
Chapter 11
Copulas and Dependence Modeling

One of the main challenges in risk management is the aggregation of individual risks. We can
move the issue aside by assuming that the random variables modeling individual risks are
independent or are only dependent by means of a common risk factor. The problem becomes
much more involved when one wants to model fully dependent random variables. Again a
classic solution is to assume that the vector of individual risks follows a multivariate normal
distribution. However, all risks are not likely to be well described by a Gaussian random
vector, and the normal distribution may fail to catch some features of the dependence
between individual risks.

Copula functions are a statistical tool to solve the previous issue. A copula function is
nothing else but the joint distribution of a vector of uniform random variables. Since it is
always possible to map any random vector into a vector of uniform random variables, we
are able to split the marginals and the dependence between the random variables. There-
fore, a copula function represents the statistical dependence between random variables, and
generalizes the concept of correlation when the random vector is not Gaussian.

11.1 Canonical representation of multivariate distributions
The concept of copula has been introduced by Sklar in 1959. During a long time, only

a small number of people have used copula functions, more in the field of mathematics
than this of statistics. The publication of Genest and MacKay (1986b) in the American
Statistician marks a breakdown and opens areas of study in empirical modeling, statistics
and econometrics. In what follows, we intensively use the materials developed in the books
of Joe (1997) and Nelsen (2006).

11.1.1 Sklar’s theorem
Nelsen (2006) defines a bi-dimensional copula (or a 2-copula) as a function C which

satisfies the following properties:

1. Dom C = [0, 1]× [0, 1];

2. C (0, u) = C (u, 0) = 0 and C (1, u) = C (u, 1) = u for all u in [0, 1];

3. C is 2-increasing:

C (v1, v2)−C (v1, u2)−C (u1, v2) + C (u1, u2) ≥ 0

for all (u1, u2) ∈ [0, 1]2, (v1, v2) ∈ [0, 1]2 such that 0 ≤ u1 ≤ v1 ≤ 1 and 0 ≤ u2 ≤ v2 ≤
1.
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This definition means that C is a cumulative distribution function with uniform marginals:

C (u1, u2) = Pr {U1 ≤ u1, U2 ≤ u2}

where U1 and U2 are two uniform random variables.

Example 108 Let us consider the function C⊥ (u1, u2) = u1u2. We have C⊥ (0, u) =
C⊥ (u, 0) = 0 and C⊥ (1, u) = C⊥ (u, 1) = u. Since we have v2 − u2 ≥ 0 and v1 ≥ u1, it
follows that v1 (v2 − u2) ≥ u1 (v2 − u2) and v1v2 + u1u2 − u1v2 − v1u2 ≥ 0. We deduce that
C⊥ is a copula function. It is called the product copula.

Let F1 and F2 be any two univariate distributions. It is obvious that F (x1, x2) =
C (F1 (x1) ,F2 (x2)) is a probability distribution with marginals F1 and F2. Indeed,
ui = Fi (xi) defines a uniform transformation (ui ∈ [0, 1]). Moreover, we verify that
C (F1 (x1) ,F2 (∞)) = C (F1 (x1) , 1) = F1 (x1). Copulas are then a powerful tool to build a
multivariate probability distribution when the marginals are given. Conversely, Sklar (1959)
proves that any bivariate distribution F admits such a representation:

F (x1, x2) = C (F1 (x1) ,F2 (x2)) (11.1)

and that the copula C is unique provided the marginals are continuous. This result is
important, because we can associate to each bivariate distribution a copula function. We
then obtain a canonical representation of a bivariate probability distribution: on one side,
we have the marginals or the univariate directions F1 and F2; on the other side, we have the
copula C that links these marginals and gives the dependence between the unidimensional
directions.

Example 109 The Gumbel logistic distribution is the function F (x1, x2) = (1 + e−x1 + e−x2)−1

defined on R2. We notice that the marginals are F1 (x1) ≡ F (x1,∞) = (1 + e−x1)−1 and
F2 (x2) ≡ (1 + e−x2)−1. The quantile functions are then F−1

1 (u1) = ln u1 − ln (1− u1) and
F−1

2 (u2) = ln u2 − ln (1− u2). We finally deduce that:

C (u1, u2) = F
(
F−1

1 (u1) ,F−1
2 (u2)

)
= u1u2

u1 + u2 − u1u2

is the Gumbel logistic copula.

11.1.2 Expression of the copula density
If the joint distribution function F (x1, x2) is absolutely continuous, we obtain:

f (x1, x2) = ∂1,2 F (x1, x2)
= ∂1,2 C (F1 (x1) ,F2 (x2))
= c (F1 (x1) ,F2 (x2)) · f1 (x1) · f2 (x2) (11.2)

where f (x1, x2) is the joint probability density function, f1 and f2 are the marginal densities
and c is the copula density:

c (u1, u2) = ∂1,2 C (u1, u2)

We notice that the condition C (v1, v2) − C (v1, u2) − C (u1, v2) + C (u1, u2) ≥ 0 is then
equivalent to ∂1,2 C (u1, u2) ≥ 0 when the copula density exists.

Example 110 In the case of the Gumbel logistic copula, we obtain c (u1, u2) =
2u1u2/ (u1 + u2 − u1u2)3. We easily verify the 2-increasing property.
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From Equation (11.2), we deduce that:

c (u1, u2) =
f
(
F−1

1 (u1) ,F−1
2 (u2)

)
f1
(
F−1

1 (u1)
)
· f2

(
F−1

2 (u2)
) (11.3)

We obtain a second canonical representation based on density functions. For some copulas,
there is no explicit analytical formula. This is the case of the Normal copula, which is
equal to C (u1, u2; ρ) = Φ

(
Φ−1 (u1) ,Φ−1 (u2) ; ρ

)
. Using Equation (11.3), we can however

characterize its density function:

c (u1, u2; ρ) =
2π
(
1− ρ2)−1/2 exp

(
− 1

2(1−ρ2)
(
x2

1 + x2
2 − 2ρx1x2

))
(2π)−1/2 exp

(
− 1

2x
2
1
)
· (2π)−1/2 exp

(
− 1

2x
2
2
)

= 1√
1− ρ2

exp
(
−1

2

(
x2

1 + x2
2 − 2ρx1x2

)
(1− ρ2) + 1

2
(
x2

1 + x2
2
))

where x1 = F−1
1 (u1) and x2 = F−1

2 (u2). It is then easy to generate bivariate non-normal
distributions.

Example 111 In Figure 11.1, we have built a bivariate probability distribution by consid-
ering that the marginals are an inverse Gaussian distribution and a beta distribution. The
copula function corresponds to the Normal copula such that its Kendall’s tau is equal to
50%.

FIGURE 11.1: Example of a bivariate probability distribution with given marginals

11.1.3 Fréchet classes
The goal of Fréchet classes is to study the structure of the class of distributions with

given marginals. These latter can be unidimensional, multidimensional or conditional. Let
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us consider the bivariate distribution functions F12 and F23. The Fréchet class F (F12,F23)
is the set of trivariate probability distributions that are compatible with the two bivari-
ate marginals F12 and F23. In this handbook, we restrict our focus on the Fréchet class
F (F1, . . . ,Fn) with univariate marginals.

11.1.3.1 The bivariate case

Let us first consider the bivariate case. The distribution function F belongs to the Fréchet
class (F1,F2) and we note F ∈ F (F1,F2) if and only if the marginals of F are F1 and F2,
meaning that F (x1,∞) = F1 (x1) and F (∞, x2) = F2 (x2). Characterizing the Fréchet
class F (F1,F2) is then equivalent to find the set C of copula functions:

F (F1,F2) = {F : F (x1, x2) = C (F1 (x1) ,F2 (x2)) ,C ∈ C}

Therefore this problem does not depend on the marginals F1 and F2.
We can show that the extremal distribution functions F− and F+ of the Fréchet class

F (F1,F2) are:
F− (x1, x2) = max (F1 (x1) + F2 (x2)− 1, 0)

and:
F+ (x1, x2) = min (F1 (x1) ,F2 (x2))

F− and F+ are called the Fréchet lower and upper bounds. We deduce that the correspond-
ing copula functions are:

C− (u1, u2) = max (u1 + u2 − 1, 0)

and:
C+ (u1, u2) = min (u1, u2)

Example 112 We consider the Fréchet class F (F1,F2) where F1 ∼ N (0, 1) and F2 ∼
N (0, 1). We know that the bivariate normal distribution with correlation ρ belongs to
F (F1,F2). Nevertheless, a lot of bivariate non-normal distributions are also in this Fréchet
class. For instance, this is the case of this probability distribution:

F (x1, x2) = Φ (x1) Φ (x2)
Φ (x1) + Φ (x2)− Φ (x1) Φ (x2)

We can also show that1:

F− (x1, x2) := Φ (x1, x2;−1) = max (Φ (x1) + Φ (x2)− 1, 0)

and:
F+ (x1, x2) := Φ (x1, x2; +1) = min (Φ (x1) ,Φ (x2))

Therefore, the bounds of the Fréchet class F (N (0, 1) ,N (0, 1)) correspond to the bivariate
normal distribution, whose correlation is respectively equal to −1 and +1.

1We recall that:

Φ (x1, x2; ρ) =
∫ x1

−∞

∫ x2

−∞
φ (y1, y2; ρ) dy1 dy2
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11.1.3.2 The multivariate case

The extension of bivariate copulas to multivariate copulas is straightforward. Thus, the
canonical decomposition of a multivariate distribution function is:

F (x1, . . . , xn) = C (F1 (x1) , . . . ,Fn (xn))

We note CE the sub-copula of C such that arguments that are not in the set E are equal to 1.
For instance, with a dimension of 4, we have C12 (u, v) = C (u, v, 1, 1) and C124 (u, v, w) =
C (u, v, 1, w). Let us consider the 2-copulas C1 and C2. It seems logical to build a copula of
higher dimension with copulas of lower dimensions. In fact, the function C1 (u1,C2 (u2, u3))
is not a copula in most cases (Quesada Molina and Rodríguez Lallena, 1994). For instance,
we have:

C−
(
u1,C− (u2, u3)

)
= max (u1 + max (u2 + u3 − 1, 0)− 1, 0)
= max (u1 + u2 + u3 − 2, 0)
= C− (u1, u2, u3)

However, the function C− (u1, u2, u3) is not a copula.
In the multivariate case, we define:

C− (u1, . . . , un) = max
(

n∑
i=1

ui − n+ 1, 0
)

and:
C+ (u1, . . . , un) = min (u1, . . . , un)

As discussed above, we can show that C+ is a copula, but C− does not belong to the set
C. Nevertheless, C− is the best-possible bound, meaning that for all (u1, . . . , un) ∈ [0, 1]n,
there is a copula that coincide with C− (Nelsen, 2006). This implies that F (F1, . . . ,Fn) has
a minimal distribution function if and only if max (

∑n
i=1 Fi (xi)− n+ 1, 0) is a probability

distribution (Dall’Aglio, 1972).

11.1.3.3 Concordance ordering

Using the result of the previous paragraph, we have:

C− (u1, u2) ≤ C (u1, u2) ≤ C+ (u1, u2)

for all C ∈ C. For a given value α ∈ [0, 1], the level curves of C are then in the triangle
defined as follows:

{(u1, u2) : max (u1 + u2 − 1, 0) ≤ α,min (u1, u2) ≥ α}

An illustration is shown in Figure 11.2. In the multidimensional case, the region becomes a
n-volume.

We now introduce a stochastic ordering on copulas. Let C1 and C2 be two copula
functions. We say that the copula C1 is smaller than the copula C2 and we note C1 ≺ C2
if we verify that C1 (u1, u2) ≤ C2 (u1, u2) for all (u1, u2) ∈ [0, 1]2. This stochastic ordering
is called the concordance ordering and may be viewed as the first order of the stochastic
dominance on probability distributions.
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FIGURE 11.2: The triangle region of the contour lines C (u1, u2) = α

Example 113 This ordering is partial because we cannot compare all copula functions. Let
us consider the cubic copula defined by C (u1, u2; θ) = u1u2+θ [u(u− 1)(2u− 1)] [v(v − 1)(2v − 1)]
where θ ∈ [−1, 2]. If we compare it to the product copula C⊥, we have:

C
(

3
4 ,

3
4 ; 1
)

= 0.5712 ≥ C⊥
(

3
4 ,

3
4

)
= 0.5625

but:
C
(

3
4 ,

1
4 ; 1
)

= 0.1787 ≤ C⊥
(

3
4 ,

1
4

)
= 0.1875

Using the Fréchet bounds, we always have C− ≺ C⊥≺ C+. A copula C has a positive
quadrant dependence (PQD) if it satisfies the inequality C⊥ ≺ C ≺ C+. In a similar way, C
has a negative quadrant dependence (NQD) if it satisfies the inequality C− ≺ C ≺ C⊥. As
it is a partial ordering, there exist copula functions C such that C � C⊥ and C ⊀ C⊥. A
copula function may then have a dependence structure that is neither positive or negative.
This is the case of the cubic copula given in the previous example. In Figure 11.3, we report
the cumulative distribution function (above panel) and its contour lines (right panel) of the
three copula functions C−, C⊥ and C+, which plays an important role to understand the
dependance between unidimensional risks.

Let Cθ (u1, u2) = C (u1, u2; θ) be a family of copula functions that depends on the
parameter θ. The copula family {Cθ} is totally ordered if, for all θ2 ≥ θ1, Cθ2 � Cθ1

(positively ordered) or Cθ2 ≺ Cθ1 (negatively ordered). For instance, the Frank copula
defined by:

C (u1, u2; θ) = −1
θ

ln
(

1 +
(
e−θu1 − 1

) (
e−θu2 − 1

)
e−θ − 1

)
where θ ∈ R is a positively ordered family (see Figure 11.4).
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FIGURE 11.3: The three copula functions C−, C⊥ and C+

FIGURE 11.4: Concordance ordering of the Frank copula
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Example 114 Let us consider the copula function Cθ = θ ·C− + (1− θ) ·C+ where 0 ≤
θ ≤ 1. This copula is a convex sum of the extremal copulas C− and C+. When θ2 ≥ θ1, we
have:

Cθ2 (u1, u2) = θ2 ·C− (u1, u2) + (1− θ2) ·C+ (u1, u2)
= Cθ1 (u1, u2)− (θ2 − θ1) ·

(
C+ (u1, u2)−C− (u1, u2)

)
≤ Cθ1 (u1, u2)

We deduce that Cθ2 ≺ Cθ1 . This copula family is negatively ordered.

11.2 Copula functions and random vectors
Let X = (X1, X2) be a random vector with distribution F. We define the copula of

(X1, X2) by the copula of F:

F (x1, x2) = C 〈X1, X2〉 (F1 (x1) ,F2 (x2))

In what follows, we give the main results on the dependence of the random vector X found
in Deheuvels (1978), Schweizer and Wolff (1981), and Nelsen (2006).

11.2.1 Countermonotonicity, comonotonicity and scale invariance prop-
erty

We give here a probabilistic interpretation of the three copula functions C−, C⊥ and
C+:

• X1 and X2 are countermonotonic – or C 〈X1, X2〉 = C− – if there exists a random
variable X such that X1 = f1 (X) and X2 = f2 (X) where f1 and f2 are respectively
decreasing and increasing functions2;

• X1 and X2 are independent if the dependence function is the product copula C⊥;

• X1 are X2 are comonotonic – or C 〈X1, X2〉 = C+ – if there exists a random variable
X such that X1 = f1 (X) and X2 = f2 (X) where f1 and f2 are both increasing
functions3.

Let us consider a uniform random vector (U1, U2). We have U2 = 1 − U1 when
C 〈X1, X2〉 = C− and U2 = U1 when C 〈X1, X2〉 = C+. In the case of a standardized
Gaussian random vector, we obtain X2 = −X1 when C 〈X1, X2〉 = C− and X2 = X1
when C 〈X1, X2〉 = C+. If the marginals are log-normal, it follows that X2 = X−1

1 when
C 〈X1, X2〉 = C− and X2 = X1 when C 〈X1, X2〉 = C+. For these three examples, we verify
that X2 is a decreasing (resp. increasing) function of X1 if the copula function C 〈X1, X2〉 is
C− (resp. C+). The concepts of counter- and comonotonicity concepts generalize the cases
where the linear correlation of a Gaussian vector is equal to −1 or +1. Indeed, C− and C+

define respectively perfect negative and positive dependence.

2We also have X2 = f (X1) where f = f2 ◦ f−1
1 is a decreasing function.

3In this case, X2 = f (X1) where f = f2 ◦ f−1
1 is an increasing function.
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We now give one of the most important theorems on copulas. Let (X1, X2) be a random
vectors, whose copula is C 〈X1, X2〉. If h1 and h2 are two increasing functions on ImX1 and
ImX2, then we have:

C 〈h1 (X1) , h2 (X2)〉 = C 〈X1, X2〉
This means that copula functions are invariant under strictly increasing transformations of
the random variables. To prove this theorem, we note F and G the probability distributions
of the random vectors (X1, X2) and (Y1, Y2) = (h1 (X1) , h2 (X2)). The marginals of G are:

G1 (y1) = Pr {Y1 ≤ y1}
= Pr {h1 (X1) ≤ y1}
= Pr

{
X1 ≤ h−1

1 (y1)
}

(because h1 is strictly increasing)
= F1

(
h−1

1 (y1)
)

and G2 (y2) = F2
(
h−1

2 (y2)
)
. We deduce that G−1

1 (u1) = h1
(
F−1

1 (u1)
)
and G−1

2 (u2) =
h2
(
F−1

2 (u2)
)
. By definition, we have:

C 〈Y1, Y2〉 (u1, u2) = G
(
G−1

1 (u1) ,G−1
2 (u2)

)
Moreover, it follows that:

G
(
G−1

1 (u1) ,G−1
2 (u2)

)
= Pr

{
Y1 ≤ G−1

1 (u1) , Y2 ≤ G−1
2 (u2)

}
= Pr

{
h1 (X1) ≤ G−1

1 (u1) , h2 (X2) ≤ G−1
2 (u2)

}
= Pr

{
X1 ≤ h−1

1
(
G−1

1 (u1)
)
, X2 ≤ h−1

2
(
G−1

2 (u2)
)}

= Pr
{
X1 ≤ F−1

1 (u1) , X2 ≤ F−1
2 (u2)

}
= F

(
F−1

1 (u1) ,F−1
2 (u2)

)
Because we have C 〈X1, X2〉 (u1, u2) = F

(
F−1

1 (u1) ,F−1
2 (u2)

)
, we deduce that C 〈Y1, Y2〉 =

C 〈X1, X2〉.
Example 115 If X1 and X2 are two positive random variables, the previous theorem im-
plies that:

C 〈X1, X2〉 = C 〈lnX1, X2〉
= C 〈lnX1, lnX2〉
= C 〈X1, expX2〉

= C
〈√

X1, expX2

〉
Applying an increasing transformation does not change the copula function, only the
marginals. Thus, the copula of the multivariate log-normal distribution is the same than
the copula of the multivariate normal distribution.

The scale invariance property is perhaps not surprising if we consider the canonical
decomposition of the bivariate probability distribution. Indeed, the copula C 〈U1, U2〉 is
equal to the copula C 〈X1, X2〉 where U1 = F1 (X1) and U2 = F2 (X2). In some sense, Sklar’s
theorem is an application of the scale invariance property by considering h1 (x1) = F1 (x1)
and h2 (x2) = F2 (x2).
Example 116 We assume that X1 ∼ N

(
µ1, σ

2
1
)
and X2 ∼ N

(
µ2, σ

2
2
)
. If the copula of

(X1, X2) is C−, we have U2 = 1− U1. This implies that:

Φ
(
X2 − µ2

σ2

)
= 1− Φ

(
X1 − µ1

σ1

)
= Φ

(
−X1 − µ1

σ1

)
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We deduce that X1 and X2 are countermonotonic if:

X2 = µ2 −
σ2

σ1
(X1 − µ1)

By applying the same reasoning to the copula function C+, we show that X1 and X2 are
comonotonic if:

X2 = µ2 + σ2

σ1
(X1 − µ1)

We now consider the log-normal random variables Y1 = exp (X1) and Y2 = exp (X2). For
the countermonotonicity case, we obtain:

lnY2 = µ2 −
σ2

σ1
(lnY1 − µ1)

or:
Y2 = exp

(
µ2 + σ2

σ1
µ1

)
· Y −σ2/σ1

1

For the comonotonicity case, the relationship becomes:

Y2 = exp
(
µ2 −

σ2

σ1
µ1

)
· Y σ2/σ1

1

If we assume that µ1 = µ2 and σ1 = σ2, the log-normal random variables Y1 and Y2 are
countermonotonic if Y2 = Y −1

1 and comonotonic if Y2 = Y1.

11.2.2 Dependence measures
We can interpret the copula function C 〈X1, X2〉 as a standardization of the joint dis-

tribution after eliminating the effects of marginals. Indeed, it is a comprehensive statistic
of the dependence function between X1 and X2. Therefore, a non-comprehensive statistic
will be a dependence measure if it can be expressed using C 〈X1, X2〉.

11.2.2.1 Concordance measures

Following Nelsen (2006), a numeric measure m of association between X1 and X2 is a
measure of concordance if it satisfies the following properties:

1. −1 = m 〈X,−X〉 ≤ m 〈C〉 ≤ m 〈X,X〉 = 1;

2. m
〈
C⊥
〉

= 0;

3. m 〈−X1, X2〉 = m 〈X1,−X2〉 = −m 〈X1, X2〉;

4. if C1 ≺ C2, then m 〈C1〉 ≤ m 〈C2〉;

Using this last property, we have: C ≺ C⊥ ⇒ m 〈C〉 < 0 and C � C⊥ ⇒ m 〈C〉 > 0. The
concordance measure can then be viewed as a generalization of the linear correlation when
the dependence function is not normal. Indeed, a positive quadrant dependence (PQD)
copula will have a positive concordance measure whereas a negative quadrant dependence
(NQD) copula will have a negative concordance measure. Moreover, the bounds −1 and +1
are reached when the copula function is countermonotonic and comonotonic.

Among the several concordance measures, we find Kendall’s tau and Spearman’s rho,
which play an important role in non-parametric statistics. Let us consider a sample of
n observations {(x1, y1) , . . . , (xn, yn)} of the random vector (X,Y ). Kendall’s tau is the
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probability of concordance – (Xi −Xj)·(Yi − Yj) > 0 – minus the probability of discordance
– (Xi −Xj) · (Yi − Yj) < 0:

τ = Pr {(Xi −Xj) · (Yi − Yj) > 0} − Pr {(Xi −Xj) · (Yi − Yj) < 0}

Spearman’s rho is the linear correlation of the rank statistics (Xi:n, Yi:n). We can also show
that Spearman’s rho has the following expression:

% = cov (FX (X) ,FY (Y ))
σ (FX (X)) · σ (FY (Y ))

Schweizer and Wolff (1981) showed that Kendall’s tau and Spearman’s rho are concordance
measures and have the following expressions:

τ = 4
∫∫

[0,1]2
C (u1, u2) dC (u1, u2)− 1

% = 12
∫∫

[0,1]2
u1u2 dC (u1, u2)− 3

From a numerical point of view, the following formulas should be preferred (Nelsen, 2006):

τ = 1− 4
∫∫

[0,1]2
∂u1C (u1, u2) ∂u2C (u1, u2) du1 du2

% = 12
∫∫

[0,1]2
C (u1, u2) du1 du2 − 3

For some copulas, we have analytical formulas. For instance, we have:

Copula % τ
Normal 6π−1 arc sin (ρ/2) 2π−1 arc sin (ρ)
Gumbel X (θ − 1) /θ
FGM θ/3 2θ/9
Frank 1− 12θ−1 (D1 (θ)−D2 (θ)) 1− 4θ−1 (1−D1 (θ))

where Dk (x) is the Debye function. The Gumbel (or Gumbel-Hougaard) copula is equal to:

C (u1, u2; θ) = exp
(
−
[
(− ln u1)θ + (− ln u2)θ

]1/θ)
for θ ≥ 1, whereas the expression of the Farlie-Gumbel-Morgenstern (or FGM) copula is:

C (u1, u2; θ) = u1u2 (1 + θ (1− u1) (1− u2))

for −1 ≤ θ ≤ 1.
For illustration, we report in Figures 11.5, 11.6 and 11.7 the level curves of several density

functions built with Normal, Frank and Gumbel copulas. In order to compare them, the
parameter of each copula is calibrated such that Kendall’s tau is equal to 50%. This means
that these 12 distributions functions have the same dependence with respect to Kendall’s
tau. However, the dependence is different from one figure to another, because their copula
function is not the same. This is why Kendall’s tau is not an exhaustive statistic of the
dependence between two random variables.

We could build bivariate probability distributions, which are even less comparable. In-
deed, the set of these three copula families (Normal, Frank and Gumbel) is very small
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FIGURE 11.5: Contour lines of bivariate densities (Normal copula)

FIGURE 11.6: Contour lines of bivariate densities (Frank copula)
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FIGURE 11.7: Contour lines of bivariate densities (Gumbel copula)

compared to the set C of copulas. However, there exist other dependence functions that are
very far from the previous copulas. For instance, we consider the region B (τ, %) defined by:

(τ, %) ∈ B (τ, %)⇔
{

(3τ − 1) /2 ≤ % ≤
(
1 + 2τ − τ2) /2 if τ ≥ 0(

τ2 + 2τ − 1
)
/2 ≤ % ≤ (1 + 3τ) /2 if τ ≤ 0

Nelsen (2006) shows that these bounds cannot be improved and there is always a copula
function that corresponds to a point of the boundary B (τ, %). In Figure 11.8 we report
the bounds B (τ, %) and the area reached by 8 copula families (Normal, Plackett, Frank,
Clayton, Gumbel, Galambos, Hüsler-Reiss, FGM). These copulas covered a small surface
of the τ − % region. These copula families are then relatively similar if we consider these
concordance measures. Obtaining copulas that have a different behavior requires that the
dependence is not monotone4 on the whole domain [0, 1]2.

11.2.2.2 Linear correlation

We recall that the linear correlation (or Pearson’s correlation) is defined as follows:

ρ 〈X1, X2〉 = E [X1 ·X2]− E [X1] · E [X2]
σ (X1) · σ (X2)

Tchen (1980) showed the following properties of this measure:

• if the dependence of the random vector (X1, X2) is the product copula C⊥, then
ρ 〈X1, X2〉 = 0;

• ρ is an increasing function with respect to the concordance measure:

C1 � C2 ⇒ ρ1 〈X1, X2〉 ≥ ρ2 〈X1, X2〉
4For instance, the dependence can be positive in one region and negative in another region.
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FIGURE 11.8: Bounds of (τ, %) statistics

• ρ 〈X1, X2〉 is bounded:

ρ− 〈X1, X2〉 ≤ ρ 〈X1, X2〉 ≤ ρ+ 〈X1, X2〉

and the bounds are reached for the Fréchet copulas C− and C+.

However, a concordance measure must satisfy m 〈C−〉 = −1 and m 〈C+〉 = +1. If we use
the stochastic representation of Fréchet bounds, we have:

ρ− 〈X1, X2〉 = ρ+ 〈X1, X2〉 = E [f1 (X) · f2 (X)]− E [f1 (X)] · E [f2 (X)]
σ (f1 (X)) · σ (f2 (X))

The solution of the equation ρ− 〈X1, X2〉 = −1 is f1 (x) = a1x + b1 and f2 (x) = a2x + b2
where a1a2 < 0. For the equation ρ+ 〈X1, X2〉 = +1, the condition becomes a1a2 > 0.
Except for Gaussian random variables, there are few probability distributions that can
satisfy these conditions. Moreover, if the linear correlation is a concordance measure, it is
an invariant measure by increasing transformations:

ρ 〈X1, X2〉 = ρ 〈f1 (X1) , f2 (X2)〉

Again, the solution of this equation is f1 (x) = a1x + b1 and f2 (x) = a2x + b2 where
a1a2 > 0. We now have a better understanding why we say that this dependence measure
is linear. In summary, the copula function generalizes the concept of linear correlation in a
non-Gaussian non-linear world.

Example 117 We consider the bivariate log-normal random vector (X1, X2) where X1 ∼
LN

(
µ1, σ

2
1
)
, X2 ∼ LN

(
µ2, σ

2
2
)
and ρ = ρ 〈lnX1, lnX2〉.

We can show that:

E [Xp1
1 ·X

p2
2 ] = exp

(
p1µ1 + p2µ2 + p2

1σ
2
1 + p2

2σ
2
2

2 + p1p2ρσ1σ2

)
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It follows that:
ρ 〈X1, X2〉 = exp (ρσ1σ2)− 1√

exp (σ2
1)− 1 ·

√
exp (σ2

2)− 1

We deduce that ρ 〈X1, X2〉 ∈ [ρ−, ρ+], but the bounds are not necessarily −1 and +1. For
instance, when we use the parameters σ1 = 1 and σ2 = 3, we obtain the following results:

Copula ρ 〈X1, X2〉 τ 〈X1, X2〉 % 〈X1, X2〉
C− −0.008 −1.000 −1.000

ρ = −0.7 −0.007 −0.494 −0.683
C⊥ 0.000 0.000 0.000

ρ = 0.7 0.061 0.494 0.683
C+ 0.162 1.000 1.000

When the copula function is C−, the linear correlation takes a value close to zero! In
Figure 11.9, we show that the bounds ρ− and ρ+ of ρ 〈X1, X2〉 are not necessarily −1 and
+1. When the marginals are log-normal, the upper bound ρ+ = +1 is reached only when
σ1 = σ2 and the lower bound ρ− = −1 is never reached. This poses a problem to interpret
the value of a correlation. Let us consider two random vectors (X1, X2) and (Y1, Y2). What
could we say about the dependence function when ρ 〈X1, X2〉 ≥ ρ 〈Y1, Y2〉? The answer is
nothing if the marginals are not Gaussian. Indeed, we have seen previously that a 70%
linear correlation between two Gaussian random vectors becomes a 6% linear correlation if
we apply an exponential transformation. However, the two copulas of (X1, X2) and (Y1, Y2)
are exactly the same. In fact, the drawback of the linear correlation is that this measure
depends on the marginals and not only on the copula function.

FIGURE 11.9: Bounds of the linear correlation between two log-normal random variables
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11.2.2.3 Tail dependence

Contrary to concordance measures, tail dependence is a local measure that charac-
terizes the joint behavior of the random variables X1 and X2 at the extreme points
x− = inf {x : F (x) > 0} and x+ = sup {x : F (x) < 1}. Let C be a copula function such
that the following limit exists:

λ+ = lim
u→1−

1− 2u+ C (u, u)
1− u

We say that C has an upper tail dependence when λ+ ∈ (0, 1] and C has no upper tail
dependence when λ+ = 0 (Joe, 1997). For the lower tail dependence λ−, the limit becomes:

λ− = lim
u→0+

C (u, u)
u

We notice that λ+ and λ− can also be defined as follows:

λ+ = lim
u→1−

Pr {U2 > u | U1 > u}

and:
λ− = lim

u→0+
Pr {U2 < u | U1 < u}

To compute the upper tail dependence, we consider the joint survival function C̄ defined
by:

C̄ (u1, u2) = Pr {U1 > u1, U2 > u2}
= 1− u1 − u2 + C (u1, u2)

The expression of the upper tail dependence is then equal to:

λ+ = lim
u→1−

C̄ (u, u)
1− u

= − lim
u→1−

dC̄ (u, u)
du

= − lim
u→1−

(−2 + ∂1C (u, u) + ∂2C (u, u))

= lim
u→1−

(Pr {U2 > u | U1 = u}+ Pr {U1 > u | U2 = u})

By assuming that the copula is symmetric, we finally obtain:

λ+ = 2 lim
u→1−

Pr {U2 > u | U1 = u}

= 2− 2 lim
u→1−

Pr {U2 < u | U1 = u}

= 2− 2 lim
u→1−

C2|1 (u, u) (11.4)

In a similar way, we find that the lower tail dependence of a symmetric copula is equal to:

λ− = 2 lim
u→0+

C2|1 (u, u) (11.5)

For the copula functions C− and C⊥, we have λ− = λ+ = 0. For the copula C+, we
obtain λ− = λ+ = 1. However, there exist copulas such that λ− 6= λ+. This is the case of the



Copulas and Dependence Modeling 731

Gumbel copula C (u1, u2; θ) = exp
(
−
[
(− ln u1)θ + (− ln u2)θ

]1/θ)
, because we have λ− =

0 and λ+ = 2− 21/θ. The Gumbel copula has then an upper tail dependence, but no lower
tail dependence. If we consider the Clayton copula C (u1, u2; θ) =

(
u−θ1 + u−θ2 − 1

)−1/θ, we
obtain λ− = 2−1/θ and λ+ = 0.

Coles et al. (1999) define the quantile-quantile dependence function as follows:

λ+ (α) = Pr
{
X2 > F−1

2 (α) | X1 > F−1
1 (α)

}
It is the conditional probability that X2 is larger than the quantile F−1

2 (α) given that X1
is larger than the quantile F−1

1 (α). We have:

λ+ (α) = Pr
{
X2 > F−1

2 (α) | X1 > F−1
1 (α)

}
=

Pr
{
X2 > F−1

2 (α) , X1 > F−1
1 (α)

}
Pr
{
X1 > F−1

1 (α)
}

=
1− Pr

{
X1 ≤ F−1

1 (α)
}
− Pr

{
X2 ≤ F−1

2 (α)
}

1− Pr
{
X1 ≤ F−1

1 (α)
} +

Pr
{
X2 ≤ F−1

2 (α) , X1 ≤ F−1
1 (α)

}
1− Pr {F1 (X1) ≤ α}

= 1− 2α+ C (α, α)
1− α

The tail dependence λ+ is then the limit of the conditional probability λ+ (α) when the
confidence level α tends to 1. It is also the probability of one variable being extreme given
that the other is extreme. Because λ+ (α) is a probability, we verify that λ+ ∈ [0, 1]. If
the probability is zero, the extremes are independent. If λ+ is equal to 1, the extremes
are perfectly dependent. To illustrate the measures5 λ+ (α) and λ− (α), we represent their
values for the Gumbel and Clayton copulas in Figure 11.10. The parameters are calibrated
with respect to Kendall’s tau.

Remark 138 We consider two portfolios, whose losses correspond to the random variables
L1 and L2 with probability distributions F1 and F2. The probability that the loss of the
second portfolio is larger than its value-at-risk knowing that the value-at-risk of the first
portfolio is exceeded is exactly equal to the quantile-quantile dependence measure λ+ (α):

λ+ (α) = Pr
{
L2 > F−1

2 (α) | L1 > F−1
1 (α)

}
= Pr {L2 > VaRα (L2) | L1 > VaRα (L1)}

11.3 Parametric copula functions
In this section, we study the copula families, which are commonly used in risk man-

agement. They are parametric copulas, which depend on a set of parameters. Statistical
inference, in particular parameter estimation, is developed in the next section.

5We have λ− (α) = Pr
{
X2 < F−1

2 (α) | X1 < F−1
1 (α)

}
and limα→0 λ− (α) = λ−.
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FIGURE 11.10: Quantile-quantile dependence measures λ+ (α) and λ− (α)

11.3.1 Archimedean copulas
11.3.1.1 Definition

Genest and MacKay (1986b) define Archimedean copulas as follows:

C (u1, u2) =
{
ϕ−1 (ϕ (u1) + ϕ (u2)) if ϕ (u1) + ϕ (u2) ≤ ϕ (0)
0 otherwise

where ϕ a C2 is a function which satisfies ϕ (1) = 0, ϕ′ (u) < 0 and ϕ′′ (u) > 0 for all
u ∈ [0, 1]. ϕ (u) is called the generator of the copula function. If ϕ (0) = ∞, the generator
is said to be strict. Genest and MacKay (1986a) link the construction of Archimedean
copulas to the independence of random variables. Indeed, by considering the multiplicative
generator λ (u) = exp (−ϕ (u)), the authors show that:

C (u1, u2) = λ−1 (λ (u1)λ (u2))

This means that:

λ (Pr {U1 ≤ u1, U2 ≤ u2}) = λ (Pr {U1 ≤ u1})× λ (Pr {U2 ≤ u2})

In this case, the random variables (U1, U2) become independent when the scale of probabil-
ities has been transformed.

Example 118 If ϕ (u) = u−1 − 1, we have ϕ−1 (u) = (1 + u)−1 and:

C (u1, u2) =
(
1 +

(
u−1

1 − 1 + u−1
2 − 1

))−1 = u1u2

u1 + u2 − u1u2

The Gumbel logistic copula is then an Archimedean copula.
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Example 119 The product copula C⊥ is Archimedean and the associated generator is
ϕ (u) = − ln u. Concerning Fréchet copulas, only C− is Archimedean with ϕ (u) = 1− u.

In Table 11.1, we provide another examples of Archimedean copulas6.

TABLE 11.1: Archimedean copula functions
Copula ϕ (u) C (u1, u2)
C⊥ − ln u u1u2

Clayton u−θ − 1
(
u−θ1 + u−θ2 − 1

)−1/θ

Frank − ln e
−θu − 1
e−θ − 1 −1

θ
ln
(

1 +
(
e−θu1 − 1

) (
e−θu2 − 1

)
e−θ − 1

)
Gumbel (− ln u)θ exp

(
−
(
ũθ1 + ũθ2

)1/θ)
Joe − ln

(
1− (1− u)θ

)
1−

(
ūθ1 + ūθ2 − ūθ1ūθ2

)1/θ

11.3.1.2 Properties

Archimedean copulas play an important role in statistics, because they present many
interesting properties, for example:

• C is symmetric, meaning that C (u1, u2) = C (u2, u1);

• C is associative, implying that C (u1,C (u1, u3)) = C (C (u1, u2) , u3) ;

• the diagonal section δ (u) = C (u, u) satisfies δ (u) < u for all u ∈ (0, 1);

• if a copula C is associative and δ (u) < u for all u ∈ (0, 1), then C is Archimedean.

Genest and MacKay (1986a) also showed that the expression of Kendall’s tau is:

τ 〈C〉 = 1 + 4
∫ 1

0

ϕ (u)
ϕ′ (u) du

whereas the copula density is:

c (u1, u2) = −ϕ
′′ (C (u1, u2))ϕ′ (u1)ϕ′ (u2)

[ϕ′ (C (u1, u2))]3

Example 120 With the Clayton copula, we have ϕ (u) = u−θ − 1 and ϕ′ (u) = −θu−θ−1.
We deduce that:

τ = 1 + 4
∫ 1

0

1− u−θ

θu−θ−1 du

= θ

θ + 2
6We use the notations ū = 1− u and ũ = − lnu.
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11.3.1.3 Two-parameter Archimedean copulas

Nelsen (2006) showed that if ϕ (t) is a strict generator, then we can build two-parameter
Archimedean copulas by considering the following generator:

ϕα,β (t) = (ϕ (tα))β

where α > 0 and β > 1. For instance, if ϕ (t) = t−1 − 1, the two-parameter generator is
ϕα,β (t) = (t−α − 1)β . Therefore, the corresponding copula function is defined by:

C (u1, u2) =
([(

u−α1 − 1
)β +

(
u−α2 − 1

)β]1/β + 1
)−1/α

This is a generalization of the Clayton copula, which is obtained when the parameter β is
equal to 1.

11.3.1.4 Extension to the multivariate case

We can build multivariate Archimedean copulas in the following way:

C (u1, . . . , un) = ϕ−1 (ϕ (u1) + . . .+ ϕ (un))

However, C is a copula function if and only if the function ϕ−1 (u) is completely monotone
(Nelsen, 2006):

(−1)k dk

dukϕ
−1 (u) ≥ 0 ∀ k ≥ 1

For instance, the multivariate Gumbel copula is defined by:

C (u1, . . . , un) = exp
(
−
(

(− ln u1)θ + . . .+ (− ln un)θ
)1/θ

)

The previous construction is related to an important class of multivariate distributions,
which are called frailty models (Oakes, 1989). Let F1, . . . ,Fn be univariate distribution
functions, and let G be an n-variate distribution function with univariate marginals Gi,
such that Ḡ (0, . . . , 0) = 1. We denote by ψi the Laplace transform of Gi. Marshall and
Olkin (1988) showed that the function defined by:

F (x1, . . . , xn) =
∫
· · ·
∫

C
(
Ht1

1 (x1) , . . . ,Htn
n (xn)

)
dG (t1, . . . , tn)

is a multivariate probability distribution with marginals F1, . . . ,Fn if Hi (x) =
exp

(
−ψ−1

i (Fi (x))
)
. If we assume that the univariate distributions Gi are the same and

equal to G1, G is the upper Fréchet bound and C is the product copula C⊥, the previous
expression becomes:

F (x1, . . . , xn) =
∫ n∏

i=1
Ht1
i (xi) dG1 (t1)

=
∫

exp
(
−t1

n∑
i=1

ψ−1 (Fi (xi))
)

dG1 (t1)

= ψ
(
ψ−1 (F1 (x1)) + . . .+ ψ−1 (Fn (xn))

)
The corresponding copula is then given by:

C (u1, . . . , un) = ψ
(
ψ−1 (u1) + . . .+ ψ−1 (un)

)
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This is a special case of Archimedean copulas where the generator ϕ is the inverse of
a Laplace transform. For instance, the Clayton copula is a frailty copula where ψ (x) =
(1 + x)−1/θ is the Laplace transform of a Gamma random variable. The Gumbel-Hougaard
copula is frailty too and we have ψ (x) = exp

(
−x1/θ). This is the Laplace transform of a

positive stable distribution.
For frailty copulas, Joe (1997) showed that upper and lower tail dependence measures

are given by:

λ+ = 2− 2 lim
x→0

ψ′ (2x)
ψ′ (x)

and:
λ− = 2 lim

x→∞

ψ′ (2x)
ψ′ (x)

Example 121 In the case of the Clayton copula, the Laplace transform is ψ (x) =
(1 + x)−1/θ. We have:

ψ′ (2x)
ψ′ (x) = (1 + 2x)−1/θ−1

(1 + x)−1/θ−1

We deduce that:

λ+ = 2− 2 lim
x→0

(1 + 2x)−1/θ−1

(1 + x)−1/θ−1

= 2− 2
= 0

and:

λ− = 2 lim
x→∞

(1 + 2x)−1/θ−1

(1 + x)−1/θ−1

= 2× 2−1/θ−1

= 2−1/θ

11.3.2 Normal copula
The Normal copula is the dependence function of the multivariate normal distribution

with a correlation matrix ρ:

C (u1, . . . , un; ρ) = Φn
(
Φ−1 (u1) , . . . ,Φ−1 (un) ; ρ

)
By using the canonical decomposition of the multivariate density function:

f (x1, . . . , xn) = c (F1 (x1) , . . . ,Fn (xn))
n∏
i=1

fi (xi)

we deduce that the probability density function of the Normal copula is:

c (u1, . . . , un, ; ρ) = 1
|ρ|

1
2

exp
(
−1

2x
> (ρ−1 − In

)
x

)
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where xi = Φ−1 (ui). In the bivariate case, we obtain7:

c (u1, u2; ρ) = 1√
1− ρ2

exp
(
−x

2
1 + x2

2 − 2ρx1x2

2 (1− ρ2) + x2
1 + x2

2
2

)
It follows that the expression of the bivariate Normal copula function is also equal to:

C (u1, u2; ρ) =
∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞
φ2 (x1, x2; ρ) dx1 dx2 (11.6)

where φ2 (x1, x2; ρ) is the bivariate normal density:

φ2 (x1, x2; ρ) = 1
2π
√

1− ρ2
exp

(
−x

2
1 + x2

2 − 2ρx1x2

2 (1− ρ2)

)
Example 122 Let (X1, X2) be a standardized Gaussian random vector, whose cross-
correlation is ρ. Using the Cholesky decomposition, we write X2 as follows:

X2 = ρX1 +
√

1− ρ2X3

where X3 ∼ N (0, 1) is independent from X1 and X2. We have:

Φ2 (x1, x2; ρ) = Pr {X1 ≤ x1, X2 ≤ x2}

= E
[
Pr
{
X1 ≤ x1, ρX1 +

√
1− ρ2X3 ≤ x2 | X1

}]
=

∫ x1

−∞
Φ
(
x2 − ρx√

1− ρ2

)
φ (x) dx

It follows that:

C (u1, u2; ρ) =
∫ Φ−1(u1)

−∞
Φ
(

Φ−1 (u2)− ρx√
1− ρ2

)
φ (x) dx

We finally obtain that the bivariate Normal copula function is equal to:

C (u1, u2; ρ) =
∫ u1

0
Φ
(

Φ−1 (u2)− ρΦ−1 (u)√
1− ρ2

)
du (11.7)

This expression is more convenient to use than Equation (11.6).

Like the normal distribution, the Normal copula is easy to manipulate for computational
purposes. For instance, Kendall’s tau and Spearman’s rho are equal to:

τ = 2
π

arcsin ρ

and:
% = 6

π
arcsin ρ2

7In the bivariate case, the parameter ρ is the cross-correlation between X1 and X2, that is the element
(1, 2) of the correlation matrix.
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The conditional distribution C2|1 (u1, u2) has the following expression:

C2|1 (u1, u2) = ∂1C (u1, u2)

= Φ
(

Φ−1 (u2)− ρΦ−1 (u1)√
1− ρ2

)
To compute the tail dependence, we apply Equation (11.4) and obtain:

λ+ = 2− 2 lim
u→1−

Φ
(

Φ−1 (u)− ρΦ−1 (u)√
1− ρ2

)

= 2− 2 lim
u→1−

Φ
(√

1− ρ√
1 + ρ

Φ−1 (u)
)

We finally deduce that:

λ+ = λ− =
{

0 if ρ < 1
1 if ρ = 1

In Figure 11.11, we have represented the quantile-quantile dependence measure λ+ (α) for
several values of the parameter ρ. When ρ is equal to 90% and α is close to one, we notice
that λ+ (α) dramatically decreases. This means that even if the correlation is high, the
extremes are independent.

FIGURE 11.11: Tail dependence λ+ (α) for the Normal copula

11.3.3 Student’s t copula
In a similar way, the Student’s t copula is the dependence function associated with the

multivariate Student’s t probability distribution:

C (u1, . . . , un; ρ, ν) = Tn

(
T−1
ν (u1) , . . . ,T−1

ν (un) ; ρ, ν
)
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By using the definition of the cumulative distribution function:

Tn (x1, . . . , xn; ρ, ν) =
∫ x1

−∞
· · ·
∫ xn

−∞

Γ
(
ν+n

2
)
|ρ|−

1
2

Γ
(
ν
2
)

(νπ)
n
2

(
1 + 1

ν
x>ρ−1x

)− ν+n
2

dx

we can show that the copula density is then:

c (u1, . . . , un, ; ρ, ν) = |ρ|−
1
2

Γ
(
ν+n

2
) [

Γ
(
ν
2
)]n[

Γ
(
ν+1

2
)]n Γ

(
ν
2
) (1 + 1

νx
>ρ−1x

)− ν+n
2∏n

i=1

(
1 + x2

i

ν

)− ν+1
2

where xi = T−1
ν (ui). In the bivariate case, we deduce that the t copula has the following

expression:

C (u1, u2; ρ, ν) =
∫ T−1

ν (u1)

−∞

∫ T−1
ν (u2)

−∞

1
2π
√

1− ρ2
·

(
1 + x2

1 + x2
2 − 2ρx1x2

ν (1− ρ2)

)− ν+2
2

dx1 dx2

Like the Normal copula, we can obtain another expression, which is easier to manipulate. Let
(X1, X2) be a random vector whose probability distribution is T2 (x1, x2; ρ, ν). Conditionally
to X1 = x1, we have: (

ν + 1
ν + x2

1

)1/2
X2 − ρx1√

1− ρ2
∼ Tν+1

The conditional distribution C2|1 (u1, u2) is then equal to:

C2|1 (u1, u2; ρ, ν) = Tν+1

( ν + 1
ν +

[
T−1
ν (u1)

]2
)1/2

T−1
ν (u2)− ρT−1

ν (u1)√
1− ρ2


We deduce that:

C (u1, u2; ρ, ν) =
∫ u1

0
C2|1 (u, u2; ρ, ν) du

We can show that the expression of Kendall’s tau for the t copula is the one obtained
for the Normal copula. In the case of Spearman’s rho, there is no analytical expression.
We denote by %t (ρ, ν) and %n (ρ) the values of Spearman’s rho for Student’s t and Normal
copulas with same parameter ρ. We can show that %t (ρ, ν) > %n (ρ) for negative values of
ρ and %t (ρ, ν) < %n (ρ) for positive values of ρ. In Figure 11.12, we report the relationship
between τ and % for different degrees of freedom ν.

Because the t copula is symmetric, we can apply Equation (11.4) and obtain:

λ+ = 2− 2 lim
u→1−

Tν+1

( ν + 1
ν +

[
T−1
ν (u)

]2
)1/2

T−1
ν (u)− ρT−1

ν (u)√
1− ρ2


= 2− 2 ·Tν+1

((
(ν + 1) (1− ρ)

(1 + ρ)

)1/2
)

We finally deduce that:

λ+ =
{

0 if ρ = −1
> 0 if ρ > −1
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FIGURE 11.12: Relationship between τ and % of the Student’s t copula

Contrary to the Normal copula, the t copula has an upper tail dependence. In Figures 11.13
and 11.14, we represent the quantile-quantile dependence measure λ+ (α) for two degrees
of freedom ν. We observe that the behavior of λ+ (α) is different than the one obtained
in Figure 11.11 with the Normal copula. In Table 11.2, we give the numerical values of
the coefficient λ+ for various values of ρ and ν. We notice that it is strictly positive for
small degrees of freedom even if the parameter ρ is negative. For instance, λ+ is equal to
13.40% when ν and ρ are equal to 1 and −50%. We also observe that the convergence to
the Gaussian case is low when the parameter ρ is positive.

TABLE 11.2: Values in % of the upper tail dependence λ+ for the Student’s t copula

ν
Parameter ρ (in %)

−70.00 −50.00 0.00 50.00 70.00 90.00
1 7.80 13.40 29.29 50.00 61.27 77.64
2 2.59 5.77 18.17 39.10 51.95 71.77
3 0.89 2.57 11.61 31.25 44.81 67.02
4 0.31 1.17 7.56 25.32 39.07 62.98
6 0.04 0.25 3.31 17.05 30.31 56.30

10 0.00 0.01 0.69 8.19 19.11 46.27
∞ 0.00 0.00 0.00 0.00 0.00 0.00

Remark 139 The Normal copula is a particular case of the Student’s t copula when ν tends
to ∞. This is why these two copulas are often compared for a given value of ρ. However, we
must be careful because the previous analysis of the tail dependence has shown that these two
copulas are very different. Let us consider the bivariate case. We can write the Student’s t
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FIGURE 11.13: Tail dependence λ+ (α) for the Student’s t copula (ν = 1)

FIGURE 11.14: Tail dependence λ+ (α) for the Student’s t copula (ν = 4)
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random vector (T1, T2) as follows:

(T1, T2) = (N1, N2)√
X/ν

=
(

N1√
X/ν

, ρ
N1√
X/ν

+
√

1− ρ2 N3√
X/ν

)

where N1 and N3 are two independent Gaussian random variables and X is a random
variable, whose probability distribution is χ2 (ν). This is the introduction of the random
variable X that produces a strong dependence between T1 and T2, and correlates the extremes.
Even if the parameter ρ is equal to zero, we obtain:

(T1, T2) =
(

N1√
X/ν

,
N3√
X/ν

)

This implies that the product copula C⊥ can never be attained by the t copula.

11.4 Statistical inference and estimation of copula functions
We now consider the estimation problem of copula functions. We first introduce the

empirical copula, which may viewed as a non-parametric estimator of the copula function.
Then, we discuss the method of moments to estimate the parameters of copula functions.
Finally, we apply the method of maximum likelihood and show the different forms of im-
plementation.

11.4.1 The empirical copula
Let F̂ be the empirical distribution associated to a sample of T observations of the

random vector (X1, . . . , Xn). Following Deheuvels (1979), any copula Ĉ ∈ C defined on the
lattice L:

L =
{(

t1
T
, . . . ,

tn
T

)
: 1 ≤ j ≤ n, tj = 0, . . . , T

}
by the function:

Ĉ
(
t1
T
, . . . ,

tn
T

)
= 1
T

T∑
t=1

n∏
i=1

1 {Rt,i ≤ ti}

is an empirical copula. Here Rt,i is the rank statistic of the random variable Xi meaning
that XRt,i:T,i = Xt,i. We notice that Ĉ is the copula function associated to the empirical
distribution F̂. However, Ĉ is not unique because F̂ is not continuous. In the bivariate case,
we obtain:

Ĉ
(
t1
T
,
t2
T

)
= 1

T

T∑
t=1

1 {Rt,1 ≤ t1,Rt,2 ≤ t2}

= 1
T

T∑
t=1

1 {xt,1 ≤ xt1:T,1, xt,2 ≤ xt2:T,2}
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where {(xt,1, xt,2) , t = 1, . . . , T} denotes the sample of (X1, X2). Nelsen (2006) defines the
empirical copula frequency function as follows:

ĉ

(
t1
T
,
t2
T

)
= Ĉ

(
t1
T
,
t2
T

)
− Ĉ

(
t1 − 1
T

,
t2
T

)
−

Ĉ
(
t1
T
,
t2 − 1
T

)
+ Ĉ

(
t1 − 1
T

,
t2 − 1
T

)
= 1

T

T∑
t=1

1 {xt,1 = xt1:T,1, xt,2 = xt2:T,2}

We have then:

Ĉ
(
t1
T
,
t2
T

)
=

t1∑
j1=1

t2∑
j2=1

ĉ

(
j1
T
,
j2
T

)
We can interpret ĉ as the probability density function of the sample.

Example 123 We consider the daily returns of European (EU) and American (US) MSCI
equity indices from January 2006 to December 2015. In Figure 11.15, we represent the level
lines of the empirical copula and compare them with the level lines of the Normal copula.
For this copula function, the parameter ρ is estimated by the linear correlation between the
daily returns of the two MSCI equity indices. We notice that the Normal copula does not
exactly fit the empirical copula.
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FIGURE 11.15: Comparison of the empirical copula (solid line) and the Normal copula
(dashed line)
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Like the histogram of the empirical distribution function F̂, it is difficult to extract
information from Ĉ or ĉ, because these functions are not smooth8. It is better to use a
dependogram. This representation has been introduced by Deheuvels (1981), and consists
in transforming the sample {(xt,1, xt,2) , t = 1, . . . , T} of the random vector (X1, X2) into a
sample {(ut,1, ut,2) , t = 1, . . . , T} of uniform random variables (U1, U2) by considering the
rank statistics:

ut,i = 1
T
Rt,i

FIGURE 11.16: Dependogram of EU and US equity returns

The dependogram is then the scatter plot between ut,1 and ut,2. For instance, Figure 11.16
shows the dependogram of EU and US equity returns. We can compare this figure with
the one obtained by assuming that equity returns are Gaussian. Indeed, Figure 11.17 shows
the dependogram of a simulated bivariate Gaussian random vector when the correlation is
equal to 57.8%, which is the estimated value between EU and US equity returns during the
study period.

11.4.2 The method of moments
When it is applied to copulas, this method is different than the one presented in Chapter

10. Indeed, it consists in estimating the parameters θ of the copula function from the
population version of concordance measures. For instance, if τ = fτ (θ) is the relationship
between θ and Kendall’s tau, the MM estimator is simply the inverse of this relationship:

θ̂ = f−1
τ (τ̂)

8This is why they are generally coupled with approximation methods based on Bernstein polynomials
(Sancetta and Satchell, 2004).
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FIGURE 11.17: Dependogram of simulated Gaussian returns

where τ̂ is the estimate of Kendall’s tau based on the sample9. For instance, in the case of
the Gumbel copula, we obtain:

θ̂ = 1
1− τ̂

Remark 140 This approach is also valid for other concordance measures like Spearman’s
rho. We have then:

θ̂ = f−1
% (%̂)

where %̂ is the estimate10 of Spearman’s rho and f% is the theoretical relationship between θ
and Spearman’s rho.

Example 124 We consider the daily returns of 5 asset classes from January 2006 to De-
cember 2015. These asset classes are represented by the European MSCI equity index, the
American MSCI equity index, the Barclays sovereign bond index, the Barclays corporate
investment grade bond index and the Bloomberg commodity index. In Table 11.3, we report
the correlation matrix. In Tables 11.4 and 11.5, we assume that the dependence function is a
Normal copula and give the matrix ρ̂ of estimated parameters using the method of moments
based on Kendall’s tau and Spearman’s rhorho. We notice that these two matrices are very
close, but we also observe some important differences with the correlation matrix reported
in Table 11.3.

9We have:
τ̂ =

c− d
c+ d

where c and d are respectively the number of concordant and discordant pairs.
10It is equal to the linear correlation between the rank statistics.
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TABLE 11.3: Matrix of linear correlations ρ̂i,j
EU Equity US Equity Sovereign Credit Commodity

EU Equity 100.0
US Equity 57.8 100.0
Sovereign −34.0 −32.6 100.0
Credit −15.1 −28.6 69.3 100.0
Commodity 51.8 34.3 −22.3 −14.4 100.0

TABLE 11.4: Matrix of parameters ρ̂i,j estimated using Kendall’s tau

EU Equity US Equity Sovereign Credit Commodity
EU Equity 100.0
US Equity 57.7 100.0
Sovereign −31.8 −32.1 100.0
Credit −17.6 −33.8 73.9 100.0
Commodity 43.4 30.3 −19.6 −15.2 100.0

TABLE 11.5: Matrix of parameters ρ̂i,j estimated using Spearman’s rho

EU Equity US Equity Sovereign Credit Commodity
EU Equity 100.0
US Equity 55.4 100.0
Sovereign −31.0 −31.3 100.0
Credit −17.1 −32.7 73.0 100.0
Commodity 42.4 29.4 −19.2 −14.9 100.0

11.4.3 The method of maximum likelihood
Let us denote by {(xt,1, . . . , xt,n) , t = 1 . . . , T} the sample of the random vector

(X1, . . . , Xn), whose multivariate distribution function has the following canonical decom-
position:

F (x1, . . . , xn) = C (F1 (x1; θ1) , . . . ,Fn (xn; θn) ; θc)

This means that this statistical model depends on two types of parameters:

• the parameters (θ1, . . . , θn) of univariate distribution functions;

• the parameters θc of the copula function.

The expression of the log-likelihood function is:

` (θ1, . . . , θn, θc) =
T∑
t=1

ln c (F1 (xt,1; θ1) , . . . ,Fn (xt,n; θn) ; θc) +

T∑
t=1

n∑
i=1

ln fi (xt,i; θi)

where c is the copula density and fi is the probability density function associated to Fi.
The ML estimator is then defined as follows:(

θ̂1, . . . , θ̂n, θ̂c

)
= arg max ` (θ1, . . . , θn, θc)
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The estimation by maximum likelihood method can be time-consuming when the num-
ber of parameters is large. However, the copula approach suggests a two-stage parametric
method (Shih and Louis, 1995):

1. the first stage involves maximum likelihood from univariate marginals, meaning that
we estimate the parameters θ1, . . . , θn separately for each marginal:

θ̂i = arg max
T∑
t=1

ln fi (xt,i; θi)

2. the second stage involves maximum likelihood of the copula parameters θc with the
univariate parameters θ̂1, . . . , θ̂n held fixed from the first stage:

θ̂c = arg max
T∑
t=1

ln c
(
F1

(
xt,1; θ̂1

)
, . . . ,Fn

(
xt,n; θ̂n

)
; θc
)

This approach is known as the method of inference functions for marginals or IFM (Joe,
1997). Let θ̂IFM be the IFM estimator obtained with this two-stage procedure. We have:

T 1/2
(
θ̂IFM − θ0

)
→ N

(
0,V−1 (θ0)

)
where V (θ0) is the Godambe matrix (Joe, 1997).

Genest et al. (1995) propose a third estimation method, which consists in estimating
the copula parameters θc by considering the non-parametric estimates of the marginals
F1, . . . ,Fn:

θ̂c = arg max
T∑
t=1

ln c
(
F̂1 (xt,1) , . . . , F̂n (xt,n) ; θc

)
In this case, F̂i (xt,i) is the normalized rank Rt,i/T . This estimator called omnibus or OM
is then the ML estimate applied to the dependogram.

Example 125 Let us assume that the dependence function of asset returns (X1, X2) is the
Frank copula whereas the marginals are Gaussian. The log-likelihood function for observation
t is then equal to:

`t = ln
(
θc
(
1− e−θc

)
e−θc(Φ(yt,1)+Φ(yt,2))

)
−

ln
((

1− e−θc
)
−
(

1− e−θcΦ(yt,1)
)(

1− e−θcΦ(yt,2)
))2
−(

1
2 ln 2π + 1

2 ln σ2
1 + 1

2y
2
t,1

)
−(

1
2 ln 2π + 1

2 ln σ2
2 + 1

2y
2
t,2

)
where yt,i = σ−1

i (xt,i − µi) is the standardized return of asset i for the observation t. The
vector of parameters to estimate is θ = (µ1, σ1, µ2, σ2, θc). In the case of the IFM approach,
the parameters (µ1, σ1, µ2, σ2) are estimated in a first step. Then, we estimate the copula
parameter θc by considering the following log-likelihood function:

`t = ln
(
θc
(
1− e−θc

)
e−θc(Φ(ŷt,1)+Φ(ŷt,2))

)
−

ln
((

1− e−θc
)
−
(

1− e−θcΦ(ŷt,1)
)(

1− e−θcΦ(ŷt,2)
))2
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where ŷt,i is equal to σ̂−1
i (xt,i − µ̂i). Finally, the OM approach uses the uniform variates

ut,i = Rt,i/T in the expression of the log-likelihood function function:

`t = ln
(
θc
(
1− e−θc

)
e−θc(ut,1+ut,2)

)
−

ln
((

1− e−θc
)
−
(
1− e−θcut,1

) (
1− e−θcut,2

))2
Using the returns of MSCI Europe and US indices for the last 10 years, we obtain the

following results for the parameter θc of the Frank copula:

ML IFM OM Method of Moments
Kendall Spearman

θ̂c 6.809 6.184 4.149 3.982 3.721

τ̂ 0.554 0.524 0.399 0.387 0.367
%̂ 0.754 0.721 0.571 0.555 0.529

We obtain θ̂c = 6.809 for the method of maximum likelihood and θ̂c = 6.184 for the IFM
approach. These results are very close, that is not the case with the omnibus approach
where we obtain θ̂c = 4.149. This means that the assumption of Gaussian marginals is far
to be verified. The specification of wrong marginals in ML and IFM approaches induces
then a bias in the estimation of the copula parameter. With the omnibus approach, we do
not face this issue because we consider non-parametric marginals. This explains that we
obtain a value, which is close to the MM estimates (Kendall’s tau and Spearman’s rho).

For IFM and OM approaches, we can obtain a semi-analytical expression of θ̂c for some
specific copula functions. In the case of the Normal copula, the matrix ρ of the parameters
is estimated with the following algorithm:

1. we first transform the uniform variates ut,i into Gaussian variates:

nt,i = Φ−1 (ut,i)

2. we then calculate the correlation matrix of the Gaussian variates nt,i.
For the Student’s t copula, Bouyé et al. (2000) suggest the following algorithm:

1. let ρ̂0 be the estimated value of ρ for the Normal copula;

2. ρ̂k+1 is obtained using the following equation:

ρ̂k+1 = 1
T

T∑
t=1

(ν + n) ςtς>t
ν + ς>t ρ̂

−1
k ςt

where:

ςt =

 t−1
ν (ut,1)

...
t−1
ν (ut,n)


3. repeat the second step until convergence: ρ̂k+1 = ρ̂k := ρ̂∞.
Let us consider Example 124. We have estimated the parameter matrix ρ of Normal

and Student’s t copulas using the omnibus approach. Results are given in Tables 11.6, 11.7
and 11.8. We notice that these matrices are different than the correlation matrix calculated
in Table 11.3. The reason is that we have previously assumed that the marginals were
Gaussian. In this case, the ML estimate introduced a bias in the copula parameter in order
to compensate the bias induced by the wrong specification of the marginals.
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TABLE 11.6: Omnibus estimate ρ̂ (Normal copula)

EU Equity US Equity Sovereign Credit Commodity
EU Equity 100.0
US Equity 56.4 100.0
Sovereign −32.5 −32.1 100.0
Credit −16.3 −30.3 70.2 100.0
Commodity 46.5 30.7 −21.1 −14.7 100.0

TABLE 11.7: Omnibus estimate ρ̂ (Student’s t copula with ν = 1)

EU Equity US Equity Sovereign Credit Commodity
EU Equity 100.0
US Equity 47.1 100.0
Sovereign −20.3 −18.9 100.0
Credit −9.3 −22.1 57.6 100.0
Commodity 28.0 17.1 −7.4 −6.2 100.0

TABLE 11.8: Omnibus estimate ρ̂ (Student’s t copula with ν = 4)

EU Equity US Equity Sovereign Credit Commodity
EU Equity 100.0
US Equity 59.6 100.0
Sovereign −31.5 −31.9 100.0
Credit −18.3 −32.9 71.3 100.0
Commodity 43.0 30.5 −17.2 −13.4 100.0

Remark 141 The discrepancy between the ML or IFM estimate and the OM estimate is
interesting information for knowing if the specification of the marginals are right or not.
In particular, a large discrepancy indicates that the estimated marginals are far from the
empirical marginals.

11.5 Exercises
11.5.1 Gumbel logistic copula

1. Calculate the density of the Gumbel logistic copula.

2. Show that it has a lower tail dependence, but no upper tail dependence.

11.5.2 Farlie-Gumbel-Morgenstern copula
We consider the following function:

C (u1, u2) = u1u2 (1 + θ (1− u1) (1− u2)) (11.8)
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1. Show that C is a copula function for θ ∈ [−1, 1].

2. Calculate the tail dependence coefficient λ, the Kendall’s τ statistic and the Spear-
man’s % statistic.

3. Let X = (X1, X2) be a bivariate random vector. We assume that X1 ∼ N
(
µ, σ2)

and X2 ∼ E (λ). Propose an algorithm to simulate (X1, X2) when the copula is the
function (11.8).

4. Calculate the log-likelihood function of the sample
{

(x1,i, x2,i)i=ni=1

}
.

11.5.3 Survival copula
Let S be the bivariate function defined by:

S (x1, x2) = exp
(
−
(
x1 + x2 − θ

x1x2

x1 + x2

))
with θ ∈ [0, 1], x1 ≥ 0 et x2 ≥ 0.

1. Verify that S is a survival function.

2. Define the survival copula associated to S.

11.5.4 Method of moments
Let (X1, X2) be a bivariate random vector such that X1 ∼ N

(
µ1, σ

2
1
)
and X2 ∼

N
(
µ2, σ

2
2
)
. We consider that the dependence function is given by the following copula:

C (u1, u2) = θ ·C− (u1, u2) + (1− θ) ·C+ (u1, u2)

where θ ∈ [0, 1] is the copula parameter.

1. We assume that µ1 = µ2 = 0 and σ1 = σ2 = 1. Find the parameter θ such that the
linear correlation of X1 and X2 is equal to zero. Show that there exists a function f
such that X1 = f (X2). Comment on this result.

2. Calculate the linear correlation of X1 and X2 as a function of the parameters µ1, µ2,
σ1, σ2 and θ.

3. Propose a method of moments to estimate θ.

11.5.5 Correlated loss given default rates
We assume that the probability distribution of the (annual) loss given default rate

associated to a risk class C is given by:

F (x) = Pr {LGD ≤ x}
= xγ

1. Find the conditions on the parameter γ that are necessary for F to be a probability
distribution.

2. Let {x1, . . . , xn} be a sample of loss given default rates. Calculate the log-likelihood
function and deduce the ML estimator γ̂ML.
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3. Calculate the first moment E [LGD]. Then find the method of moments estimator
γ̂MM.

4. We assume that xi = 50% for all i. Calculate the numerical values taken by γ̂ML and
γ̂MM. Comment on these results.

5. We now consider two risk classes C1 and C2 and note LGD1 and LGD2 the correspond-
ing LGD rates. We assume that the dependence function between LGD1 and LGD2
is given by the Gumbel-Barnett copula:

C (u1, u2) = u1u2e
−θ lnu1 lnu2

where θ is the copula parameter. Show that the density function of the copula is equal
to:

c (u1, u2; θ) =
(
1− θ − θ ln (u1u2) + θ2 ln u1 ln u2

)
e−θ lnu1 lnu2

6. Deduce the log-likelihood function of the historical sample
{

(xi, yi)i=ni=1

}
.

7. We note γ̂1, γ̂2 and θ̂ the ML estimators of the parameters γ1 (risk class C1), γ2 (risk
class C2) and θ (copula parameter). Why the ML estimator γ̂1 does not correspond to
the ML estimator γ̂ML except in the case θ̂ = 0? Illustrate with an example.

11.5.6 Calculation of correlation bounds
1. Give the mathematical definition of the copula functions C−, C⊥ and C+. What is

the probabilistic interpretation of these copulas?

2. We note τ and LGD the default time and the loss given default of a counterparty. We
assume that τ ∼ E (λ) and LGD ∼ U[0,1].

(a) Show that the dependence between τ and LGD is maximum when the following
equality holds:

LGD +e−λτ − 1 = 0

(b) Show that the linear correlation ρ (τ ,LGD) verifies the following inequality:

|ρ 〈τ ,LGD〉| ≤
√

3
2

(c) Comment on these results.

3. We consider two exponential default times τ1 and τ2 with parameters λ1 and λ2.

(a) We assume that the dependence function between τ1 and τ2 is C+. Demonstrate
that the following relationship is true:

τ1 = λ2

λ1
τ2

(b) Show that there exists a function f such that τ2 = f (τ2) when the dependence
function is C−.

(c) Show that the lower and upper bounds of the linear correlation satisfy the fol-
lowing relationship:

−1 < ρ 〈τ1, τ2〉 ≤ 1
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(d) In the more general case, show that the linear correlation of a random vector
(X1, X2) cannot be equal to −1 if the support of the random variables X1 and
X2 is [0,+∞].

4. We assume that (X1, X2) is a Gaussian random vector where X1 ∼ N
(
µ1, σ

2
1
)
,

X2 ∼ N
(
µ2, σ

2
2
)

and ρ is the linear correlation between X1 and X2. We note
θ = (µ1, σ1, µ2, σ2, ρ) the set of parameters.

(a) Find the probability distribution of X1 +X2.
(b) Then show that the covariance between Y1 = eX1 and Y2 = eX2 is equal to:

cov (Y1, Y2) = eµ1+ 1
2σ

2
1 · eµ2+ 1

2σ
2
2 · (eρσ1σ2 − 1)

(c) Deduce the correlation between Y1 and Y2.
(d) For which values of θ does the equality ρ 〈Y1, Y2〉 = +1 hold? Same question

when ρ 〈Y1, Y2〉 = −1.
(e) We consider the bivariate Black-Scholes model:{

dS1 (t) = µ1S1 (t) dt+ σ1S1 (t) dW1 (t)
dS2 (t) = µ2S2 (t) dt+ σ2S2 (t) dW2 (t)

with E [W1 (t)W2 (t)] = ρ t. Deduce the linear correlation between S1 (t) and
S2 (t). Find the limit case limt→∞ ρ 〈S1 (t) , S2 (t)〉.

(f) Comment on these results.

11.5.7 The bivariate Pareto copula
We consider the bivariate Pareto distribution:

F (x1, x2) = 1−
(
θ1 + x1

θ1

)−α
−
(
θ2 + x2

θ2

)−α
+(

θ1 + x1

θ1
+ θ2 + x2

θ2
− 1
)−α

where x1 ≥ 0, x2 ≥ 0, θ1 > 0, θ2 > 0 and α > 0.

1. Show that the marginal functions of F (x1, x2) correspond to univariate Pareto distri-
butions.

2. Find the copula function associated to the bivariate Pareto distribution.

3. Deduce the copula density function.

4. Show that the bivariate Pareto copula function has no lower tail dependence, but an
upper tail dependence.

5. Do you think that the bivariate Pareto copula family can reach the copula functions
C−, C⊥ and C+? Justify your answer.

6. Let X1 and X2 be two Pareto distributed random variables, whose parameters are
(α1, θ1) and (α2, θ2).



752 Handbook of Financial Risk Management

(a) Show that the linear correlation between X1 and X2 is equal to 1 if and only if
the parameters α1 and α2 are equal.

(b) Show that the linear correlation between X1 and X2 can never reached the lower
bound −1.

(c) Build a new bivariate Pareto distribution by assuming that the marginal distri-
butions are P (α1, θ1) and P (α2, θ2) and the dependence function is a bivariate
Pareto copula with parameter α. What is the relevance of this approach for
building bivariate Pareto distributions?
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