00 0.00 100.00

10 100.00 105.00 5.00 100.00 100.00 0.00
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Previously, we have assumed that the payment type is annual, but we can consider other
periods for the amortization schedule. The most common frequencies are monthly, quarterly,
semi-annually and annually11. Let i be the annual interest rate and p the frequency or the
number of compounding periods per year. The consistency principle of the accumulation
factor implies the following identity:

(1 + i) =
(

1 + i(p)

p

)p
where i(p) is the nominal interest rate expressed in a yearly basis. For example, if the
nominal interest rate i(monthly) is equal to 12%, the borrower pays a monthly interest rate
of 1%, which corresponds to an annual interest rate of 12.6825%.

Remark 70 The interest rate i is also called the annual equivalent rate (AER) or the
effective annual rate (EAR).

Example 68 We consider a 30-year mortgage, whose notional is equal to $100. The annual
interest rate i is equal to 5%, and we assume monthly principal payments.

This example is a variant of the previous example, since the maturity is higher and
equal to 30 years, and the payment schedule is monthly. This implies that the number n
of periods is equal to 360 months and the monthly interest rate is equal to 5%/12 or 41.7
bps. In Figure 7.3, we show the amortization schedule of the mortgage for the three cases:
constant (or linear12) amortization, constant payment or annuity and bullet repayment. We
notice that the constant annuity case is located between the constant amortization and the
bullet repayment. We have also reported the constant annuity case when the interest rate
is equal to 10%. We notice that we obtain the following ordering:

i1 ≥ i2 ⇒ N (t | i1) ≥ N (t | i2)

where N (t) (i) is the outstanding principal balance given the interest rate i. In fact, constant
annuity and constant amortization coincide when the interest rate goes to zero whereas
constant annuity and bullet repayment coincide when the interest rate goes to infinity.

Example 69 We consider the following simplified balance sheet:

Assets Liabilities
Items Notional Rate Mat. Items Notional Rate Mat.

Loan #1 100 5% 10 Debt #1 120 5% 10
Loan #2 50 8% 16 Debt #2 80 3% 5
Loan #3 40 3% 8 Debt #3 70 4% 10
Loan #4 110 2% 7 Capital #4 30

The balance sheet is composed of four asset items and four liability items. Asset items
correspond to different loans, whose remaining maturity is respectively equal to 10, 16, 8
and 7 years. Liabilities contain three debt instruments and the capital, which is not amortized
by definition. All the debt instruments are subject to monthly principal payments.

In Figure 7.4, we have calculated the liquidity gap for different amortization schedule:
constant payment, constant annuity and bullet repayment at maturity. We notice that
constant payment and constant annuity give similar amortization schedule. This is not the

11Monthly is certainly the most used frequency for debt instruments.
12The two terms constant and linear can be used interchangeably.
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FIGURE 7.3: Amortization schedule of the 30-year mortgage

FIGURE 7.4: Impact of the amortization schedule on the liquidity gap
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TABLE 7.9: Computation of the liquidity gap (mixed schedule)

t
Assets Liabilities LGt#1 #2 #3 #4 At #1 #2 #3 #4 Lt

1 99.4 49.9 39.6 110 298.8 119.2 78.7 70 30 297.9 −0.92
2 98.7 49.7 39.2 110 297.6 118.5 77.3 70 30 295.8 −1.83
3 98.1 49.6 38.8 110 296.4 117.7 76.0 70 30 293.7 −2.75
4 97.4 49.5 38.3 110 295.2 116.9 74.7 70 30 291.6 −3.66
5 96.8 49.3 37.9 110 294.0 116.1 73.3 70 30 289.4 −4.58
6 96.1 49.2 37.5 110 292.8 115.3 72.0 70 30 287.3 −5.49
7 95.4 49.1 37.1 110 291.6 114.5 70.7 70 30 285.2 −6.41
8 94.8 48.9 36.7 110 290.4 113.7 69.3 70 30 283.1 −7.32
9 94.1 48.8 36.3 110 289.2 112.9 68.0 70 30 280.9 −8.24

10 93.4 48.7 35.8 110 287.9 112.1 66.7 70 30 278.8 −9.15
11 92.8 48.5 35.4 110 286.7 111.3 65.3 70 30 276.7 −10.06
12 92.1 48.4 35.0 110 285.5 110.5 64.0 70 30 274.5 −10.97
0 100.0 50.0 40.0 110 300.0 120.0 80.0 70 30 300.0 0.00
1 92.1 48.4 35.0 110 285.5 110.5 64.0 70 30 274.5 −10.97
2 83.8 46.7 30.0 110 270.4 100.5 48.0 70 30 248.5 −21.90
3 75.0 44.8 25.0 110 254.8 90.1 32.0 70 30 222.1 −32.76
4 65.9 42.7 20.0 110 238.6 79.0 16.0 70 30 195.0 −43.55
5 56.2 40.5 15.0 110 221.7 67.4 70 30 167.4 −54.27
6 46.1 38.1 10.0 110 204.2 55.3 70 30 155.3 −48.91
7 35.4 35.5 5.0 75.9 42.5 70 30 142.5 66.56
8 24.2 32.7 56.9 29.0 70 30 129.0 72.12
9 12.4 29.7 42.1 14.9 70 30 114.9 72.81

10 26.4 26.4 30 30.0 3.62
11 22.8 22.8 30 30.0 7.19
12 18.9 18.9 30 30.0 11.06
13 14.8 14.8 30 30.0 15.24
14 10.2 10.2 30 30.0 19.77
15 5.3 5.3 30 30.0 24.68
16 0.0 30 30.0 30.00

case of bullet repayment. In the fourth panel, we consider a more realistic situation where
we have both constant principal (loan #3 and debt #2), constant annuity (loan #1, loan
#2 and debt #1) and bullet repayment (loan #4 and debt #2). Computation details for
this last mixed schedule are given in Table 7.9. The top panel presents the liquidity gap
LG (t) of the first twelve months while the bottom panel corresponds to the annual schedule.
The top panel is very important since it corresponds to the first year, which is the standard
horizon used by the ALCO for measuring liquidity requirements. We see that the bank will
face a liquidity deficit during the first year.

The previous analysis does not take into account two important phenomena. The first
one concerns customer behaviorial options such as prepayment decisions. We note N c (t)
the conventional outstanding principal balance that takes into account the prepayment risk.
We have:

N c (t) = N (t) · 1 {τ > t}

where N (t) is the theoretical outstanding principal balance and τ is the prepayment time
of the debt instrument. The prepayment time in ALM modeling is equivalent to the survival
or default time that we have seen in credit risk modeling. Then τ is a random variable,
which is described by its survival function S (t). Let p (t) be the probability that the debt
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instrument has not been repaid at time t. We have:

p (t) = E [1 {τ > t}] = S (t)

By construction, N c (t) is also random. Therefore, we can calculate its mathematical ex-
pectation, and we have N̄ c (t) = E [N c (t)] = p (t) · N (t) For example, if we assume that
τ ∼ E (λ) where λ is the prepayment intensity, we obtain N̄ c (t) = e−λt ·N (t). By definition,
we always have N c (t) ≤ N (t) and N̄ c (t) ≤ N (t).

In Figure 7.5, we consider the constant payment mortgage given in Example 68 on page
381. The first panel shows the theoretical or contractual outstanding principal balance. In
the second and third panels, we consider that there is a prepayment at time τ = 10 and
τ = 20. This conventional schedule coincides with the contractual schedule, but is equal
to zero once the prepayment time occurs. Finally, the fourth panel presents the conven-
tional amortization schedule N̄ c (t) when the prepayment time is exponentially distributed.
When λ is equal to zero, we retrieve the previous contractual schedule N (t). Otherwise,
the mortgage amortization is quicker.

FIGURE 7.5: Conventional amortization schedule with prepayment risk

The second important phenomenon that impacts amortization schedule is the new pro-
duction of assets and liabilities. If we consider a balance sheet item, its outstanding amount
at time t is equal to the outstanding amount at time t− 1 minus the amortization between
t and t− 1 plus the new production at time t:

N (t) = N (t− 1)−AM (t) + NP (t) (7.6)

This relationship is illustrated in Figure 7.6 and can be considered as an accounting identity
(Demey et al., 2003). In the case where there is no prepayment, the amortization AM (t)
is exactly equal to the principal payment P (t) and we retrieve Equation (7.5) except the
term NP (t). However, there is a big difference between Equations (7.6) and (7.5). The first
one describes the amortization of a debt instrument, for example a loan or a mortgage. The
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FIGURE 7.6: Impact of the new production on the outstanding amount

Source: Demey et al. (2003).

second one describes the amortization of a balance sheet item, that is the aggregation of
several debt instruments. The new production NP (t) corresponds to the financial transac-
tions that appear in the balance sheet between t and t − 1. They concern the new credit
lines, customer loans, mortgages, deposits, etc. that have been traded by the bank during
the last period [t− 1, t]. The introduction of the new production leads to the concept of
dynamic liquidity gap, in contrast to the static liquidity gap.

Remark 71 As we will see in the next section, dynamic liquidity analysis is then more
complex since the function NP (t) is not always known and depends on many parameters.
Said differently, NP (t) is more a random variable. However, it is more convenient to treat
NP (t) as a deterministic function than a stochastic function in order to obtain closed-form
formula and not to use Monte Carlo methods13.

7.1.2.3 Dynamic analysis

According to BCBS (2016d) and EBA (2018a), we must distinguish three types of anal-
ysis:

• Run-off balance sheet
A balance sheet where existing non-trading book positions amortize and are not re-
placed by any new business.

13Equation (7.6) can also be written as follows:

NP (t) = N (t)− (N (t− 1)−AM (t))

Written in this form, this equation indicates how to calculate the new production. In particular, this rela-
tionship can be used to define an estimator of NP (t).
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• Constant balance sheet
A balance sheet in which the total size and composition are maintained by replacing
maturing or repricing cash flows with new cash flows that have identical features.

• Dynamic balance sheet
A balance sheet incorporating future business expectations, adjusted for the relevant
scenario in a consistent manner.

The run-off balance sheet analysis has been exposed in the previous section. The constant
or dynamic balance sheet analysis assumes that we include the new production when cal-
culating the liquidity gap. For the constant analysis, this task is relatively easy since we
consider a like-for-like replacement of assets and liabilities. The dynamic analysis is more
difficult to implement because it highly depends “on key variables and assumptions that
are extremely difficult to project with accuracy over an extended period and can potentially
hide certain key underlying risk exposures” (BCBS, 2016d, page 8).

Stock-flow analysis According to Demey et al. (2003), the non-static analysis requires
a mathematical framework in order to distinguish stock and flow streams. We follow these
authors, and more particularly we present the tools introduced in Chapter 1 of their book.
We note NP (t) the new production at time t and NP (t, u) the part of this production14
that is always reported in the balance sheet at time u ≥ t. The amortization function S (t, u)
is defined by the following equation:

NP (t, u) = NP (t) · S (t, u)

The amortization function is in fact a survival function, implying that the following prop-
erties hold: S (t, t) = 1, S (t,∞) = 0 and S (t, u) is a decreasing function with respect to
u. The amortization function is homogeneous if we have S (t, u) = S (u− t) for all u ≥ t.
Otherwise, amortization function is non-homogeneous and may depend on the information
It:u between t and u. In this case, we can write S (t, u) = S (t, u; It:u) where It:u may con-
tain the trajectory of interest rates, the history of prepayment times, etc. We define the
amortization rate as the hazard rate associated to the survival function S (t, u):

λ (t, u) = −∂ ln S (t, u)
∂ u

In management, we generally make the distinction between stock and flow streams,
but we know that the stock at time t is the sum of past flows. In the case of ALM, the
outstanding amount plays the role of stock while the new production corresponds to a flow.
Therefore, the outstanding amount at time t is the sum of past productions that are always
present in the balance sheet at time t:

N (t) =
∫ ∞

0
NP (t− s, t) ds

If follows that:

N (t) =
∫ ∞

0
NP (t− s) S (t− s, t) ds

=
∫ t

−∞
NP (s) S (s, t) ds (7.7)

14We have NP (t) = NP (t, t) and NP (t,∞) = 0.
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TABLE 7.10: Relationship between the new production and the outstanding amount
s NP (s) S (s, 7) NP (s, 7) S (s, 10) NP (s, 10) S (s, 12) NP (s, 12)
1 110 0.301 33.13 0.165 18.18 0.111 12.19
2 125 0.368 45.98 0.202 25.24 0.135 16.92
3 95 0.449 42.69 0.247 23.43 0.165 15.70
4 75 0.549 41.16 0.301 22.59 0.202 15.14
5 137 0.670 91.83 0.368 50.40 0.247 33.78
6 125 0.819 102.34 0.449 56.17 0.301 37.65
7 115 1.000 115.00 0.549 63.11 0.368 42.31
8 152 0.670 101.89 0.449 68.30
9 147 0.819 120.35 0.549 80.68

10 159 1.000 159.00 0.670 106.58
11 152 0.819 124.45
12 167 1.000 167.00
N (t) 472.14 640.36 720.69

In the discrete-time analysis, the previous relationship becomes:

N (t) =
∞∑
s=0

NP (t− s, t)

=
t∑

s=−∞
NP (s) · S (s, t)

The outstanding amount N (t) at time t is then the sum of each past production NP (s)
times its amortization function S (s, t). In Table 7.10, we provide an example of calculating
the outstanding amount using the previous convolution method. In the second column,
we report the production of each year s. We assume that the amortization function is
homogeneous and is an exponential distribution with an intensity λ equal to 20%. The
third and fourth columns give the values of the amortization function and the production
that is present in the balance sheet at time t = 7. We obtain N (7) = 472.14. The four last
columns correspond to the cases t = 10 and t = 12.

Demey et al. (2003) introduce the concept of stock amortization. We recall that the
amortization function S (t, u) indicates the proportion of $1 entering in the balance sheet at
time t that remains present at time u ≥ t. Similarly, the stock amortization function S? (t, u)
measures the proportion of $1 of outstanding amount at time t that remains present at time
u ≥ t. In order to obtain an analytical and tractable function S? (t, u), we must assume that
the new production is equal to zero after time t. This corresponds to the run-off balance
sheet analysis. Demey et al. (2003) show that the non-amortized outstanding amount is
equal to:

N (t, u) =
∫ t

−∞
NP (s) S (s, u) ds

where t is the current time and u is the future date. For instance, N (5, 10) indicates the
outstanding amount that is present in the balance sheet at time t = 5 and will remain in
the balance sheet five years after. It follows that:

N (t, u) = N (t) · S? (t, u)
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and we deduce that:

S? (t, u) = N (t, u)
N (t)

=
∫ t
−∞NP (s) S (s, u) ds∫ t
−∞NP (s) S (s, t) ds

Dynamics of the outstanding amount Using Equation (7.7), we obtain15:

dN (t)
dt = −

∫ t

−∞
NP (s) f (s, t) ds+ NP (t) (7.8)

where f (t, u) = −∂uS (t, u) is the density function of the amortization. This is the
continuous-time version of the amortization schedule given by Equation (7.6):

N (t)−N (t− 1) = −AM (t) + NP (t)

where:
AM (t) =

∫ t

−∞
NP (s) f (s, t) ds

As already said, we notice the central role of the new production when building a dynamic
gap analysis. It is obvious that the new production depends on several parameters, for
example the commercial policy of the bank, the competitive environment, etc.

Estimation of the dynamic liquidity gap We can then define the dynamic liquidity
gap at time t for a future date u ≥ t as follows16:

LG (t, u) =
∑

k∈Liabilities

(
Nk (t, u) +

∫ u

t

NPk (s) Sk (s, u) ds
)
−

∑
k∈Assets

(
Nk (t, u) +

∫ u

t

NPk (s) Sk (s, u) ds
)

where k represents a balance sheet item. This is the difference between the liability outstand-
ing amount and the asset outstanding amount. For a given item k, the dynamic outstanding
amount is composed of the outstanding amount Nk (t, u) that will be non-amortized at time
u plus the new production between t and u that will be in the balance sheet at time u.
The difficulty is then to estimate the new production and the amortization function. As
said previously, the new production generally depends on the business strategy of the bank.

15We have:

d
(∫ t

−∞
NP (s) S (s, t) ds

)
= NP (t) S (t, t) dt+

∫ t

−∞
NP (s)

∂ S (s, t)
∂ t

ds

= NP (t) dt−
∫ t

−∞
NP (s)

(
−
∂ S (s, t)
∂ t

)
ds

16In the case of the run-off balance sheet, we set NPk (s) = 0 and we obtain the following formula:

LG (t, u) =
∑

k∈Liabilities

Nk (t, u)−
∑

k∈Assets

Nk (t, u)



Asset Liability Management Risk 389

Concerning the amortization function, we can calibrate Sk (t, u) using a sample of new pro-
ductions if we assume that the amortization function is homogenous: Sk (t, u) = Sk (u− t).
It follows that:

Ŝk (u− t) =
∑
j∈k NPj (t, u)∑
j∈k NPj (t)

Moreover, we can show that Ŝk (u− t) is a convergent estimator and its asymptotic distri-
bution is given by:

Ŝk (u− t)− Sk (u− t)→ N (0, H · Sk (u− t) · (1− Sk (u− t)))

where H is the Herfindahl index associated to the sample of new productions17.

Remark 72 This result can be deduced from the empirical estimation theory. Let S (t) be
the survival function of the survival time τ . The empirical survival function of the weighted
sample {(wj , τj) , j = 1, . . . , n} is equal to:

Ŝ (t) =
∑n
j=1 wj ·Dj∑n
j=1 wj

where Dj = 1 (τj > t) is a Bernoulli random variable with parameter p = S (t). If we
assume that the sample observations are independent, we deduce that:

var
(
Ŝ (t)

)
=
∑n
j=1 w

2
j · var (Dj)(∑n
j=1 wj

)2 =
n∑
j=1

w2
j(∑n

j′=1 wj′
)2 · S (t) · (1− S (t))

Example 70 We consider a sample of five loans that belong to the same balance sheet item.
Below, we have reported the value taken by NPj (t, u):

u− t 0 1 2 3 4 5 6 7 8 9 10 11
#1 100 90 80 70 60 50 40 30 20 10 5 0
#2 70 65 55 40 20 10 5 0
#3 100 95 85 80 60 40 20 10 0
#4 50 47 44 40 37 33 27 17 10 7 0
#5 20 18 16 14 10 8 5 3 0

In Figure 7.7, we have estimated the amortization function Ŝ (u− t). We have also
computed the variance of the estimator and reported the 95% confidence interval18.

Liquidity duration Another important tool to measure the mismatch between assets and
liabilities is to calculate the liquidity duration, which is defined as the average time of the
amortization of the new production NP (t). In a discrete-time analysis, the amortization
value between two consecutive dates is equal to NP (t, u) − NP (t, u+ 1). Therefore, the
liquidity duration is the weighted average life (WAL) of the principal repayments:

D (t) =
∑∞
u=t (NP (t, u)−NP (t, u+ 1)) · (u− t)∑∞

u=t (NP (t, u)−NP (t, u+ 1))

17We have H =
∑

j∈k w
2
j where:

wj =
NPj (t)∑
j′∈k NPj′ (t)

18We have assumed that the sample is composed of 100 loans or 20 copies of the five previous loans.
Otherwise, the confidence interval is too large because the sample size is small.
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FIGURE 7.7: Estimation of the amortization function Ŝ (u− t)

Since we have:

NP (t, u)−NP (t, u+ 1) = −NP (t) · (S (t, u+ 1)− S (t, u))

and19:
∞∑
u=t

(NP (t, u)−NP (t, u+ 1)) = −NP (t) ·
∞∑
u=t

(S (t, u+ 1)− S (t, u))

= NP (t)

we obtain the following formula:

D (t) = −
∞∑
u=t

(S (t, u+ 1)− S (t, u)) · (u− t)

In the continuous-time analysis, the liquidity duration is equal to:

D (t) = −
∫ ∞
t

∂ S (t, u)
∂ u

(u− t) du

=
∫ ∞
t

(u− t) f (t, u) du

where f (t, u) is the density function associated to the survival function S (t, u).

Remark 73 If we consider the stock approach of the liquidity duration, we have:

D? (t) =
∫ ∞
t

(u− t) f? (t, u) du

19Because we have S (t, t) = 1 and S (t,∞) = 0.
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where f? (t, u) is the density function associated to the survival function S? (t, u):

f? (t, u) = −∂ S? (t, u)
∂ u

=
∫ t
−∞NP (s) f (s, u) ds∫ t
−∞NP (s) S (s, t) ds

Some examples We consider the three main amortization schemes: bullet repayment,
constant (or linear) amortization and exponential amortization. In Exercise 7.4.3 on page
450, we have calculated the survival functions S (t, u) and S? (t, u), the liquidity duration
D (t) and D? (t) and the outstanding dynamics dN (t) where m is the debt maturity and λ
is the exponential parameter. Their expression is reported below in Table 7.11.

TABLE 7.11: Amortization function and liquidity duration of the three amortization
schemes

Amortization S (t, u) D (t)
Bullet 1 {t ≤ u < t+m} m

Constant 1 {t ≤ u < t+m} ·
(

1− u− t
m

)
m

2
Exponential e−λ(u−t) 1

λ
Amortization S? (t, u) D? (t)

Bullet 1 {t ≤ u < t+m} ·
(

1− u− t
m

)
m

2

Constant 1 {t ≤ u < t+m} ·
(

1− u− t
m

)2
m

3
Exponential e−λ(u−t) 1

λ
Amortization dN (t)

Bullet dN (t) = (NP (t)−NP (t−m)) dt

Constant dN (t) =
(

NP (t)− 1
m

∫ t

t−m
NP (s) ds

)
dt

Exponential dN (t) = (NP (t)− λN (t)) dt

We have represented these amortization functions S (t, u) and S? (t, u) in Figure 7.8.
The maturity m is equal to 10 years and the exponential parameter λ is set to 30%. Besides
the three previous amortization schemes, we also consider the constant payment mortgage
(CPM), whose survival functions are equal to20:

S (t, u) = 1 {t ≤ u < t+m} · 1− e−i(t+m−u)

1− e−im

and:
S? (t, u) = i (t+m− u) + e−i(t+m−u) − 1

im+ e−im − 1
20These expressions are derived in Exercise 7.4.3 on page 450.
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where i is the interest rate and m is the debt maturity. The CPM amortization scheme
corresponds to the bottom/right panel21 in Figure 7.8.

FIGURE 7.8: Amortization functions S (t, u) and S? (t, u)

Remark 74 We notice the convex profile of the constant and exponential amortization
schemes, whereas the profile is concave for the CPM amortization scheme. Moreover, when
the interest rate i goes to zero, the CPM profile corresponds to the constant profile.

7.1.2.4 Liquidity hedging

When we face a risk that is not acceptable, we generally hedge it. In the case of the
liquidity, the concept of hedging is unclear. Indeed, at first sight, it seems that there are
no liquidity forwards, swaps or options in the market. On the other hand, liquidity hedging
seems to be trivial. Indeed, the bank can lend to other market participants when having an
excess of funding, or the bank can borrow when having a deficit of funding. For that, it may
use the interbank market or the bond market. Nevertheless, there is generally an uncertainty
about the liquidity gap, because the amortization schedule and the new production are not
known for sure. This is why banks must generally adopt a conservative approach. For
instance, they must not lend (or buy bonds) too much. In a similar way, they must not
borrow too short. The liquidity gap analysis is particularly important in order to split the
decision between daily, weekly, monthly and quarterly adjustments. Let us assume that the
bank anticipates a liquidity deficit of $10 mn for the next three months. It can borrow exactly
$10 mn for three months. One month later, the bank has finally an excess of liquidity. It is
obvious that the previous lending is not optimal because the bank must pay a three-month
interest rate while it could have paid a one-month interest rate.

The previous example shows that the management of the liquidity consists in managing
interbank and bond operations. It is obvious that the funding program depends on the

21The interest rate i is set to 5%.
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liquidity gap but also on the risk appetite of the bank. Some banks prefer to run a long-
term liquidity program, others prefer to manage the liquidity on a shorter-term basis. The
ALCO decisions may have therefore a big impact on the risk profile of the bank. The 2008
Global Financial Crisis has demonstrated that liquidity management is key during periods
of stress. For instance, a bank, which has a structural liquidity excess, may stop to lend to
the other participants in order to keep this liquidity for itself, while a bank, which has a
structural liquidity need, may issue long-term debt in order to reduce day-to-day funding
requirements. It is clear that ALCO decisions are beyond the scope of risk management and
fall within strategic and business issues.

7.1.3 Interest rate risk in the banking book
The ALM of interest rate risk is extensively developed in the next section. However,

we give here the broad lines, notably the regulation framework, which has been elaborated
by the Basel Committee in April 2016 (BCBS, 2016d) and which is known as IRRBB
(or interest rate risk in the banking book). IRRBB can be seen as the revision of the 2004
publication (BCBS, 2004b), but not solely. Indeed, this 2016 publication is relatively precise
in terms of risk framework and defines a standardized framework, which was not the case in
2004. In particular, capital requirements are more closely supervised than previously, even
if IRRBB continues to be part of the Basel capital framework’s Pillar 2.

7.1.3.1 Introduction on IRRBB

Definition of IRRBB According to BCBS (2016d), “IRRBB refers to the current or
prospective risk to the bank’ capital and earnings arising from adverse movements in interest
rates that affect the bank’s banking book positions. When interest rates change, the present
value and timing of future cash flows change. This in turn changes the underlying value of a
bank’s assets, liabilities and off-balance sheet items and hence its economic value. Changes
in interest rates also affect a bank’s earnings by altering interest rate-sensitive income and
expenses, affecting its net interest income”. We notice that the Basel Committee considers
both economic value (EV) and earnings-based risk measures. EV measures reflect changes
in the net present value of the balance sheet resulting from IRRBB, whereas earnings-based
measures reflect changes in the expected future profitability of the bank. Since EV measures
are generally used by supervisors22 and earnings-based measures are more widely used by
commercial banks23, the Basel Committee thinks that the bank must manage these two
risks because they capture two different time horizons. Economic value is calculated over
the remaining life of debt instruments, implying a run-off balance sheet assumption. The
earnings-based measure is calculated for a given time horizon, typically the next 12 month
period. In this case, a constant or dynamic balance sheet assumption is more appropriate.

Categories of IRR For the Basel Committee, there are three main sources of interest
rate risk: gap risk, basis risk and option risk. Gap risk refers to the mismatch risk arising
from the term structure of banking book instruments. It includes repricing risk and yield
curve risk. Repricing risk corresponds to timing differences in the maturity or the risk of
changes in interest rates between assets and liabilities. For example, if the bank funds a
long-term fixed-rate loan with a short-term floating-rate deposit, the future income may
decrease if interest rates increases. Therefore, repricing risk has two components. The first
one is the maturity difference between assets and liabilities. The second one is the change in

22Because they are more adapted for comparing banks.
23Because banks want to manage the volatility of earnings.
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floating interest rates. Yield curve risk refers to non-parallel changes in the term structure
of interest rates. A typical example concerns flattening, when short-term interest rates rise
faster than long-term interest rates.

Basis risk occurs when changes in interest rates impact differently financial instruments
with similar repricing tenors, because they are priced using different interest rate indices.
Therefore, basis risk corresponds to the correlation risk of interest rate indices with the
same maturity. For example, the one-month Libor rate is not perfectly correlated to the
one-month Treasury rate. Thus, there is a basis risk when a one-month Treasury-based asset
is funded with a one-month Libor-based liability, because the margin can change from one
month to another month.

Option risk arises from option derivative positions or when the level or the timing of
cash flows may change due to embedded options. A typical example is the prepayment
risk. The Basel Committee distinguishes automatic option risk and behavioral option risk.
Automatic options concern caps, floors, swaptions and other interest rate derivatives that
are located in the banking book, while behavioral option risk includes fixed rate loans
subject to prepayment risk, fixed rate loan commitments, term deposits subject to early
redemption risk and non-maturity deposits (or NMDs).

Risk measures The economic value of a series of cash flows CF = {CF (tk) , tk ≥ t} is
the present value of these cash flows:

EV = PVt (CF)

= E

∑
tk≥t

CF (tk) · e−
∫ tk
t

r(s) ds


=

∑
tk≥t

CF (tk) ·B (t, tk)

where Bt (tk) is the discount factor (e.g. the zero-coupon bond) for the maturity date tk. To
calculate the economic value of the banking book, we slot all notional repricing cash flows
of assets and liabilities into a set of time buckets. Then, we calculate the net cash flows,
which are equal to CF (tk) = CFA (tk)−CFL (tk) where CFA (tk) and CFL (tk) are the cash
flows of assets and liabilities for the time bucket tk. Finally, the economic value is given by:

EV =
∑
tk≥t

CF (tk) ·B (t, tk)

=
∑
tk≥t

CFA (tk) ·B (t, tk)−
∑
tk≥t

CFL (tk) ·B (t, tk)

= EVA−EVL

It is equal to the present value of assets minus the present value of liabilities. By construc-
tion, the computation of EV depends on the yield curve. We introduce the notation s in
order to take into account a stress scenario of the yield curve. Then, we define the EV
change as the difference between the EV for the base scenario and the EV for the given
scenario s:

∆ EVs = EV0−EVs

=
∑
tk≥t

CF0 (tk) ·B0 (t, tk)−
∑
tk≥t

CFs (tk) ·Bs (t, tk)
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FIGURE 7.9: Relationship between A (t), L? (t) and E (t)

In this equation, the base scenario is denoted by 0 and corresponds to the current term
structure of interest rates. The stress scenario s of the yield curve impacts the discount
factors, but also the cash flows that depend on the future interest rates. ∆ EVs > 0 indicates
then a loss if the stress scenario s occurs. The Basel Committee defines the concept of
economic value of equity (EVE or EVE) as a specific form of EV where equity is excluded
from the cash flows. We recall that the value of assets is equal to the value of liabilities at the
current time t. If we distinguish pure liabilities L? (t) from the bank equity capital E (t), we
obtain the balance sheet given in Figure 7.9. Since there is a perfect match between assets
and liabilities, the value of the capital is equal to24 E (t) = A (t)− L? (t). It follows that:

EVE = EVA−EVL?

We can then define ∆ EVEs as the loss ∆ EVs where we have excluded the equity from
the computation of the cash flows. Said differently, ∆ EVEs is the capital loss if the stress
scenario s occurs.

Remark 75 Changes in economic value can also be measured with the PV01 metric or
the economic value-at-risk (EVaR). PV01 is calculated by assuming a single basis point
change in interest rates. EVaR is the value-at-risk measure applied to the economic value
of the banking book. Like the VaR, it requires specifying the holding period and the confi-
dence level. The Basel Committee motivates the choice of EVE instead of PV01 and EVaR,
because they would like to measure the impact of losses on the capital in a stress testing
framework. In particular, PV01 ignores basis risks whereas EVaR is designed for normal
market circumstances.

Earnings-based measures are computed using the net interest income (NII), which is the
difference between the interest payments on assets and the interest payments of liabilities.
Said differently, NII is the difference between interest rate revenues received by the bank
and interest rate costs paid by the bank. For a given scenario s, we define the change in net
interest income as follows:

∆ NIIs = NII0−NIIs
Like for the risk measure ∆ EVEs, ∆ NIIs > 0 indicates a loss if the stress scenario s occurs.

24We have:

A (t) = L (t)
= L? (t) + E (t)
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Finally, the economic value and earnings-based risk measures are equal to the maximum
of losses by considering the different scenarios:

R (EVE) = max
s

(∆ EVEs, 0)

and:
R (NII) = max

s
(∆ NIIs, 0)

Since IRRBB is part of the second pillar, there are no minimum capital requirements K.
Nevertheless, the Basel Committee imposes that R (EVE) must be lower than 15% of the
bank’s tier 1 capital.

7.1.3.2 Interest rate risk principles

The Basel Committee defines nine IRR principles for banks and three IRR principles
for supervisors. The first and second principles recall that banks must specifically manage
IRRBB (and also CSRBB25) and have a governing body that oversights IRRBB. The third
and fourth principles explain that the risk appetite of the bank for IRRBB must be defined
with respect to both economic value and earnings-based risk measures arising from interest
rate shocks and stress scenarios. The objective is to measure the change in the net present
value of the banking book and the future profitability. To compute ∆ EVE, banks must
consider a run-off balance sheet assumption, whereas they must use a constant or dynamic
balance sheet and a rolling 12-month period for computing ∆ NII. For that, they have to
consider multiple interest rate scenarios, for example historical and hypothetical scenarios.
Besides these internal scenarios, six external scenarios are defined by the Basel Committee26:
(1) parallel shock up; (2) parallel shock down; (3) steepener shock (short rates down and
long rates up); (4) flattener shock (short rates up and long rates down); (5) short rates
shock up; and (6) short rates shock down. The fifth principle deals with behaviorial and
modeling assumptions, in particular embedded optionalities. The last three principles deals
with risk management and model governance process, the disclosure of the information and
the capital adequacy policy.

The role of supervisors is strengthened. They should collect on a regular basis sufficient
information from the bank to assess its IRRBB exposure. This concerns modeling assump-
tions, interest rate and option exposures, yield curve parameters, statistical methodologies,
etc. An important task is also the identification of outlier banks. The outlier/materiality
test compares the bank’s maximum ∆ EVE (or R (EVE)) with 15% of its tier 1 capital. If
this threshold is exceeded, supervisors must require mitigation actions, hedging programs
and/or additional capital.

7.1.3.3 The standardized approach

Overview of the standardized framework There are five steps for measuring the
bank’s IRRBB:

1. The first step consists in allocating the interest rate sensitivities of the banking book
to three categories:

(a) amenable to standardization27;
(b) less amenable to standardization28;
(c) not amenable to standardization29.

25Credit spread risk in the banking book.
26These scenarios are described in the next paragraph on page 397.
27The Basel Committee distinguish two main categories: fixed rate positions and floating rate positions.
28They concern explicit automatic interest rate options.
29This category is composed of NMDs, fixed rate loans subject to prepayment risk and term deposits

subject to early redemption risk.
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2. Then, the bank must slot cash flows (assets, liabilities and off-balance sheet items) into
19 predefined time buckets30: overnight (O/N), O/N–1M, 1M–3M, 3M–6M, 6M–9M,
9M–1Y, 1Y–18M, 1.5Y–2Y, 2Y–3Y, 3Y–4Y, 4Y–5Y, 5Y–6Y, 6Y–7Y, 7Y–8Y, 8Y–9Y,
9Y–10Y, 10Y–15Y, 15Y–20Y, 20Y+. This concerns positions amenable to standard-
ization. For positions less amenable to standardization, they are excluded from this
step. For positions with embedded automatic interest rate options, the optionality is
ignored.

3. The bank determines ∆ EVEs,c for each interest rate scenario s and each currency c.

4. In the fourth step, the bank calculates the total measure for automatic interest rate
option risk KAOs,c.

5. Finally, the bank calculates the EVE risk measure for each interest rate shock s:

R (EVEs) = max
(∑

c

(∆ EVEs,c + KAOs,c)+ ; 0
)

The standardized EVE risk measure is the maximum loss across all the interest rate
shock scenarios:

R (EVE) = max
s
R (EVEs)

The supervisory interest rate shock scenarios The six stress scenarios are based on
three shock sizes that the Basel Committee has calibrated using the period 2010 – 2015:
the parallel shock size S0, the short shock size S1 and the long shock size S2. In the table
below, we report their values for some currencies31:

Shock size USD/CAD/SEK EUR/HKD GBP JPY EM
S0 (parallel) 200 200 250 100 400
S1 (short) 300 250 300 100 500
S2 (long) 150 100 150 100 300

where EM is composed of ARS, BRL, INR, MXN, RUB, TRY and ZAR. Given S0, S1 and
S2, we calculate the following generic shocks for a given maturity t:

Parallel shock Short rates shock Long rates shock
∆R(parallel) (t) ∆R(short) (t) ∆R(long) (t)

Up +S0 +S1 · e−t/τ +S2 ·
(
1− e−t/τ

)
Down −S0 −S1 · e−t/τ −S2 ·

(
1− e−t/τ

)
where τ is equal to four years. Finally, the five standardized interest rate shock scenarios
are defined as follows:

1. Parallel shock up:
∆R(parallel) (t) = +S0

30The buckets are indexed by k from 1 to 19. For each bucket, the midpoint is used for defining the
corresponding maturity tk. We have t1 = 0.0028, t2 = 0.0417, t3 = 0.1667, t4 = 0.375, t5 = 0.625, . . . ,
t17 = 12.5, t18 = 17.5 and t19 = 25.

31The values for a more comprehensive list of currencies are given in BCBS (2016d) on page 44.
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2. Parallel shock down:
∆R(parallel) (t) = −S0

3. Steepener shock (short rates down and long rates up):

∆R(steepnener) (t) = 0.90 ·
∣∣∣∆R(long) (t)

∣∣∣− 0.65 ·
∣∣∣∆R(short) (t)

∣∣∣
4. Flattener shock (short rates up and long rates down):

∆R(flattener) (t) = 0.80 ·
∣∣∣∆R(short) (t)

∣∣∣− 0.60 ·
∣∣∣∆R(long) (t)

∣∣∣
5. Short rates shock up:

∆R(short) (t) = +S1 · e−t/τ

6. Short rates shock down:
∆R(short) (t) = −S1 · e−t/τ

Example 71 We assume that S0 = 100 bps, S1 = 150 bps and S2 = 200 bps. We would
like to calculate the standardized shocks for the one-year maturity.

The parallel shock up is equal to +100 bps, while the parallel shock down is equal to
−100 bps. For the short rates shock, we obtain:

∆R(short) (t) = 150× e−1/4 = 116.82 bps

for the up scenario and −116.82 bps for the down scenario. Since we have
∣∣∆R(short) (t)

∣∣ =
116.82 and

∣∣∆R(long) (t)
∣∣ = 44.24, the steepener shock is equal to:

∆R(steepnener) (t) = 0.90× 44.24− 0.65× 116.82 = −36.12 bps

For the flattener shock, we have:

∆R(flattener) (t) = 0.80× 116.82− 0.60× 44.24 = 66.91 bps

In Figure 7.10, we have represented the six interest rate shocks ∆R (t) for the set of param-
eters (S0 = 100,S1 = 150,S2 = 200).

In Figure 7.11, we consider the yield curve generated by the Nelson-Siegel model32 with
the following parameters θ1 = 8%, θ2 = −7%, θ3 = 6% and θ4 = 10. Then, we apply the
standardized interest rate shocks by considering EUR and EM currencies. We verify that
the parallel shock moves uniformly the yield curve, the steepener shock increases the slope
of the yield curve, the flattener shock reduces the spread between long and short interest
rates, and the short rates shock has no impact on the long maturities after 10 years. We
also notice that the deformation of the yield curve is more important for EM currencies
than for the EUR currency.

Treatment of NMDs NMDs are segmented into three categories: retail transactional,
retail non-transactional and wholesale Then, the bank must estimate the stable and non-
stable part of each category33. Finally, the stable part of NMDs must be split between core
and non-core deposits. However, the Basel Committee imposes a cap ω+ on the proportion
of core deposits (see Table 7.12). For instance, core deposits cannot exceed 70% of the retail
non-transactional stable deposits. The time bucket for non-core deposits is set to overnight
(or the first time bucket), meaning that the corresponding time bucket midpoint is equal
to t1 = 0.0028. For core deposits, the bank determines the appropriate cash flow slotting,
but the average maturity cannot exceed the cap t+, which is given in Table 7.12.

32We recall that it is defined in Footnote 8 on page 131.
33This estimation must be based on the historical data of the last 10 years.
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FIGURE 7.10: Interest rate shocks (in bps)

FIGURE 7.11: Stressed yield curve (in %)
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TABLE 7.12: Cap on core deposits and maximum average maturity
Category Cap ω+ Cap t+
Retail transactional 90% 5.0
Retail non-transactional 70% 4.5
Wholesale 50% 4.0

Behavioral options of retail customers This category mainly concerns fixed rate loans
because of the prepayment risk, and fixed-term deposits because of the early redemption
risk. The Basel Committee proposes to use a two-step procedure. First, the bank determine
the baseline estimate of each category given the current yield curve. Then, the baseline
estimate is multiplied according to the standardized interest rate scenarios. In the case
of fixed rate loans subject to prepayment risk, the bank establishes the different homoge-
nous prepayment categories. For each category, the bank estimates the baseline conditional
prepayment rate CPR0 and calculates the stressed conditional prepayment rate as follows:

CPRs = min (1, γs · CPR0)

where γs is the multiplier for the scenario s. The coefficient γs takes two values:

• γs = 0.8 for the scenarios 1, 3 and 5 (parallel up, steepener and short rates up);

• γs = 1.2 for the scenarios 2, 4 and 6 (parallel down, flattener and short rates down).

The cash flow for the time bucket tk is the sum of two components:

CFs (tk) = CF1
s (tk) + CF2

s (tk)

where CF1
s (tk) refers to the scheduled interest and principal repayment (without prepay-

ment) and CF2
s (tk) refers to the prepayment cash flow:

CF2
s (tk) = CPRs ·Ns (tk−1)

where Ns (tk−1) is the notional outstanding at time bucket tk−1 calculated with the stress
scenario s.

The methodology for term deposits subject to early redemption risk is similar to the one
of the fixed rate loans subject to prepayment risk. First, the bank estimates the baseline
term deposit redemption ratio TDRR0 for each homogeneous portfolio. Second, the stressed
term deposit redemption ratio is equal to:

TDRRs = min (1, γs · TDRR0)

where γs is the multiplier for the scenario s. The coefficient γs takes two values:

• γs = 1.2 for the scenarios 1, 4 and 5 (parallel up, flattener and short rates up);

• γs = 0.8 for the scenarios 2, 3 and 6 (parallel down, steepener and short rates down).

Third, the term deposits which are expected to be redeemed early are slotted into the
overnight time bucket, implying that the corresponding cash flows are given by:

CFs (t1) = TDRRs ·N0

where N0 is the outstanding amount of term deposits.
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Remark 76 Fixed rate loans subject to prepayment risk and term deposits subject to early
redemption risk follow the same methodology, but with two main differences. The first one
concerns the impact of the stress scenario on the stress ratios CPRs and TDRRs. In the case
of prepayment risk, the conditional prepayment rate generally increases when interest rates
are falling and decreases when interest rates are rising. This is why we have CPRs > CPR0
for the scenarios where interest rates or the slope of the yield curve decrease (scenarios
1, 3 and 5). In the case of early redemption risk, the term deposit redemption ratio mainly
depends on the short term interest rates. In particular, the ratio TDRRs must increase when
short rates increase, because this creates an incentive to negotiate a term deposit contract
with a higher interest rate.

Automatic interest rate options The computation of the automatic interest rate op-
tion risk KAOs is given by:

KAOs =
∑
i∈S

∆ FVAOs,i−
∑
i∈B

∆ FVAOs,i

where:

• i ∈ S denotes an automatic interest rate option which is sold by the bank;

• i ∈ B denotes an automatic interest rate option which is bought by the bank;

• FVAO0,i is the fair value of the automatic option i given the current yield curve and
the current implied volatility surface;

• FVAOs,i is the fair value of the automatic option i given the stressed yield curve and
a relative increase in the implied volatility of 25%;

• ∆ FVAOs,i is the change in the fair value of the option:

∆ FVAOs,i = FVAOs,i−FVAO0,i

An example We consider a simplified USD-denominated balance sheet. The assets are
composed of loans with the following cash flow slotting:

Instruments Loans Loans Loans
Maturity 1Y 5Y 13Y
Cash flows 200 700 200

The loans are then slotted into three main buckets (short-term, medium-term and long-term
loans). The average maturity is respectively equal to one-year, five-year and thirteen-year.
The liabilities are composed of retail deposit accounts, term deposits, debt and tier-one
equity capital. The cash flow slotting is given below:

Instruments Non-core Term Core Debt Equity
deposits deposits deposits ST LT capital

Maturity O/N 7M 3Y 4Y 8Y
Cash flows 100 50 450 100 100 200

The non-maturity deposits are split into non-core and core deposits. The maturity of non-
core deposits is assumed to be overnight (O/N), whereas the estimated maturity of core
deposits is around three years. We also have two debt instruments: one with a remaining
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TABLE 7.13: Economic value of the assets
Bucket tk CF0 (tk) R0 (tk) EV0 (tk)

6 0.875 200 1.55% 197.31
11 4.50 700 3.37% 601.53
17 12.50 100 5.71% 48.98

EV0 847.82

TABLE 7.14: Economic value of the pure liabilities
Bucket tk CF0 (tk) R0 (tk) EV0 (tk)

1 0.0028 100 1.00% 100.00
5 0.625 50 1.39% 49.57
9 2.50 450 2.44% 423.35

10 3.50 100 2.93% 90.26
14 7.50 100 4.46% 71.56

EV0 734.73

maturity of four years and another one with a remaining maturity of eight years. The term
deposits are slotted in a single bucket corresponding to a seven-month maturity.

We assume that the current yield curve is given by the Nelson-Siegel model with θ1 = 8%,
θ2 = −7%, θ3 = 6% and θ4 = 10. In Table 7.13, we have reported the current economic value
of the assets. It is respectively equal to 197.31, 601.53 and 48.98 for the three buckets and
847.82 for the total of assets. We have done the same exercise for the pure liabilities (Table
7.14). We obtain an economic value equal to 734.73. We deduce that the current economic
value of equity is EVE0 = 847.82− 734.73 = 113.09. Since the balance sheet is expressed in
USD, we use the USD shocks for the interest rates scenarios: S0 = 200 bps, S1 = 300 bps and
S2 = 150 bps. In Table 7.15, we have reported the stressed values of interest rates Rs (tk) and
economic value EVs (tk) for every bucket of the balance sheet. By computing the stressed
economic value of assets and pure liabilities, we deduce the stressed economic value of equity.
For instance, in the case of the first stress scenario, we have EVE1 = 781.79−697.39 = 84.41.
It follows that the economic value of equity will be reduced if the standardized parallel shock
up occurs: ∆ EVE1 = 113.10−84.41 = 28.69. We observe that the economic value of equity
decreases for scenarios 1, 3 and 5, and increases for scenarios 2, 4 and 6. Finally, we deduce
that the risk measure R (EVE) = maxs (∆ EVEs, 0) = 28.69 represents 14.3% of the equity.
This puts under the threshold 15% of the materiality test.

7.1.4 Other ALM risks
Even if liquidity and interest rate risks are the main ALM risks, there are other risks

that impact the banking book of the balance sheet, in particular currency risk and credit
spread risk.

7.1.4.1 Currency risk

We recall that the standardized approach for implementing IRRBB considers each
currency separately. Indeed, the risk measures ∆ EVEs,c and KAOs,c are calculated
for each interest rate scenario s and each currency c. Then, the aggregated value∑
c (∆ EVEs,c + KAOs,c)+ is calculated across the different currencies and the maximum is

selected for the global risk measure of the bank.
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TABLE 7.15: Stressed economic value of equity
Bucket s = 1 s = 2 s = 3 s = 4 s = 5 s = 6

Assets
Rs (t6) 3.55% −0.45% 0.24% 3.30% 3.96% −0.87%
Rs (t11) 5.37% 1.37% 3.65% 3.54% 4.34% 2.40%
Rs (t17) 7.71% 3.71% 6.92% 4.96% 5.84% 5.58%
EVs (t6) 193.89 200.80 199.57 194.31 193.20 201.52
EVs (t11) 549.76 658.18 594.03 596.91 575.74 628.48
EVs (t17) 38.15 62.89 42.13 53.83 48.18 49.79

EVs 781.79 921.87 835.74 845.05 817.11 879.79
Pure liabilities

Rs (t1) 3.00% −1.00% −0.95% 3.40% 4.00% −2.00%
Rs (t5) 3.39% −0.61% −0.08% 3.32% 3.96% −1.17%
Rs (t9) 4.44% 0.44% 2.03% 3.31% 4.05% 0.84%
Rs (t10) 4.93% 0.93% 2.90% 3.40% 4.18% 1.68%
Rs (t14) 6.46% 2.46% 5.31% 4.07% 4.92% 4.00%
EVs (t1) 99.99 100.00 100.00 99.99 99.99 100.01
EVs (t5) 48.95 50.19 50.02 48.97 48.78 50.37
EVs (t9) 402.70 445.05 427.77 414.27 406.69 440.69
EVs (t10) 84.16 96.80 90.34 88.77 86.39 94.30
EVs (t14) 61.59 83.14 67.17 73.70 69.13 74.07

EVs 697.39 775.18 735.31 725.71 710.98 759.43
Equity

EVEs 84.41 146.68 100.43 119.34 106.13 120.37
∆ EVEs 28.69 −33.58 12.67 −6.24 6.97 −7.27

One of the issues concerns currency hedging. Generally, it is done by rolling reverse
FX forward contracts, implying that the hedging cost is approximatively equal to i? − i,
where i is the domestic interest rate and i? is the foreign interest rate. This relationship
comes from the covered interest rate parity (CIP). We deduce that the hedging cost can
be large when i? � i. This has been particularly true for European and Japanese banks,
because these regions have experienced some periods of low interest rates. The question
of full hedging, partial hedging or no hedging has then been readdressed after the 2008
Global Financial Crisis. Most of banks continue to fully hedge the banking book including
the equity capital, but it is not obvious that it is optimal. Another issue has concerned the
access to dollar funding of non-US banks. Traditionally, “their branches and subsidiaries
in the United States were a major source of dollar funding, but the role of these affiliates
has declined” (Aldasoro and Ehlers, 2018, page 15). Today, we notice that a lot of non-US
banks issue many USD-denominated debt instruments in order to access dollar funding34.
Banks must now manage a complex multi-currency balance sheet, implying that currency
management has become an important topic in ALM.

7.1.4.2 Credit spread risk

According to BCBS (2016d), credit spread risk in the banking book (CSRBB) is driven
“by changes in market perception about the credit quality of groups of different credit-risky
instruments, either because of changes to expected default levels or because of changes to

34See for instance annual reports of European and Japanese banks.
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market liquidity”. In Figure 7.12, we have reproduced the scheme provided by the Basel
Committee in order to distinguish IRRBB and CSRBB. Therefore, CSRBB can be seen
as the ALM spread risk of credit-risky instruments which is not explained by IRRBB and
idiosyncratic credit risk. However, the definition provided by the Basel Committee is too
broad, and does not avoid double counting with credit and jump-to-default risk35. At of
the date of the publication of this book, the debate on CSRBB is far from finished, even if
CSRBB must be monitored and assessed since 2018.

e.g. consumer loans e.g. corporate loans

Funding rate
Reference rate

Funding margin

Administered rate Credit margin

e.g. bonds or
interest-earnings securities

Risk-free rate

Market duration spread

Market liquidity spread

Market credit spread

Idiosyncratic credit spread

Items at amortized cost Items at fair value (MtM)

C
SR

B
B

IR
R

B
B

IR
R

B
B

FIGURE 7.12: Components of interest rates

Source: BCBS (2016d, page 34).

7.2 Interest rate risk
In this section, we focus on the ALM tools that are related to the interest rate risk in the

banking book. We first introduce the concept of duration gap and show how it is related
to the economic value risk of the banking book. Then, we present the different ways to
calculate earnings-at-risk (EaR) measures and focus more particularly on the net interest
income sensitivity and the interest rate hedging strategies. The third part is dedicated to
funds transfer pricing, whose objective is to centralize all interest rate risks, to manage
them and to allocate profit between the different business units. Finally, we present an
econometric model for simulating and evaluating interest rate scenarios.

35See for example the position of the European Banking Federation (EBF): www.ebf.eu/regulation-su
pervision/credit-spread-risk-in-the-banking-book-ebf-position.

http://www.ebf.eu/
http://www.ebf.eu/
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7.2.1 Duration gap analysis
In this section, we focus on the duration gap analysis, which is an approximation of the

repricing gap analysis we have previously presented. The idea is to obtain an estimation of
∆ EVE. Although this approach is only valid in the case of parallel interest rate shocks36,
it is an interesting method because we obtain closed-form formulas. In the case of non-
parallel interest rate scenarios or if we want to obtain more accurate results, it is better to
implement the repricing gap analysis, which consists in computing the stressed economic
value of assets and liabilities in order to deduce the impact on the economic value of equity.

7.2.1.1 Relationship between Macaulay duration and modified duration

We consider a financial asset, whose price is given by the present value of cash flows:

V =
∑
tk≥t

B (t, tk) · CF (tk)

where CF (tk) is the cash flow at time tk and B (t, tk) is the associated discount factor. The
Macaulay duration D is the weighted average of the cash flow maturities:

D =
∑
tk≥t

w (t, tk) · (tk − t)

where w (t, tk) is the weight associated to the cash flow at time tk:

w (t, tk) = B (t, tk) · CF (tk)
V

In the case of a zero-coupon bond whose maturity date is T , the Macaulay duration is equal
to the remaining maturity T − t.

Let us define the yield to maturity y as the solution of the following equation:

V =
∑
tk≥t

CF (tk)(
1 + y

)(tk−t)
We have:

∂ V

∂ y =
∑
tk≥t

− (tk − t) ·
(
1 + y

)−(tk−t)−1 · CF (tk)

= − D(
1 + y

) · V
= −D · V

where D is the modified duration:
D = D

1 + y
We deduce that the modified duration is the price sensitivity measure:

D = 1
V
· ∂ V
∂ y = −∂ lnV

∂ y

36The duration gap analysis can be viewed as the first-order approximation of the repricing gap analysis.
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If the yield to maturity is low, we have D ≈ D. Since the Macaulay duration is easier to
interpret, the modified duration is more relevant to understand the impact of an interest
rate stress scenario. Indeed, we have:

∆V ≈ −D · V ·∆y

Nevertheless, we can use the following alternative formula to evaluate the impact of an
interest rate parallel shift:

∆V ≈ −D · V ·
∆y

1 + y

Remark 77 Using a continuous-time framework, the yield to maturity is defined as the
root of the following equation:

V =
∑
tk≥t

e−y(tk−t) · CF (tk)

We deduce that:

∂ V

∂ y =
∑
tk≥t

− (tk − t) · e−y(tk−t) · CF (tk)

= −D · V

It follows that the modified duration D is defined as the Macaulay duration D in continuous-
time modeling.

Example 72 We consider the following cash flows stream {tk,CF (tk)}:

tk 1 4 7 11
CF (tk) 200 500 200 100

The current zero-coupon interest rates are: R (1) = 2%, R (4) = 3%, R (7) = 4%, and
R (11) = 5%.

If we consider the discrete-time modeling framework, we obtain V = 850.77, y = 3.61%,
D = 4.427 and D = 4.273. A parallel shock of +1% decreases the economic value since
we obtain V (R+ ∆R) = 816.69. It follows that ∆V = −34.38. Using the duration-based
approximation, we have37:

∆V ≈ −D · V ·∆R
= −4.273× 850.77× 1%
= −36.35

In the case of the continuous-time modeling framework, the results become V = 848.35,
y = 3.61% and D = D = 4.422. If we consider a parallel shock of +1%, the exact value of
∆V is equal to −35.37, whereas the approximated value is equal to −37.51. In Table 7.16, we
also report the results for a parallel shock of −1%. Moreover, we indicate the case where we
stress the yield to maturity and not the yield curve. Because V

(
y + ∆R

)
6= V (R+ ∆R),

we observe a small difference between the approximation and the true value of ∆V .

37This approximation is based on the assumption that the yield curve is flat. However, numerical experi-
ments show that it is also valid when the term structure of interest rates is increasing or decreasing.
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TABLE 7.16: Impact of a parallel shift of the yield curve
Discrete-time Continuous-time

∆R +1% −1% +1% −1%
V (R+ ∆R) 816.69 887.52 812.78 886.09
∆V −34.38 36.75 −35.57 37.74
V
(
y + ∆R

)
815.64 888.42 811.94 887.02

∆V −35.13 37.64 −36.41 38.67
Approximation −36.35 36.35 −37.51 37.51

Remark 78 From a theoretical point of view, duration analysis is valid under the assump-
tion that the term structure of interest rates is flat and the change in interest rates is a
parallel shift. This framework can be extended by considering the convexity:

C = 1
V
· ∂

2 V

∂ y2

In this case, we obtain the following second-order approximation:

∆V ≈ −D · V ·∆y + 1
2C · V ·

(
∆y
)2

7.2.1.2 Relationship between the duration gap and the equity duration

Let Vj and Dj be the market value and the Macaulay duration associated to the jth

cash flow stream. Then, the market value of a portfolio that is composed of m cash flow
streams is equal to the sum of individual market values:

V =
m∑
j=1

Vj

while the duration of the portfolio is the average of individual durations:

D =
m∑
j=1

wj · Dj

where:
wj = Vj

V

This result is obtained by considering a common yield to maturity.
We recall that E (t) = A (t)−L? (t) and EVE = EVA−EVL? . Using the previous result,

we deduce that the duration of equity is equal to:

DE = EVA

EVA−EVL?
· DA −

EVL?

EVA−EVL?
· DL?

= EVA

EVA−EVL?
· DGap (7.9)

where the duration gap (also called DGAP) is defined as the difference between the duration
of assets and the duration of pure liabilities scaled by the ratio EVL? /EVA:

DGap = DA −
EVL?

EVA
· DL? (7.10)
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Another expression of the equity duration is:

DE = EVA

EVE
· DGap = LA/E ·

DGap
LE/A

(7.11)

We notice that the equity duration is equal to the duration gap multiplied by the leverage
ratio, where LA/E is the ratio between the economic value of assets and the economic value
of equity.

By definition of the modified duration, we have38:

∆ EVE = ∆ EVE

≈ −DE · EVE ·∆y

= −DE · EVE ·
∆y

1 + y

Using Equation (7.11), we deduce that:

∆ EVE ≈ −DGap · EVA ·
∆y

1 + y (7.12)

Formulas (7.10) and (7.12) are well-known and are presented in many handbooks of risk
management (Crouhy et al., 2013; Bessis, 2015).

7.2.1.3 An illustration

We consider the following balance sheet:

Assets Vj Dj Liabilities Vj Dj
Cash 5 0.0 Deposits 40 3.2
Loans 40 1.5 CDs 20 0.8

Mortgages 40 6.0 Debt 30 1.7
Securities 15 3.8 Equity capital 10
Total 100 Total 100

We have EVA = 100, EVL? = 90 and EVE = 10. We deduce that the leverage is equal to:

LA/E = EVA

EVE
= 100

10 = 10

The duration of assets is equal to:

DA = 5
100 × 0 + 40

100 × 1.5 + 40
100 × 6.0 + 15

100 × 3.8 = 3.57 years

For the pure liabilities, we obtain:

DL? = 40
90 × 3.2 + 20

90 × 0.8 + 30
90 × 1.7 = 2.17 years

It follows that the duration gap is equal to:

DGap = 3.57− 90
100 × 2.17 = 1.62 years

38We recall that EVE is an alternative expression for designating EVE .
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while the value DE of the equity duration is 16.20 years. Since DGap is equal to 1.62 years,
the average duration of assets exceeds the average duration of liabilities. This is generally
the normal situation because of the bank’s liquidity transformation (borrowing short and
lending long). In the table below, we have reported the impact of an interest rate shift on
the economic value of equity when the yield to maturity is equal to 3%:

∆y −2% −1% +1% +2%
∆ EVE 3.15 1.57 −1.57 −3.15
∆ EVE
EVE 31.46% 15.73% −15.73% −31.46%

Since the duration gap is positive, the economic value of equity decreases when interest
rates increase, because assets will fall more than liabilities. For instance, an interest rate
rise of 1% induces a negative variation of 1.57 in EVE. This impact is large and represents
a relative variation of −15.73%.

7.2.1.4 Immunization of the balance sheet

In order to reduce the sensitivity of the bank balance sheet to interest rate changes, we
have to reduce the value of |∆ EVE|. Using Equation (7.12), this is equivalent to control
the value of the duration gap. In particular, a full immunization implies that:

∆ EVE = 0 ⇔ DGap = 0

⇔ DA −
EVL?

EVA
· DL? = 0 (7.13)

If we consider the normal situation where the duration gap is positive, we have three solu-
tions:

1. we can reduce the duration of assets;

2. we can increase the relative weight of the liabilities with respect to the assets;

3. we can increase the duration of liabilities.

Generally, it takes time to implement the first two solutions. For instance, reducing the
duration of assets implies redefining the business model by reducing the average maturity
of loans. It can be done by decreasing the part of mortgages and increasing the part of
short-term loans (e.g. consumer credit or credit cards). In fact, the third solution is the
easiest way to immunize the bank balance sheet to interest rate changes. For example, the
bank can issue a long-term debt instrument. Therefore, hedging the balance sheet involves
managing the borrowing program of the bank.

Let us consider the previous example. We found DA = 3.57 and EVL?

EVA
= 90

100 . It follows
that the optimal value of the liability duration must be equal to 3.97 years:

DGap = 0⇔ DL? = 100
90 × 3.57 = 3.97 years

We assume that the bank issues a 10-year zero-coupon bond by reducing its current debt
amount. The notional of the zero-coupon bond must then satisfy this equation:

40
90 × 3.2 + 20

90 × 0.8 + 30−N
90 × 1.7 + N

90 × 10 = 3.97

or:
N = 3.97× 90− (40× 3.2 + 20× 0.8 + 30× 1.7)

10− 1.7 = 19.52
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TABLE 7.17: Bank balance sheet after immunization of the duration gap
Assets Vj Dj Liabilities Vj Dj
Cash 5 0.0 Deposits 40 3.2
Loans 40 1.5 CDs 20 0.8

Mortgages 40 6.0 Debt 10.48 1.7
Securities 15 3.8 Zero-coupon bond 19.52 10.0

Equity capital 10 0.0
Total 100 Total 100

After immunization, the duration of equity is equal to zero and we obtain the balance sheet
given in Table 7.17.

Remark 79 The duration gap analysis covers the gap risk, which is the first-order source
of interest rate risk. It is not adapted for measuring basis and option risks. For these two
risks, we need to use the repricing analysis.

7.2.2 Earnings-at-risk
Earnings-at-risk assesses potential future losses due to a change in interest rates over

a specified period. Several measures of earnings can be used: accounting earnings, interest
margins, commercial margins, etc. For interest rate scenarios, we can use predefined39,
historical or Monte Carlo scenarios. Once earnings distributions are obtained, we can analyze
the results for each scenario, derive the most severe scenarios, compute a value-at-risk, etc.
In this section, we first focus on the income gap analysis, which is the equivalent of the
duration gap analysis when analyzing interest rate income risks. Then we present the tools
for calculating the net interest income (NII). Finally, we consider hedging strategies in the
context where both ∆ EVE and NII risk measures are managed.

7.2.2.1 Income gap analysis

Definition of the gap Since ∆ EVE measures the price risk of the balance sheet, ∆ NII
measures the earnings risk of the income statement. It refers to the risk of changes in the
interest rates on assets and liabilities from the point of view of the net income. Indeed, if
interest rates change, this induces a gap (or repricing) risk because the bank will have to
reinvest assets and refinance liabilities at a different interest rate level in the future. The gap
is defined as the difference between rate sensitive assets (RSA) and rate sensitive liabilities
(RSL):

GAP (t, u) = RSA (t, u)− RSL (t, u) (7.14)

where t is the current date and u is the time horizon of the gap40. While ∆ EVE considers
all the cash flows, ∆ NII is generally calculated using a short-term time horizon, for example
the next quarter or the next year. Therefore, rate sensitive assets/liabilities correspond to
assets/liabilities that will mature or reprice before the time horizon of the gap. This is why
the interest rate gap risk is also called the repricing risk or the reset risk.

In order to calculate the interest rate gap, the bank must decide which items are rate
sensitive. This includes two main categories. The first one corresponds to items that mature

39Such as the six scenarios of the standardized IRRBB approach.
40This means that h = u− t is the maturity of the gap.
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before the time horizon t + h, whereas the second one corresponds to floating rate instru-
ments. For example, consider the following balance sheet expressed in millions of dollars:

Assets Amount Liabilities Amount
Loans Deposits
Less than 1 year 200 Non-maturity deposits 150
1 to 2 years 100 Money market deposits 250
Greater than 2 years 100 Term deposits

Mortgages Fixed rate 250
Fixed rate 100 Variable rate 100
Variable rate 350 Borrowings

Securities Less than 1 year 50
Fixed rate 50 Greater than 1 year 100

Physical assets 100 Capital 100
Total 1000 Total 1000

If the time horizon of the gap is set to one year, the rate sensitive assets are loans with
maturities of less than one year (200) and variable rate mortgages (350), while the rate
sensitive liabilities are money market deposits (250), variable rate term deposits (100) and
borrowings with maturities of less than one year (50). Therefore, we can split the balance
sheet between rate sensitive, fixed rate and non-earning assets:

Assets Amount Liabilities Amount
Rate sensitive 550 Rate sensitive 400
Fixed rate 350 Fixed rate 600
Non-earning 100 Non-earning 100

We deduce that the one-year gap is equal to $150 million:

GAP (t, t+ 1) = 550− 400 = 150

Approximation of ∆ NII We consider the following definition of the net interest income:

NII (t, u) = RSA (t, u) ·RRSA (t, u) + NRSA (t, u) ·RNRSA (t, u)−
RSL (t, u) ·RRSL (t, u)−NRSL (t, u) ·RNRSL (t, u)

where RNSA and RNSL denote assets and liabilities that are not rate sensitive and RC (t, u)
is the average interest rate for the category C and the maturity date u. We have:

∆ NII (t, u) = NII (t+ h, u+ h)−NII (t, u)

By considering a static gap41, we deduce that:

∆ NII (t, u) = RSA (t, u) · (RRSA (t+ h, u+ h)−RRSA (t, u)) +
NRSA (t, u) · (RNRSA (t+ h, u+ h)−RNRSA (t, u))−
RSL (t, u) · (RRSL (t+ h, u+ h)−RRSL (t, u))−
NRSL (t, u) · (RNRSL (t+ h, u+ h)−RNRSL (t, u))

Since interest income and interest expense do not change for fixed rate assets and liabilities
between t and t + h — RNRSA (t+ h, u+ h) = RNRSA (t, u) and RNRSL (t+ h, u+ h) −
RNRSL (t, u), we have:

∆ NII (t, u) = RSA (t, u) ·∆RRSA (t, u)− RSL (t, u) ·∆RRSL (t, u)

41This means that RSA (t+ h, u+ h) = RSA (t, u), NRSA (t+ h, u+ h) = NRSA (t, u),
RSL (t+ h, u+ h) = RSL (t, u) and NRSL (t+ h, u+ h) = NRSL (t, u) where h = u− t.
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By assuming that the impact of interest rate changes is the same for rate sensitive assets
and liabilities, we finally obtain:

∆ NII (t, u) ≈ GAP (t, u) ·∆R (7.15)

where ∆R is the parallel shock of interest rates. Income gap analysis is then described by
Equations (7.14) and (7.15).

For instance, if we consider the previous example, the one-year gap is equal to $150
million and we have the following impact on the income:

∆R −2% −1% 0% +1% +2%
∆ NII −$3 mn −$1.5 mn 0 +$1.5 mn +$3 mn

If interest rates rise by 2%, the bank expects that its income increases by $3 million. On
the contrary, the loss can be equal to $3 million if interest rates fall by 2%.

Remark 80 The previous analysis is valid for a given maturity h = u − t. For example,
∆ NII (t, t+ 0.25) measures the impact for the next three months while ∆ NII (t, t+ 1) mea-
sures the impact for the next year. It is common to consider the change in income for a
given time period [u1, u2[ where u1 = t+ h1 and u2 = t+ h2. We notice that:

∆ NII (t, u1, u2) = ∆ NII (t, u2)−∆ NII (t, u1)
= (GAP (t, u2)−GAP (t, u1)) ·∆R
= GAP (t, u1, u2) ·∆R
= (RSA (t, u1, u2)− RSL (t, u1, u2)) ·∆R

where GAP (t, u1, u2), RSA (t, u1, u2) and RSL (t, u1, u2) are respectively the static gap, rate
sensitive assets and rate sensitive liabilities for the period [u1, u2[.

7.2.2.2 Net interest income

Definition We recall that the net interest income of the bank is the difference between
interest rate revenues of its assets and interest rate expenses of its liabilities:

NII (t, u) =
∑

i∈Assets
Ni (t, u) ·Ri (t, u)−

∑
j∈Liabilities

Nj (t, u) ·Rj (t, u) (7.16)

where NII (t, u) is the net interest income at time t for the maturity date u, Ni (t, u) is the
notional outstanding at time u for the instrument i and Ri (t, u) is the associated interest
rate. This formula is similar to the approximated equation presented above, but it is based
on a full repricing model. However, this formula is static and assumes a run-off balance
sheet. In order to be more realistic, we can assume a dynamic balance sheet. However, the
computation of the net interest income is then more complex because it requires modeling
the liquidity gap and also behavioral options.

An example We consider a simplified balance sheet with the following asset and liability
positions:

• The asset position is made up of two bullet loans A and B, whose remaining maturity
is respectively equal to 18 months and 2 years. The outstanding notional of each loan
is equal to 500. Moreover, we assume that the interest rate is equal to 6% for the first
loan and 5% for the second loan.
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TABLE 7.18: Interest income schedule and liquidity gap
u− t 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Loan A 7.50 7.50 7.50 7.50 7.50 7.50
Loan B 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25

IR revenues 13.25 13.25 13.25 13.25 13.25 13.25 6.25 6.25
Debt C 6.00 6.00 6.00 6.00
Equity 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

IR expenses 6.00 6.00 6.00 6.00 0.00 0.00 0.00 0.00
NII (t, u) 7.25 7.25 7.25 7.25 13.25 13.25 6.25 6.25
LG (t, u) 0 0 0 0 −800 −800 −300 −300

• The liability position is made up of a bullet debt instrument C, whose remaining
maturity is 1 year and outstanding notional is 800. We assume that the interest rate
is equal to 3%.

• The equity capital is equal to 200.

To calculate the net interest income, we calculate the interest rate revenues and costs. By
assuming a quarterly pricing, the quarterly income of the instruments are:

IA = 1
4 × 6%× 500 = 7.50

IB = 1
4 × 5%× 500 = 6.25

IC = 1
4 × 3%× 800 = 6.00

We obtain the interest income schedule given in Table 7.18. However, calculating the net
interest income as the simple difference between interest rate revenues and expenses ignores
the fact that the balance sheet is unbalanced. In the last row in Table 7.18, we have reported
the liquidity gap. At time u = t + 1.25, the value of the liabilities is equal to 200 because
the borrowing has matured. It follows that the liquidity gap is equal to −800. At time
u = t + 1.75, the loan A will mature. In this case, the liabilities is made up of the equity
capital whereas the assets is made up of the loan B. We deduce that the liquidity gap is
equal to 200− 500 = −300.

TABLE 7.19: Balance sheet under the constraint of a zero liquidity gap
u− t 1.25 1.50 1.75 2.00

Approach #1 Debt D 500 500
Debt E 300 300 300 300

Approach #2 Loan F 500 500
Debt G 800 800 800 800

At this stage, we can explore several approaches to model the net interest income, and
impose a zero liquidity gap. In the first approach, the bank borrows 500 for the period
[t+ 1, t+ 1.50] and 300 for the period [t+ 1, t+ 2]. This corresponds to debt instruments
D and E in Table 7.19. We note R̃L (t, u) the interest rate for these new liabilities. We
notice that R̃L (t, u) is a random variable at time t, because it will be known at time t+ 1.
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We have:

NII (t, u) = 13.25− 1
4 × 800× R̃L (t, u)

= 13.25− 1
4 × 800×

(
R̃L (t, u)− 3%

)
− 1

4 × 800× 3%

= 7.25− 200×
(
R̃L (t, u)− 3%

)
for u = t+ 0.25 and u = t+ 0.5, and:

NII (t, u) = 6.25− 1
4 × 300× R̃L (t, u) = 4.00− 75×

(
R̃L (t, u)− 3%

)
for u = t+ 1.75 and u = t+ 2.0.

The drawback of the previous approach is that the size of the balance sheet has been
dramatically reduced for the two last dates. This situation is not realistic, because it assumes
that the assets are not replaced by the new production. This is why it is better to consider
that Loan A is rolled into Loan F , and the debt instrument C is replaced by the debt
instrument G (see Table 7.19). In this case, we obtain:

NII (t, u) = 6.25 + 1
4 × 500× R̃A (t, u)− 1

4 × 800× R̃L (t, u)

= 6.25 + 1
4 × 500×

(
R̃A (t, u)− 6%

)
+ 1

4 × 500× 6%−
1
4 × 800×

(
R̃L (t, u)− 3%

)
− 1

4 × 800× 3%

= 7.25 + 1
4 × 500×

(
R̃A (t, u)− 6%

)
− 1

4 × 800×
(
R̃L (t, u)− 3%

)
If we note ∆RL = R̃L (t, u) − 3% and ∆RA = R̃A (t, u) − 6%, we obtain the following
figures42:

∆RA −2% −1% 0% +1% +2% −2% −2% −1.5%
∆RL −2% −1% 0% +1% +2% 0% −1% 0.0%
t+ 1.00 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25
t+ 1.25 11.25 9.25 7.25 5.25 3.25 7.25 9.25 7.25
t+ 1.50 11.25 9.25 7.25 5.25 3.25 7.25 9.25 7.25
t+ 1.75 8.75 8.00 7.25 6.50 5.75 4.75 6.75 4.13
t+ 2.00 8.75 8.00 7.25 6.50 5.75 4.75 6.75 4.13

The case ∆RL = ∆RA is equivalent to use the income gap analysis. However, this approach
is simple and approximative. It does not take into account the maturity of the instruments
and the dynamics of the yield curve. Let us consider a period of falling interest rates. We
assume that the yield of assets is equal to the short interest rate plus 2% on average while
the cost of liabilities is generally equal to the short interest rate plus 1%. On average, the
bank captures a net interest margin (NIM) of 1%. This means that the market interest rate
was equal to 5% for Loan A, 4% for Loan B and 2% for Debt C. We can then think that
Loan A has been issued a long time ago whereas Debt C is more recent. If the interest
rate environment stays at 2%, we have R̃A (t, u) = 4% and R̃L (t, u) = 3%, which implies
that ∆RA = 4% − 6% = −2% and ∆RL = 3% − 3% = 0%. We obtain the results given
in the seventh column. We can also explore other interest rate scenarios or other business

42We have NII (t, t+ 1) = 7.25, NII (t, t+ 1.25) = NII (t, t+ 1.5) = 7.25 − 200 × ∆RL and
NII (t, t+ 1.75) = NII (t, t+ 2) = 7.25 + 125×∆RA − 200×∆RL.
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scenarios. For instance, the bank may be safer than before, meaning that the spread paid to
the market is lower (eight column) or the bank may have an aggressive loan issuing model,
implying that the interest rate margin is reduced (ninth column).

Remark 81 The previous analysis gives the impression that the net interest income is
known for u < t+ 1.5 and stochastic after. In fact, this is not true. Indeed, we notice that
the interest rates of Loans A and B are equal to 6% and 5% whereas the current interest
rates are around 2%. Therefore, we can anticipate that the bank will be subject to prepayment
issues. Our analysis does not take into account the behavior of clients and the impact of
embedded options in the net interest income43.

Mathematical formulation We reiterate that the net interest income is equal to:

NII (t, u) =
∑

i∈Assets
Ni (t, u) ·Ri (t, u)−

∑
j∈Liabilities

Nj (t, u) ·Rj (t, u)

If we consider a future date t′ > t, we have:

NII (t′, u) =
∑

i∈Assets
Ni (t′, u) ·Ri (t′, u)−

∑
j∈Liabilities

Nj (t′, u) ·Rj (t′, u)−

 ∑
i∈Assets

Ni (t′, u)−
∑

j∈Liabilities

Nj (t′, u)

 ·R (t′, u)

The future NII requires the projection of the new production and the forecasting of asset
and liability rates (or customer rates). The third term represents the liquidity gap that
must be financed or placed44. In what follows, we assume that the future liquidity gap is
equal to zero in order to obtain tractable formulas.

Since we have the identity ∆ NII (t′, u) = GAP (t′, u) ·∆R, we deduce that:

GAP (t′, u) = ∆ NII (t′, u)
∆R

=
∑

i∈Assets
Ni (t′, u) ·

(
∆Ri (t′, u)

∆R − 1
)
−

∑
j∈Liabilities

Nj (t′, u) ·
(

∆Rj (t′, u)
∆R − 1

)

If we consider a continuous-time analysis where u = t′ + dt, we obtain:

GAP (t′, u) =
∑

i∈Assets
Ni (t′, u) ·

(
∂ Ri (t′, u)

∂ R
− 1
)
−

∑
j∈Liabilities

Nj (t′, u) ·
(
∂ Rj (t′, u)

∂ R
− 1
)

where R represents the market interest rate45. Demey et al. (2003) consider two opposite
situations corresponding to two categories of asset/liability rates:

43This issue is analyzed in the third section of this chapter on page 427.
44The borrowing/lending interest rate is denoted by R (t′, u).
45We recall that the gap analysis assumes a flat yield curve.
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C1 The asset/liability rates are deterministic and independent from market interest rates:

∂ Ri (t′, u)
∂ R

= ∂ Rj (t′, u)
∂ R

= 0

This category corresponds to contractual rates that are generally fixed.

C2 The asset/liability rates depend on market interest rates:{
Ri (t′, u) = R+mA

Rj (t′, u) = R+mL

where mA and mL are the commercial margins for assets and liabilities. It follows
that:

∂ Ri (t′, u)
∂ R

= ∂ Rj (t′, u)
∂ R

= 1

This category generally concerns floating rates that are based on a market reference
rate plus a spread.

We deduce that the gap is the difference between liabilities and assets that belong to the
first category C1:

GAP (t′, u) =
∑

j∈Liabilities
j∈C1

Nj (t′, u)−
∑

i∈Assets
i∈C1

Ni (t′, u)

Modeling customer rates Until now, we have used the variable R for defining the
general level of interest rates and ∆R for defining a parallel shock on the yield curve.
However, this definition is not sufficiently precise to understand the real nature of R. In
fact, the study of client rates is essential to understand which interest rate is important for
calculating earnings-at-risk measures. In what follows, we introduce the notation R (t) =
R (t, t+ dt) and R (u) = R (u, u+ du). The current date or the agreement date is denoted
by t while u > t is a future date.

We have already distinguished fixed rates and floating (or variable) rates. By definition, a
fixed rate must be known and constant when the agreement is signed between the customer
and the bank:

R (u) = R? = R (t)

On the contrary, the customer rate is variable if:

Pr
{
R̃ (u) = R (t)

}
< 1

In this case, the customer rate is a random variable at time t and depends on a reference
rate, which is generally a market rate. Mathematically, we can write:

R̃ (u) = R (t) · 1 {u < τ}+ R̃ (τ) · 1 {u ≥ τ}
= R? · 1 {u < τ}+ R̃ (τ) · 1 {u ≥ τ} (7.17)

where τ is the time at which the customer rate will change. τ is also called the next repricing
date. For some products, τ is known while it may be stochastic in some situations46. If R̃ (τ)
is a function of a market rate, we can write:

R̃ (τ) = f (τ, r (τ))

46When the repricing date is known, it is also called the reset date.
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We use the notation r (τ), because the market rate is generally a short-term interest rate.
If we assume a linear relationship (noted HLinear), we have:

R̃ (τ) = ρ · r (τ) + m̃ (7.18)

where ρ is the correlation between the customer rate and the market rate and m̃ is related
to the commercial margin47. This is the simplest way for modeling R̃ (τ), but there are some
situations where the relationship is more complex. For example, Demey et al. (2003) study
the case where the customer rate has a cap:

R̃ (τ) = r (τ) · 1
{
r (τ) < r+}+ r+ · 1

{
r (τ) ≥ r+}+ m̃

where r+ + m̃ is the cap.
Another challenge for modeling R̃ (u) is the case where the next repricing date τ is

unknown. We generally assume that τ is exponentially distributed with parameter λ. If we
consider the linear relationship (7.18), it follows that the expected customer rate is:

R (u) = E
[
R̃ (u)

]
= R? · e−λ(u−t) + (ρ · r (u) + m̃) ·

(
1− e−λ(u−t)

)
(7.19)

Sometimes, the relationship between the customer rate and the market rate is not instan-
taneous. For instance, Demey et al. (2003) consider the case where the customer rate is an
average of the market rate over a window period h. Therefore, Equation (7.19) becomes48:

R (u) = R? · e−λ(u−t) + λ

∫ u

u−h
(ρ · r (s) + m̃) · e−λ(s−t) ds

Let us go back to the problem of determining the parallel shock ∆R. Using Equation
(7.17),we have:

∆R = R̃ (u)−R (t)

=
{

0 if u < τ
R̃ (τ)−R? otherwise

Under the assumption HLinear, we deduce that:

∆R = R̃ (τ)−R? = ρ ·∆r (7.20)

where ∆r = r (τ) − r (t) is the shock on the market rate. We notice that modeling the
net interest income variation requires determining ρ and ∆r. In the case where ρ = 0,
we retrieve the previous result that ∆ NII is not sensitive to fixed rate items. Otherwise,
Equation (7.20) shows that interest rate gaps must be conducted on a contract by contract
basis or at least for each reference rate:

“Floating-rate interest gaps can be defined for all floating-rate references (1-
month Libor, 1-year Libor, etc.). These floating-rate gaps are not fungible: they
cannot be aggregated unless assuming a parallel shift of all rates” (Bessis, 2015,
page 47).

47The commercial margin is equal to:

m = R̃ (τ)− r (τ)
= m̃− (1− ρ) r (τ)

When the correlation is equal to one, m̃ is equal to the commercial margin, otherwise it is greater.
48We assume that u− h ≥ t.
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Indeed, two contracts may have two different correlations with the same reference rate, and
two contracts may have two different reference rates.

Equation (7.20) is valid only if we assume that the next repricing date is known. If τ is
stochastic, Demey et al. (2003) obtain the following formula:

∆R (u) = E
[(
R̃ (u)−R (t)

)
· 1 {u ≥ τ}

]
= ρ ·∆r · Pr {τ ≤ u}

We conclude that the sensitivity of the customer rate to the market rate is equal to:

ρ (t, u) = ∆R (u)
∆r = ρ · Pr {τ ≤ u}

It depends on two parameters: the correlation ρ between the two rates and the probability
distribution of the repricing date τ . If τ follows an exponential distribution with parameter
λ, we have ρ (t, u) = ρ

(
1− e−λ(u−t)). We verify that ρ (t, u) ≤ ρ. The upper limit case

ρ (t, u) = ρ is reached in the deterministic case (no random repricing), whereas the function
ρ (t, u) is equal to zero if ρ is equal to zero (no correlation). By definition of the exponential
distribution, the average time between two repricing dates is equal to 1/λ. In Figure 7.13,
we have reported the function ρ (t, u) for three values of the correlation : 0%, 50% and 100%.
We show how λ impacts the sensitivity ρ (t, u) and therefore ∆ NII. This last parameter is
particularly important when we consider embedded options and customer behavior49. For
instance, λ = 0.1 implies that the contract is repriced every ten years on average (top/left
panel). It is obvious that the sensitivity is lower for this contract than for a contract that
is repriced every 2 years (top/right panel).

FIGURE 7.13: Sensitivity of the customer rate with respect to the market rate

49See Section 7.3 on page 427.
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7.2.2.3 Hedging strategies

The question of hedging is not an easy task. There is no one optimal solution, but several
answers. Moreover, this problem will be even more complicated when we will integrate the
behavioral and embedded options.

To hedge or not to hedge Since the net interest income is sensitive to interest rate
changes, it is important to define a hedging policy and to understand how it may impact
the income statement of the bank. Let us define the hedged net interest income as the sum
of the net interest income and the hedge P&L:

NIIH (t, u) = NII (t, u) +H (t, u)

In order to obtain a tractable formula of the hedge P&L H (t, u), we consider a forward rate
agreement (FRA), which is an exchange contract between the future interest rate r (u) at
the pricing date u and the current forward rate f (t, u) at the maturity date u. The hedge
P&L is then:

H (t, u) = NH (t, u) · (f (t, u)− r (u))

where NH (t, u) is the notional of the hedging strategy. We deduce that:

∆ NIIH (t, u) = ∆ NII (t, u) + ∆H (t, u)
= GAP (t, u) ·∆R (u)−NH (t, u) ·∆r (u)
= (GAP (t, u) · ρ (t, u)−NH (t, u)) ·∆r (u)

because we have ∆R (u) = ρ (t, u) ·∆r (u). The hedged NII is equal to zero if the notional
of the hedge is equal to the product of the interest rate gap and the sensitivity ρ (t, u):

∆ NIIH (t, u) = 0⇔ NH (t, u) = GAP (t, u) · ρ (t, u)

In this case, we obtain:

NIIH (t, u)−NII (t, u) = GAP (t, u) · ρ (t, u) · (f (t, u)− r (u))

We can draw several conclusions from the above mathematical framework:

• When the correlation between the customer rate and the market rate is equal to one,
the notional of the hedge is exactly equal to the interest rate gap. Otherwise, it is
lower.

• When the interest rate gap is closed, the bank does not need to hedge the net interest
income.

• If the bank hedges the net interest income, the difference NIIH (t, u) − NII (t, u) is
positive if the gap and the difference between f (t, u) and r (u) have the same sign.
For example, if the gap is positive, a decrease of interest rates is not favorable. This
implies that the hedged NII is greater than the non-hedged NII only if the forward
rate f (t, u) is greater than the future market rate r (u). This situation is equivalent
to anticipate that the forward rate is overestimated.

We conclude that hedging the interest rate gap is not systematic and depends on the
expectations of the bank. It is extremely rare that the bank fully hedges the net interest
income. The other extreme situation where the NII is fully exposed to interest rate changes
is also not very common. Generally, the bank prefers to consider a partial hedging. Moreover,
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we reiterate that the previous analysis is based on numerous assumptions50. Therefore, it is
useless to compute a precise hedging strategy because of these approximations. This is why
banks prefer to put in place macro hedging strategies with a limited number of instruments.

Hedging instruments In order to hedge the interest rate gap, the bank uses interest
rate derivatives. They may be classified into two categories: those that hedge linear interest
rate risks and those that hedge non-linear interest rate risks. The first category is made
up of interest rate swaps (IRS) and forward rate agreements (FRA), while the second
category concerns options such as caps, floors and swaptions. An IRS is a swap where two
counterparties exchange a fixed rate against a floating rate or two floating rates. This is the
hedging instrument which is certainly the most used in asset and liability management. The
fixed rate is calibrated such that the initial value of the swap is equal to zero, meaning that
the cost of entering into an IRS is low. This explains the popularity of IRS among ALM
managers. However, these hedging instruments only concern linear changes in interest rates
like the FRA instruments. In general, the ALM manager doesn’t close fully all the interest
rate gaps because this is not the purpose of a macro hedging strategy. In practice, two or
three maturities are sufficient to highly reduce the risk.

Remark 82 In order to hedge non-linear risks (slope of the yield curve, embedded options,
etc.), the bank may use options. However, they are more expensive than IRS and are much
less used by banks. One of the difficulties is the high degree of uncertainty around customer
behavioral modeling.

7.2.3 Simulation approach
We present here a general top-down econometric-based simulation framework in order

to model the dynamics of the outstanding amount for the different items of the balance
sheet. The underlying idea is that these items respond differently to key economic and
market variables. The focus is then to model the earnings-at-risk profile of these items.
The different profiles can also be aggregated in order to understand the income risk of each
business line of the bank.

The framework is based on the cointegration theory and error correction models51. It is
made up of two econometric models. We first begin by modeling the economic and market
variables x (t) = (x1 (t) , . . . , xm (t)) with a VECM:

Φx (L) ∆x (t) = Πxx (t− 1) + εx (t) (7.21)

where Φ (L) = Im − Φ1L − . . . − ΦpLp is the lag polynomial and εx (t) ∼ N (0,Σx). By
definition, Equation (7.21) is valid if we have verified that each component of x (t) is inte-
grated of order one. The choice of the number p of lags is important. Generally, we consider
a monthly econometric model, where the variables x (t) are the economic growth g (t), the
inflation rate π (t), the short-term market rate r (t), the long-term interest rate R (t), etc.
In practice, p = 3 is used in order to have quarterly relationship between economic and
market variables. The goal of this first econometric models is to simulate joint scenarios Sx
of the economy and the market. Each scenario is represented by the current values of x (t)
and the future paths of x (t+ h):

Sx = {x (t+ h) = (x1 (t+ h) , . . . , xm (t+ h)) , h = 0, 1, 2, . . .} (7.22)

50They concern the sensitivity to markets rates, the behavior of customers, the new production, the
interest rate shocks, etc.

51They are developed in Section 10.2.3 on page 655.
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These scenarios do not necessarily correspond to extreme shocks, but they model the prob-
ability distribution of all future outcomes.

The second step consists in relating the growth of the outstanding amount yi (t) of item
i to the variables x (t). For instance, let us assume that:

yi (t) = yi (t− 1) + 0.7× g (t)− 0.3× π (t)

This means that an economic growth of 1% implies that the outstanding amount of item i
will increase by 70 bps, while the inflation has a negative impact on yi (t). The first idea is
then to consider an ARX (q) model:

yi (t) =
q∑

k=1
φi,kyi (t− k) +

m∑
j=1

βi,jxj (t) + εx (t)

However, this type of model has two drawbacks. It assumes that the current value of yi (t)
is related to the current value of xj (t) and there are no substitution effects between the
different items of the balance sheet. This is why it is better to consider again a VECM
approach with exogenous variables:

Φy (L) ∆y (t) = Πyy (t− 1) +B1x (t) +B2∆x (t) + εy (t) (7.23)

where y (t) = (y1 (t) , . . . , yn (t)) and εy (t) ∼ N (0,Σy). In this case, the current value of
yi (t) is related to the current value of x (t), the monthly variation ∆x (t) and the growth of
the outstanding amount of the other items. Generally, the number q of lags is less than p.
Indeed, the goal of the model (7.23) is to include short-term substitution effects between the
different items whereas long-term substitution effects are more explained by the dynamics
of economic and market variables.

Once the model (7.23) is estimated, we can simulate the future values of the outstanding
amount for the different items with respect to the scenario Sx of the exogenous variables:

Sy | Sx = {y (t+ h) = (y1 (t+ h) , . . . , yn (t+ h)) , h = 0, 1, 2, . . .}

This framework allows going beyond the static gap analysis of interest rates, because the
outstanding amounts are stochastic. For example, Figure 7.14 shows an earnings-at-risk
analysis of the net interest income for the next six months. For each month, we report the
median of NII and the 90% confidence interval.

Remark 83 The previous framework can be used for assessing a given scenario, for exam-
ple a parallel shock of interest rates. By construction, it will not give the same result than
the income gap analysis, because this latter does not take into account the feedback effects
of interest rates on the outstanding amount.

7.2.4 Funds transfer pricing
According to Bessis (2015), the main objective of funds transfer pricing systems is to

exchange funds and determine the profit allocation between business units. This means that
all liquidity and interest rate risks are transferred to the ALM unit, which is in charge of
managing them. Business units can then lend or borrow funding at a given internal price.
This price is called the funds transfer price or the internal transfer rate, and is denoted by
FTP. For example, the FTP charges interests to the business unit for client loans, whereas
the FTP compensates the business unit for raising deposits. This implies that the balance
sheet of the different business units is immunized to changes of market rates, and the internal
transfer rates determine the net interest income of each business unit.
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FIGURE 7.14: Earnings-at-risk analysis

7.2.4.1 Net interest and commercial margins

The net interest margin (NIM) is equal to the net interest income divided by the amount
of assets:

NIM (t, u) =
∑
i∈AssetsNi (t, u) ·Ri (t, u)−

∑
j∈LiabilitiesNj (t, u) ·Rj (t, u)∑

i∈AssetsNi (t, u)

Let RA (t, u) and RL (t, u) be the interest earning assets and interest bearing liabilities (or
asset and liability amounts that are sensitive to interest rates). Another expression of the
NIM is:

NIM (t, u) = RA (t, u) ·RRA (t, u)− RL (t, u) ·RRL (t, u)
RA (t, u)

where RRA and RRL represent the weighted average interest rate of interest earning assets
and interest bearing liabilities. The net interest margin differs from the net interest spread
(NIS), which is the difference between interest earning rates and interest bearing rates:

NIS (t, u) =
∑
i∈AssetsNi (t, u) ·Ri (t, u)∑

i∈AssetsNi (t, u) −
∑
j∈LiabilitiesNj (t, u) ·Rj (t, u)∑

j∈LiabilitiesNj (t, u)
= RRA (t, u)−RRL (t, u)

Example 73 We consider the following interest earning and bearing items:

Assets Ni (t, u) Ri (t, u) Liabilities Nj (t, u) Rj (t, u)
Loans 100 5% Deposits 100 0.5%

Mortgages 100 4% Debts 60 2.5%

The interest income is equal to 100 × 5% + 100 × 4% = 9 and the interest expense is
100× 0.5% + 60× 2.5% = 2. We deduce that the net interest income is equal to 9− 2 = 7.
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Moreover, we obtain52 RA (t, u) = 200, RRA (t, u) = 4.5%, RL (t, u) = 160 and RRL (t, u) =
1.25%. We deduce that:

NIM (t, u) = 200× 4.5%− 160× 1.25%
200 = 7

200 = 3.5%

and:
NIS (t, u) = 4.5%− 1.25% = 3.25%

The net interest margin and spread are expressed in percent. NIM is the profitability ratio
of the assets whereas NIS is the interest rate spread captured by the bank.

Remark 84 In Figure 7.15, we have reported the average net interest margin in % for all
US banks from 1984 to 2019. The average NIM was equal to 3.36% at the end of the first
quarter of 2019. During the last 15 years, the average value is equal to 3.78%, the maximum
4.91% has been reached during Q1 1994 whereas the minimum 2.95% was observed in Q1
2015.

FIGURE 7.15: Evolution of the net interest margin in the US

Source: Federal Financial Institutions Examination Council (US), Net Interest Margin for all US
Banks [USNIM], retrieved from FRED, Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/USNIM, July 9, 2019.

52We have:
RRA (t, u) =

100× 5% + 100× 4%
100 + 100

= 4.5%

and:
RRL (t, u) =

100× 0.5% + 60× 2.5%
100 + 60

= 1.25%

https://fred.stlouisfed.org/
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Let us now see how to calculate the commercial margin rate. A first idea is to approxi-
mate it by the net interest margin or the net interest spread. However, these quantities are
calculated at the global level of the bank, not at the level of a business unit and even less
at the level of a product. Let us consider an asset i. From a theoretical point of view, the
commercial margin rate is the spread between the client rate of this asset Ri (t, u) and the
corresponding market rate r (t, u):

mi (t, u) = Ri (t, u)− r (t, u)

Here, we assume that Ri (t, u) and r (t, u) have the same maturity u. If we consider a liability
j, we obtain a similar formula:

mj (t, u) = r (t, u)−Rj (t, u)

In this framework, we assume that the business unit borrows at the market rate r (t, u)
in order to finance the asset i or lends to the market at the same rate r (t, u). A positive
commercial margin rate implies that Ri (t, u) > r (t, u) and r (t, u) > Rj (t, u). In the case
where we can perfectly match the asset i with the liability j, the commercial margin rate
is the net interest spread:

m (t, u) = mi (t, u) +mj (t, u)
= Ri (t, u)−Rj (t, u)

As already said, a funds transfer pricing system is equivalent to interpose the ALM unit be-
tween the business unit and the market. In the case of assets, we decompose the commercial
margin rate of the bank as follows:

mi (t, u) = Ri (t, u)− r (t, u)
= (Ri (t, u)− FTPi (t, u))︸ ︷︷ ︸

m
(c)
i

(t,u)

+ (FTPi (t, u)− r (t, u))︸ ︷︷ ︸
m

(t)
i

(t,u)

where m(c)
i (t, u) and m(t)

i (t, u) are the commercial margin rate of the business unit and the
transformation margin rate of the ALM unit. For liabilities, we also have:

mj (t, u) = m
(c)
j (t, u) +m

(t)
j (t, u)

= (FTPj (t, u)−Rj (t, u)) + (r (t, u)− FTPj (t, u))

The goal of FTP is then to lock the commercial margin rate m(c)
i (t, u) (or mj (t, u)) over

the lifetime of the product contract.
Let us consider Example 73. The FTP for the loans and the mortgages is equal to 3%,

while the FTP for deposits is equal to 1.5% and the FTP for debts is equal to 2.5%. If we
assume that the market rate is equal to 2.5%, we obtain the following results:

Assets m
(c)
i (t, u) m

(t)
i (t, u) Liabilities m

(c)
j (t, u) m

(t)
j (t, u)

Loans 2% 0.5% Deposits 1.0% 1.0%
Mortgages 1% 0.5% Debts 0.0% 0.0%

It follows that the commercial margin of the bank is equal to:

M (c) = 100× 2% + 100× 1% + 100× 1% + 60× 0%
= 4
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For the transformation margin, we have:

M (t) = 100× 0.5% + 100× 0.5% + 100× 1.0% + 60× 0%
= 2.0

We don’t have M (c) +M (t) = NII because assets and liabilities are not compensated:

NII−
(
M (c) +M (t)

)
= (RA (t, u)− RL (t, u)) · r (t, u)

= 40× 2.5%
= 1

In fact, in a funds transfer pricing system, the balance sheet issue is the problem of the ALM
unit. It is also interesting to notice that we can now calculate the commercial margin of each
product: M (c)

Loans = 2, M (c)
Mortgages = 1 and M (c)

Deposits = 1. We can then aggregate them by
business units. For example, if the business unit is responsible for loans and deposits, its
commercial margin is equal to 3.

7.2.4.2 Computing the internal transfer rates

Since the business unit knows the internal prices of funding, the commercial margin
rates are locked and the commercial margin has a smooth profile. The business unit can
then focus on its main objective, which is selling products and not losing time in managing
interest rate and liquidity risks. However, in order to do correctly its job, the internal prices
must be fair. The determination of FTPs is then crucial because it has a direct impact on
the net income of the business unit. A system of arbitrary or wrong prices can lead to a false
analysis of the income allocation, where some business units appear to be highly profitable
when the exact opposite is true. The consequence is then a wrong allocation of resources
and capital.

The reference rate If we consider the transformation margin rate, we have m(t)
i (t, u) =

FTPi (t, u) − r (t, u). The internal prices are fair if the corresponding mark-to-market is
equal to zero on average, because the goal of FTP is to smooth the net interest income of
each business unit and to allocate efficiently the net interest income between the different
business units. For a contract with a bullet maturity, this implies that:

FTPi (t, u) = E [r (t, u)]

The transformation margin can then be interpreted as an interest rate swap53 receiving a
fixed leg FTPi (t, u) and paying a floating leg r (t, u). It follows that the funds transfer price
is equal to the market swap rate at the initial date t with the same maturity than the asset
item i (Demey et al., 2003).

In practice, it is impossible to have funds transfer prices that depend on the initial
date and the maturity of each contract. Let us first assume that the bank uses the short
market rate r (u) for determining the funds transfer prices and considers globally the new
production NP (t) instead of the different individual contracts. The mark-to-market of the
transformation margin satisfies then the following equation:

Et
[∫ ∞

t

B (t, u) NP (t) S (t, u) (FTP (t, u)− r (u)) du
]

= 0

53In the case of liabilities, the transformation margin is an interest rate swap paying the fixed leg
FTPi (t, u) and receiving the floating leg r (t, u).
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As noticed by Demey et al. (2003), we need another constraint to determine explicitly the
internal transfer rate, because the previous equation is not sufficient. For instance, if we
assume that the internal transfer rate is constant over the lifetime of the new production
— FTP (t, u) = FTP (t), we obtain:

FTP (t, u) =
Et
[∫∞
t
B (t, u) S (t, u) r (u) du

]
Et
[∫∞
t
B (t, u) S (t, u) du

]
The drawback of this approach is that the commercial margin is not locked, and the business
unit is exposed to the interest rate risk. On the contrary, we can assume that the commercial
margin rate of the business unit is constant:

R (u)− FTP (t, u) = m

Demey et al. (2003) show that54:

FTP (t, u) = R (u) +
Et
[∫∞
t
B (t, u) S (t, u) (r (u)−R (u)) du

]
Et
[∫∞
t
B (t, u) S (t, u) du

]
The term structure of funds transfer prices According to Bessis (2015), there are
two main approaches for designing a funds transfer pricing system: cash netting and central
cash pool systems. In the first case, the business unit transfers to the ALM unit only the net
cash balance, meaning that the internal transfer rates apply only to a fraction of asset and
liability items. This system presents a major drawback, because business units are exposed
to interest rate and liquidity risks. On the contrary, all funding and investment items are
transferred into the ALM book in the second approach. In this case, all items have their
own internal transfer rate. In order to reduce the complexity of the FTP system, assets
and liabilities are generally classified into homogeneous pools in terms of maturity, credit,
etc. In this approach, each pool has its own FTP. For example, the reference rate of long
maturity pools is a long-term market rate while the reference rate of short maturity pools
is a short-term market rate. In Figure 7.16, we have represented the term structure of the
FTPs. Previously, we have seen that the reference rate is the market swap rate, meaning
that the reference curve is the IRS curve. In practice, the FTP curve will differ from the
IRS curve for several reasons. For instance, the reference curve can be adjusted by adding a
credit spread in order to reflect the credit-worthiness of the bank, a bid-ask spread in order
to distinguish assets and liabilities, a behavior-based spread because of prepayment and
embedded options, and a liquidity spread. Therefore, we can decompose the funds transfer
price as follows:

FTP (t, u) = FTPIR (t, u) + FTPLiquidity (t, u) + FTPOther (t, u)

where FTPIR (t, u) is the interest rate component, FTPIR (t, u) is the liquidity component
and FTPOther (t, u) corresponds to the other components. The FTP curve can then be
different than the IRS curve for the reasons presented above. But it can also be different
because of business or ALM decisions. For instance, if the bank would like to increase its
mortgage market share, it can reduce the client rate Ri (t, u) meaning that the commercial

54Using this formulation, we can show the following results:
• for a loan with a fixed rate, the funds transfer price is exactly the swap rate with the same maturity

than the loan and the same amortization scheme than the new production;
• if the client rate R (u) is equal to the short-term market rate r (u), the funds transfer price FTP (t, u)

is also equal to r (u).
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margin m
(c)
i (t, u) decreases, or it can maintain the commercial margin by reducing the

internal transfer rate FTPi (t, u). Another example concerns the investment maturity of
retail deposits. Each time this maturity is revisited, it has a big impact on the retail business
unit because a shorter maturity will reduce the internal transfer price and a longer maturity
will increase the internal transfer price. Therefore, the FTP of deposits highly impacts the
profitability of the retail business unit.

FIGURE 7.16: The term structure of FTP rates

7.3 Behavioral options
In this section, we focus on three behavioral options that make it difficult to calculate

liquidity and interest rate risks. They have been clearly identified by the BCBS (2016d)
and concern non-maturity deposits, prepayment risk and redemption (or early termination)
issues. For NMDs, the challenge is to model the deposit volume and the associated implicit
duration. For the two other risks, the goal is to calculate prepayment rates and redemption
ratios on a yearly basis.

7.3.1 Non-maturity deposits
Let us assume that the deposit balance of the client A is equal to $500. In this case,

we can assume that the duration of this deposit is equal to zero day, because the client
could withdraw her deposit volume today. Let us now consider 1 000 clients, whose deposit
balance is equal to $500. On average, we observe that the probability to withdraw $500 at
once is equal to 50%. The total amount that may be withdrawn today is then between $0
and $500 000. However, it is absurd to think that the duration of deposits is equal to zero,
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because the probability that $500 000 are withdrawn is less than 10−300%! Since we have
Pr {S > 275000} < 0.1%, we can decide that 55% of the deposit balance has a duration
of zero day, 24.75% has a duration of one day, 11.14% has a duration of two days, etc. It
follows that the duration of deposits depends on the average behavior of customers and the
number of account holders, but many other parameters may have an impact on non-maturity
deposits. From a contractual point of view, deposits have a very short-term duration. From
a statistical point of view, we notice that a part of these deposits are in fact very stable
because of the law of large numbers.

NMDs are certainly the balance sheet item that is the most difficult to model. There
are multiple reasons. The first reason is the non-specification of a maturity in the contract.
The second reason is that NMDs are the most liquid instruments and their transaction
costs are equal to zero, implying that subscriptions and redemptions are very frequent.
This explains that the volume of deposits is the most volatile among the different banking
products at the individual level. Another reason is the large number of embedded options
that creates significant gamma and vega option risks (Blöchlinger, 2015). Finally, the volume
of NMDs is very sensitive to the monetary policy (Bank of Japan, 2014), because NMDs
are part of the M1 money supply, but also of the M2 money supply. Indeed, NMDs is
made up of demand deposits (including overnight deposits and checkable accounts) and
savings accounts. M1 captures demand deposits (and also currency in circulation) while
M2 − M1 is an approximation of savings accounts. In what follows, we do not make a
distinction between NMDs, but it is obvious that the bank must distinguish demand deposits
and savings accounts in practice. Generally, academics model behavioral options related to
NMDs by analyzing substitution effects between NMDs and term deposits. In the real life,
demand-side substitution is more complex since it also concerns the cross-effects between
demand deposits and savings accounts.

7.3.1.1 Static and dynamic modeling

In the case of non-maturity deposits, it is impossible to make the distinction between
the entry dates. This means that the stock amortization function S? (t, u) must be equal to
the amortization function S (t, u) of the new production. This implies that the hazard rate
λ (t, u) of the amortization function S (t, u) does not depend on the entry date t:

λ (t, u) = λ (u)

Indeed, we have by definition:

S (t, u) = exp
(
−
∫ u

t

λ (s) ds
)

and we verify that55:

S? (t, u) =
∫ t
−∞NP (s)S (s, u) ds∫ t
−∞NP (s)S (s, t) ds

= S (t, u)

According to Demey et al. (2003), the concept of new production has no meaning. Then,
we must focus on the modeling of the current volume of NMDs, which is given by Equation

55This result is based on the following computation:∫ t
−∞ NP (s) e−

∫ u
s
λ(v) dv ds∫ t

−∞ NP (s) e−
∫ t
s
λ(v) dv ds

=

∫ t
−∞ NP (s) e−

(∫ t
s
λ(v) dv+

∫ u
t
λ(v) dv

)
ds∫ t

−∞ NP (s) e−
∫ t
s
λ(v) dv ds

= e
−
∫ u
t
λ(v) dv
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(7.7) on page 386:

N (t) =
∫ t

−∞
NP (s) S (s, t) ds

It follows that:

dN (t)
dt = NP (t) S (t, t)−

∫ t

−∞
NP (s) f (s, t) ds

= NP (t)− λ (t)
∫ t

−∞
NP (s) S (s, t) ds

or:
dN (t) = (NP (t)− λ (t)N (t)) dt (7.24)

Therefore, the variation of N (t) is the difference between deposit inflows NP (t) and deposit
outflows λ (t)N (t). In the case where the new production and the hazard rate are constant
– NP (t) = NP and λ (t) = λ, we obtain56 N (t) = N∞ + (N0 −N∞) e−λ(t−t0) where
N0 = N (t0) is the current value and N∞ = λ−1 NP is the long-term value of N (t). In this
case, Equation (7.24) becomes:

dN (t) = λ (N∞ −N (t)) dt (7.25)

We recognize the deterministic part of the Ornstein-Uhlenbeck process:

dN (t) = λ (N∞ −N (t)) dt+ σ dW (t) (7.26)

where W (t) is a Brownian motion. In this case, the solution is given by57:

N (t) = N0e
−λ(t−t0) +N∞

(
1− e−λ(t−t0)

)
+ σ

∫ t

t0

e−λ(t−s) dW (s) (7.27)

The estimation of the parameters (λ,N∞, σ) can be done using the generalized method of
moments (GMM) or the method of maximum likelihood (ML). In this case, we can show
that:

N (t) | N (s) = Ns ∼ N
(
µ(s,t), σ

2
(s,t)

)
where:

µ(s,t) = Nse
−λ(t−s) +N∞

(
1− e−λ(t−s)

)
and:

σ2
(s,t) = σ2

(
1− e−2λ(t−s)

2λ

)
Example 74 We consider a deposit account with the following characteristics: N∞ =
$1 000, λ = 10 and σ = $1 000.

The frequency λ means that the average duration of the deposit balance is equal to
1/λ. In our case, we find 1/10 = 0.1 years or 1.2 months. The new production is NP =
λN∞ = $10 000 . This new production can be interpreted as the annual income of the client

56The solution of Equation (7.24) is given by:

N (t)−
NP
λ

=
(
N0 −

NP
λ

)
e−λ(t−t0)

57See Appendix A.3.8.2 on page 1075.
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that is funded the deposit account. In Figure 7.17, the top panel represents the expected
value µ(0,t) of the deposit balance by considering different current values N0, the top left
panel corresponds to the density function58 f(s,t) (x) of N (t) given that N (s) = Ns and
the bottom panel shows three simulations of the stochastic process N (t).

FIGURE 7.17: Statistics of the deposit amount N (t)

Another extension of Model (7.25) is to make the distinction between stable and non-
stable deposits. Let g be the growth rate of deposits. The total amount of deposits D (t) is
given by:

D (t) = eg(t−s)
nt∑
i=1

Ni (t)

where nt is the number of deposit accounts and Ni (t) is the deposit balance of the ith
deposit account. It follows that:

D (t) = eg(t−s)
nt∑
i=1

N∞,i + eg(t−s)
nt∑
i=1

(Ns,i −N∞,i) e−λi(t−s) +

eg(t−s)
nt∑
i=1

σi

√
1− e−2λi(t−s)

2λi
εi (t)

where εi (t) ∼ N (0, 1). By considering a representative agent, we can replace the previous
equation by the following expression:

D (t) = D∞e
g(t−s) + (Ds −D∞) e(g−λ)(t−s) + ε (t) (7.28)

58We have:

f(s,t) (x) =
1

σ (s, t)
√

2π
exp

(
−

1
2

(
x− µ(s,t)

σ(s,t)

)2
)
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where D∞ =
∑nt
i=1N∞,i, Ds =

∑nt
i=1Ns,i, λ−1 is the weighted average duration of deposits

and ε (t) is the stochastic part. Demey et al. (2003) notice that we can decompose D (t)
into two terms:

D (t) = Dlong (s, t) +Dshort (s, t)
where Dlong (s, t) = D∞e

g(t−s) and Dshort (s, t) = (Ds −D∞) e(g−λ)(t−s) +ε (t). This break-
down seems appealing at first sight, but it presents a major drawback. Indeed, the short
component Dshort (s, t) may be negative. In practice, it is better to consider the following
equation:

D (t) = ϕD∞e
g(t−s)︸ ︷︷ ︸

Dstable(s,t)

+ (Ds −D∞) e(g−λ)(t−s) + ε (t) + (1− ϕ)D∞eg(t−s)︸ ︷︷ ︸
Dnon−stable(s,t)

where Dstable (s, t) corresponds to the amount of stable deposits and Dnon−stable (s, t) =
D (t)−Dstable (s, t) is the non-stable deposit amount. At time t = s, we verify that59:

D (t) = Dstable +Dnon−stable (t)

The estimation of stable deposits is a two-step process. First, we estimate D∞ by using the
ML method. Second, we estimate the fraction ϕ < 1 of the long-run amount of deposits
that can be considered as stable. Generally, we calibrate the parameter ϕ such that ϕN∞
is the quantile of D (t) at a given confidence level (e.g. 90% or 95%).

In Figure 7.18, we assume that the deposit amount D (t) follows an Ornstein-Uhlenbeck
process with parameters D∞ = $1 bn, λ = 5 and σ = $200 mn. In the top/right panel,
we have reported the Dlong/Dshort breakdown. We verify that the short component may
be negative, meaning the long component cannot be considered as a stable part. This is
not the case with the Dstable/Dnon−stable breakdown given in the bottom panels. The big
issue is of course the estimation of the parameter ϕ. One idea might be to calibrate ϕ such
that Pr {D (t) ≤ ϕD∞} = 1 − α given the confidence level α. If we consider the Ornstein-
Uhlenbeck dynamics, we obtain the following formula:

ϕ = 1− σΦ−1 (1− α)
D∞
√

2λ

In our example, this ratio is respectively equal to 85.3%, 89.6% and 91.9% when α takes
the value 99%, 95% and 90%.

Remark 85 We recall that the Basel Committee makes the distinction between stable and
core deposits. It is assumed that the interest rate elasticity of NMDs is less than one. Core
deposits are the proportion of stable deposits, whose pass through sensitivity is particularly
low, meaning they are “unlikely to reprice even under significant changes in interest rate
environment” (BCBS, 2016d, page 26).

7.3.1.2 Behavioral modeling

If we assume that the growth rate g is equal to zero, the linearization of Equation (7.28)
corresponds to the Euler approximation of the Ornstein-Uhlenbeck process:

D (t) ≈ D (s) + λ (D∞ −D (s)) + ε (t) (7.29)

59The previous results are based on the dynamic analysis between time s and t. If we prefer to adopt a
static analysis, the amount of non-stable deposits must be defined as follows:

Dnon−stable (t) = D (t)− ϕD∞
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FIGURE 7.18: Stable and non-stable deposits

Here, D (t) is the value of the non-maturity account balance or deposit volume. A similar
expression is obtained by considering the individual deposit amount N (t) instead of D (t).
In what follows, we use the same notation D (t) for defining aggregated and individual
deposit balances. Let us come back to the general case: dD (t) = (NP (t)− λ (t)D (t)) dt.
By assuming that the new production is a function of the current balance, we have NP (t) =
g (t,X (t))D (t) where g (t,X (t)) depends on a set of explanatory variables X (t). If follows
that d lnD (t) = (g (t,X (t))− λ (t)) dt and:

lnD (t) ≈ lnD (s) + g (s,X (s))− λ (s) (7.30)

Modeling the behavior of the client and introducing embedded options can be done by
combining Equations (7.29) and (7.30):

lnD (t) = lnD (s) + λ (lnD∞ − lnD (s)) + g (t,X (t)) + ε (t)

In this case, the main issue is to specify g (t,X (t)) and the explanatory variables that
impact the dynamics of the deposit volume. Most of the time, g (t,X (t)) depends on two
variables: the deposit rate i (t) and the market rate r (t). In what follows, we present several
models that have been proposed for modeling either D (t) or i (t) or both. The two pioneer
models are the deposit balance model of Selvaggio (1996) and the deposit rate model of
Hutchison and Pennacchi (1996).

The Hutchison-Pennacchi-Selvaggio framework In Selvaggio (1996), the deposit
rate i (t) is exogenous and the bank account holder modifies his current deposit balance
D (t) to target a level D? (t), which is defined as follows:

lnD? (t) = β0 + β1 ln i (t) + β2 lnY (t)

where Y (t) is the income of the account holder. The rational of this model is the following.
In practice, the bank account holder targets a minimum positive balance in order to meet
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his current liquidity and consumption needs, which are a function of his income Y (t). For
example, we can assume that the client with a monthly income of $10 000 targets a larger
amount than the client with a monthly income of $1 000. Moreover, we can assume that the
target balance depends on the deposit rate i (t). The elasticity coefficient must be positive,
meaning that the client has a high incentive to transfer his money into a term deposit
account if the deposit rate is low. At time t, the account holder can face two situations.
If Dt−1 < D?

t , he will certainly increase his deposit volume in order to increase his cash
liquidity. If Dt−1 > D?

t , he will certainly transfer a part of his deposit balance into his
term account. Therefore, the behavior of the bank account holder can be represented by a
mean-reverting AR(1) process:

lnD (t)− lnD (t− 1) = (1− φ) (lnD? (t)− lnD (t− 1)) + ε (t) (7.31)

where ε (t) ∼ N
(
0, σ2) is a white noise process and φ ≤ 1 is the mean-reverting parameter.

It follows that:

lnD (t) = φ lnD (t− 1) + (1− φ) lnD? (t) + ε (t)
= φ lnD (t− 1) + β′0 + β′1 ln i (t) + β′2 lnY (t) + ε (t) (7.32)

where β′k = (1− φ)βk. Let d (t) = lnD (t) be the logarithm of the deposit volume. The
model of Selvaggio (1996) is then a ARX(1) process:

d (t) = φd (t− 1) + (1− φ) d? (t) + ε (t) (7.33)

where d? (t) = lnD? (t) is the exogenous variable.
In practice, the bank does not know the value θ = (φ, β0, β1, β2, σ) of the parameters.

Moreover, these parameters are customer-specific and are different from one customer to
another. The bank can then estimate the vector θ for a given customer if it had a sufficient
history. For instance, we consider that a two-year dataset of monthly observations or a
ten-year dataset of quarterly observations is generally sufficient to estimate five parameters.
However, the variables i (t) and Y (t) rarely change, meaning that it is impossible to estimate
θ for a given customer. Instead of using a time-series analysis, banks prefer then to consider
a cross-section/panel analysis. Because Model (7.33) is linear, we can aggregate the behavior
of the different customers. The average behavior of a customer is given by Equation (7.32)
where the parameters φ, β0, β1, β2 and σ are equal to the mean of the customer parameters.
This approach has the advantage to be more robust in terms of statistical inference. Indeed,
the regression is performed using a large number of observations (number of customers ×
number of time periods).

In the previous model, the deposit interest rate is given and observed at each time
period. Hutchison and Pennacchi (1996) propose a model for fixing the optimal value of
i (t). They assume that the bank maximizes its profit:

i? (t) = arg max Π (t)

where the profit Π (t) is equal to the revenue minus the cost:

Π (t) = r (t) ·D (t)− (i (t) + c (t)) ·D (t)

In this expression, r (t) is the market interest rate and c (t) is the cost of issuing deposits.
By assuming that D (t) is an increasing function of i (t), the first-order condition is:

(r (t)− (i (t) + c (t))) · ∂ D (t)
∂ i (t) −D (t) = 0
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We deduce that:

i? (t) = r (t)− c (t)−
(
∂ D (t)
∂ i (t)

)−1
D (t)

= r (t)−
(
c (t) +

(
∂ d (t)
∂ i (t)

)−1
)

= r (t)− s (t) (7.34)

The deposit interest rate is then equal to the market interest rate r (t) minus a spread60
s (t). Equations (7.32) and (7.34) are the backbone of various non-maturity deposit models.

The IRS framework Using arbitrage theory, Jarrow and van Deventer (1998) show that
the deposit rate must be lower than the market rate61 – i (t) ≤ r (t), and the current market
value of deposits is the net present value of the cash flow stream D (t):

V (0) = E

[ ∞∑
t=0

B (0, t+ 1) (r (t)− i (t))D (t)
]

(7.35)

where B (0, t) is the discount factor. Jarrow and van Deventer (1998) interpret V (0) as an
exotic interest rate swap, where the bank receives the market rate and pays the deposit rate.
Since the present value of the deposit liability of the bank is equal to L (0) = D (0)−V (0),
the hedging strategy consists in “investing D (0) dollars in the shortest term bond B (0, 1)
and shorting the exotic interest rate swap represented by V (0)” (Jarrow and van Deventer,
1998, page 257). The complete computation of the hedging portfolio requires specifying i (t)
andD (t). For example, Jarrow and van Deventer (1998) consider the following specification:

lnD (t) = lnD (t− 1) + β0 + β1r (t) + β2 (r (t)− r (t− 1)) + β3t (7.36)

and:
i (t) = i (t) + β′0 + β′1r (t) + β′2 (r (t)− r (t− 1)) (7.37)

The deposit balance and the deposit rate are linear in the market rate r (t) and the variation
of the market rate ∆r (t). The authors also add a trend in Equation (7.36) in order to take
into account macroeconomic variables that are not included in the model.

The previous model is fully tractable in continuous-time. Beyond these analytical for-
mulas, the main interest of the Jarrow-van Deventer model is to show that the modeling of
non-maturity deposits is related to the modeling of interest rate swaps. Another important
contribution of this model is the introduction of the replicating portfolio. Indeed, it is com-
mon to break down deposits into stable and non-stable deposits, and stable deposits into
core and non-core deposits. The idea is then to replicate the core deposits with a hedging
portfolio with four maturities (3, 5, 7 and 10 years). In this case, the funds transfer pricing
of non-maturity deposits is made up of four internal transfer rates corresponding to the
maturity pillars of the replicating portfolio.

60We notice that the spread s (t) is the sum of the cost c (t) and the Lerner index η (t), where η (t) = 1/e (t)
and e (t) is the interest rate elasticity of the demand.

61This inequality is obtained by assuming no arbitrage opportunities for individuals and market seg-
mentation. In particular, Jarrow and van Deventer (1998) consider that the competition among banks is
imperfect because of entry and mobility barriers to the banking industry.
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Asymmetric adjustment models O’Brien (2001) introduces an asymmetric adjustment
of the deposit rate:

∆i (t) = α (t) · (̂ı (t)− i (t− 1)) + η (t)

where ı̂ (t) is the conditional equilibrium deposit rate and:

α (t) = α+ · 1 {ı̂ (t) > i (t− 1)}+ α− · 1 {ı̂ (t) < i (t− 1)}

If ı̂t > i (t− 1), we obtain ∆i (t) = α+ · (̂ı (t)− i (t− 1)) + η (t), otherwise we have ∆i (t) =
α− · (̂ı (t)− i (t− 1)) + η (t). The distinction between α+ and α− can be justified by the
asymmetric behavior of banks and the rigidity of deposit rates. In particular, O’Brien (2001)
suggests that α− > α+, implying that banks adjust more easily the deposit rate when the
market rate decreases than when it increases. In this model, the deposit balance is a function
of the spread r (t)− i (t):

lnD (t) = β0 + β1 lnD (t− 1) + β2 (r (t)− i (t)) + β3 lnY (t) + ε (t)

Moreover, O’Brien (2001) assumes that the conditional equilibrium deposit rate is a linear
function of the market rate:

ı̂ (t) = γ0 + γ1 · r (t)

In the previous model, the asymmetric adjustment explicitly concerns the deposit in-
terest rate i (t) and implicitly impacts the deposit balance D (t) because of the spread
r (t)− i (t). Frachot (2001) considers an extension of the Selvaggio model by adding a cor-
rection term that depends on the market interest rate r (t) and a threshold:

lnD (t)− lnD (t− 1) = (1− φ) (lnD? (t)− lnDt−1) + δc (r (t) , r?) (7.38)

where δc (r (t) , r?) = δ ·1 {r (t) ≤ r?} and r? is the interest rate floor. When market interest
rates are too low and below r?, the bank account holder does not make the distinction
between deposit and term balances, and we have:

δc (r (t) , r?) =
{
δ if r (t) ≤ r?
0 otherwise

Contrary to the Selvaggio model, the average behavior is not given by Equation (7.38) be-
cause of the non-linearity pattern. Let f be the probability density function of the threshold
r? among the different customers of the bank. On average, we have:

E [δc (r (t) , r?)] =
∫ ∞

0
δ · 1 {r (t) ≤ x} · f (x) dx

= δ · (1− F (r (t)))

The average behavior is then given by the following equation:

d (t)− d (t− 1) = (1− φ) (d? (t)− d (t− 1)) + δ (1− F (r (t)))

where d (t) = lnD (t) and d? (t) = lnD? (t). For example, if we assume that the distribution
of r? is uniform on the range [0; r?max], we obtain f (x) = 1/r?max and F (x) = min (x/r?max, 1).
We deduce that:

d (t)− d (t− 1) = (1− φ) (d? (t)− d (t− 1)) + δ

(
1−min

(
r (t)
r?max

, 1
))

= (1− φ) (d? (t)− d (t− 1)) + δ
max (r?max − r (t) , 0)

r?max
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In the case where r? ∼ N
(
µ?, σ

2
?

)
, we obtain:

d (t)− d (t− 1) = (1− φ) (d? (t)− d (t− 1)) + δΦ
(
µ? − r (t)

σ?

)

Another asymmetric model was proposed by OTS (2001):

d (t) = d (t− 1) + ∆ ln
(
β0 + β1 arctan

(
β2 + β3

i (t)
r (t)

)
+ β4i (t)

)
+ ε (t)

where ∆ corresponds to the frequency. The ‘Net Portfolio Value Model’ published by the
Office of Thrift Supervision62 is a comprehensive report that contains dozens of models in
order to implement risk management and ALM policies. For instance, Chapter 6 describes
the methodologies for modeling liabilities and Section 6.D is dedicated to demand deposits.
These models were very popular in the US in the 1990s. In 2011, the Office of the Comptroller
of the Currency (OCC) provided the following parameters for the monthly model63 of
transaction accounts: β0 = 0.773, β1 = −0.065, β2 = −5.959, β3 = 0.997 and β4 = 1
bp. In the case of money market accounts, the parameters were β0 = 0.643, β1 = −0.069,
β2 = −6.284, β3 = 2.011 and β4 = 1 bp.

FIGURE 7.19: Impact of the market rate on the growth rate of deposits

In Figure 7.19, we compare the growth rate g (t) of deposits for the different asymmetric
models. For the O’Brien model, the growth rate is equal to g (t) = β2 (r (t)− i (t)). In the
case of the Frachot model, the market rate has only a positive impact because δc (r (t) , r?) ≥
0. This is why we consider an extended version where the correction term is equal to

62The mission of OTS is to “supervise savings associations and their holding companies in order to
maintain their safety and soundness and compliance with consumer laws and to encourage a competitive
industry that meets America’s financial services needs”.

63We have ∆ = 1/12.
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δc (r (t) , r?)− δ−. The growth rate is then g (t) = δ (1− F (r (t)))− δ−. Finally, the growth
rate of the OTS model is equal to g (t) = ln

(
β0 + β1 arctan

(
β2 + β3

i(t)
r(t)

)
+ β4i (t)

)
. Using

several value of the deposit rate i (t), we measure the impact of the market rate r (t) on
the growth rate g (t) using the following parameters: β2 = −4 (O’Brien model), δ = 30%,
µ? = 5%, σ? = 1% and δ− = 10% (Frachot model), and β0 = 1.02, β1 = 0.2, β2 = −7,
β3 = 5 and β4 = 0 (OTS model). The O’Brien model is linear while the Frachot model is
non-linear. However, the Frachot model does not depend on the level of the deposit rate
i (t). The OTS model combines non-linear effects and the dependence on the deposit rate.

Remark 86 These different models have been extended in order to take into account other
explanatory variables such that the CDS of the bank, the inflation rate, the deposit rate
competition, lagged effects, etc. We can then use standard econometric and time-series tools
for estimating the unknown parameters.

7.3.2 Prepayment risk
A prepayment is the settlement of a debt or the partial repayment of its outstanding

amount before its maturity date. It is an important risk for the ALM of a bank, because
it highly impacts the net interest income and the efficiency of the hedging portfolio. For
example, suppose that the bank has financed a 10-year mortgage paying 5% through a
10-year bond paying 4%. The margin on this mortgage is equal to 1%. Five years later,
the borrower prepays the mortgage because of a fall in interest rates. In this case, the
bank receives the cash of the mortgage refund whereas it continues to pay a coupon of 4%.
Certainly, the cash will yield a lower return than previously, implying that the margin is
reduced and may become negative.

Prepayment risk shares some common features with default risk. Indeed, the prepayment
time can be seen as a stopping time exactly like the default time for credit risk. Prepayment
and default are then the two actions that may terminate the loan contract. This is why
they have been studied together in some research. However, they also present some strong
differences. In the case of the default risk, the income of the bank is reduced because both
interest and capital payments are shut down. In the case of the prepayment risk, the bank
recovers the capital completely, but no longer receives the interest due. Moreover, while
default risk increases when the economic environment is bad or interest rates are high,
prepayment risk is more pronounced in a period of falling interest rates.

In the 1980s, prepayment has been extensively studied in the case of RMBS. The big
issue was to develop a pricing model for GNMA64 mortgage-backed pass-through securities
(Dunn and McConnell, 1981; Brennan and Schwartz, 1985; Schwartz and Torous, 1989).
In these approaches, the prepayment option is assimilated to an American call option and
the objective of the borrower is to exercise the option when it has the largest value65
(Schwartz and Torous, 1992). However, Deng et al. (2000) show that “there exists significant
heterogeneity among mortgage borrowers and ignoring this heterogeneity results in serious
errors in estimating the prepayment behavior of homeowners”. Therefore, it is extremely
difficult to model the prepayment behavior, because it is not always a rational decision
and many factors affect prepayment decisions (Keys et al., 2016; Chernov et al., 2017).
This microeconomic approach is challenged by a macroeconomic approach, whose goal is to
model the prepayment rate at the portfolio level and not the prepayment time at the loan
level.

64The Government National Mortgage Association (GNMA or Ginnie Mae) has already been presented
on page 139.

65This implies that the call option is in the money.
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In what follows, we focus on mortgage loans, because it is the main component of pre-
payment risk. However, the analysis can be extended to other loans, for example consumer
credit, student loans and leasing contracts. The case of student loans is very interesting
since students are looking forward to repay their loan as soon as possible once they have
found a job and make enough money.

7.3.2.1 Factors of prepayment

Following Hayre et al. (2000), prepayments are caused by two main factors: refinancing
and housing turnover. Let i0 be the original interest rate of the mortgage or the loan. We
note i (t) the interest rate of the same mortgage if the household would finance it at time
t. It is clear that the prepayment time τ depends on the interest rate differential, and
we can assume that the prepayment probability is an increasing function of the difference
∆i (t) = i0 − i (t):

P (t) = Pr {τ ≤ t} = ϑ (i0 − i (t))

where ∂xϑ (x) > 0. For instance, if the original mortgage interest rate is equal to 10% and
the current mortgage interest rate is equal to 0%, nobody benefits from keeping the original
mortgage, and it is preferable to fully refinance the mortgage. This situation is particularly
true in a period of falling interest rates. The real life example provided by Keys et al. (2016)
demonstrates the strong implication that a prepayment may have on household budgeting:

“A household with a 30-year fixed-rate mortgage of $200 000 at an interest
rate of 6.0% that refinances when rates fall to 4.5% (approximately the average
rate decrease between 2008 and 2010 in the US) saves more than $60 000 in
interest payments over the life of the loan, even after accounting for refinance
transaction costs. Further, when mortgage rates reached all-time lows in late
2012, with rates of roughly 3.35% prevailing for three straight months, this
household with a contract rate of 6.5% would save roughly $130 000 over the life
of the loan by refinancing” (Keys et al., 2016, pages 482-483).

As already said, the prepayment value is the premium of an American call option, mean-
ing that we can derive the optimal option exercise. In this case, the prepayment strategy
can be viewed as an arbitrage strategy between the market interest rate and the cost of
refinancing. In practice, we observe that the prepayment probability P (t) depends on other
factors: loan type, loan age, loan balance, monthly coupon (Elie et al., 2002). For example, it
is widely accepted that the prepayment probability is an increasing function of the monthly
coupon.

The second factor for explaining prepayments is housing turnover. In this case, the
prepayment decision is not motivated by refinancing, but it is explained by the home sale due
to life events. For instance, marriage, divorce, death, children leaving home or changing jobs
explain a large part of prepayment rates. Another reason is the housing market dynamics,
in particular home prices that have an impact on housing turnover. These different factors
explain that we also observe prepayments even when interest rates increase. For example, the
upgrading housing decision (i.e. enhancing the capacity or improving the quality of housing)
is generally explained by the birth of a new child, an inheritance or a salary increase.

Remark 87 In addition to these two main factors, we also observe that some borrowers
choose to reduce their debt even if it is not an optimal decision. When they have some
financial saving, which may be explained by an inheritance for example, they proceed to
partial prepayments.
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7.3.2.2 Structural models

As with the credit risk, there are two families of prepayment models. The objective of
structural models is to explain the prepayment time τ of a borrower while reduced-form
models are interested in the prepayment rate of a loan portfolio.

Value of the American option The objective is to find the optimal value τ such that
the borrower minimizes the paid cash flows or maximizes the prepayment option. Let us
consider a mortgage, whose maturity is equal to T . In continuous-time, the risk-neutral
value of cash flows is equal to66:

V (t) = inf
τ≤T

EQ
[∫ τ

t

m (u) e−
∫ u
t
r(s) ds du+ e

−
∫ τ
t
r(s) ds

M (τ ) | Ft
]

(7.39)

where m (t) and M (t) are the coupon and the mark-to-market value of the mortgage at
time t. The first term that makes up V (t) is the discounted value of the interest paid until
the prepayment time τ whereas the second term is the discounted value of the mortgage
value at the prepayment time τ . Equation (7.39) is a generalization of the net present value
of a mortgage in continuous-time67. The computation of the optimal stopping time can be
done in a Hamilton-Jacobi-Bellman (HJB) framework. We introduce the state variable Xt,
which follows a diffusion process:

dX (t) = µ (t,X (t)) dt+ σ (t,X (t)) dW (t)

We note V (t,X) the value of V (t) when X (t) is equal to X. In the absence of prepayment,
we deduce that the value of V (t,X) satisfies the following Cauchy problem68:{

−∂tV (t,X) + r (t)V (t,X) = AtV (t,X) +m (t)
V (T,X) = M (T )

where At is the infinitesimal generator of the diffusion process:

AtV (t,X) = 1
2σ

2 (t,X) ∂
2 V (t,X)
∂ X2 + µ (t,X) ∂

2 V (t,X)
∂ x2

The prepayment event changes the previous problem since we must verify that the value
V (t,X) is lower than the mortgage valueM (t) minus the refinancing cost C (t). The option
problem is then equivalent to solve the HJB equation or the variational inequality:

min (LtV (t,X) , V (t,X) + C (t)−M (t)) = 0

where:
LtV (t,X) = AtV (t,X) +m (t) + ∂tV (t,X)− r (t)V (t,X)

This model can be extended to the case where there are several state variables or there is
no maturity (perpetual mortgage).

66r (t) is the discount rate.
67The net present value is equal to:

V (t) = EQ
[∫ T

t

m (u) e−
∫ u
t
r(s) ds du+ e

−
∫ T
t
r(s) ds

N (T ) | Ft

]
where N (T ) is the outstanding amount at the maturity.

68We use the Feynmac-Kac representation given on page 1070.
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The Agarwal-Driscoll-Laibson model There are several possible specifications de-
pending on the choice of the state variables, the dynamics of interest rates, etc. For exam-
ple, using a similar framework than previously, Agarwal et al. (2013) propose the following
optimal refinancing rule:

i0 − i (t) ≥ δ? = 1
ψ

(
φ+W

(
−e−φ

))
(7.40)

whereW (x) is the LambertW function69, ψ = σ−1
√

2 (r + λ) and φ = 1+ψ (r + λ) (C/M).
The parameters are the real discount rate r, the rate λ of exogenous mortgage prepayment,
the volatility σ of the mortgage rate i (t), the refinancing cost C and the remaining mortgage
value M . Equation (7.40) has been obtained by solving the HJB equation and assuming
that dX (t) = σ dW (t) and X (t) = i (t)− i0.

Using the numerical values r = 5%, λ = 10%, σ = 2%, and C/M = 1%, δ? is equal to 110
bps. This means that the borrower has to prepay his mortgage if the mortgage rate falls by
at least 110 bps. In Table 7.20, we consider the impact of one parameter by considering the
other parameters unchanged. First, we assume that the cost function is C = 2000+1%×M ,
meaning that there is a fixed cost of $2 000. It follows that δ? is a decreasing function of the
mortgage value M , because fixed costs penalize low mortgage values. We also verify that δ?
is an increasing function of r, σ and λ. In particular, the parameter σ has a big influence,
because it indicates if the mortgage rate is volatile or not. In the case of a high volatility,
it may be optimal that the borrower is waiting that i (t) highly decreases. This is why the
HJB equation finds a high value of δ?.

TABLE 7.20: Optimal refinancing rule δ?

M (in KUSD) δ? r δ? σ δ? λ δ?

10 612 1% 101 1% 79 2% 89
100 198 2% 103 2% 110 5% 98
250 150 5% 110 3% 133 10% 110
500 131 8% 116 5% 171 15% 120

1 000 121 10% 120 10% 239 20% 128

7.3.2.3 Reduced-form models

Rate, coupon or maturity incentive? The previous approach can only be applied to
the refinancing decision, but it cannot deal with all types of prepayment. Moreover, there is
no guarantee that the right decision variable is the difference i0 − i (t) between the current
mortgage rate and the initial mortgage rate. For instance, i0 − i (t) = 1% implies a high
impact for a 20-year remaining maturity, but has a small effect when the maturity is less
than one year. A better decision variable is the coupon or annuity paid by the borrower. In
the case of a constant payment mortgage, we recall that the annuity is equal to:

A (i, n) = i

1− (1 + i)−n
N0

where N0 is the notional of the mortgage, i is the mortgage rate and n is the number of
periods. If the mortgage rate drops from i0 to i (t), the absolute difference of the annuity is
equal to DA (i0, i (t)) = A (i0, n)−A (i (t) , n), whereas the relative difference of the annuity

69The Lambert W function is related to Shannon’s entropy and satisfies W (x) eW (x) = x.
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is given by:

DR (i0, i (t)) = DA (i0, i (t))
A (i0, n)

= 1−
(

1− (1 + i0)−n

1− (1 + i (t))−n

)
i (t)
i0

where n is the remaining number of periods. In a similar way, the relative cumulative
difference C (i0, i (t)) is equal to:

C (i0, i (t)) =
∑n
t=1 DA (i0, i (t))

N0

= n

(
i0

1− (1 + i0)−n
− i (t)

1− (1 + i (t))−n

)
Finally, another interesting measure is the minimum number of periods N (i0, i (t)) such
that the new annuity is greater than or equal to the initial annuity:

N (i0, i (t)) = {x ∈ N : A (i (t) , x) ≥ A (i (t) , n) , A (i (t) , x+ 1) < A (i (t) , n)}

whereN (i0, i (t)) measures the maturity reduction of the loan by assuming that the borrower
continues to pay the same annuity.

TABLE 7.21: Impact of a new mortgage rate (100 KUSD, 5%, 10-year)

i A DA (in $) DR C N
(in %) (in $) Monthly Annually (in %) (in %) (in years)

5.0 1 061
4.5 1 036 24 291 2.3 2.9 9.67
4.0 1 012 48 578 4.5 5.8 9.42
3.5 989 72 862 6.8 8.6 9.17
3.0 966 95 1 141 9.0 11.4 8.92
2.5 943 118 1 415 11.1 14.2 8.75
2.0 920 141 1 686 13.2 16.9 8.50
1.5 898 163 1 953 15.3 19.5 8.33
1.0 876 185 2 215 17.4 22.2 8.17
0.5 855 206 2 474 19.4 24.7 8.00

Let us illustrate the impact of a new rate i (t) on an existing mortgage. We assume
that the current outstanding amount is equal to $100 000 and the amortization scheme is
monthly. In Table 7.21, we show how the monthly annuity changes if the original rate is 5%
and the remaining maturity is ten years. If the borrower refinances the mortgage at 2%, the
monthly annuity is reduced by $141, which represents 13.2% of the current monthly coupon.
His total gain is then equal to 16.9% of the outstanding amount. If the borrower prefers
to reduce the maturity and takes the annuity constant, he will gain 18 months. In Tables
7.22 and 7.23, we compute the same statistics when the remaining maturity is twenty years
or the original rate is 10%. Banks have already experienced this kind of situation these
last 30 years. For example, we report the average rate of 30-year and 15-year fixed rate
mortgages in the US in Figure 7.20. We also calculate the differential rate between the
30-year mortgage rate lagged 15 years and the 15-year mortgage rate. We notice that this
refinancing opportunity has reached 10% and more in the 1990s, and was above 3% most
of the times these last 25 years. Of course, this situation is exceptional and explained by 30
years of falling interest rates.
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TABLE 7.22: Impact of a new mortgage rate (100 KUSD, 5%, 20-year)

i A DA (in $) DR C N
(in %) (in $) Monthly Annually (in %) (in %) (in years)

5.0 660
4.5 633 27 328 4.1 6.6 18.67
4.0 606 54 648 8.2 13.0 17.58
3.5 580 80 960 12.1 19.2 16.67
3.0 555 105 1 264 16.0 25.3 15.83
2.5 530 130 1 561 19.7 31.2 15.17
2.0 506 154 1 849 23.3 37.0 14.50
1.5 483 177 2 129 26.9 42.6 14.00
1.0 460 200 2 401 30.3 48.0 13.50
0.5 438 222 2 664 33.6 53.3 13.00

TABLE 7.23: Impact of a new mortgage rate (100 KUSD, 10%, 10-year)

i A DA (in $) DR C N
(in %) (in $) Monthly Annually (in %) (in %) (in years)
10.0 1 322
9.0 1 267 55 657 4.1 6.6 9.33
8.0 1 213 108 1 299 8.2 13.0 8.75
7.0 1 161 160 1 925 12.1 19.3 8.33
6.0 1 110 211 2 536 16.0 25.4 7.92
5.0 1 061 261 3 130 19.7 31.3 7.58
4.0 1 012 309 3 709 23.3 37.1 7.25
3.0 966 356 4 271 26.9 42.7 6.92
2.0 920 401 4 816 30.4 48.2 6.67
1.0 876 445 5 346 33.7 53.5 6.50

Survival function with prepayment risk Previously, we have defined the amortiza-
tion function S (t, u) as the fraction of the new production at time t that still remains in
the balance sheet at time u ≥ t: NP (t, u) = NP (t) S (t, u). We have seen that S (t, u) cor-
responds to a survival function. Therefore, we can use the property that the product of ns
survival functions is a survival function, meaning that we can decompose S (t, u) as follows:

S (t, u) =
ns∏
j=1

Sj (t, u)

This implies that the hazard rate is an additive function:

λ (t, u) =
ns∑
j=1

λj (t, u)

because we have:

e
−
∫ u
t
λ(t,s) ds =

ns∏
j=1

e
−
∫ u
t
λj(t,s) ds = e

−
∫ u
t

(∑ns

j=1
λj(t,s)

)
ds

If we apply this result to prepayment, we have:

S (t, u) = Sc (t, u) · Sp (t, u)



Asset Liability Management Risk 443

FIGURE 7.20: Evolution of 30-year and 15-year mortgage rates in the US

Source: Freddie Mac, 30Y/15Y Fixed Rate Mortgage Average in the United States
[MORTGAGE30US/15US], retrieved from FRED, Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/MORTGAGE30US, July 24, 2019.

where Sc (t, u) is the traditional amortization function (or the contract-based survival func-
tion) and Sp (t, u) is the prepayment-based survival function.

Example 75 We consider a constant amortization mortgage (CAM) and assume that the
prepayment-based hazard rate is constant and equal to λp.

In Exercise 7.4.3 on page 450, we show that the survival function is equal to:

Sc (t, u) = 1 {t ≤ u ≤ t+m} · 1− e−i(t+m−u)

1− e−im

It follows that:

λc (t, u) = −∂ ln Sc (t, u)
∂ u

=
∂ ln

(
1− e−im

)
∂ u

−
∂ ln

(
1− e−i(t+m−u))

∂ u

= ie−i(t+m−u)

1− e−i(t+m−u)

= i

ei(t+m−u) − 1
Finally, we deduce that:

λ (t, u) = 1 {t ≤ u ≤ t+m} ·
(

i

ei(t+m−u) − 1
+ λp

)

https://fred.stlouisfed.org/
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In Figure 7.21, we report the survival function S (t, u) and the hazard rate λ (t, u) of a 30-year
mortgage at 5%. We also compare the amortization function S (t, u) obtained in continuous-
time with the function calculated when we assume that the coupon is paid monthly. We
notice that the continuous-time model is a good approximation of the discrete-time model.

FIGURE 7.21: Survival function in the case of prepayment

Specification of the hazard function It is unrealistic to assume that the hazard func-
tion λp (t, u) is constant because we do not make the distinction between economic and
structural prepayments. In fact, it is better to decompose Sp (t, u) into the product of two
survival functions:

Sp (t, u) = Srefinancing (t, u) · Sturnover (t, u)

where Srefinancing (t, u) corresponds to economic prepayments due to refinancing decisions
and Sturnover (t, u) corresponds to structural prepayments because of housing turnover. In
this case, we can assume that λturnover (t, u) is constant and corresponds to the housing
turnover rate. The specification of λrefinancing (t, u) is more complicated since it depends on
several factors. For instance, Elie et al. (2002) show that λrefinancing (t, u) depends on the
loan characteristics (type, age and balance), the cost of refinancing and the market rates.
Moreover, they observe a seasonality in prepayment rates, which differs with respect to the
loan type (monthly, quarterly or semi-annually).

As for deposit balances, the ‘Net Portfolio Value Model’ published by the Office of Thrift
Supervision (2001) gives very precise formulas for measuring prepayment. They assume that
the prepayment rate is made up of three factors:

λp (t, u) = λage (u− t) · λseasonality (u) · λrate (u)

where λage measures the impact of the loan age, λseasonality corresponds to the seasonality
factor and λrate represents the influence of market rates. The first two components are
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specified as follows:

λage (age) =
{

0.4 · age if age ≤ 2.5
1 if age ≥ 2.5

and:
λseasonality (u) = 1 + 0.20× sin

(
1.571×

(
12 + month (u)− 3

3

)
− 1
)

where age = u − t is the loan age and month (u) is the month of the date u. We notice
that λage is equal to zero for a new mortgage – u− t = 0, increases linearly with mortgage
age and remains constant after 30 months or 2.5 years. The refinancing factor of the OTS
model has the following expression:

λrate (u) = β0 + β1 arctan
(
β2 ·

(
β3 −

i0
i (u− 0.25)

))
where i (u− 0.25) is the mortgage refinancing rate (lagged three months). In Figure 7.22,
we represent the three components70 while Figure 7.23 provides an example of the survival
function Sp (t, u) where the mortgage rate drops from 5% to 1% after 6 years. The season-
ality component has a small impact on the survival function because it is smoothed when
computing the cumulative hazard function. On the contrary, the age and rate components
change the prepayment speed.

FIGURE 7.22: Components of the OTC model

70For the specification of λrate, we use the default values of OTS (2001, Equation 5.A.7): β0 = 0.2406,
β1 = −0.1389, β2 = 5.952, and β4 = 1.049. We also assume that i0 = 5%.
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FIGURE 7.23: An example of survival function Sp (t, u) with a mortgage rate drop

7.3.2.4 Statistical measure of prepayment

In fact, the OTC model doesn’t use the concept of hazard rate, but defines the constant
prepayment rate CPR, which is the annualized rate of the single monthly mortality:

SMM = prepayments during the month
outstanding amount at the beginning of the month

The CPR and the SMM are then related by the following equation:

CPR = (1− (1− SMM))12

In IRRBB, the CPR is also known as the conditional prepayment rate. It measures prepay-
ments as a percentage of the current outstanding balance for the next year. By definition,
it is related to the hazard function as follows:

CPR (u, t) = Pr {u < τ ≤ u+ 1 | τ ≥ u}

= Sp (t, u)− Sp (t, u+ 1)
Sp (t, u)

= 1− exp
(
−
∫ u+1

u

λp (t, s) ds
)

If λp (t, s) is constant and equal to λp, we can approximate the CPR by the hazard rate λp
because we have CPR (u, t) ≈ 1− e−λp ≈ λp.

We use the prepayment monitoring report published by the Federal Housing Finance
Agency (FHFA). From 2008 to 2018, the CPR for 30-year mortgages varies between 5%
to 35% in the US. The lowest value is reached at the end of 2008. This shows clearly that
prepayments depend on the economic cycle. During a crisis, the number of defaults increases
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while the number of prepayments decreases. This implies that there is a negative correlation
between default and prepayment rates. However, there is a high heterogeneity depending
on the coupon rate and the issuance date as shown in Table 7.24. We generally observe
that the CPR increases with the coupon rate. For example, in June 2018, the CPR is 7%
greater for a 30-year mortgage issued between 2012 and 2016 with a 4.5% coupon than
with a 3% coupon. We also verify the ramp effect because the prepayment rate is not of
the same magnitude before and after January 2017, which corresponds to the 30-month age
after which the prepayment rate can be assumed to be constant. This is why the CPR is
only 5.3% and 12.8% for mortgages issued in 2018 and 2017 while it is equal to 17.4% for
mortgages issued in 2016 when the coupon rate is 4.5%.

TABLE 7.24: Conditional prepayment rates in June 2018 by coupon rate and issuance
date

Year 2012 2013 2014 2015 2016 2017 2018
Coupon = 3% 9.6% 10.2% 10.9% 10.0% 8.7% 5.3% 3.1%
Coupon = 4.5% 16.1% 15.8% 16.6% 17.9% 17.4% 12.8% 5.3%

Difference 6.5% 5.6% 5.7% 8.0% 8.7% 7.6% 2.2%

Source: RiskSpan dataset, FHFA (2018) and author’s calculations.

7.3.3 Redemption risk
7.3.3.1 The funding risk of term deposits

A term deposit, also known as time deposit or certificate of deposit (CD), is a fixed-term
cash investment. The client deposits a minimum sum of money into a banking account in
exchange for a fixed rate over a specified period. A term deposit is then defined by three
variables: the deposit or CD rate i (t), the maturity period m and the minimum balance
D−. For example, the minimum deposit is generally $1 000 in the US, and the typical
maturities are 1M, 3M, 6M, 1Y, 2Y and 3Y. In some banks, the deposit rate may depends
on the deposit amount71. Term deposits are an important source of bank funding with
demand deposits and savings accounts. However, they differ from non-maturity deposits
because they have a fixed maturity, their rates are higher and they may be redeemed with
a penalty. When buying a term deposit, the investor can withdraw their funds only after
the term ends. This is why CD rates are generally greater than NMD rates, because term
deposits are a most stable funding resource for banks. Moreover, CD rates are generally
more sensitive to market interest rates than NMD rates, because a term deposit is more
an investment product while a demand deposit is more a transaction account. Under some
conditions, the investor may withdraw his term deposit before the maturity date if he pays
early redemption costs and fees, which generally correspond to a reduction of the deposit
rate. For example, i (t) may be reduced by 80% if the remaining maturity is greater than
50% of the CD maturity and 30% if the remaining maturity is less than 20% of the CD
maturity.

According to Gilkeson et al. (1999), early time deposit withdrawals may be motivated
by two reasons. As for prepayments, the first reason is economic. If market interest rates
rise, the investor may have a financial incentive to close his old term deposit and reinvest his

71For example, Chase defines six CD rates for a given maturity and considers the following bands:
below $10K, $10K – $25K, $25K – $50K, $50K – $100K, $100K – $250K and $250+ (source:
https://www.chase.com/personal/savings/bank-cd).

https://www.chase.com/
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money into a new term deposit. In this case, the investor is sensitive to the rate differential
i (t) − i0 where i0 is the original CD rate and i (t) is the current CD rate. In this case,
early withdrawal risk can be viewed as the opposite of prepayment risk. Indeed, while
the economic reason of prepayment risk is a fall of interest rates, the economic reason of
redemption risk is a rise of interest rates. Since both risks imply a negative impact on the
net interest income, the impact on the liquidity risk is different: the bank receives cash in
case of a prepayment, while the funding of the bank is reduced in case of redemption. The
second reason is related to negative liquidity shocks of depositors. For example, the client
may need to get his money back because of life events: job loss, divorce, revenue decline,
etc. In this case, redemption risk is explained by idiosyncratic liquidity shocks that are
independent and can be measured by a structural constant rate. But redemption risk can
also be explained by systemic liquidity shocks. For example, economic crises increase the
likelihood of early withdrawals. In this case, we cannot assume that the redemption rate is
constant because it depends on the economic cycle.

7.3.3.2 Modeling the early withdrawal risk

Redemption risk can be measured using the same approach we have used for prepayment
risk. This is particularly true for the economic component and the idiosyncratic liquidity
component. The systemic component of negative liquidity shocks requires a more appro-
priate analysis and makes the modeling more challenging. Another difficulty with the early
withdrawal risk is the scarcity of academic models, professional publications and data. To
our knowledge, there are only five academic publications on this topic and only three articles
that give empirical results72: Cline and Brooks (2004), Gilkeson et al. (1999) and Gilkeson
et al. (2000).

The redemption-based survival function of time deposits can be decomposed as:

Sr (t, u) = Seconomic (t, u) · Sliquidity (t, u)

where Seconomic (t, u) is the amortization function related to reinvestment financial incentives
and Sliquidity (t, u) is the amortization function due to negative liquidity shocks.

Let us first focus on economic withdrawals. We note t the current date, m the maturity
of the time deposit and N0 the initial investment at time 0. In the absence of redemption,
the value of the time deposit at the maturity is equal to V0 = N0 (1 + i0)m. If we assume
that τ is the withdrawal time, the value of the investment for τ = t becomes:

Vr (t) = N0 · (1 + (1− ϕ (t)) i0)t · (1 + i (t))m−t − C (t)

where ϕ (t) is the penalty parameter applied to interest paid and C (t) is the break fee.
For example, if we specify ϕ (t) = 1 − t/m, ϕ (t) is a linear decreasing function between73
ϕ (0) = 100% and ϕ (m) = 0%. C (t) may be a flat fee (e.g. C (t) = $1 000) or C (t) may be
a proportional fee: C (t) = c (t) ·N0. The rational investor redeems the term deposit if the
refinancing incentive is positive:

RI (t) = Vr (t)− V0

N0
> 0

In the case where C (t) = c (t)N0, we obtain the following equivalent condition:

i (t) > i? (t) =
(

(1 + i0)m + c (t)
(1 + (1− ϕ (t)) i0)t

)1/(m−t)

− 1

72The two other theoretical publications are Stanhouse and Stock (2004), and Gao et al. (2018).
73ϕ (t) = 100% if the redemption occurs at the beginning of the contract and ϕ (m) = 0% when the term

deposit matures.
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An example of this refinancing incentive rule is given in Figure 7.24. This corresponds to
a three-year term deposit whose rate is equal to 2%. The penalty applied to interest paid
is given by ϕ (t) = 1− t/m. We show the impact of the fee c (t) on i? (t). We observe that
the investor has no interest to wait if the interest rate rise is sufficient. Therefore, there
is an arbitrage between the current rate i (t) and the original rate i0. We deduce that the
hazard function takes the following form: λeconomic (t, u) = g (i (u)− i0) or λeconomic (t, u) =
g (r (u)− i0) where g is a function to estimate. For instance, Gilkeson et al. (1999) consider a
logistic regression model and explain withdrawal rates by the refinancing incentive variable.

FIGURE 7.24: Refinancing incentive rule of term deposits

For early withdrawals due to negative liquidity shocks, we can decompose the hazard
function into two effects:

λliquidity (t, u) = λstructural + λcyclical (u)

where λstructural is the structural rate of redemption and λcyclical (u) is the liquidity compo-
nent due to the economic cycle. A simple way to model λcyclical (u) is to consider a linear
function of the GDP growth.

7.4 Exercises
7.4.1 Constant amortization of a loan

We consider a loan that is repaid by annual payments. We assume that the notional of
the loan is equal to N0, the maturity of the loan is n and i is the annual interest rate. We
note N (t) the outstanding amount, I (t) the interest payment, P (t) the principal payment
at time t and C (t) the present value.
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1. Let C0 be the present value of an annuity A that is paid annually during n years.
Calculate C0 as a function of A, n and i.

2. Determine the constant annuity A of the loan and the corresponding annuity rate
a(n).

3. Calculate I (1) and P (1). Show that the outstanding amount N (1) is equal to the
present value C (1) of the constant annuity A for the last n− 1 years.

4. Calculate the general formula of N (t), I (t) and P (t).

7.4.2 Computation of the amortization functions S (t, u) and S? (t, u)
In what follows, we consider a debt instrument, whose remaining maturity is equal to

m. We note t the current date and T = t+m the maturity date.

1. We consider a bullet repayment debt. Define its amortization function S (t, u). Calcu-
late the survival function S? (t, u) of the stock. Show that:

S? (t, u) = 1 {t ≤ u < t+m} ·
(

1− u− t
m

)
in the case where the new production is constant. Comment on this result.

2. Same question if we consider a debt instrument, whose amortization rate is constant.

3. Same question if we assume74 that the amortization function is exponential with
parameter λ.

4. Find the expression of D? (t) when the new production is constant.

5. Calculate the durations D (t) and D? (t) for the three previous cases.

6. Calculate the corresponding dynamics dN (t).

7.4.3 Continuous-time analysis of the constant amortization mortgage
(CAM)

We consider a constant amortization mortgage, whose maturity is equal to m. We note
i the interest rate and A the constant annuity.

1. Let N0 be the amount of the mortgage at time t = 0. Write the equation of dN (t).
Show that the annuity is equal to:

A = i ·N0

1− e−im

Deduce that the outstanding balance at time t is given by:

N (t) = 1 {t < m} ·N0 ·
1− e−i(m−t)

1− e−im

2. Find the expression of S (t, u) and S? (t, u).

3. Calculate the liquidity duration D (t).
74By definition of the exponential amortization, we have m = +∞.
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7.4.4 Valuation of non-maturity deposits
This exercise is based on the model of De Jong and Wielhouwer (2003), which is an

application of the continuous-time framework of Jarrow and van Deventer (1998). The
framework below has been used by de Jong and Wielhouwer to model variable rate savings
accounts. However, it is valid for all types of non-maturity deposits (demand deposits and
savings accounts). For instance, Jarrow and van Deventer originally develop the approach
for all types of demand deposits75.

1. Let D (t) be the amount of savings accounts. We note r (t) and i (t) the market rate
and the interest rate paid to account holders. We define the current market value of
liabilities as follows:

L0 = E
[∫ ∞

0
e−r(t)t (i (t)D (t)− ∂tD (t)) dt

]
Explain the expression of L0, in particular the two components i (t)D (t) and ∂tD (t).

2. By considering that the short rate r (t) is constant, demonstrate that:

L0 = D0 + E
[∫ ∞

0
e−r(t)t (i (t)− r (t))D (t) dt

]
3. Calculate the current mark-to-market V0 of savings accounts. How do you interpret
V0?

4. Let us assume that the margin m (t) = r (t) − i (t) is constant and equal to m0, and
D (t) is at the steady state D∞. Show that:

V0 = m0 · r−1
∞ ·D∞

where r∞ is a parameter to determine.

5. For the specification of the deposit rate i (t) and the deposit balance D (t), De Jong
and Wielhouwer (2003) propose the following dynamics:

di (t) = (α+ β (r (t)− i (t))) dt

and:
dD (t) = γ (D∞ −D (t)) dt− δ (r (t)− i (t)) dt

where α, β ≥ 0, γ ≥ 0 and δ ≥ 0 are four parameters. What is the rationale of these
equations? Find the general expression of i (t) and D (t).

6. In the sequel, the market rate r (t) is assumed to be constant and equal to r0. Deduce
the value of i (t) and D (t).

7. Calculate the net asset value V0 and deduce its sensitivity with respect to the market
rate r0 when α = 0.

8. Find the general expression of the sensitivity of V0 with respect to the market rate r0
when α 6= 0. Deduce the duration DD of the deposits.

75Janosi et al. (1999) provide an empirical analysis of the Jarrow-van Deventer model for negotiable
orders of withdrawal accounts (NOW), passbook accounts, statement accounts and demand deposit accounts
(DDAs), whereas Kalkbrener and Willing (2004) consider an application to savings accounts. Generally,
these different accounts differ with respect to the specification of interest paid i (t) and the dynamics of the
deposit amount D (t).
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9. We consider a numerical application of the De Jong-Wielhouwer model with the fol-
lowing parameters: r0 = 10%, i0 = 5%, D0 = 100, D∞ = 150, β = 0.5, γ = 0.7
and δ = 0.5. Make a graph to represent the relationship between the time t and the
deposit rate i (t) when α is equal to −1%, 0 and 1%. Why is it natural to consider
that α < 0? We now assume that α = −1%. Draw the dynamics of D (t). What are
the most important parameters that impact D (t)? What is the issue if we calculate
the duration of the deposits with respect to r0 when α is equal to zero? Make a graph
to represent the relationship between the market rate r0 and the duration when α is
equal to −50 bps, −1% and −2%.

7.4.5 Impact of prepayment on the amortization scheme of the CAM
This is a continuation of Exercise 7.4.3 on page 450. We recall that the outstanding

balance at time t is given by:

N (t) = 1 {t < m} ·N0 ·
1− e−i(m−t)

1− e−im

1. Find the dynamics dN (t).

2. We note Ñ (t) the modified outstanding balance that takes into account the prepay-
ment risk. Let λp (t) be the prepayment rate at time t. Write the dynamics of Ñ (t).

3. Show that Ñ (t) = N (t)·Sp (t) where Sp (t) is the prepayment-based survival function.

4. Calculate the liquidity duration D̃ (t) associated to the outstanding balance Ñ (t)
when the hazard rate of prepayments is constant and equal to λp.
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