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Abstract

This article presents a comprehensive, dynamic asset allocation framework for re-
tirement savings, extending the classical Merton model to include human capital. This
framework reconciles the intuitive age-based glide path with financial theory, recog-
nizing that total wealth consists of financial capital and the present value of future
contributions. It shows that the optimal allocation of risky assets depends on the ra-
tio of human to financial capital, risk aversion, investment horizon, and key market
parameters, such as the risk premium and volatility. Under CRRA utility, closed-
form solutions are derived, demonstrating that continuous contributions increase risk
exposure relative to the constant-mix strategy. The article also compares glide path
strategies with constant-mix approaches, revealing that glide paths generally provide
better downside protection and higher probabilities of meeting retirement goals, while
dynamically adjusting risk exposure over time. The analysis further examines the
shape of the glide path and shows that practical constraints, such as leverage limits,
time-varying risk aversion, and rising contribution patterns, transform the theoretically
convex allocation path into the empirically observed concave form.

The article expands the model to include multiple asset classes, providing a deep
analysis of the practical differences between single-asset and multi-asset approaches. It
emphasizes how allocation constraints, such as long-only requirements, leverage limits,
and maximum exposure caps, impact optimal portfolio construction. The analysis
shows that incorporating multiple asset classes yields greater diversification benefits,
thereby enhancing risk-adjusted returns and improving retirement savings outcomes.
Including real assets, such as private equity, private debt, real estate, and infrastructure,
is valuable due to their unique risk-return profiles and lower correlations with traditional
public equities and bonds. The framework acknowledges the practical challenges posed
by liquidity risk and transaction costs, recognizing that real assets typically operate in
markets with investment frictions during ramp-up and run-off phases when capital is
deployed or withdrawn. It incorporates a time-varying liquidity weight that adjusts the
portfolio’s exposure to illiquid assets dynamically over the investment horizon. This
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mechanism reflects the natural lifecycle of investments. Younger investors can tolerate
more illiquid investments for their potentially higher returns, while those approaching
retirement gradually shift toward more liquid assets to ensure accessibility when needed.

Recognizing that inflation risk is a critical concern for retirement planning since
inflation erodes the real purchasing power of accumulated wealth, the framework ex-
plicitly incorporates inflation dynamics and inflation-sensitive assets. By modeling
inflation as a stochastic process and introducing assets whose returns are linked to
inflation, the optimal allocation naturally decomposes into two components: a growth-
oriented market portfolio and a liability-hedging portfolio designed to protect against
inflation risk. This decomposition aligns defined contribution strategies with liability-
driven investment principles used by defined benefit plans, ensuring that portfolios
grow nominal wealth and preserve real value over time. From this perspective, assets
serve as performance drivers and hedges against inflation risk. This underscores the
importance of including inflation-sensitive assets, such as real assets.

Keywords: Retirement planning, lifecycle investing, target date fund, dynamic asset al-
location, glide path, accumulation, risk premium, real assets, inflation risk, portfolio op-
timization, utility function, stochastic optimal control, Hamilton-Jacobi-Bellman equation,
hedging demand, liability-driven investment.
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1 Introduction

The demographic transformation occurring in developed economies poses one of the most
significant challenges to retirement systems today. Global life expectancy has increased
dramatically, rising from an average of 46 years in 1950 to 73 years in 2025 (United Na-
tions, 2024). Projections suggest it will reach 77 and 82 years by 2050 and 2100, respec-
tively. Meanwhile, fertility rates have plummeted below replacement levels in most advanced
economies, resulting in an unprecedented shift in population age structure. For example,
the median age of the global population was 22 and 30 years in 1950 and 2025, respectively.
However, it is projected to be 36 and 42 years by 2050 and 2100, respectively. Conse-
quently, the proportion of the world’s population aged 60 and older grew from less than 8%
in 1950 to 15% in 2025. We expect this proportion to continue to increase, reaching 22%
and 30% by 2050 and 2100, respectively. This dual demographic transition — longer lifes-
pans combined with fewer working-age individuals supporting each retiree — fundamentally
alters the mathematics of retirement planning. Longevity risk, which is traditionally defined
as uncertainty about one’s lifespan, now encompasses broader systemic issues'. These is-
sues include the risk of outliving one’s savings, whether pay-as-you-go pension systems can
withstand growing demographic pressures, and whether retirement income will suffice for
extended post-career periods that may span three decades or more. These evolving reali-
ties demand dynamic asset allocation strategies that can adapt to the ageing process and
changing macroeconomic conditions over investment horizons that regularly extend 40-50
years.

Figure 1: Population pyramid (world, 1960-2100)
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Source: United Nations (2024) & Authors’ calculations.

IThis challenge is illustrated by the old-age dependency ratio, defined as the number of people aged 65
and over relative to those of working age (25-64), expressed as the number of dependents per 100 working-
age individuals. The ratio was 5.6 in 1950, has doubled over the past 75 years, and is projected to rise to
31.3 by the year 2100.
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Figure 2: Demographic trends (1950-2100)
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Source: United Nations (2024) & Authors’ calculations.

Figure 1 illustrates the evolution of population pyramids. The global population struc-
ture no longer resembles the classic pyramid shape observed in the 20th century. The
population structure has currently changed significantly, and projections indicate that it
will increasingly resemble a barrel or a modern tall skyscraper such as the Gherkin, the
Empire State Building or the Petronas Twin Towers. This profound transformation of the
age structure applies to both developed countries and emerging economies that have ex-
perienced rapid growth over the past 50 years. Figures 53-57 on pages 113-115 compare
the population pyramids of China, India, Japan, the United States, and Western Europe.
China and India already have constrictive pyramids, and their bases are expected to narrow
further by the year 2100. Figure 2 highlights these demographic trends, showing the rise in
life expectancy and median age, the growing share of individuals aged 60 and older, and the
increasing old-age dependency ratio. Currently, China lags behind Europe and the United
States in these indicators, but it is projected to surpass them after 2050. Consequently, re-
tirement planning challenges are no longer confined to developed countries. These challenges
are becoming a global issue that increasingly affects emerging economies, such as China and
India. In the coming decades, these countries will face problems similar to those developed
countries have already experienced in recent years. Naturally, the situation remains hetero-
geneous across countries and regions. For example, Tables 1 and 2 present statistics for a
sample of countries. Regarding the old-age dependency ratio, Hong Kong is projected to
reach 144.8 by the year 2100. In contrast, the ratio will remain very low in Middle Africa,
around 12.

In parallel with these demographic pressures, the retirement savings landscape has un-
dergone a structural transformation, shifting from traditional defined benefit (DB) plans
to defined contribution (DC) schemes. Additionally, most public pay-as-you-go (PAYG)
pension systems? are under significant strain and pose serious long-term sustainability chal-

2A pay-as-you-go pension scheme is a retirement system in which the pensions of current retirees are
financed directly from the contributions of current workers, rather than from returns on an accumulated fund.
The sustainability of such schemes depends critically on the balance between contributors and beneficiaries,
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Table 1: Trends in life expectancy and median age (1950-2100)

1SO ‘ Life expectancy | Median age

1 1950 2025 2050 2100 ' 1950 2025 2050 2100
AUS | 69.0 842 872 926 , 204 383 420 4438
BRA ' 485 76.2 80.3 86.8 ! 17.5 348 439 50.7
CAN | 682 829 862 917, 267 406 451 46.9
CHN 1 438 784 834 89.8 1222 40.1 521 60.7
FRA | 66.4 836 866 921 | 334 423 435 471
DEU ' 66.8 81.7 852 90.8 1 329 455 479 474
HKG | 57.8 858 89.1 944 | 228 474 620 724
IND 412 725 775 8531 20.0 288 383 47.8
ITA | 657 840 872 928 275 482 529 534
JPN 1593 85.0 884 944 1 21.3 498 528 53.0
SAU | 40.0 792 840 903 | 180 29.6 320 358
SGP | 54.1 840 87.1 927 1189 362 509 56.0
SWE ! 71.1 836 868 922! 332 403 441 486
CHE | 689 842 87.3 92.8 | 32.2 429 478 481
TWN ' 56.6 80.9 849 909 ' 17.7 448 563 56.8
USA | 681 796 832 892,290 385 419 453
"EAA ' 432 793 838 90.1 *; 218 41.0 522 595
LCN | 487 76.0 80.1 86.4 , 183 31.7 405 49.1

Table 2: Trends in percentage of population aged 60+ and old-age dependency ratio (1950
2100)

% of population aged 60+ |, Old-age dependency ratio

|
150 11950 2025 2050 2100 ' 1950 2025 2050 2100
AUS | 125 238 299 338, 79 204 300 40.6
BRA ' 40 166 293 399 ' 30 110 248 486
CAN | 11.3 270 319 360, 80 216 321 433
CHN ' 80 215 40.0 522! 53 145 373 80.8
FRA | 162 288 330 365, 11.5 27.3 388 464
DEU 1 13.6 31.7 370 3671 83 265 411 463
HKG | 3.7 321 552 663, 2.6 227 672 1448
IND '+ 54 11.1 206 3631 37 71 147 406
ITA | 120 327 429 434, 82 287 553 594
JPN | 7.7 363 433 431 1 55 401 575  60.9
SAU | 56 54 121 209 | 37 25 74 202
SGP | 3.7 197 348 467, 28 127 30.1  64.0
SWE ! 149 268 322 378 99 255 329 485
CHE | 139 275 369 375, 91 226 403 484
TWN ! 37 278 460 475! 24 184 510 714
USA | 120 246 29.0 341, 78 198 289 398
CEAA T 78 229 403 507 52 164 390 771
LCN | 52 147 250 38.0 , 40 103 209 449

AUS: Australia, BRA: Brazil, CAN: Canada, CHN: China, FRA: France, DEU: Germany, HKG: Hong Kong,
IND: India, ITA: Italy, JPN: Japan, SAU: Saudi Arabia, SGP: Singapore, SWE: Sweden, CHE: Switzerland, TWN:
Taiwan, USA: United States of America, EAA: Eastern Asia, LCN: Latin America and the Caribbean, MIA: Middle
Africa, WEU: Western Europe, WLD: World.

Source: United Nations (2024) & Authors’ calculations.
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Table 3: Public expenditure on old-age and survivor benefits in percentage of government
spending and GDP

Gov't spending % of GDP Gov’t spending % of GDP

|
Country 2000 2019 2000 2019 @ oMY 2000 2019 2000 2019
Australia 12.8 10.3 4.7 4.3 | Austria 23.9 26.8 122 13.0
Belgium 17.8 20.6 8.8 10.7 ' Canada 10.1 11.3 4.2 5.0
Denmark 12.0 16.4 6.3 8.1 : Finland 15.5 224 7.4 119
France 22.2 24.3 11.5 13.4 1 Germany 22.8 23.1 109 104
Greece 21.9 327 102 157 | Iceland 4.6 6.6 21 29
Ireland 10.3 13.7 3.1 3.3 1 Italy 29.0 32.8 13.5 159
Netherlands 10.9 11.8 4.6 5.0 : Norway 11.1 13.8 4.7 7.1
Poland 24.3 26.2 10.5  10.9 | Portugal 18.3 29.3 7.8 124
Spain 21.5 26.7 8.4 11.3 : Sweden 12.8 14.2 6.8 7.0
Switzerland 17.8 19.6 5.9 6.4 | United Kingdom 13.4 11.5 4.8 4.9
United States 16.4 18.6 5.7 7.1 ' OECD 16.2 18.1 6.5 7.7

Source: OECD (2023, Table 8.2, page 211).

lenges, particularly given the recent increase in public debt and deficits that have worsened
since the covid-19 pandemic®. This evolution is not coincidental. It is a direct consequence
of the challenges posed by increasing longevity?. Under DB plans, employers bore the full
weight of both investment risk and longevity risk, guaranteeing a specific income for the
entire duration of a retiree’s life. As lifespans extended and financial markets remained
volatile, the long-term cost and uncertainty of these guarantees became unsustainable for
many corporations® and public entities. The resulting shift to DC plans has effectively (or

because workers today fund retirees today, and the next generation of workers will fund their pensions when
they retire. Most public pension systems in Europe, including those in France, Germany, and Italy, operate
predominantly on a PAYG basis.

3While public expenditure on old-age and survivor benefits accounted for 16.2% of total government
spending in OECD countries in 2000, this share had risen to 18.1% by 2019, just before the covid-19 crisis.
In terms of GDP, these expenditures represented 7.7% of OECD GDP (OECD, 2023, page 10). There are,
however, significant disparities across countries. For example, public pension spending reached 15.9% and
15.7% of total government expenditure in Italy and Greece, respectively, while it was only 2.9% and 3.3%
in Iceland and Ireland (Table 3).

4Undoubtedly, we have reached a point where it is appropriate to speak of a retirement savings crisis
(Benartzi and Thaler, 2013). The problem has long been recognized:

“Better recognition and mitigation of longevity risk should be undertaken now. Measures
will take years to bear fruit and effectively addressing this issue will become more difficult if
remedial action is delayed. Attention to population aging and the additional risk of longevity
is part of the set of reforms needed to rebuild confidence in the viability of private and public
sector balance sheets.” (International Monetary Fund, 2012, page 123).

However, finding an effective solution has proven increasingly difficult.

5The financial health of DB systems is usually evaluated using funding ratios, which is the percentage
of pension liabilities covered by available assets. Currently, aggregate funding ratios are relatively high,
with many plans reporting values above 100%. For instance, OECD (2023, Figure 9.6, page 233) estimated
the following funding ratios in 2022: 112.3% in Finland, 116.1% in Germany, 127.6% in Iceland, 126.0% in
Ireland, 104.4% in Luxembourg, 66.7% in Mexico, 116.0% in the Netherlands, 115.4% in Norway, 106.0% in
Switzerland, 113.1% in the United Kingdom, 63.6% in the United States, and 96.6% in Indonesia. However,
these figures can be misleading. First, there is significant heterogeneity both across and within countries.
Within a single jurisdiction, funding ratios can vary widely, with the interquartile range (between the 25th
and 75th percentiles) often being around 20 percentage points. This means that even when the national
average exceeds 100%, a significant portion of DB pension schemes remain underfunded. Second, today’s
relatively high funding ratios largely reflect the strong performance of the stock market since the global
financial crisis of 2008. For instance, the estimated aggregate full buyout funding ratio in the United Kingdom
was 55.9% in 2006, increased to 71.5% in 2019, and reached 94.4% in 2024 (Pension Protection Fund, 2025,
Figure 4.3, page 12). In the United States, the funding ratio of the 100 largest corporate DB pension plans
was 123% in 2000, falling to 82% in 2002, 106% in 2007, 79% in 2008, 88% in 2020, and recovered to 101% in
2024 (Wadia et al., 2025, Figure 3, page 2). These figures illustrate how equity downturns can trigger sharp
declines in DB funding ratios, exposing both pension schemes and their sponsoring companies to financial
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Table 4: Gross and net pension replacement rates from mandatory (public and private) and
voluntary pension schemes (in %)

Mandatory Voluntary Mandatory Voluntary

|
Country Gross Net Gross Net ! Country Gross Net Gross Net
Australia 26.0 337 | Austria 741 874
Belgium 43.5 609 524 738 : Canada 36.8 442 570 66.0
Denmark 73.1 773 i Estonia 28.1 344 474 547
Finland 58.4  65.1 : France 57.6 719
Germany 43.9 55.3 54.7 69.5 | Greece 80.8  90.0
Iceland 43.1  52.1 : Ireland 26.2 36.1 55.7 743
Israel 38.0 473 51.7 63.2 | Italy 76.1  82.6
Japan 324 38.8 I Lithuania 182 289 30.1 479
Mexico 55.5 624 64.7 T72.7 : Netherlands 4.7 93.2
New Zealand 39.7 435 549 61.9 ' Norway 44.5 54.8
Poland 29.3  40.3 : Portugal 73.9 98.8
Spain 80.4 86.5 I Sweden 62.3 65.3
Switzerland 39.9 453 | United Kingdom  41.9  54.4
United States  39.1 50.5 732 87.7 ! OECD 50.7 614 55.2 66.9

Source: OECD (2023, Table 4.5, page 159).

partially) transferred these complex risks from the institution to the individual®. This trans-
fer is particularly concerning when measured by gross and net replacement rates’ (Table
4). In several OECD countries, gross mandatory replacement rates fall below 50%, with
net rates often relying heavily on tax advantages or voluntary schemes to reach adequate
levels. Across the OECD, gross mandatory replacement rates range from 18.2% in Lithuania
to 80.8% in Greece, averaging 50.7%. After taxation, net replacement rates are generally
higher, averaging 61.4%. However, significant adequacy gaps remain. In jurisdictions with
relatively low mandatory coverage, retirees depend heavily on voluntary private pensions to
maintain their standard of living. For instance, the gross replacement rate from mandatory
plans in the United States is only 39.1%, but it rises to 73.2% when voluntary contributions
are included. Taken together, these figures suggest that mandatory public pensions are often
insufficient on their own and that supplementary savings are essential for maintaining living
standards in retirement. No longer promised a predictable lifelong income, each person is
now personally responsible for managing their own investment portfolio to accumulate suf-
ficient capital and for ensuring those savings last through a retirement period of uncertain
and increasing length. This profound transfer of responsibility has created an urgent need
for investment strategies that can systematically manage risk over a multi-decade horizon.
This need is particularly critical for individuals who lack financial expertise (Poterba et al.,
2009) and the literacy needed to navigate these complex decisions independently (Lusardi
and Mitchell, 2014). It is precisely this need that has fueled the rise of default investment
solutions, such as target date funds, decumulation strategies, annuities, and tontines®.

stress (Antolin and Stewart, 2009). The risks for companies are not merely theoretical. One of the most
prominent cases was the merger between British Airways and Iberia in 2009—2010. The deal was jeopardized
by British Airways’ substantial DB pension deficit (£3.7 billion at the end of 2009), which posed a significant
financial burden and became a focal point in the negotiations.

6This highlights the importance of the third pillar of retirement planning. Voluntary private pension
schemes are essential for individuals who wish to maintain their standard of living after retiring.

7According to OECD (2023, pages 150 and 156), “the gross pension replacement rate is defined as gross
pension entitlement divided by gross pre-retirement earnings. The net pension replacement rate is defined as
the individual net pension entitlement divided by net pre-retirement earnings, taking into account personal
income taxes and social security contributions paid by workers and pensioners.” Both indicators capture how
effectively a pension system provides a retirement income to replace earnings, the main source of income
before retirement.

8 Annuities and tontines are mechanisms that pool longevity risk. They provide guaranteed income and
distribute risk among participants, offering protection against uncertainty regarding lifespan. These products
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As shown in Figure 3, a complete pension scheme consists of two phases: pre-retirement
accumulation and post-retirement decumulation. The accumulation phase is the period
during which a person saves and makes long-term investments to accumulate retirement
funds. In contrast, the decumulation phase is the process by which investors convert their
retirement savings into income to meet their needs while continuing to invest their remaining
funds (Bruder et al., 2023). During this phase, there is a regular outflow of cash from the
reserve. The two phases are closely interconnected. The adequacy of decumulation depends
critically on the wealth accumulated beforehand, while accumulation choices depend on
expectations about retirement consumption. Rising life expectancy complicates this balance
by increasing the necessary resources for an adequate income and extending the period
over which savings must be managed. Consequently, voluntary savings and supplementary
pension plans are necessary to bridge the gap left by public and mandatory programs. This
interdependence highlights the fact that retirement planning is an ongoing process in which
saving, investing, and spending decisions are continuously linked. The accumulation phase
is particularly important in this context. Without sufficient wealth at retirement, the choice
of decumulation options, such as systematic withdrawals, annuities, and tontines, becomes
largely irrelevant. This highlights the importance of sound accumulation strategies, such as
target date funds and other lifecycle investment approaches, which balance growth and risk
over time.

Figure 3: Accumulation and decumulation
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Target date funds are typically structured as portfolios of underlying funds representing
different investment styles or asset classes. As their name suggests, they are designed with
a specific retirement year in mind, such as 2040 or 2050 vintage. The investment firm
manages the asset allocation on behalf of investors, and it evolves over time as the target
date approaches. John C. Bogle, the founder of Vanguard and proponent of simple investing,
promoted the rule of thumb that investors should hold a percentage of bonds equal to
their age, with the remainder in equities. This heuristic has intuitive appeal and aligns
with the expectations of many investors. However, it appears inconsistent with financial
theory at first glance. Academic literature on optimal portfolios generally recommends
maintaining a relatively stable mix of equities and bonds throughout one’s life. According
to this theory, the optimal allocation is primarily determined by the equity risk premium
and the investor’s risk aversion. The investment horizon plays only a secondary role. Under
this view, the equity-to-bond ratio should remain largely constant over time®. The apparent

complement or substitute traditional decumulation strategies.
9This is another asset allocation puzzle (Jagannathan and Kocherlakota, 1996; Canner et al., 1997).
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contradiction between the glide path strategy of target date funds and the constant-mix
strategy of balanced funds can be reconciled by introducing the concept of human capital
(Viceira, 2001; Campbell and Viceira, 2002; Cocco et al., 2005). Human capital is defined as
the sum of current financial wealth and the present value of expected future contributions
(“forward wealth”). At retirement, human capital reduces to financial capital alone because
there are no remaining future contributions. Earlier in life, however, human capital far
exceeds current financial wealth. The theory suggests that investors should maintain a stable
proportion of their total wealth in equities, including financial assets and human capital.
For younger investors decades away from retirement, this principle results in a higher equity
allocation within their financial portfolio. The reason is straightforward. Younger investors
have substantial human capital in the form of future earning potential, which naturally
hedges against financial market volatility and enables them to take on more investment
risk. This framework provides a solid theoretical foundation for Bogle’s famous age-based
investment rule. Although equity allocation appears to decrease with age when viewed solely
through the lens of financial assets, it actually remains consistent when human capital
is considered. As investors age and their human capital diminishes, they naturally shift
toward more conservative investments to maintain the same risk profile relative to their
total wealth. This is one of the key results confirmed by the model developed in this
research paper'®. Another implication is that the optimal glide path should be convex in
theory. Investors would de-risk relatively early in life, slowing the pace of risk reduction as
they age. However, in practice, most glide paths of target-date funds are concave. Investors
maintain relatively high risky exposure for much of their working life, de-risking only as
they approach retirement. Our model addresses this apparent puzzle. By relaxing the
assumptions of constant risk aversion and linear income contributions, we demonstrate that
the glide path can be concave. This occurs when risk aversion is time-varying, a feature
supported by empirical evidence showing that individuals tend to become more risk-averse as
they age. Similarly, if investors accelerate their retirement savings during the accumulation
phase, particularly after age 50 when education and debt-related expenses typically decline
and the need to increase retirement income becomes more urgent, the resulting glide path
becomes naturally concave.

Building on this foundational insight, we expand our framework to include a comprehen-
sive multi-asset universe. Modern portfolio construction for long-term goals like retirement
requires more than a simple stock-bond mix to achieve true diversification. The objective
is not merely to add assets with low correlations but also to build a more resilient portfolio
by tapping into fundamentally different risk and return drivers. A well-diversified portfolio
should perform well in various macroeconomic environments, including periods of high in-
flation and slow growth. This helps to ensure a steady accumulation of wealth and provides
superior downside protection, which is critical as an investor approaches retirement. In this
context, real assets, such as private equity, real estate, infrastructure, and private debt, are
essential components. These asset classes offer benefits that are particularly valuable for
long-term investors, including unique return drivers, inflation hedging, and an illiquidity
premium (Amenc et al., 2009). Their performance is often tied to long-term contractual
cash flows, operational improvements, or specific economic activities, such as rental income
or toll road usage, rather than the daily sentiment of public markets. This provides a pow-
erful diversifying effect. Many real assets, particularly infrastructure and real estate, have
revenue streams that are explicitly linked to inflation. This provides a natural hedge that
preserves the purchasing power of the portfolio over time. Since these assets are not as easily
bought or sold as public stocks, investors typically receive higher expected returns. Savers

10This key result has been documented repeatedly in the academic literature (Merton, 1971; Bruder et
al., 2012).
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with a time horizon of several decades can benefit from this illiquidity premium because they
do not need immediate access to their capital. Incorporating these assets into a portfolio en-
hances its efficiency, leading to better risk-adjusted returns. However, including these assets
introduces complexity. Our framework addresses the practical constraints that these assets
impose, including leverage limits, long-only requirements, and most importantly, liquidity
considerations. These considerations are critical in shaping the feasible set of allocations
and influencing the optimal glide path.

Inflation risk is another factor in retirement planning because inflation erodes the real
purchasing power of accumulated wealth. Over long investment horizons, even moderate
inflation can significantly reduce the value of retirement savings if portfolios are not ad-
equately protected. The seminal contribution of Brennan and Xia (2002) established the
foundation for dynamic asset allocation under inflation risk. Since then, their framework
has been extended to optimal investment problems in DC pension plans in several directions
(Munk et al., 2004; Munk and Sgrensen, 2010; Han and Hung, 2012; Yao et al., 2013; Park
et al., 2023). The question of how best to manage inflation risk is also closely connected to
household portfolio choices such as housing decisions — whether to buy, rent, or invest — as
highlighted by Kraft and Munk (2011). Our model explicitly incorporates inflation dynam-
ics and inflation-sensitive assets. This allows us to decompose the optimal portfolio into two
components: a performance portfolio that seeks long-term returns and a liability-hedging
portfolio (LHP) that protects against inflation risk. This structure aligns DC investment
strategies with the liability-driven investment (LDI) principles traditionally applied in DB
pension schemes. It ensures that portfolios are managed to grow not only nominal wealth,
but also to preserve real purchasing power over time. A key challenge lies in calibrating
the LHP. Early foundational work by Fama and Schwert (1977) documented the complex
relationship between inflation and asset returns. They showed that inflation can have sig-
nificant and sometimes adverse effects on real returns, particularly for nominal bonds and
equities. This motivates the inclusion of alternative inflation-sensitive assets, such as trea-
sury inflation-protected securities, as well as real assets like real estate, infrastructure, and
commodities (Briere and Signori, 2012). However, reliably aligning portfolio returns with
changes in the cost of living remains challenging. This highlights the importance of carefully
incorporating these assets into retirement portfolios to safeguard nominal balances and real
wealth over the long term.

This paper is structured as follows. Section Two provides background on the modeling
of glide path strategies. We extend the classical Merton model by incorporating future
contributions, introduce the concept of the human-to-financial capital ratio, and analyze
the properties of the optimal dynamic allocation. We then derive analytical formulas for
the glide path and wealth dynamics, discuss the convexity/concavity of the glide path, and
illustrate dynamic asset allocation in a setting that combines public and private assets.
Section Three extends the baseline model to multiple asset classes. We show that in the
absence of allocation constraints, the analytical solution can be derived using a one-stage
approach, and we compare this to the two-stage solution from the baseline model. We then
derive the optimal allocation under allocation constraints and demonstrate how it can be
obtained using Howard’s policy-iteration algorithm. This section also includes an empirical
application, where we simulate an optimal glide path for an investor in the Eurozone. Section
Four addresses inflation risk. We solve a simplified model with two assets — both correlated
with inflation volatility, but only one with a risk premium linked to the inflation level —
and derive analytical solutions for several cases. We further provide examples and empirical
evidence to illustrate how the liability-hedging portfolio affects dynamic allocation. Finally,
Section Five concludes with closing remarks.

10
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2 Baseline modeling of glide path strategy

2.1 Theoretical Model

We follow the framework introduced by Merton (1969) and the extension proposed by Bruder
et al. (2012), which incorporates stochastic permanent contributions. We consider a dynamic
asset allocation problem in which an individual invests in a risky asset S; and a risk-free
zero-coupon bond B, while making regular contributions c; to a target date strategy. The
investor’s wealth process X; evolves according to the following stochastic differential equa-
tion: AX ds
c
f:at?jﬁ—(l—at)ﬁ—f—idt
where «; is the proportion of wealth invested in the risky asset at time ¢ and c¢; is the
contribution flow at time ¢, typically originating from savings. Moreover, we have the
following standard dynamics for S; and By: dS; = Sy dt + 045 dW; where py is the
expected return and o; is the volatility of the risky asset, and dB; = r:B; dt where r; is
the short-term interest rate. The investor aims to maximize the expected utility of terminal
wealth:

dB;

o; = argmax B, [U (X7)]

2.1.1 The no-contribution case
We first consider the case of no contributions: ¢; = 0. The model reduces then to the
classical framework of Merton (1969, 1971).

Optimal general solution Let J (t,x) be the value function associated with the in-

vestor’s problem:
J (t,x) = supE; U (X7) | X; = x]

By defining the Hamiltonian function as follows:

AT (t,x) 1 4 o ,0?°T (t,x)

H(t,z,0) = (z + (1 — a) ryz) o + F oI (1)
the function J (¢, ) satisfies the Hamilton-Jacobi-Bellman (HIJB) equation:
oJ (t
97 t,z) +maxH (t,z,04) =0 (2)
8t Qg
with terminal condition:
J(T,x) =U (x) (3)
The first-order condition of the maximization of the Hamiltonian function is:
OH (t
w =0 & (wr—rx)oJ (tx)+actz?0 T (t,x) =0

*__,ut_rt 8w\7(tvx)
T %= o? 22T (t,x)

(4)

The optimal allocation «f can then be expressed as the Sharpe ratio SRy = (e — 7¢) /ot
divided by the product of the volatility o; and the Arrow-Pratt measure of relative risk
aversion R (t,z) = —w02J (t,v) /0.T (t,z). Solving the system of equations (1-4) yields
the optimal value function and the optimal allocation strategy. While a closed-form solution
exists in the CRRA case, in general we use numerical methods and a finite difference scheme.

11
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Remark 1. When the value function is separable — J (t,z) = f (t)U (z) with f(T) =1,
the investor’s relative risk aversion is:

_J:@%J (t,x) 20U ()

0. (t,x)  OU (x)

The optimal exposure is an increasing function of the Sharpe ratio of the risky asset, and
a decreasing function of both the asset’s volatility and the investor’s relative risk aversion.
This result aligns with the classical findings of the Markowitz mean-variance optimization
framewortk.

R(t,x) =

The CRRA case We now consider the case when the utility function corresponds to the
CRRA form:

Y
Ur)=—
(z) p
with v < 1. In Appendix A.2 on page 88, we show that:
* Mt — T _
o = ————— 1=y (5)
=)oy
and:
T 2
1y (ps —7s) x
J (t,x) = exp / s+ ————- | ds | - — 6
() : 2 (1) ; )

The optimal strategy corresponds to a constant-mix allocation. In particular, when the
risk premium and the volatility of the risky asset are constant over time, then the optimal
proportion invested in the risky asset also remains constant.

The solution @y arises from the classical Tobin-Markowitz mean-variance analysis. Con-
sidering an investment universe of n assets, we have:

(1-7)
2

where w; is the vector of portfolio weights, U (w;) is the mean-variance utility function, p
is the vector of expected returns and ¥; is the covariance matrix of asset returns. Since the
first-order condition is Oy, U (wy) = (g — 1¢) — (1 — ) Zpwy = 0,,, we get:

1

*x 2—1 _
wy (1 . 'Y) t (,ut T't)

In the special case of a single risky asset, this reduces to:

wr = A
fl-)e}
Hence, a@; represents the optimal allocation to the tangency portfolio, while 1 — &; represents
the optimal allocation to the risk-free asset.

’lU;r Etwt

w; = argmax U (w;) = w; (g —1¢) —

=y

Remark 2. If the Markowitz optimization problem is written in quadratic programming
(QP) form:

.1
w; = argmin iw:tht —ow, (e — 1)

we have the following correspondence:

1
SO*EG[O,OO)

While v measures the relative risk aversion, ¢ measures the investor’s risk tolerance.

12
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2.1.2 The case with contributions

When we have contributions ¢; > 0, Equations (1-4) are exactly the same but, with the
following change of variables'!:

N Xt
At = p——
Nt tXt+Ht
X =X, + H,

T _ s
Ht:ft e J; 'ruducsds

j(t?j) = j(t,.]?) = j(tvi'_ Ht)
For the CRRA utility function, the optimal allocation is:
T
x Mt =Tt He — Tt / — [P rudu
af = + e Jr " e ds 7
A A (e Py g
while the optimal value function is:

T —[r,du v
T 1y (Us - Ts)Q (1‘ + ft ¢ Jim Cs dS)
J (t, l‘) = exp /t (7‘5’}/ + §W ds | - 5 (8)

S

We observe that the optimal allocation is composed of two components:
~ T
Q
af =dy + —t/ B (t,s)csds
T Jt

where B (t,s) = exp (— f: Tu du) is the discount factor or zero-coupon bond price between

times t and s. The first term corresponds to the classical Merton solution &; while the
second term reflects the present value of the cumulative future contributions. Assuming
that e¢; > 0, we deduce that ftT B (t,s)csds > 0. It follows that:

ay > oy
This allocation strategy is adjusted upward to account for the investor’s future contribu-

tions'?. This result was already established by Merton (1971) when he introduced the
concept of non-capital gain income:

“[..] one finds that, in computing the optimal decision rules, the individual
capitalizes the lifetime flow of wage income as the market (risk-free) rate of
interest and then treats the capitalized value of an addition to the current stock
of wealth” (Merton, 1971, Section 7, page 395).

In our model, capital gain income corresponds to the wealth generated by Xy, while the non-
capital gain income corresponds to the wealth generated by H;. Let W;° be the nominal
wealth invested in the risky asset. We have:

Wts =/ Xy = (Xy + Hy) = Wy (9)

In Merton terminology, the interest rate is constant and H; = ftT e~ "(6= ¢, ds represents the
“capitalization of the lifetime flow of contributions”. This interpretation remains consistent
with the constant-mix allocation solution if we generalize the investor’s wealth to include
not only current (spot) wealth but also the present value of future contributions. Typically,
these future contributions stem from the investor’s expected wage income. Hence, H; can
be interpreted as human capital, which contributes to the investor’s total wealth.

HThe different proofs are given in Appendix A.3 on page 88.
12Note that o} decreases monotonically with time ¢. At maturity, the optimal allocation converges to the
baseline allocation: o, = ar.

13



Retirement Accumulation Strategies with Real Assets and Inflation Risk

Table 5: Optimal exposure o} in %

Contribution ¢
0 100 1000 10000
1000 | 34.6 51.1 199.2 1681.0
2000 | 34.6  42.8 116.9 857.8
5000 | 34.6  37.9 67.5 363.9
10000 | 34.6  36.2 51.1 199.2
50000 | 34.6  34.9 37.9 67.5

T

To illustrate the impact of human capital, let us consider an example. We assume that
ry = 2%, pr = 6%, or = 17%, and v = —3.0. Table 5 shows the values of o when the initial
wealth X; is equal to x, the contribution equals ¢y, and the investment horizon T — t is five
years. Without a contribution, the optimal strategy is the constant-mix strategy, allocating
34.6% to the risky asset and 65.4% to the risk-free asset, regardless of the initial wealth level.
However, when annual contributions are made, the value of a} becomes more sensitive to the
initial wealth. For instance, if the contribution equals $100 and the initial wealth is $1 000,
then o} = 51.1%. However, if the initial wealth is $50000, then af = 34.9%. Therefore,
the impact is more significant for lower initial wealth levels. This effect stems from the
relative size of current wealth compared to the present value of future contributions. For
example, if ¢y = $100, then the human capital H; equals $476. If the annual contribution
increases to $10000, H; becomes $47581. In this case, the investor has substantial future
wealth. However, if the initial wealth is only $1000, the optimal allocation requires an
investment of 1681% in the risky asset, which is highly leveraged. The investor’s total
wealth is W; = $48581. Applying the constant-mix strategy to this total wealth implies
that the investor should allocate 34.6% x 48581 = $16810 to the risky asset. Since the
investor only has $1 000 in current wealth, they must borrow $15 810, resulting in a leverage
ratio of 16.81. Table 6 presents the values of total wealth W; and the amount W;° invested
in the risky asset. Regardless of the values of  and ¢y, the ratio W, /W; remains constant
at 34.6%, confirming the result derived in Equation (9).

Table 6: Total wealth and amount invested in the risky asset

/e Total Wealth W;
0 100 1000 10000
1000 1000 1476 5758 48581
2000 2000 2476 6758 49581
5000 5000 5476 9758 52581
10000 | 10000 10476 14758 57581
50000 | 50000 50476 54758 97581

Nominal exposure W;°
0 100 1000 10000
346 511 1992 16810
692 857 2338 17156
1730 1895 3377 18194
3460 3625 5107 19924
17301 17466 18947 33765

T
|
|
T
|
|
|
|
|
|
n

Remark 3. We observe that when both initial wealth © and future contributions c; are
multiplied by the same factor, the optimal exposure af remains unchanged. This suggests
that the results can be normalized because they depend only on the relative ratio between future
contributions and current wealth. For example, Table 5 shows that the optimal exposure is
the same for x = $1000 and ¢; = $100 as it is for x = $10000 and ¢; = $1000. Therefore,
without loss of generality, we can normalize x to 1.

The specification of the contribution function plays a significant role in determining risk
exposure. In Appendix A.5 on page 91, we consider a quadratic convex function defined as:

¢ = ¢ + bet + act?

14
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and we explain how to calibrate the parameters (¢, b, ac). This specification allows us to
represent different scenarios.

e A special case is the constant contribution function: ¢; = ¢y. In this case, the individ-
ual invests a fixed nominal amount of their salary each month into their pension plan.
However, this is not very realistic since salaries typically increase with age. Young
individuals tend to save less than older individuals.

e Another case is a linear contribution function: ¢; = ¢g + bet. Here, contributions
increase with age, which is more realistic. However, this model still omits an impor-
tant stylized fact: savings do not increase indefinitely. In practice, older individuals
may reduce their savings due to health issues or unemployment risks. Therefore, the
maximum contribution may occur before retirement age T'.

e This behavior can be captured using a quadratic contribution function — ¢; = ¢g +
bet +act? — with a negative coefficient a., which ensures the function has a maximum.
In this case, the maximum contribution is reached at:

e
20,

tmax -

and the corresponding maximum contribution level is:

2

_ be
Cmax = Co — E
C

Let us illustrate the impact of the spot contribution ¢; on the forward contribution H; with
an example. We assume that the initial contribution of an individual at age 20 is equal to
¢(20) = 1, and that the maximum contribution of 2.50 is reached at age 50. Based on these
assumptions, we obtain the following calibrated functions:

Function Expression

Constant c; =1.75

Linear c, =05x%xt

Quadratic c: = —1.667 4+ 0.167 x t — 1.667 x 1073 x 2

Quadratic #2 ¢; = —6.875+ 0.375 x t — 3.75 x 1073 x ¢?

These functions are illustrated in Figure 4. The convexity of the quadratic function plays an
important role. For instance, consider the same maximum contribution point (age 50) with
a new initial point: ¢(30) = 1. This leads to the curve labeled Quadratic #2. We observe
that the function is symmetric around t,,x = 50 years. To achieve an asymmetric convex
shape, a polynomial of degree higher than two would be required. Next, we compute the
forward contribution Hy, assuming an interest rate r; = 2%, and plot the results in Figure 5.
We see that H; is decreasing in the constant case, while it is increasing and then decreasing
in the other cases'®. At first glance, this may seem counterintuitive, especially when the
spot contribution ¢; is strictly positive. However, the forward contribution H; reflects time
preference, and the discount rate can have a significant impact. This explains why, in the
linear case of ¢;, H; increases up to age 30 and decreases thereafter.

13In Appendix A.6 on page 93, we derive the time at which H; reaches its maximum. The exact solutions
are 29.94 years for the linear case, 25.63 years for the quadratic case, and 32.31 years for the quadratic #2
case.
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Figure 4: Spot contribution function c;
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2.1.3 Properties of the optimal exposure a;

We recall that the optimal exposure is given by:

* Mt — Tt H; SR H,
“ (1—7)03( +Xt> (1—7)%( +Xt

We deduce the following properties:

e ¢} is an increasing function of the risk premium y; and the Sharpe ratio SR;. In other
words, an individual will allocate more to a risky asset if it offers a higher excess return
relative to its risk.

e o} is a decreasing function of volatility o;. Risky assets with higher volatility are
penalized in the allocation strategy.

e «} decreases as risk aversion increases (I.e., it increases with the coefficient ). A more
risk-tolerant individual will have a higher exposure to risky assets.

e « is inversely related to current financial wealth X;. An individual with lower current
wealth will allocate a higher proportion of their wealth to risky assets.

e o increases with expected future contributions H;. Individuals who anticipate higher
future income or contributions will have a higher exposure.

In fact, the last two properties can be unified, since the optimal exposure depends on the
ratio H;/X; rather than the individual absolute values of H; and X;. Notably, H; reflects
expectations about future wealth. For example, consider an individual who has just finished
school and currently earns a low salary. If he anticipates a significant increase in earnings
due to his high level of education, we can expect a large future contribution relative to his
current wealth. In this context, the ratio H;/X; can be interpreted in multiple ways:

Forward wealth  Human capital

H,
- = := HFCR
Xy Current wealth ~ Financial capital !

This ratio highlights the individual’s balance between human capital (expected future earn-
ings) and financial capital (current accumulated wealth). This ratio is generally called the
human-to-financial capital ratio (HFCR).

Incorporating human capital fundamentally alters an individual’s perception of risk.
Since human capital serves as a buffer against financial risk, individuals can afford to take
on more financial risk in the present. In this context, the optimal allocation can be rewritten
in the form of the traditional Merton-Markowitz solution:

o = Ht — T
Y (1—)o?

where the adjusted relative risk aversion 4; accounts for human capital and is defined as

follows:
_ ¥ HFCR;

T 1FHFCR, ' 1+ HFCR,

As the HFCR becomes large (i.e., human capital dominates financial capital), the adjusted
relative risk aversion #; tends toward 1:

lim Y =1= @ — 00
HFCR, — 00 i v
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In practical terms, individuals with a high HFCR exhibit nearly infinite risk tolerance.
This is because human capital acts as a cushion against financial losses. When future
earnings are expected to be substantial relative to current financial wealth, individuals are
more comfortable taking on risky investments today, knowing that future income will help
compensate for potential short-term losses. In essence, the presence of significant human
capital plays a role similar to a risk-free asset. It provides stability and predictability in
overall wealth, even if financial assets fluctuate.

Figure 6: Relationship between optimal exposure and human-to-financial capital ratio

250 -

Optimal exposure
Leverage

200 -

HFCR;

Remark 4. Let us consider an example with SR; = 0.30, oy = 20%, ry = 2% and v = —3.
The resulting optimal allocation is illustrated in Figure 6. When HFCR, exceeds a certain
threshold HFCR} = (1 — 7) 01/ SRy —1, individuals begin to use leverage. While this solution
is theoretically optimal, it may not be practical due to real-world frictions such as transaction
costs, borrowing constraints, and regqulatory limits on leverage. Nevertheless, this example
demonstrates how expectations about future wealth, as captured by forward-looking human
capital, significantly influence present-day risk aversion and investment behavior.

In this context, we observe that the adjusted relative risk aversion 4; becomes dynamic.
Unlike in the classical Merton framework, where risk aversion remains constant over time, the
inclusion of human capital introduces variability over time. As individuals progress through
their life cycle, their HFCR evolves. For example, young individuals usually have more
human capital than financial capital, resulting in lower effective risk aversion. Over time, as
they accumulate financial wealth and their expected lifetime earnings decrease, their HFCR
declines and their implied risk aversion increases. This shift leads to a natural lifecycle
investment strategy where exposure to risky assets decreases with age or career progression.
We illustrate this property in Figure 7. The parameters are set as follows: u; = 8%,
or = 20%, re = 2%, v = —3, to = 20, T =60, X;, = 1, and ¢; = 0.05. The first panel shows
the relationship between the wealth X; and the optimal exposure o} for three different values
of t. Since H; = 0 when the current time ¢ is the retirement date T', a; is constant and equal
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Figure 7: Dynamics of the optimal exposure o}
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to ay = 37.5%, regardless of X;. In contrast, when ¢ = 20 years, the value of human capital
H,; is 1.38. In this case, we observe the decreasing behavior of o with respect to Xy, as
predicted by theory. The second panel shows the relationship between age ¢ and o for three
values of financial wealth X;. Since human capital H; decreases over time — from 1.38 to 0,
we again observe a decreasing pattern in af as individuals approach retirement. Finally, the
third and fourth panel show three simulated paths of the state-control system (X, af). Due
to the randomness introduced by the Brownian motion W;, each simulation yields a distinct
trajectory. Despite this variability, a clear trend emerges: Wealth X; tends to increase
over time, while optimal exposure o} tends to decrease, reflecting the empirical lifecycle
pattern in which individuals reduce their exposure to risky assets as they age. However, it
is important to note that the path of o is not deterministic. Because of the uncertainty in
the performance of the risky asset, which is captured by the stochastic component W, the
optimal exposure «} is a random variable for all ¢ € (¢, T"). There are only two exceptions:

o At the initial date ¢y, when the current wealth X, is known with certainty;

e At the retirement date 7', when human capital Hr is supposed to be known with
certainty and equals zero.

Between these two dates tgp and T', of evolves stochastically. Figure 8 illustrates this by
showing the probability density function of a; for four selected time points ¢. In Figure 9,
we verify that the Standard deviation of the optimal exposure « is zero at the current date,
increases sharply during the first five years, and then gradually decreases until it reaches
again zero at retirement. Interestingly, a higher volatility of the risky asset does not lead
to an increase in o (o). Rather, it results in a lower standard deviation. This occurs
because greater volatility reduces the overall level of optimal exposure, thereby dampening
its variability.

Figure 9: Standard deviation of the optimal exposure af
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2.1.4 Dynamics of the wealth X,

The wealth follows a stochastic differential equation:
dXy = ((re +me) Xo + meHy + ¢) At + ooy (X + Hy) dW,

where:

= SR}
-9

X, can be simulated using numerical schemes such as Euler-Maruyama or Milstein'*. To
characterize the dynamics of X;, we analyse its expected wealth m; = E [X;] and variance
v; = var (X;). To gain intuition, we consider the case where all parameters are constant.

Under this assumption, we obtain!®:

t
my = elTTm—to) (mo +/ e rtml=t) (nH, + ¢,) ds) (10)
to
and: .
vy = C_VZJQ-/ (ms +Hs)2 e(2(r+n)+5202)(t—s) ds (11)
to

The expected wealth m; is an increasing function of the initial wealth zq, the contribution
policy ¢;, the interest rate r;, the Sharpe ratio SR; and the risk aversion parameter .
Similar monotonicity properties hold for the variance process wvy.

We consider again the same example: pu; = 8%, o = 20%, ry = 2%, v = —3, and
Xi, = 1. We assume that tg = 20, and 7" = 60. Figure 10 illustrates the evolution of
expected wealth over age t for different contributions ¢;. Even modest contributions exhibit
a multiplicative effect on expected wealth growth. For a constant contribution function,
Equation (10) becomes:

my — e EMU—t0) | ((e<r+n)<t—to> — 1) — Tt (i) er(t—t@)) <o
T

If we assume that x¢ ~ 0, we find that m; is proportional to the constant contribution level
Cp:
o
my = f(t) —
This homogeneity property is particularly important, as it shows that the expected wealth
scales linearly with the contribution level.

r

We now analyze the relationship between the Sharpe ratio SR and the expected terminal
wealth mp = E [X7], which simplifies to:

my = erTMT—to) x4 (e(TJrn)(T*to) _ en(T—m)) c
.

As shown in Figure 11, this relationship exhibits strong log-concavity, as shown by the
following identity:

(T —to)
1

In (m7 | SR # 0) = SR? +In (mz | SR =0)

This result is particularly significant, because it highlights that the performance of the
strategy scales linearly with the investment horizon (T — tg), but quadratically with respect
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Figure 10: Relationship between an individual’s age and their expected wealth
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Figure 11: Relationship between the Sharpe ratio of the risky asset and expected terminal
wealth
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to the Sharpe ratio. In other words, any improvement in the Sharpe ratio has a squared
effect on terminal wealth, as its impact is effectively doubled.

We now address the following question: What Sharpe ratio is required to achieve a
terminal wealth equal to  times the initial wealth? This inverse calibration problem can
be solved numerically by solving the equation mp = Bzy. In fact, we can show that the
implied Sharpe ratio is given analytically by¢:

L—7 B
SR* = In|~
Tt <)\>
Figure 12 illustrates the calibration of SR* for the example discussed earlier. These results
confirm the leverage impact of the Sharpe ratio on the wealth.

Figure 12: Implied Sharpe ratio to target an expected terminal wealth
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Remark 5. Figure 12 shows that the variation of the implied Sharpe ratio SR* is signifi-
cantly smaller than the variation of the multiplier 5. This notable property indicates that the
strateqy greatly benefits from even small improvements in the Sharpe ratio. The underlying
reason is the convex relationship between the Sharpe ratio and terminal wealth. In fact, we
can demonstrate that:

1 1—v Ap
2y/InB—InAV T -ty 8
Thus, the absolute variation of the Sharpe ratio translates into the relative variation of
terminal wealth. In other words, modest gains in the Sharpe ratio have an amplified effect
on performance, especially in long-term strategies.

ASR* ~

14See Appendix A.12 on page 100.
15General formulas are provided in Appendices A.7 and A.8 on pages 94 and 96, respectively.

16We have:
A= (T=to) gy + (J(T*to) _ 1) <o
r
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Figure 13: 95% confidence interval of the wealth when ¢; = 0 (gaussian approximation)
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The variance process vy can be used to build a confidence interval for the wealth X;. For
instance, the Gaussian confidence interval is given by:

CIa (Xt) = [mt - Za\/Uh my + zoz\/’th:I

where 2z, = @' ((1+a)/2). Figure 13 shows the 95% confidence interval of X; when
c; = 0. However, the issue is that X; is far from Gaussian. In fact, it inherits the log-
normal property of the geometric Brownian motion S;. Figure 14 represents the probability
density function of Xr. If we assume that X; ~ LN (ﬂt, &,52), we must have:

2

(54 37)
my = exp | ut + -0;
vy = exp (2fiy + G7) (exp (67) — 1)

The solution is:

e =2Ilnm; — 1ln (Ut —i—mf)

2
v m
&t =In (%“)
t

In Figure 14, we also show the fitted log-normal distribution of X, verifying that the true
and calibrated density functions are very close. Therefore, it is more appropriate to consider
a log-normal confidence interval:

Cl, (Xy) = [exp (fig — 2o 0¢) , exp (fir + Zaa—t)]

Figure 15 shows the 95% log-normal confidence interval of X; when ¢; = 0. This interval is
more realistic than the one shown in Figure 13.
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Figure 14: Probability density function of the terminal wealth
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Figure 15: 95% confidence interval of the wealth when ¢; = 0 (log-normal approximation)
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2.2 Definition of the glide path ¢,

The glide path refers to the dynamic asset allocation strategy used by target date funds.
In theory, the glide path aligns with the optimal dynamic exposure {a;,t < T}. However,
it is important to note that the allocation at each point in time depends on the path of
the investor’s wealth, which is influenced by the allocation itself. This feedback loop makes
both the optimal exposure and the wealth process endogenous: X; — af — dX; —
Xirar- As a result, there is not a single deterministic glide path, but rather a multitude
of potential paths, as illustrated by the Monte Carlo simulations'” in Figure 16. From a
practical standpoint, implementing such personalized, path-dependent dynamic allocations
in a collective investment vehicles is infeasible. This is because the optimal exposure o varies
across individuals, depending on factors such as risk preferences, contribution patterns, and
investment horizons.

Figure 16: Monte Carlo simulations of the glide path

120

110

100

90

80

af (in %)

60

50

40

30 1 1 1 1 1 1 1 ]
20 25 30 35 40 45 50 55 60

Age (in vears)

2.2.1 Analytical expression and main properties

The glide path g; is the deterministic, dynamic asset allocation computed at the initial date
to. It corresponds to the conditional expectation of the stochastic optimal exposure af with
respect to the filtration F,:

gt = E[a:|‘;to]
Bt — Tt 1
= — |1+ HE|— 12
(1_’}/)0}2 + Hy [Xt‘ftO] ( )

17We continue to use the same example: p; = 8%, o = 20%, ry = 2%, v = —3, Xz, = 1, to = 20, T = 60,
and c¢; = 0.04.
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In Bruder et al. (2012), the expectation of 1/X; is approximated using the inverse of the
expected wealth:

1 1

1
f%}“mmmt

E
Xy

which leads to the approximate formula:

-r H
g1 ~ (’“73 (1 + t) (13)

1—7)o; my

This approximation can be refined by applying Jensen’s inequality. As shown in Appendix
A.10 on page 98, a second-order correction gives:

1 1 Ut
E|—|F | ~ —
Xt‘ to} t mf
We deduce that:
JTP— Hy Hpy
~ |14+ — 14
9 (1—7)U?<+mt+m§’> (4

If we assume that X; ~ LN (,&t, 6,52), we can compute the exact conditional expectation:

1 - 1.
E[XtW = o (i 30t

1 1 2
= exp| —2lnm; + iln (’Ut —&—mf) + iln <Ut+2mt>

exp (—3 Inm; +In (’Ut + mf))

2
vy + My
T3
my

Therefore, Equation (12) becomes:

Mt — Tt - 1~2
A <1+HteXp ("“ ’ 2‘”))

Mt — T Ut+mt2
= Ko g (A 15
(1 —)07 ( m? ) (19)

Thus, Equations (14) and (15) are mathematically equivalent!®.

If we denote by g;” and g;” the approximations of the glide path given in Equations 13 and
14, respectively, we have g; < g;" because v; > 0. Figure 17 shows the true glide path g;,
along with the two approximations g;” and g;". We observe that g; < g; and g; ~ g;". This
inequality holds because, by analyzing the Taylor expansion underlying Jensen’s inequality,
we can show that g, provides a lower bound, due to the fact that the variance and skewness
of the wealth are always positive. In practice, the second-order approximation is generally

18See Appendix A.11 on page 99 for a formal proof demonstrating the equivalence between the Jensen-
corrected glide path and the exact formulation under a log-normal wealth assumption.
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Figure 17: Exact computation and approximation of the glide path
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sufficient for estimating the glide path, and incorporating skewness does not significantly
improve the accuracy.

The glide path g; inherits key properties from the optimal allocation aj. As discussed in
Bruder et al. (2012), it is useful to categorize the model parameters into two main families:

e Parameters related to financial assets
e Parameters related to the individual or investor

These two types of parameters influence the design of the investment strategy in fundamen-
tally different ways. Parameters related to financial assets, such as the expected return or
volatility of the risky asset, are typically associated with the portfolio manager’s decisions.
In the context of a target date fund, for instance, the manager is mandated to adjust the
asset allocation based on short- or long-term market views. In this sense, asset-related pa-
rameters are somewhat endogenous, as they can vary across portfolio managers and target
date funds. Conversely, individual-related parameters, such as the investor’s risk aversion,
retirement date, age, and current or projected wealth, are more exogenous. These factors
are intrinsic to the investor and do not depend on the portfolio manager. These factors help
shape the target date fund market and explain why such funds are typically structured by
generation and risk profile.

2.2.2 Shape of the glide path

Until now, we have assumed that the optimal exposure a7 is unconstrained. This results in
a convex glide path, as shown in Figure 18. However, this hypothesis is not realistic since
individuals cannot borrow to invest and be leveraged, implying o € [0,1]. The constrained
glide path is therefore defined by the conditional expectation:

g =E[of | of €10,1]]
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Figure 18: Constrained vs. unconstrained glide path
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Figure 19: Approximation of the constrained glide path
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The value of ¢gf can be estimated using Monte Carlo simulations. In Figure 18, we com-
pare the unconstrained glide path g; with the constrained glide path gf. As expected, the
difference is more pronounced when individuals are young, due to higher forward wealth'®.
The shape of gf is also sensitive to the relative risk aversion 7, as shown in Figure 18. A
practical approximation of the constrained glide path is:

¢ o0 = . Mt — Tt H,; Htvt>
g~ =mn|——=5(1+—+—7],1
' ((1—7)%2 ( me - mj )

The comparison between gf and g; is provided in Figure 19.

If all parameters in Equation (7) are held constant, the glide path g; is convex in t.
However, in practice, the glide paths implemented by asset managers are usually concave.
This raises the question of what factors lead to a concave glide path. One key factor is
time-varying risk preferences, specifically a changing coefficient of relative risk aversion. In
reality, an individual’s risk tolerance evolves over time. At the initial date ¢y, an investor
may be relatively risk-tolerant, implying a small negative value for v;. As the retirement date
T approaches, however, the same investor typically becomes more risk-averse, leading to a
significant decrease of ;. Since the optimal portfolio exposure «; is calibrated to the current
value of 7, any change in risk aversion makes the original allocation suboptimal. This leads
to a form of time inconsistency, where the optimal decision at one time is no longer optimal
at a future date. These types of problems fall within the framework of time-inconsistent
stochastic control. Following the foundational idea of Strotz (1955) and its continuous-time
formulation by Ekeland and Lazrak (2008), we model the investor as a continuum of selves,
one for each instant ¢, each controlling the portfolio over the infinitesimal interval [¢, ¢ + d].
We assume a no-commitment setting, meaning the investor can revise their plan at any
future time. In this framework, the appropriate solution concept is a subgame-perfect Nash
equilibrium rather than the standard Bellman optimality principle. Bjork et al. (2017) derive
the associated equilibrium HJB equations for such time-inconsistent problems. They show
that, for a CRRA utility function with a time-varying coefficient 7, the optimal exposure
still admits a closed-form solution:

x Pt — Tt Ht)
af =142t
(A -y)e? ( Xi
This expression mirrors the earlier solution derived under constant risk aversion. The main
difference is that the constant v has been replaced by the time-varying function ~;.

To illustrate the impact of time-varying risk aversion, we consider the following functional
form for ~;:

ek‘(t—to) _ 1
¥t = + (yr — Y0) R(T—t0) — 1
where 9 > vyr. This function provides a smooth interpolation between 7 at time ¢ty and

~r at the retirement date T, with the curvature governed by the parameter k. It exhibits
the following limiting cases:

Yo if k - 400
t—t .
Ve = 70+(7T—70)(T 0) iftk—0
— 1
YT if k— —oc0

19We continue to use the same numerical example, but with a lower volatility — o = 15% — and a higher
contribution — ¢; = 0.10.

30



Retirement Accumulation Strategies with Real Assets and Inflation Risk

Figure 20: Time-varying risk aversion 7;: concave vs. convex profiles
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Figure 21: Effect of the curvature parameter k£ on the convexity of the glide path g;
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Moreover, it can be shown that v; is concave when k£ > 0 and convex when k£ < 0. In Figure
20, we set 79 = —2 and yp = —4, and plot the function =, for three values of k: 0.05, —0.05,
and —oo. The case k = 0.05 corresponds to a concave risk aversion profile, while &k = —0.05
yields a convex profile. Using these three specifications for v; we compare the resulting glide
paths2?. As expected, we observe the following ordering:

This illustrates that, while the glide path g; is convex in ¢ when relative risk aversion is
constant or convex, it becomes concave when ~; itself is concave. The degree of concavity of
the glide path increases with the curvature of the risk aversion profile, i.e., with increasing
values of k (Figure 21).

Figure 22: Impact of the contribution ¢; on the convexity of the glide path g;
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The shape of the risk aversion function is not the only factor that can result in a concave
glide path. A similar effect can be achieved by assuming that the contribution ¢; is an
increasing function of time. This behavior reflects the psychology of real-world investors.
Young people tend to have less wealth and generally don’t worry much about planning for
retirement. However, as retirement approaches, they become more aware of the need to
save and increase their contributions. In such cases, it can be shown that the accumulated

future contribution H; becomes a concave function. The curvature of the glide path is then

H,
primarily driven by the second derivative of the ratio H;/my: curvature (g;) o 0? (t)

my
Figure 22 illustrates this relationship under the assumption that the relative risk aversion
v is time-varying and concave, with a shape parameter k = 0.05. However, it is important
to note that concavity in the glide path g; also arises when the time-varying risk aversion
function 7, is convex.

20We use the following example: p; = 8%, oy = 15%, ¢ = 2%, X¢, = 1, to = 20, T = 60, and ¢; = 0.10.
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To summarize, the glide path g; is theoretically convex when all model parameters are
held constant. In practice, however, it becomes concave due to three key factors that reflect
real-world constraints and investor behavior:

1. Leverage constraints — Individuals cannot borrow or use leverage, imposing a bound
on exposure (of € [0,1])
This constraint fundamentally alters the shape of the glide path, especially for younger
investors. In an unconstrained theoretical scenario, optimal exposure could exceed
100%, resulting in a convex path in which young investors would hold leveraged posi-
tions in risky assets. However, regulatory restrictions and practical limitations prevent
retail investors from borrowing to invest. This constraint is most significant at the be-
ginning of the investment horizon, when human capital is relatively high compared to
financial wealth and an unconstrained optimal allocation would suggest extreme lever-
age. Consequently, the constrained glide path g has reduced curvature compared to
the theoretical optimum, providing a more moderate and feasible allocation strategy,
particularly at early stages of the life cycle.

2. Time-varying risk aversion — Risk aversion tends to vary over time and often follows
a concave profile (k > 0)
This may be the model’s most psychologically realistic feature. Young investors typ-
ically exhibit lower risk aversion because they have longer investment horizons, more
human capital, and different life priorities. However, as retirement approaches, in-
vestors naturally become more conservative, seeking to preserve their accumulated
wealth rather than maximize growth. The concave profile (k > 0) realistically cap-
tures this accelerating shift in risk preferences. This behavioral evolution counteracts
theoretical convexity because the denominator (1 —~;) in the optimal allocation for-
mula changes more rapidly in later years, reducing equity exposure more aggressively
as retirement approaches.

3. Increasing contribution patterns — Contribution rates typically increase with age,
which induces concavity in H,
This factor reflects the typical career progression in which earnings — and consequently
retirement contributions — increase over time due to promotions, salary growth, and a
greater awareness of retirement needs. As contributions grow, the accumulated future
contributions H; become a concave function of time?!. Since the glide path’s curvature
is proportional to 07 (H;/m;), additional concavity is created in the allocation path.
Economically, this makes sense. As future contributions grow larger relative to current
wealth, the insurance value of these contributions justifies holding riskier assets early
in one’s career. However, this effect diminishes as retirement approaches and future
contribution streams shorten.

Taken together, these factors reflect institutional constraints and behavioral tendencies.
They explain why the glide paths implemented by asset managers tend to be concave.
Initially, these paths prioritize high equity exposure, shifting cautiously toward safer assets
as retirement approaches. The concave structure more closely aligns with observed investor
behavior and the practical constraints of financial markets than the theoretically convex
solution.

21This also challenges the simplistic interpretation of H; as human capital, which typically increases over
time. A more accurate view considers H: as the discounted sum of future contributions, which can have a
concave shape depending on the trajectory of contributions.
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2.3 Empirical results
2.3.1 Comparison with constant-mix strategies

In the constant-mix strategy CM,, /1_q, the individual allocates a fixed proportion « of their
wealth to stocks and the remaining 1 — a to bonds. Therefore, the investor’s wealth process
X, evolves according to the following stochastic differential equation:

AX, _ dS,
Xt B St

dBt Cy
+(1-a) B, +Xtdt
We assume that p; = 8%, or = 20%, r = 2%, X+, = 1, to = 20, T = 60, and ¢; = 0.10.
We evaluate three constant-mix strategies: CM 100 which is fully invested in bonds (no
exposure to equities), CMgg 40 With 60% in stocks and 40% in bonds, and CM g, which
is fully invested in stocks. These are compared against three glide path strategies, each
defined by a different time-varying relative risk aversion profile: GP; with v, = —4, GPo
with v, = =2, y¢v = —4, and k = 0.05, and GP3 with v, = —1.

Table 7: Comparison of the terminal wealth X7 (u: = 8%, SR = 0.30)

| Quantile Q (Xr,p) ‘ Hit ratio
Strategy | EIXT] | 50 109 25% 50% 75% 90% ' R=2% R=4%
CMO/100 84 8.4 |

| |
CMeojao | 243 ' 7.7 94 133 199 301 4421 932%  69.0%
6.0 84 150 295 60.3 1173, 90.0%  75.4%

Table 8: Comparison of the terminal wealth (u; = 4%, SRy = 0.10)

T

|
CMgoao | 11.7 50 6.8 98 144 205 ' 61.6%  41.5%

; Quantile Q (X7, p) | Hit ratio
Stratesy | EX7) | 500 100, 25% 50% 75% 90% | R=2% R=3%

|

|

|

0 T3 T . . )
GPs 93 169 73 82 92 104 115, 702%  14.8%
57 65 78 97 120 1451 68.0%  34.2%

Results are given in Table 7. The pure equity strategy CM,gg o yields the highest ex-
pected terminal wealth ($53.7), followed by the glide path strategy GP3 and the balanced
constant-mix strategy CMegg/40- GP3 notably outperforms C Mg, 49 in terms of average ter-
minal wealth, highlighting the advantages of dynamically adjusting risk exposure over time.
Glide path strategies offer superior downside protection. For instance, the 5% quantile of
terminal wealth for GPy is $8.5, which is significantly higher than the $7.7 quantile for
the constant-mix strategy CMgg/40. Even the conservative glide path GP; exhibits strong
performance in the lower tail of the distribution. While CM /¢ achieves the highest 90%
quantile ($117.3), it does so at the cost of much greater dispersion in outcomes. In contrast,
glide path strategies deliver more stable results by reducing extreme outcomes, sacrificing
some upside potential in exchange for enhanced stability and predictability. All glide path
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strategies have hit ratios?? above 92%, indicating a greater likelihood of outperforming the
risk-free benchmark. This makes them particularly attractive from a pension adequacy and
risk management perspective. Table 8 presents results with a lower Sharpe ratio scenario
(SR; = 0.10), simulating a less favorable market environment. As expected, all strate-
gies generate lower terminal wealth compared to the high Sharpe ratio case. However, the
relative advantage of glide path strategies becomes more pronounced. These strategies pro-
vide better downside protection and higher hit ratios than their constant-mix counterparts.
While constant-mix strategies may outperform glide paths on average during strong market
conditions, they are also more vulnerable to downside risk. Glide path strategies, by grad-
ually reducing risk exposure as retirement approaches, better align with behavioral pattern
and real-world investment constraints. Consequently, they tend to deliver more consistent
outcomes and increase the probability of meeting long-term retirement goals.

Table 9: Comparison of average risky exposure

Strategy | pr = 8% = 4%
CMooja0 | 60.0%  60.0%

GPy 46.3% 16.5%
GPs 60.3% 23.9%
GP3 90.0% 41.4%

Remark 6. The previous comparison is not entirely fair because the average exposure of
each glide path strategy to risky assets depends on its specifications and parameter values.
For example, when pu; = 8%, the average exposure of strategy GP2 to risky assets is similar to
the exposure of the 60/40 constant-miz strategy (Table 9). However, when p, = 4%, none of
the glide path strategies have an average exposure close to the 60/40 benchmark. Therefore,
direct comparisons between constant-mix and glide path strategies are difficult because their
risk profiles do not align.

2.3.2 Comparison with industry solutions

In practice, the glide path is typically divided into several distinct phases that correspond to
different stages of an investor’s journey toward retirement. Inspired by the FTSE Lifecycle
Screened Select Index, we can divide a 40-year accumulation period into four 10-year phases.

1. Stabilising phase
During the first decade of accumulation, the portfolio maintains a high equity alloca-
tion of 90%. This enables investors to benefit from long-term growth while they are
still far from retirement.

2. Early gradual de-risking
Over the next 10 years, the equity allocation is reduced by 1% per year, gradually
shifting into less volatile assets as investors approach mid-career milestones.

3. Mid-term gradual de-risking
During the third decade, de-risking accelerates, reducing equity exposure by 2% an-
nually. This reflects the growing importance of capital preservation as retirement
approaches.

22The hit ratio measures the probability that the strategy outperforms a risk-free investment with an
annualized return of R. For example, if R = r+ = 2%, the hit ratio represents the probability that the
strategy delivers a higher return than the risk-free bond.
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Figure 23: Phases of a target date fund
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Source: FTSE Lifecycle Screened Select Index.

4. Late rapid de-risking
In the final 10 years before retirement, the equity allocation declines linearly from its
level at T — 10 to 0% at the target retirement date. By that time, the portfolio has
fully transitioned to low-risk, income-oriented assets.

This approach balances the need for long-term growth with prudent risk management. It
begins with a high equity allocation and gradually shifts toward capital protection as the
target date approaches. The corresponding risky asset exposure oy is shown in Figure 24.
Based on this, we calibrate the implied relative risk aversion using the formula:

Mt — Tt
=1 16
V't . tg ( )

We then estimate the functional form of ~y,, yielding the approximation?3

Y —1—1.01 x 1077 x 0220 (17)

We refer to this as the Merton solution. Figure 24 compares the industry glide path to
the Merton solution in terms of both risky asset allocation «; and aversion risk ~;. The
two approaches align closely, except between years 30 and 50, where the industry method
reduces risky exposure more aggressively than the Merton-derived solution.

Table 10: Winning Probability of Merton Solutions vs. Industry Solution

T T

SR, =0.10 | SR,=020 | SR,=030

et 1 2 3 1 2 3 1 2 3
I e e S e e i

4% | 51.0 48.6 51.7 , 787 741 727,921 89.3 875
5% | 41.2 554 57.5 1 74.7 743 70.7190.8 87.4 854
6% | 322 620 63.7 704 37.7 585 892 848 83.0
7% | 25.1 68.3 69.8 | 65.8 382 51.1,87.4 826 81.7
8% | 202 739 752 '60.7 40.8 49.9 ' 85.5 83.6 80.3

To evaluate the performance of each approach, we simulate a competition between the
industry solution and the Merton solution by computing the probability that the Merton
solution yields higher terminal wealth. The simulation uses the following assumptions:
re = 2%, X¢y = 1, top = 20, T = 60, and ¢; = 0.10. We explore a range of expected
returns p;, and compute the volatility o, based on a given Sharpe ratio SR;. Table 10
shows the probability that the Merton strategy outperforms the industry strategy across
different Sharpe ratios. Three versions of the Merton solution are considered, which are dis-

tinguished by their specification of ;. 'yt(l) corresponds to the implied relative risk aversion

23We have 9 = —1, vy = —50, and k = 0.50.
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Figure 24: Industry solution vs. Merton solution
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based directly on Equation (16), ,yt(2) is the functional form given by Equation (17), and

'yt(s) is a equal to —1. Several insights emerge from the results. First, the probability of the
Merton solution outperforming the industry glide path increases with the Sharpe ratio be-
cause higher risk-adjusted returns enhance the effectiveness of dynamic allocation strategies.
Among the three specifications, the constant risk aversion case ’yt(3) consistently performs
well, particularly for moderate to high values of u;, suggesting that simple allocation rules
can be effective in favorable market conditions. The implied aversion %(1), although directly
calibrated from the industry glide path, often underperforms the other two specifications
— especially at higher Sharpe ratios. The functional form 752) generally delivers strong
results, but it is somewhat unstable at intermediate Sharpe ratios (e.g., SRy = 0.20). These
differences underscore the critical role of the contribution rate ¢; in determining the optimal
exposure o . For example, when ¢; = 0, the strategy based on 'ygl) should, in theory, closely
align with the industry solution, resulting in a performance probability approaching 50%.
However, in practice, the Merton strategy using %(1) tends to outperform because it results
in higher effective risk exposure due to the wealth-contribution dynamics captured in the

Merton formula:
af = (1t *(1;":&) (1 + ?) > (e *(1;":&)
(1—% )Utz ¢ (1—% )Ut2

H,
Here, the term = reflects the impact of future contributions relative to current wealth, am-

plifying the overatll risk exposure compared to the industry allocation. Overall, the findings
suggest that Merton-based strategies can outperform traditional glide paths significantly,
provided the specification of risk aversion is well chosen. In many cases, a simple constant-
aversion profile offers a robust and practical alternative to more complex, time-varying
formulations.
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2.3.3 Dynamic asset allocation

To illustrate asset allocation dynamics along a typical glide path, we examine a seven asset-
class portfolio consisting of government bonds, investment-grade corporate bonds, public
equities, private equities, private debt, real estate, and infrastructure. The first three rep-
resent traditional liquid assets commonly used in strategic asset allocation (bonds, credit,
and stocks). The remaining four fall under the category of real (or private) assets, which
are being considered more and more in long-term investment strategies. Table 11 and 12
show the expected returns, volatilities, and correlations for each asset class over a 30-year
investment horizon. These values were simulated using the Amundi CASM model (Global
calibration, USD, as of June 2025).

Table 11: Expected return (%), volatility (%) and Sharpe ratio of asset classes (Global,
30-year time horizon)

Asset class I o; SR, SR;/o;
Govt Bonds 4.25 412 0.21 5.01
IG Corp Bonds | 5.16  5.46 0.32 5.90
Public Equity 7.46 16.63 0.24 1.47
Private Equity | 10.75 20.11 0.37 1.82
Private Debt 7.94 10.10 0.45 4.45
Real Estate 7.35 11.68 0.34 2.90
Infrastructure 8.10 14.86 0.32 2.13

Source: Simulated with the Amundi CASM model (Global model, USD, June 2025), Amundi (2021).

Asset classes can be grouped based on their return characteristics. Private equity has
the highest expected return at 10.75%, followed by a group of real assets, including private
debt, real estate, and infrastructure, as well as public equity, with expected returns between
7% and 8%. Government and IG corporate bonds exhibit lower expected returns. In terms
of volatility, private equity is the most volatile asset class at 20.1%, followed by public equity
at 16.6%. The annual return of the risk-free asset (cash) is assumed to be 3.40%. Using
these figures, we calculate the Sharpe ratio, ranging from 0.21 for government bonds to 0.45
for private debt. As expected, real assets display higher Sharpe ratios due to the illiquidity
premium they carry.

Table 12: Correlation matrix in % (Global, 30-year time horizon)

Govt Bonds 100.0 605 —154 |, —21.0 —338 —18.7 40.0
IG Corp Bonds | 60.5 100.0  50.6 1 37.7 244 2.9  46.6
Public Equity | —15.4  50.6 100.0 | 798  59.6 375  29.2

Private Equity | —21.0 37.7 79.8 1+ 100.0 66.6 54.4 26.4
Private Debt —33.8 24.4 59.6 : 66.6  100.0 45.7 10.1
Real Estate —18.7 2.9 37.5 | 54.4 45.7  100.0 26.3
Infrastructure 40.0 46.6 292 ' 264 10.1 26.3 100.0

Source: Simulated with the Amundi CASM model (Global model, USD, June 2025), Amundi (2021).

The correlation matrix reveals several well-known facts. For example, the negative cor-
relation (-15.4%) between government bonds and public equities reflects their traditional
role as diversified assets. IG corporate bonds and equities are strongly positively correlated
(50.6%), indicating that credit and equity risks are partially intertwined. Private equity and
private debt are highly correlated (66.6%), as are public equity and private equity (79.8%).
Private debt is also highly correlated with public equities (59.6%) and investment-grade
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(IG) credit (24.4%). Real estate and infrastructure show moderate correlations with other
asset classes, contributing to the overall diversification potential. However, these correla-
tions depend on geographic region, investment horizon, and macroeconomic environment,
particularly prevailing monetary policy.

To determine the dynamic asset allocation along the glide path, we first compute the
efficient frontier using the Markowitz optimization framework:

1
w*(p) = argmin inEw —pw' (p—1)
; 1Jw=1
s.t. 0> 0,

For each optimal portfolio, we calculate the expected return u (w) = w' p and the volatil-
ity o (w) = VwTZw. Results are shown in Figure 58 on page 116, which compares the
investment universe both with and without the inclusion of real assets. We observe that
incorporating real assets improves the Sharpe ratio of the mean-variance optimized port-
folios. The detailed portfolio compositions are illustrated in Figures 59 and 60 on page
117. When the investor’s risk tolerance ¢ is low, the portfolio predominantly consists of
sovereign bonds. When ¢ is high, however, the allocation shifts toward public equities. For
intermediate values of ¢, the portfolio is a mix of corporate bonds and public equities. By
using the relationship between risk tolerance ¢ and relative risk aversion v = 1 — ¢!, we
map the optimized portfolios w* (¢) into the corresponding portfolios w* (), and obtain
the resulting allocations in Figures 61 and 62 on page 118.

We use the function form of ~;, which is calibrated to the industry solution®*, and assume
that ¢; = 0. Figure 25 illustrates the change in risk portfolio allocations when comparing
strategies with and without real assets?®. In both cases, the allocation shifts from riskier to
more conservative assets, consistent with lifecycle investment principles. However, including
real assets in the investment universe results in greater portfolio diversification, particularly
during the middle stages of life (ages 20-40). During this period, asset classes such as private
equity, private debt, real estate, and infrastructure are utilized more heavily, replacing some
exposure to traditional public equities. This expanded allocation can improve risk-adjusted
returns by spreading exposure across less correlated assets. In contrast, the glide path
without real assets relies more heavily on public equities and corporate bonds, resulting in a
less diversified and potentially more volatile investment strategy. As retirement approaches,
both strategies converge toward a conservative allocation dominated by government bonds.
Figure 26 presents a mixed glide path, where the optimal portfolio at each point in time is
a convex combination of the solutions with and without real assets:

Whixed (V) = (1 —w) - wl /o () +w - wy/ (1)

where wi | (v¢) and wy, , (y:) denote the optimal portfolios without and with real assets,
respectively, ~; is the time-varying risk aversion, and w € [0, 1] is the relative weight assigned
to the real asset-enhanced solution. An important advantage of this mixed approach is that it
provides a built-in mechanism to cap exposure to real assets. Specifically, the total allocation
to the set of real assets satisfies ) ;a1 Assers Whixed.i (Vt) < w. This constraint ensures
that exposure to real assets remains controlled, offering flexibility in portfolio construction
while preserving diversification benefits.

240 is set to 1/3, yp is set to —50, and k is set to 0.05.
25We show the dynamical evolution of the vector of risky asset exposures at time ¢, i.e., w} = afwy.
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Figure 25: Optimal glide path with and without real assets (Global, 30-year time horizon)
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Figure 26: Mixed glide path (Global, 30-year time horizon, w = 50%)
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Figure 27: Probability density function of the terminal gross wealth with and without real
assets
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As expected, the inclusion of real assets in the investment universe leads to superior
outcomes in terms of terminal wealth. Figure 27 presents the probability density functions
of terminal wealth X7 under both strategies (with and without real assets), highlighting a
clear rightward shift when real assets are included?®. The corresponding cumulative distri-
bution functions demonstrate second-order stochastic dominance of the real asset strategy,
confirming that it not only increases expected terminal wealth but does so with lower down-
side risk across the distribution. Table 13 summarizes key performance statistics. Notably,
the inclusion of real assets nearly doubles the expected terminal wealth compared to the
strategy without them, delivering 164 bps of additional annualized performance. The mixed
strategy yields an intermediate gain of 87 basis points per year. These results highlight the
substantial benefits of improved diversification and the contribution of private markets in
enhancing long-term retirement outcomes.

Table 13: Comparison of the terminal gross wealth with and without real assets

AR | Quantile Q (X7, p) ; Hit ratio
Strategy ElX2] bps) 1 5% 95%  50% T5%  90% 1 R—4% R — 5%
w/o real assets 6.3 134 47 59 74 91 70.3% 25.7%
w/ real assets 12.1 164 54 82 11.0 148 193 96.7% 81.7%
Mixed (w = 50%) 8.9 87 '46 65 83 10.7 133 92.5% 63.0%

Remark 7. The previous application highlights that the investor holds a large exposure to
the risk-free asset, which is not very realistic. Those results correspond to those of a prudent
or conservative investor. By contrast, if we adopt a more aggressive risk-tolerance function,
the outcomes differ significantly for moderate or aggressive investors. This naturally raises
the question of what constitutes the risk-free asset in this framework. It can be interpreted as
a combination of cash and a zero-coupon bond maturing at the retirement date. For young

26We have also included the mixed strategy with w = 50%.
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investors, the risk-free asset primarily consists of the zero-coupon bond that matches the
retirement horizon. As retirement approaches, the allocation gradually shifts toward cash,
with the weight on cash increasing most strongly in the final years before retirement. Another
way to increase exposure to risky assets is to exclude bonds from the investment universe
altogether. Bruder et al. (2012) take this approach in their model, which is a more general
version of ours. They adopt the zero-coupon bond maturing atT' as the numéraire and derive
formulas similar to ours. The main distinction lies in how they treat risk premia. In our
framework, the risk premium is defined relative to the risk-free asset and is approximated
using the risk-free rate as the muméraire. In contrast, the risk premium in the model of
Bruder et al. (2012) is defined directly with respect to the bond numéraire. Their model is
therefore theoretically more precise, but also more difficult to implement. Nevertheless, when
comparing results, both approaches lead to very similar outcomes.

2.3.4 Introducing liquidity risk management

Liquidity risk encompasses several aspects related to the efficient trading of assets. Trans-
action costs are incurred each time the portfolio is rebalanced. These costs vary by asset
class, time period, and market condition. Generally, transaction costs are relatively low
for traditional asset classes. Sovereign bonds and public equities typically incur the lowest
costs, followed by corporate bonds. In contrast, transaction costs are substantially higher
for real assets. However, liquidity risk is not limited to bid-ask spreads. It also includes
other factors, most notably market impact. Market impact refers to the price effect caused
by executing large orders or trading in markets with limited depth. Market impact can
result from the size of a trade or from a significant imbalance between supply and demand,
especially during periods of market stress when liquidity dries up. Real assets are partic-
ularly vulnerable in such conditions because they are traded less frequently and often lack
active secondary markets. These characteristics can amplify liquidity risk precisely when
investors need flexibility the most. Thus, liquidity risk reflects the cost of trading and the
potential difficulty of executing trades without significantly affecting market prices, espe-
cially in adverse conditions. Additionally, management fees can differ substantially between
liquid and illiquid assets. For example, public equities accessed through exchange-traded
funds or passive funds can carry management fees of less than 50 basis points (bps). In con-
trast, private equity typically involves much higher fees, often exceeding 150 bps, due to the
complexity and illiquidity of the underlying investments. As shown in Figure 27 and Table
13, our simulations reflect terminal gross wealth, not terminal net wealth. This distinction
is important, as the difference in management fees and transaction costs across asset classes
can significantly impact net outcomes.

To assess the impact of liquidity costs, we calculate the expected turnover of the glide
path strategy?:

T
— * %
T=FE g Hwth w5,

th=to

1

where {5, is a set of portfolio rebalancing dates, and w;, = «aj, w;, is the vector of optimal
risky asset exposures at rebalancing date t;,. Figure 28 shows the turnover profile?® for the

27This formula for turnover ignores portfolio weight drift that arises passively from asset price changes
between rebalancing dates. In other words, it only captures the explicit reallocation decisions made at each
rebalancing date and not the natural evolution of asset weights due to market movements. Consequently,
this turnover reflects only active trading and not the total change in portfolio composition over time.

28The model parameters remain unchanged. However, we set the contribution term ¢; = 0 to isolate the
impact of rebalancing activity. A non-zero contribution would introduce periodic inflows, which artificially
inflate the turnover by requiring additional trades to absorb the new capital. By setting ¢; = 0, we ensure
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mixed glide path strategy as a function of w € [0,1]. Over a 40-year horizon, the strategy
that is fully invested in liquid assets yields a total turnover of 360%, which corresponds to
an annual turnover of 9%. When w = 1, the turnover increases slightly to 420%, or 10.5%
per year. These relatively modest turnover levels are typical of retirement strategies, where
allocations change gradually and investment horizons are long term. However, turnover
alone does not capture liquidity risk because it treats all assets equally regardless of their
individual trading characteristics.

Table 14: Numerical values of unit trading costs

Asset Sovereign Corporate Public Private Private Real Infra-
class bonds bonds equity  equity debt estate  structure
C; (in bps) 15 30 30 200 150 200 200

To account for this, we compute the expected trading cost:

T n
_ * *
C=E| > > |@h - Fhe| G

th=to i=1

where n is the number of assets in the portfolio and C; denotes the unit trading cost of
asset 4. This formulation allows us to capture asset-specific liquidity effects, providing a
more accurate measure of the true cost of rebalancing across heterogeneous assets. Using
the unit costs shown in Table 14, the estimated trading cost ranges between 100 and 600
basis points, depending on the value of w. This implies that allocating more to illiquid real
assets can increase trading costs by up to six times compared to strategies invested solely
in liquid assets.

There are several approaches to incorporate liquidity risk into retirement strategies. One
simple and effective method is to introduce a time-varying liquidity weight w;, which blends
two portfolio policies:

wi (1) = (1= wi) - wf o (1) +we - wy, (1)

where w}, Jo (7¢) is the optimal allocation with liquid assets, w, / (7¢) is the optimal allocation
accounting for illiquid assets and ~; denotes the risk aversion at time t. The function w;
governs the transition between the regimes:

wt if ¢ <ty
we = is decreasing if ¢ € [¢], 3]
0 if t > t5

This structure reflects a progressive shift toward liquidity as the investor approaches retire-
ment. Before time ¢}, the long investment horizon justifies holding illiquid assets. After ¢,
typically five to ten years before retirement, the investor is assumed to fully transition into
liquid assets to ensure flexibility and reduce liquidity-related risks. Importantly, this does
not imply a complete shift out of risky assets. For instance, an investor may still hold public
equities, but would avoid illiquid instruments such as private equity, private debt, or real
assets, which could be difficult to sell quickly or at a low cost. This gradual transition from
illiquid to liquid holdings is illustrated in Figure 29, where the liquidity weight w; decreases
linearly between ¢7 = 30 years and ¢35 = 50 years.

that the turnover measure reflects pure reallocation effects rather than changes driven by external cash flows.
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Figure 28: Turnover and liquidity cost of glide path strategy
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Figure 29: Mixed glide path with liquidity constraints (Global, 30-year time horizon, w* =
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Table 15: Comparison of the terminal gross wealth with and without liquidity risk manage-
ment

AR | Quantile Q (X7, p | Hit ratio
Strategy EX] nbps) 1 5% 25%  50% ( 75%) 90% ' R=4% R=5%
w/o real assets 6.3 L34 47 59 74 91, 70.3% 25.7%
w/ real assets 12.1 164 '54 82 11.0 14.8 193 ' 96.7% 81.7%
Mixed (w = 50%) 8.9 87 146 65 83 107 133 925%  63.0%
"LRM (wt =100%) | 100 118 46 69 92 122 158 ' 926%  69.1%
LRM (w* = 50%) 8.0 61 42 59 75 96 119, 87.6%  51.4%
LRM (w* = 20%) 6.9 25 138 52 65 82 101! 795%  36.2%

Remark 8. Table 15 compares terminal gross wealth with and without liquidity risk manage-
ment. The results show that private assets continue to deliver superior performance relative
to portfolios composed solely of public assets. For example, when wt = 20%, the inclusion
of private assets generates an additional annualized performance of 25 bps.

3 Extension to multi-asset classes

In this section, we extend the previous framework by incorporating multiple risky assets.
First, we compare the single-asset and multi-asset solutions in the absence of allocation
constraints. Then, we analyze the impact of imposing such constraints on the multi-asset
setting.

3.1 Theoretical Model

We consider a dynamic asset allocation problem where an investor allocates wealth among n
risky assets Sy = (Su, ceey Sn,t) and a risk-free zero-coupon bond By, while making regular
contributions according to a target date strategy. Each risky asset S;; follows the following
stochastic differential equation:

dS; ¢ = piSicdt + 038 AW

where the Brownian motions {Wz}t}?:l are correlated such that E [dWZ—,t de,t] = p;;di
and p; ; = 1. We denote by oy = (@14, ..., an,) the vector of portfolio weights allocated to
the n risky assets at time ¢. In particular, each weight «;; represents the fraction of total
wealth invested in risky asset i, while the remainder (1 — 1, o) is allocated to the risk-free
asset. The resulting wealth process X; satisfies the stochastic differential equation:

dXt = <(T’t + OZ;I— (/lt — Ttln)> Xt + Ct) dt + Ol;ra—tXt th

where W, = (let,...,Wn’t), e = (,u1,t,~',/tn,t), oy = diag (Ul,t,...,O'n’t), and r; is
the constant risk-free rate. The investor aims to maximize the expected utility of terminal
wealth:

o; = argmax B, [U (X7)]
We define the covariance matrix by ¥;, so that (Et)m‘ = p;,;0:410j.. The associated HJB

equation is:

W +maxH (t,x,0¢) =0 st J(T,z) =U (x) (18)
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where:
oJ (t,x 1 2T (t,x
H(t,z, ) = ((7“,5 + Oé;r (e — ’I"tln)) T+ Ct) % 4 3 (a;rztat) l‘Q%
The first-order condition of the maximization of the Hamiltonian function is:
oA (t,z,0)

S0 =0, & (w—1rl,)xd. T (t,x)+ % (2% 1) xzﬁgj (t,z) =0,

* 63?‘7 (t,ﬂ]‘) -1 _
oy = x@%j(t,x)zt (e — 1¢1y)

In the case of CRRA utility, the optimal weights take the form:

H
Oé::at(l—i-)(f)
t

ay = = (/i‘t_—’yTtln)

(19)

where:

3.2 The case without allocation constraints

We now compare the single-asset and multi-asset solutions. In the single-asset case, the
optimal total exposure is:

* o kok
Wy = QpWy =

(1 (wf) =) ( Ht) x

N U S 20 B [ i
A—mo?wh) \ X%, )"

Xy
where w} is the mean-variance optimized portfolio:
.1
wy = w* (¢¢) = arg min §wTEtw — " (g —11,)

where ¢ = (1 — 'yt)_l. The closed-form solution is:

1

w* = > p—-rl,
(o) = === (k=71
Assuming normalized portfolio weights, we have:
0: 1
w* (y) = ——X% -rl,
(00 = o= (k- rL)

where 0, = (1 — ) " 175! (4 — r1,,). We deduce that:

pwp)—r = w (y) p—r
= w* (%&)T (:U’ - Tln)
0 _
1 j% (u— rln)T Y (u—rl,)
and:
ot (w) = w(y) Sw*(y)
= 3 ft% (b — rln)—r 2_12#2_1 (n—rly,)
9t2 T v—1
= 3 (N_TlrL) by (M_rln)
(1- ’Yt)
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It follows that:
pwi)—r 1-m
o? (wy) 0.

and:

- (M(w?)_r))(1+Ht> x

* . —
w; = wp =

1 H,;
= > (pw—rl, (1+) 20
e (14 (20)
Recall that the multi-asset solution is:
_ H; 1 1 Hy
= 14— ) =—"--3X —7rl,) |14+ — 21
of =ac(1+5) = 2 m e (14 (21)

By comparing Equations (20) and (21), we can see that both approaches lead to the same
optimal exposure vector. However, the two differ in methodology:

e In the single-asset approach, the total exposure o} to risky assets is first determined.
Then the Markowitz model is applied to find the optimal fully-invested portfolio w;.
Finally, the vector of exposures w; is obtained by scaling the portfolio weights w; by
the total exposure o;.

e In the multi-asset approach, the vector of exposures o} is directly computed and
coincides with the vector wj of the single-asset approach.

In the absence of allocation constraints, this leads to a dynamic two-fund separation result,
where the portfolio composition is determined independently of the total exposure or leverage
ratio.

3.3 The case with allocation constraints

In practice, we generally include weight constraints, meaning that the multi-asset approach
can not be solved using the single-asset approach. For example, we cannot invest more
than 100% of our wealth in the risky assets, implying the constraint 1, oy < 1. A common
additional restriction is the long-only constraint: a; > 0,,. Other constraints may also apply,
such as limiting the allocation to real assets to a maximum of 50%, or capping private equity
exposure at 20%. Let oy € Q denote the admissible set of portfolio weights satisfying all
such constraints. Under these constraints, there is generally no closed-form solution for the
optimal allocation o. However, the problem can still be solved numerically using Howard’s
policy iteration algorithm applied to Equation (18):

e Initialization
Begin with an initial guess for the control policy a4, for example by using the uncon-
strained solution. Then repeat until convergence:

e Policy evaluation
With a; held fixed, discretize the HJB equation using a finite-difference scheme and
compute an approximation of J (¢, x) over the chosen (¢,x) grid. From these values,
estimate the partial derivatives 9,7 (t,z) and 827 (t, z) numerically.
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e Policy improvement
At each grid point (¢, ), update the control a; by solving the constrained maximization
program

af = argmaxH (¢, x, o)
st o €Q

where the Hamiltonian is given by:

oJ (t,x)

1 0?J (t,x
H (t,x,a) = <(7"t + a;r (Mt — Ttln)) x + Ct) T + 5 <Oé;rztat) 12#

0z?

The previous algorithm can be simplified because the maximization step can be reformulated
as a quadratic programming problem:

1 =
* _ : T T~
o = argmingo, Yoy — oy fir

s.t. o €Q

where:

/:Lt =x (Mt - Tt]-n) 0T (ta l‘)
= _x22tagu7 (tvx)

Consequently, when applying Howard’s policy-iteration algorithm, we must repeatedly solve
a QP program at each grid node (¢,z) until convergence, which makes the computation
time-consuming. Because of this, the single-stage optimization approach is not scalable in
practical applications.

Remark 9. We have:

0. T (t,x) T
t

2
H(t’x7a):(rtx+ct)8j(t,x)_x28 J (t, ) (_1 T A

ax 8’132 (/”’t _Tt]-n))

We deduce that:

. 1 -
af = argmin Qa:Etat - @ta; (e — 1)
s.t. oy €K
where:
- 0T (t,x)
Pr=——
x02J (t,x)

1
It might be tempting to conjecture that p; = T but this is not generally correct. The

t
constraint a; € Q modifies the value function J (t,x), which implies that:

202U (z) 2027 (t, )

_xagj (tz) , o
0. U (x) 0. J (t,x)

0. J (t,x)

# #F1l—m

However, there are specific cases where the approximation @ ~

remains acceptable.
Nt
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3.4 Empirical results

We consider the numerical example described on page 38, under the following set of con-
straints:

Qz{aER”:aEO,lIagl}

This formulation imposes both a long-only constraint and a no-leverage constraint. Since 2
is a standard simplex, the feasible region is convex, which simplifies the maximization step
in the HJB equation. In this setting, the optimal portfolio weights can be computed using
the projected gradient descent (PGD) method. We start with the unconstrained solution

a§°> =(1- %)71 Y (u — 71,) and we repeat the following steps until convergence:

1. At iteration k, we apply the gradient step:
= o~ 19f (al?)

1
where 7 > 0 is the step size and Vf (o) = o' Xy — T (1t — r¢1,) is the gradient

of the objective function.

2. We project onto the simplex:
k N
oyt =Tlg ()

where Il (z) = argmingcq ||y — ac||§ is the projection onto the simplex . This pro-
jection can be efficiently computed using the method described in Appendix A.13 on
page 101.

Figure 30: Optimal glide path (Global, 30-year time horizon, multi-asset solution)
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Using the same parameters as in Figure 25 (identical risk aversion 7; and no contribution
c; = 0), we obtain the solutions® shown in Figure 30. These results reproduce most of the
stylized facts observed in the two-stage (single-asset) approach. For instance:

e The allocation shifts from riskier to more conservative assets as the retirement date
approaches;

e Introducing private assets reduces the share invested in public assets, especially public
equity;

e The overall shape of the allocations is very similar between Figures 25 and 30.

However, the allocations are not identical. Although the two-stage (single-asset) and one-
stage (multi-asset) formulations share the same objective function, they differ in their con-
straint sets:

e Two-stage (single-asset) approach:

1
wy = arg min %w;Etwt - liw; (b —re) st Q= {wt swp > 0,1 wy = 1}

To*x
o = min ! Be W — Tt 1
1—vy \ wr'Swr

* * *
Wy = Wy

e One-stage (multi-asset) approach:

1
af = arg min §a:2t0¢t — a;r (e —1m) st Q= {at tay >0, l;lrat < 1}

1
L=
The key difference lies in how leverage is handled. In the two-stage approach, leverage is
adjusted in the second step, outside of the quadratic program. In contrast, the one-stage
approach incorporates leverage directly into the QP constraints. This structural distinction
explains the allocation differences observed between Figures 25 and 30. The two-stage
approach generates smoother dynamic allocations than the one-stage method. However, the
one-stage approach produces more diversified portfolios. This diversification advantage is
particularly evident in the treatment of investment-grade corporate bonds. While the two-
stage approach eliminates this allocation after 40 years, the one-stage approach maintains
exposure to IG corporate bonds through retirement. Despite these differences in allocation,
both approaches yield comparable turnover metrics.

3.5 Insights into the multi-asset optimal solution

In this section, we analyze the drivers of the dynamic optimal allocation by considering the
following optimization problem:

1 1
w* = argmin inZw ——w' (p—rl,)

L—n
¢ w >0,
St Lw<1(or1)w=1)

The inequality constraint 1,) w < 1 corresponds to the one-stage approach, while the equality
constraint 1,]w = 1 relates to the two-stage approach.

29We exploit the fact that the value function J (¢, ) is separable (see Appendix A.14 on page 102).
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3.5.1 Mathematical properties of the optimal weights

The associated Lagrange function is:

1 1
L (w; Ao, A) = inEw - 17U}T (b—711,) 4+ Ao (1110 - 1) —Aw
-7
where \g > 0 and A > 0,, (or A € R if 1] w = 1). The first-order conditions are:

1
Zw—li(u—rln)—i—)\oln—)\:On

The optimal solution is:

— 17’L
wr =1 </111_T‘r>/ + A= )\01n>

The Kuhn-Tucker complementary slackness conditions are Ag (1 — lzw*) =0if 1w <1,
and \wy =0foralli=1...,n.

To obtain analytical solutions, we consider the two-asset case n = 2. We have y =

(p1, pr2) and:
Y 0% pPO102
pPO102 O'%

We deduce that:

w1 1 U% —pPT102
(=) oto3 \ —poroz o
and:
wf o o3 ?-F)q—)\o — po102 ug—r+)\2_)\0
- I—vy
w§o<af M‘F)\Q—AO — P0102 uliT—F)\l—)\Q
1—7 1—7

where the proportionality constant is (1 — p2)71 oy 20{ 2. The optimal weights depend on
risk-adjusted returns, the covariance structure, the constraint multipliers, and risk aversion.
Here are some properties:

(P1) Let us assume that A\; = A2 = 0 and g = po. It follows that:
wy > wy < o1 < o9
The optimal weight decreases as volatility increases.
(P2) Let us assume that A\; = Ao = 0 and 01 = o09. It follows that:
wy > wy & i > fio
The optimal weight increases with the expected return.
(P3) Let us assume that p = 0. In this case, A\ = Ay = 0 and we get:
wr = % (’i’__;" - /\0> for i € {1,2}
Thus, the optimal weight is inversely proportional to volatility and increasing in ex-

pected return. If additionally Ao = 0 (which occurs, for example, when v — —oo
under the one-stage approach), we get:

* M — T
i X B}
g5

w for i € {1,2}

In this case, the optimal weight is proportional to the Sharpe ratio divided by volatility.
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(Py) Let us assume that A; = A2 = 0. It follows that:

1
w] T <0’ii (i — 1) — poiozi (pari — r)) —Xo (oii - pam#) for i € {1,2}

The optimal weight is increasing with ~.

(P5) The relationship between the correlation parameter p and the allocation (w},w}) is
nontrivial. In the two-stage approach, the dependence is monotonic. As p increases,
the weight allocated to the asset with the higher Sharpe ratio rises, while the weight in
the lower Sharpe ratio asset declines. In the one-stage approach, the same qualitative
pattern generally holds, but the relationship may fail to be monotonic over certain
intervals [p1, p2]. Let p* denote the threshold correlation such that:

p<pr S wiws >0
p>p e wiws =0

The value p* is the highest correlation level below which both assets are included in the
optimal portfolio. Once correlation reaches or exceeds p*, the optimization allocates
weight to only one asset. In the one-stage approach, we get:

i (SR SRe
p= SR, ' SR,

In the two-stage approach, the threshold becomes:

. M1 — 2 02 H2 — M1 (251
* = min + =, + )
P ((1 —vy)o10e o1 (L—7v)o100 09

3.5.2 Numerical examples

We consider the following parameters: p; = 10%, pus = 10%, o1 = 20%, oo = 25%, r = 3%,
and v = —1. Figures 31-34 illustrate Properties P;—P; for different values of the correlation
parameter p under the one-stage approach. For Property P5, we use the following parameter
sets30:

Set ‘ 01 02 vy

#1 | 25% 2% —1

#2 | 30% 25% -1

#3 | 25% 30% -1

#4 | 25% 30% —10

Results for the two-stage approach are reported in Figures 64-68 on pages 119-121. The
behavior of the two approaches is broadly consistent. However, it is worth noting that in
Set #3, the allocation to Asset 1 is monotonic in p under the two-stage approach, whereas
this is not the case under the one-stage approach.

We now have the background to better interpret the glide path obtained previously when
real assets are introduced. Remember that the allocation to public equities disappears. This
is because public equities have a relatively low Sharpe ratio compared to other asset classes.
Not only are they dominated by private equity, but also by the other three real asset classes:
private debt, real estate and infrastructure. For example, if the Sharpe ratio of public
equities increases, the optimiser will start allocating to them (Figure 36, top-left panel).
Moreover, when the Sharpe ratio is set to 0.45, the allocation to private equity disappears

30Results are shown in Figure 35. The dashed line is the threshold correlation p*.
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Figure 31: Impact of the volatility o7 on the optimal solution (one-stage approach, Property
Py)
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Figure 32: Impact of the expected return py on the optimal solution (one-stage approach,
Property P»)
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Figure 33: Impact of the parameter SR; /o1 on the optimal solution (one-stage approach,
Property Ps)
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Figure 34: Impact of the risk aversion v on the optimal solution (one-stage approach, Prop-
erty Py)
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Figure 35: Impact of the correlation p on the optimal solution (one-stage approach, Property

Ps)
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Figure 36: Optimal glide path under four different assumptions (Global, one-stage approach)
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(Figure 36, top-right panel). This illustrates the strong trade-off between public and private
equities (and, to a certain extent, private debt), given that these asset classes are highly
correlated. The case of investment-grade corporate bonds is different. Even when Sharpe
ratios are equalised across asset classes, the optimal dynamic solution assigns no weight to IG
corporate bonds (Figure 36, bottom-left panel). This exclusion is not driven by Sharpe ratio
considerations, but rather by their high correlation with other assets, especially government
bonds. For instance, when all correlations are strictly positive, the glide path includes an
allocation to IG corporate bonds (Figure 36, bottom-right panel).

3.6 The case of the investor in the Eurozone

As in our previous analysis, we conduct a dynamic asset allocation exercise, but this time
we focus on an investment universe restricted to the Eurozone. Using the Amundi CASM
model, we calculate the expected returns, volatilities, Sharpe ratios and correlations, which
are reported in Tables 16 and 17.

Table 16: Expected return (%), volatility (%) and Sharpe ratio of asset classes (Eurozone,
30-year time horizon)

Asset class i o; SR, SR;/o;
Govt Bonds 339 490 0.22 4.46
IG Corp Bonds | 3.74 4.64 0.31 6.60
Public Equity 6.77 19.53 0.23 1.17
Private Equity | 11.96 19.00 0.51 2.67
Private Debt 6.77 10.10 0.44 4.36
Real Estate 5.62 10.01 0.33 3.29
Infrastructure 7.61 14.64 0.36 2.47

Source: Simulated with the Amundi CASM model (Eurozone model, EUR, June 2025), Amundi (2021).

Table 17: Correlation matrix in % (Eurozone, 30-year time horizon)

Govt Bonds 1000 688 3.1, —-74 -200 —1.8 386
IG Corp Bonds | 68.8 100.0 457 1 367 —13 100 235
Public Equity | —3.1 457 100.0 , 586  21.9 228 3.8
Private Equity | —7.4 36.7 586 1 100.0 —19.7 229 —11.9
Private Debt —-20.0 —13 219 | -19.7 100.0 348 283
Real Estate -1.8 100 228, 229 348 100.0 8.7
Infrastructure 38.6 23.5 3.8 ' —11.9 28.3 8.7 100.0

Source: Simulated with the Amundi CASM model (Eurozone model, EUR, June 2025), Amundi (2021).

A comparison with the global investment universe highlights several differences. Firstly,
expected returns are generally lower in the Eurozone than at a global level, except for
private equity. For example, the expected returns on government bonds, corporate bonds
and public equities are 3.39%, 3.74% and 6.77% respectively, compared to 4.25%, 5.16% and
7.46% in the global investment universe. The annual cash return is assumed to be 2.32%
in the Eurozone, which is 109 basis points lower than the global figure. Due to this lower
risk-free rate, the Sharpe ratios of Eurozone assets are broadly comparable to those of global
assets. The main exception is private equity, which exhibits a higher Sharpe ratio in the
Eurozone. Correlation patterns are generally similar across the two universes, but there are
some notable differences. The average cross-correlation is substantially lower in the eurozone
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(17.1% versus 29.0% globally). The stock-bond correlation is also different, being close to
zero in the Eurozone. This suggests that government bonds are less effective as a safe-haven
asset in the Eurozone than in the global context. Additionally, real assets tend to be less
correlated in the Eurozone on average®'. Overall, these patterns suggest that the benefits
of diversification are likely to be greater in the Eurozone investment universe.

Figure 37: Optimal glide path (Eurozone, 30-year time horizon)
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Figure 37 illustrates the dynamic allocation within the Eurozone investment universe
with and without real assets. In both cases, the resulting portfolio is more diversified than
that in the global investment universe. Notably, the allocation without real assets retains a
significant exposure to corporate bonds until the retirement date. When real assets are in-
cluded, private equity remains part of the allocation until the end of the investment period.
Figure 38 shows the mixed glide path, which also demonstrates greater diversification. Ini-
tially, the portfolio is fully invested in public and private equities. Over time, the allocation
shifts progressively towards income-generating assets, such as government and corporate
bonds, private debt, and infrastructure. As with the global investment universe, we run a
Monte Carlo experiment to estimate the probability density function of terminal wealth X .
The results show that the density function shifts to the left when real assets are excluded
and to the right when they are included (see Figure 39). This outcome is consistent with

31The average correlations are:

Asset class Global  Eurozone
Govt Bonds 1.9 12.5
IG Corp Bonds 37.1 30.6
Public Equity 40.2 25.0
Private Equity 40.7 13.2
Private Debt 28.8 7.3
Real Estate 24.7 16.2
Infrastructure 29.8 15.2
Total 29.0 17.1
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Figure 38: Mixed glide path (Eurozone, 30-year time horizon, w = 50%)
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Figure 39: Probability density function of the terminal gross wealth with and without real
assets (Eurozone, 30-year time horizon)
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expectations. Without real assets, the efficient frontier in the FEurozone is below that of the
global universe. With real assets, however, it is above®?. Consequently, the density func-
tion with real assets clearly dominates that without real assets. Table 18 reports summary
statistics. These results suggest that achieving the investment objective in terms of the hit
ratio is challenging when relying solely on public assets. By contrast, incorporating real
assets significantly increases the probability of success. When we consider the mixed glide
path, the results are very similar to those previously obtained with the global investment
universe.

Table 18: Comparison of the terminal gross wealth with and without real assets, and with
and without liquidity risk management (Eurozone, 30-year time horizon)

AR | Quantile Q (X1, p) | Hit ratio
Strategy EXT] nbps) 1 5% 25% 50% 75% 90% ' R=4% R=5%
w/o real assets 3.9 124 29 37 47 57, 20.0% 2.2%
w/ real assets 16.9 370 180 108 15.0 209 28.0' 98.8% 92.6%
Mixed (w = 50%) 8.4 190 |48 60 7.8 101 126, 885%  55.4%

LRM (w* = 100%) | 10.6 250" 4. : .
LRM (w* = 50%) 6.5 128 34 48 61 78 97, 71.8%  30.2%
LRM (wh = 20%) 4.8 52 126 36 46 58 7.1 404%  8.0%

Remark 10. Figures 70 and 71 show the mized glide path with liquidity risk management.
Compared to the global universe, the Furozone-only portfolio is penalized when limited to
public assets. The expected terminal wealth is 3.9, versus 6.3 in the global case. However,
when private assets and liquidity risk management are included, terminal wealth rises to 6.5
when wb = 50% and 4.8 when wt = 20%, respectively. Performance thus converges toward
that of the global investment universe. Including Furopean private assets further improves
outcomes, adding an additional annualized return of 128 and 52 bps, respectively.

4 Incorporating inflation risk

In the previous sections, we analyzed dynamic asset allocation in terms of nominal wealth.
However, one of the major risks in retirement planning is inflation risk, which implies that the
analysis must also be conducted in real terms rather than being limited to nominal outcomes.
In what follows, we develop an approach that explicitly incorporates inflation risk into the
dynamic asset allocation framework and compare the results with those obtained previously
when maximizing only nominal wealth.

4.1 General framework

To account for inflation risk, we extend the model to include both financial assets and
an inflation process. For simplicity, we assume the portfolio is invested in three financial
instruments:

e A risk-free asset By, with an instantaneous rate of return r;:
dBt = ’f‘tBt dt
e A risky asset S¢, whose price follows a geometric Brownian motion with deterministic

drift p; and volatility oy:
dSt = ,LLtSt de¢ + O'tSt th

32Gee Figures 58 on page 116 and 69 on page 122.
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e An inflation-sensitive risky asset R;, whose price follows a geometric Brownian motion
with stochastic drift p; = a + b, and deterministic volatility oy:

dR; = (a¢ + bymy) Ry dt + oy Ry AW

where a; and b; are two parameters. The parameter a; captures the asset’s inflation-
independent expected return, while b; quantifies the sensitivity of expected return to
the current inflation rate ;.

e The inflation rate is modeled as an Ornstein-Uhlenbeck process:
dmy = k (Toe — ) dt + 0,5”) thw)

where k > 0 is the mean-reversion rate, T, is the long-term mean inflation rate, and

at(w) > 0 is the volatility of inflation.

At time ¢, we assume that a proportion «; of the wealth is invested in the risky asset S, a
proportion [ is allocated to the inflation-sensitive asset R;, and the remaining proportion

1 — a; — B; is invested in the risk-free asset B;. In the following, we define the discounted

— ftto oms ds

wealth as X; = XtY} where Xt is the nominal wealth process, Y; = e is the inflation

discount factor, and g € {0,1} is a scaling parameter:

e If p =0, the analysis is conducted in nominal terms as in the previous sections.

e If p =1, the analysis is done in real terms.
The dynamics of the nominal wealth process X; is given by:

dX)it :atcgt—kﬁt(;}?—k(l—at—ﬁt)(?—&-;idt
We deduce that:
dX, = (Oét,UtXt + Bt (ar + bymy) X+ (1= — ) re Xy + Ct) dt +
0. Xy AW, + ol X, AW

Since Y; has finite variation, we have dY; = —pmY; dt and d <X, Y> = 0. We get:
t

t t

S X, - - dX
dXt_YthtJrXtdYt_Xthtththdt_<Xtgwtdt>Xt

Using the dynamics for X,, we deduce that:

dX, = (Oét/ltXt + Bt ((Lt + bﬂrt) X + (1 — oy — Bt) re X, — om Xy + C;) dt +
a0 Xy AWy + Broy Xy AW/

t
— s ds
where ¢} = cie Jio @

Brownian motions Wy, W/, and Wt(ﬂ) are correlated with E [dW, dW/] = p, dt, E {th’ th(w)} =
B dt and E [th th(ﬂ)} = pi¥) dt. Tt follows that:

is the discounted value of the contribution. We assume that the

(@X.)° = (a3o? + B2 (o) + 2 Bupuonioy) XE dt
2

(dm)?* = (Jt(ﬂ)> d¢

AX, drm, = (atpg*”at + Btpﬁ’%;) o™X, dt
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Let J (t,z,m) be the value function:

J (t,z,m) = sup E; [Ll (X7) | Xy =a,m = 7r]
(a,3)

The HJB equation is:

0T (¢, )
o

K (oo — T¢)

oJ (t,z,m) %(a )28 J (t,x,m)

5 +maxH (t,z, 7, ,8) =0

on? (o,)

with terminal condition:
J(T,z,m) =U(x)

The expression of the Hamiltonian is:

0 ta )
H(t,z,ma,B) = (apx+p(a+bm)e+(1—a—p)rz—erz+ ) %jL
1 / 82\7 t,.T,W
B (a o} + B (Ut) + QQﬂthtUt) Iz% +
o 02J (t,x,m
(aPES)U +5P(R)0£) ot XT#

4.2 The case without allocation constraints
4.2.1 General solution

In Appendix A.16 on page 105, we show that the optimal solution is:

i=( G ) == (et - +<tf;”> 2

)

where J, = 0, (t,2,7), Tpe = 02T (t,2,7), Tow = 02 2T (t,z,7), and:

0'2 ptO'tO' —r (S )O' 0.(7")
o t A Mt =Tt de = [ Pt t
! ( PLO+0} (at) L < at + by — 1y and ¢ pg )O'tO't( ™)

It follows that:

1 J2 ey JaTom VAR
H(t,x,maf,BF) = ~5 A GTZt 19t—7ct 1915—5 j’ C:Zt Yo+ T (Ttm — omx + c;)
| (23)
Risk-premium interpretation of the optunal solution When (; = 02, inflation

shocks are uncorrelated with asset shocks (pt 5) pER) = 0). In this case, we recover
the solution of the standard multi-asset case presented in the previous sec‘ulon‘i‘3

-1
S Y n-lp, — O J (ta,m) of ptat"; O
5; xjx,m £ xa%j (t,:r,’]T) PtUtGQ (Ué) :ué 2

When (; # 02, we obtain a similar expression, but with a correction term:

1
( O{: ) — al"j (t,.’[i, ﬂ-) Ut2 pto—to;& ( ﬁt ) —r1
g ) T T2 Gam) \ oot (o)) i) T

33See Equation (19) on page 46.
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where:
(5)=( 1)+ Eedlenn) (ot
ﬂ; /14 0T (t,l’//r) pIER)U{tUt(W)
In this case, the effective expected returns are adjusted to reflect the covariance risk with
) (R)

inflation. The direction of this adjustment depends on the signs of pg , py , and the
cross-derivative 2 7 (t,x,):

[ o0 >0 oD <0 oW >0 <o
85,7!“7 (tvxaﬂ—) >0 by > f Mt < M [Lé > /14 /J‘t < /J‘t
BT (ta,m) <O | fig <pe  fie>pe fip <pp o iy >

For instance, if pt ) < 0, p(R) > 0 and 82 <J (t,z,m) > 0 — a configuration that is arguably
the most realistic — we get f; < p and gy > py. Compared to the pure multi-asset
solution, the optimal exposure to the standard risky asset decreases, while the exposure to
the inflation-sensitive risky asset increases.

Liability-hedging interpretation of the optimal solution The optimal solution (22)

can be expressed as:
jx —1 ja: ™ —1
— X0+ | —— |2
( xjﬂc,x) £ ( xjx,;c) ¢ Ct

()
Bt

= gg(msr) | > o, + o™ ¥
—_—
Market portfolio Liability-hedging portfolio
(msr) (m)
_ (msr) | ay (m) | ay
t t
where w(ms1) = I >0and @™ = — ‘71’# < 0. Thus, the optimal allocation has two

components. The first is the market component corresponding to the classical Markowitz
solution and representing the maximum Sharpe ratio (MSR) portfolio. The second is the
inflation component, which depends on the covariance risk premium associated with infla-
tion. The two component portfolios are weighted by w™s") and @™, which depend on
the utility function, the current wealth, and the current level of inflation. Remarkably, this
decomposition recovers a principle from liability-driven investment (LDI) used by defined
benefit (DB) pension funds. Specifically, the inflation component can be interpreted as a
liability-hedging portfolio (LHP), where the liability is the inflation risk (Roncalli, 2013). By
explicitly accounting for inflation risk in retirement accumulation strategies, defined contri-
bution (DC) solutions converge toward DB-style liability-hedging solutions, linking classical
portfolio optimization with practical retirement planning. However, the dynamic allocation
may take either a long or short position in the liability-hedging portfolio, depending on the
sign of @™ . This is a key distinction from traditional DB investment policies.

The expression of the LHP is:
s
o™ o™ o = pept™) oy
(W) U= =) | (o = s Jor
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The sign of each weight is fully determined by the correlations: sgn ozgﬂ) = sgn (pES) - PtP:ER))

and sgn ﬂgﬂ) = sgn (pgR) — ptpgs)). Here are some special cases:
Special cases sgn agﬂ) sgn Bt(ﬂ)
pt =0 %n(ésg %n(éRU
i > p >0 +
0<p” < pi™ +
s
=0 —sgn (ptpER)) sgn (pﬁR)
s s
pr — 1 sg(é)—ém) %n@ﬁtwﬁv
For example, if p; = 50%, pgs) = —10%, pER) = 25%, we get al(fr) < 0 and ﬁt(ﬂ) > 0.

While the sign is governed entirely by the correlation triplet (pt, pgs), pgR)), the magnitude

depends on volatilities. Each weight is:
e proportional to the inflation volatility o™

t 9

e inversely proportional to its own asset volatility (o or o3),
e and amplified as |p;| — 1, since (1 — pf)fl becomes large.

4.2.2 CRRA solution with ¢; =0

In the general case, there is no closed-form solution. To obtain one, we set the contribution
¢; to 0 and consider a CRRA utility function. In this case, we have:

o
J (t,x,m) = h(t,7) 7

where h (t, ) is the solution®* of the nonlinear partial differential equation®®:

% (a§”>)2 O2h (t, ) + (n (Moo — 1) — qf@) Oxh (t,)
# (v em 3t Ynem +oniem) - O DL~ g e

with terminal condition h (T, 7) =1 and:
ﬁ:;%iﬁif@
0, Y —
ay ¢ = S_1 A

g = ﬁ@jzt_lg

34The proof is given in Appendix A.17 on page 106.
35The PDE is not linear because of the last term.
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The optimal solution is given by:

oy B 1 Orh (t, )
(5) = =50 (e o553
1 1
= EE;19t+ OxInh(t,m) X EZ?Q

Market portfolio Hedging demand Liability-hedging portfolio

=% (m)
« «
= < BZ? >+8ﬂlnh(t,7r)>< ( ﬂf”) )

This result shows that the optimal allocation consists of two portfolios:

e The market portfolio, designed to capture the performance of risky investments and
achieve wealth accumulation for retirement;

e The liability-hedging portfolio, constructed to hedge inflation risk.

The hedging component corresponds to the product of the hedging demand and the LHP.
Since the hedging demand, given by Hiﬂ) = Or Inh (t,7), can take either positive or negative
values, the resulting position in the LHP may be long or short. This allocation principle is
the foundation of dynamic allocation decisions in the presence of liability risk (Martellini
and Milhau, 2012).

Remark 11. The inflation component can be expressed as:

S R
agﬂ) _ at(ﬂ) PE ) Ptpg : /o
i L= @=n) \ (o = pen?) Jo}

Let us assume that pES) =0 and pER) > 0. Then the hedging component satisfies:

St ’ Rt
var (2
St
In this case, ,Bt(ﬂ) > 0 while agﬂ) < 0. This means that the long position in the inflation-

sensitive asset is partially financed by a short position in the risky asset, with the hedging
ratio given by the beta of the inflation-sensitive asset relative to the risky asset.

al™ + B =0

4.2.3 Approximate closed-form solution

To solve Equation (24), we can use the finite-difference method (Roncalli, 2020). An alter-
native approach is to assume that:

h(t,7) = exp (A (t)+ B (t) 7+ C (t) 7r2>
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Therefore, the functions A (t), B (t) and C (t) satisfy the following system of ODEs?°

dét(t) = —mrooB(t)—%( ) (B2 (t) 4+ 2C (t)) — e+
%7 (6, + B (t) ) o7 1(0t+B()g)
dit(t) _ _ﬁ-(zwoo (t)— B(1)) 2(0“) C (t) + vo+ (25)
(9t+B Tzl(ﬁzc )
d(fit(t) = 2%C () -2 (“”) C? (1) +
325 (20 06) =7 (Br2006)

with terminal conditions A (T) = B(T) = C(T) = 0. The numerical solution can be
obtained with a Runge-Kutta scheme. Finally, the optimal weights are equal to:

o 1 1 1 1

We now consider the case by = 0, implying 0, = 0. Since C (T) =0 and:

dit(t) —%-C(t) -2 ((oi”))2 + ﬂ_ﬁ?&‘%) -C%(t)

we deduce that C (¢t) = 0. It follows that:

dB (t)
dt

= kB (t) + 70

Using the terminal condition B (T) = 0, we get:

el{(t*T) -1
B(t) = ov (K

The optimal solution becomes3”:

k(t—=T) _
At 1 -1 2 € 1 —1
DI X
(@ ) 1" t+g17< K ) e

If v < 0, the hedging demand is positive and decreases over time. At the retirement date
T, the inflation-hedging demand vanishes.

We consider the following numerical application: p; = 8%, or = 20%, r+ = 2%, a; = 4%,
by =0, o) = 15%, py = 10%, K = 0.5, T = 4%, '™ = 2%, p\*) = 20%, p{™ = 50%, 0 = 1
and v = —1. We solve the ODE system using the Runge- Kutta algorithm for ¢ € [20, 60]
and find the following initial values: A (20) = —0.3460, B (20) = 2, C' (20) = 0. Figure 40
shows the solutions A (t), B(t), C (t) and h (t,7) for two values of w. If we assume that
b = 1, the initial values are A (20) = —1.6145, B (20) = 0.4750, and C (20) = —10.4705,
while the solutions A (t), B (t), C (t) and h (¢, 7) are shown in Figure 41.

36The proof is given in Appendix A.17 on page 106.
37If by = 0 and ¢ = 0, meaning that the investor is not sensitive to their real wealth, there is no hedging
demand.
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Figure 40: Solution of h (¢, 7) for by = 0
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Figure 41: Solution of h (¢, ) for by =1
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Table 19: Market and liability-hedging portfolios (in %)

T

b =0 | b =1
m=—10% 7w =+10% ' 7 = -30% m=-10% m =+10%
a; 72.39 7239 | 122.90 89.23 55.56
: 34.79 3479 1 —638.61  —189.67 259.26
T o T om0 ome 0.76 0.76
an o s 82 32 323 3.23
# | 200.00 200.00 | 675.73 256.91  —161.91
i 0.00 0.00 ! 0.00 0.00 0.00

In Table 19, we report the market portfolio (df,B;% the liability-hedging portfolio

al™, 5”)>, and the hedging demand H™ at both the initial date and the retirement date.
When b; = 0, the market portfolio, the LHP, and the hedging demand are independent of
the inflation level 7;. However, when b; = 1, the hedging demand becomes sensitive to
inflation. In this case, Hgﬂ) may take negative values, indicating that the optimal allocation
involves a short position in the liability-hedging portfolio.

4.3 The case with allocation constraints

When we impose constraints on «; and [;, a closed-form solution is generally no longer
available. If the constraint set €2 is independent of wealth z, then under CRRA utility and
no contributions ¢, the value function J (¢, z, ) remains z-separable:

ot

J (t,x, ) zh(t,ﬂ)T

We deduce that I = . and Jm = L Oxh (t’ﬂ). However, in this case we
xj;m:v Y= 1 xjx,:v Y= 1 h (ta 71—)

cannot use the method from the previous section®®, because the unconstrained optimizer

itself depends on B (t) and C (t), whose functional forms are unknown. Instead, we solve

the problem numerically with Howard’s policy-iteration algorithm, as described in Section

3.3 on page 47. As the z-separability holds when there are no contributions, we work directly

with the PDE for h (¢, 7). At each time step ¢, we proceed in two steps:

e Policy evaluation
Given a fixed control v = («, 8), we solve the PDE backward in time using an implicit
scheme:

1
0 <VtT9t+7"t —om+ 5(’7— 1) (VtTZtVt>> h(t,7)+ Oih(t,m)

+ (m (Too — 7¢) + 7 (ﬁg)) Oxh (t, ) + % (a§”>)2 O2h(t,m) = 0  (26)

e Policy improvement
With the updated function h (¢,7), we solve the constrained maximization program:

1
vy = argmax 3 (y=1) h(t,m) (V;Ztut) + (h (t,m) 0] + 0,h (t, ) (tT) vy
st. v e (27)

38Namely, first computing the unconstrained optimizer and then obtaining the constrained one via a
projected gradient descent approach.
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We iterate these two steps until convergence for each time step ¢. The numerical procedure
used to implement Howard’s policy-iteration method is detailed in Appendix A.19.

4.4 Empirical results

The optimal portfolio weights can be expressed as the sum of two components:

oF 1 _ - 1 _
(ﬂi) =% 19, +H" x T e
t

Market portfolio Hedging component

The first term represents myopic demand and corresponds to the standard mean-variance
allocation based on current asset return dynamics. This component ignores potential future
changes in the economic environment. The second term captures intertemporal hedging
demand and reflects the investor’s desire to hedge against the adverse impact of future
changes in inflation 7, either on asset return dynamics or on the real discounting of wealth.
This hedging term is the product of the sensitivity factor ’H,Eﬂ) and the LHP.

In this section, we focus on the case with no contributions (¢; = 0). We solve the
partial differential equation governing h (¢, 7) numerically using Howard’s policy-iteration
algorithm. The parameters used in the base case are as follows:

e Risky asset Sy: py = 5%, oy = 10%.
o Inflation-sensitive asset R:: a; = 5%, o, = 10%.
e Risk-free asset: r; = 2%.

e Inflation process: the parameters are long-term mean ., = 2%, volatility aﬁﬂ) = 3%,
and mean-reversion rate3® k = 0.25.

First, we examine the impact of the discount factor on the hedging demand Hg”). Next, we
fix the scaling parameter at o = 1 and analyze the relationship between the hedging demand
and the parameters of the inflation process. Finally, we introduce a decreasing risk-aversion
coefficient v and impose portfolio constraints to obtain more realistic results. We also vary
the correlation p; between the two risky assets, and the correlations pgs) and pgR) between
asset returns and inflation shocks to assess their respective effects on portfolio behavior.

4.4.1 Understanding the hedging demand

In this section, we examine how the discounting factor affects the hedging demand. To this
end, we consider two cases: (i) maximizing the utility of nominal terminal wealth (¢ = 0),
and (i) maximizing the utility of discounted terminal wealth (¢ = 1). To gain additional
insights, we combine these cases with two specifications for the parameter b:

1. 6=0
The expected returns of the two risky assets are independent of inflation.

2. b=0.5
The expected return of asset R; increases with inflation.

We set the remaining parameters as follows: p; = 0, pgs) = 0.5, pER) = 0.5, and v = —3.

39 A mean-reversion speed of x = 0.25 corresponds to a half-life of approximately 2.77 years.
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We begin with b, = 0 and ¢ = 0, implying that the expected returns of the two risky assets

1
— VEglat equals (75%,75%) for

27 ¢ equals (3.75%,3.75%). The

are independent of inflation. Thus, the market portfolio T

1
any value of 7, and the liability-hedging portfolio 1
-
hedging component depends on the hedging demand ’ng) = OrInh(t, 7). As shown in

(m)
t

Section 4.2.3 on page 64, when b; = 0 and ¢ = 0, we have H;"’ = 0. Therefore, regardless

of the values of 7, p, pgS), or pgR), there is no hedging demand, and the optimal portfolio

reduces to: ) o
ay '\ ~1, o 5%
(5 )=me=(50)

However, when o # 0, the hedging demand becomes non-zero and can be expressed as

follows:
k(t—=T) _ 1
- e
" = oy ()
K

This expression shows that the hedging demand decreases over time:

e ast — T, HE”)

— 0

e ast —» tg and T becomes large, 'ng) — —ok "1y,
Setting o = 1 yields —px~'y = 12, so the hedging component ’HE’T) converges to 12 x
(3.75%, 3.75%) = (45%,45%), as reported in Table 20. Importantly, this value is indepen-
dent of 7.

Table 20: Behavior of the hedging component over time

Market Hedging component

portfolio t=30 ¢t=40 t=50 t=55 t=57 t=58 t=59 t=060
St 75.0% 45.0% 44.7% 41.3%  321% 23.7% 17.7% 10.0% 0.0%
R, 75.0% 45.0% 44.7% 41.3% 32.1% 23.7% 17.7% 10.0%  0.0%

Asset

From an economic standpoint, the intuition is straightforward. The hedging component
provides protection against adverse future changes where “adverse” depends on the context.
In this case, even though the expected returns of both assets are independent of inflation
(b = 0), the investor maximizes real terminal wealth, which is directly affected by the
inflation path through the discounting factor. An unexpected rise in inflation constitutes a
negative shock, because it erodes real purchasing power via the discounting term —pm and
reduces the growth rate of real wealth. To hedge against this risk, the investor optimally
tilts the portfolio toward assets whose returns are positively correlated with inflation. These
assets increase in value when inflation rises unexpectedly, thereby offsetting some of the
loss caused by higher real discounting. This mechanism explains why the optimal policy
recommends increased exposure to assets that co-move positively with inflation shocks.

1

2;1@ changes with 7, while

Now consider the case by = 0.5. The market portfolio 1

the liability-hedging portfolio »; ¢, remains constant at (3.75%, 3.75%). When ¢ = 0,

1
1 -y
the investor maximizes the utility of nominal terminal wealth. In this case, hedging demand
arises solely from the effect of inflation on the investment opportunity set (i.e., the dynamics

of asset returns), rather than from real discounting. When b; > 0, a higher inflation rate
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Figure 42: Heatmap of the hedging demand Hgﬂ) for p=0
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Figure 43: Heatmap of the hedging demand H\™ for p = 1
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7 increases the expected return of asset R;. Consequently, the market portfolio increases
its allocation to R;. The main intertemporal risk then becomes an unexpected decline in 7,
which lowers the future expected excess return of R;. To hedge against this risk, the hedging
component should take positions that profit when 7 falls. Since risky assets are positively
correlated with inflation shocks (p§5> = pER) = 0.5), negative inflation shocks tend to depress
their returns. As a result, the intertemporal hedging component adopts a short exposure

1
along EE; '¢;, which makes 9 In h(t, ) markedly negative across most values of 7 (see

Figures 42 and Table 21). However, when 7 becomes very negative, the expected return of
R; turns negative. In this situation, the market portfolio already shorts the asset R;. In
particular, when 7 < —12% and p} < —p¢, the short position in R; can exceed the long
position in Sy, leaving the aggregate portfolio net short to inflation shocks. In this case, the
adverse future change is an unexpected increase in 7. To hedge this risk, the intertemporal
hedging demand reverses sign. 9, Inh (¢, 7) becomes positive when 7 < —12%, adding a long
position in the hedging component that benefits from an unexpected rebound in inflation.

Table 21: Values of the hedging demand ’H,Eﬂ) (0=0vs. p=1)

0=0 | o=1
T | -10% 5% 0% 5%  10% | —10% 5% 0% 5% 10%
t=30| —03 —1.8 -33 -48 -63, 89 75 60 45 3.0
t=40| —03 -18 -33 —48 —63'! 89 T4 60 45 30
t=50| —02 —1.7 -32 —-47 -62, 87 72 57 42 28
t=55| 02 —13 —27 —41 —56' 76 62 48 33 19
t=57| 04 —08 -—21 -34 —47, 62 50 37 24 1.1
t=58| 05 06 —16 —27 —38' 50 39 28 17 07

t =159 04 -03 -10 -17 =24, 3.0 23 16 09 02
t = 60 0.0 0.0 0.0 0.0 00" 00 0.0 00 00 0.0

When ¢ = 1, the current hedging demand reflects the impact of inflation on both real
discounting and its impact on the investment opportunity set. As previously shown, the
discounting channel makes an unexpected rise in inflation detrimental to real wealth, pushing
OxInh (t,7) positive. Conversely, when b; > 0 and 7 is not too negative, an unexpected
decline in 7 lowers the future expected return of R;, which pushes d,Inh (¢,7) negative.
Therefore, the overall hedging demand depends on the balance between these two effects
and the current level of inflation. It also varies with the time remaining until the target
date, since O, lnh (t,7) gradually converges to zero as the retirement date approaches. In
this case, O Inh (¢, ) is predominantly positive across most inflation levels (see Figures 43
and Table 21). However, it can turn negative when 7 becomes very high, because the effect
of the opportunity set dominates. In that regime, since the market portfolio tilts strongly
toward Ry, the hedging component partially offsets this exposure.

4.4.2 Sensitivity analysis of the hedging demand

In the following analysis, we set b; = 0.5 and ¢ = 1. We then examine how the hedging

demand ’Hgﬂ) depends on the key inflation parameters: the mean-reversion rate x, the long-

term inflation rate m.., the inflation volatility Jt(ﬂ), and the inflation correlation pgﬂ) =

,o,ES) = ER). Two distinct cases must be considered. The drift parameters x and 7., affect
only the hedging demand, while the risk parameters a§”) and pgﬂ) influence both the hedging

demand and the liability-hedging portfolio.
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Figure 44: Sensitivity analysis of the hedging demand H,Eﬁ) (7
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Figure 45: Sensitivity analysis of the hedging demand ’H,Eﬂ) (m = +10%)
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As discussed earlier, the sign and magnitude of ’Hgﬁ) are determined by the interplay
between the real-discounting effect and the opportunity-set effect. When & increases, infla-
tion shocks become less persistent, causing inflation to more rapidly revert to its long-term
mean Too. As a result, both effects are dampened and the absolute value ||’H,§7r) || decreases,
as illustrated in Figures 44 and 45. However, the influence of 7, on the hedging demand
differs. When b; > 0 and asset returns are positively correlated with inflation shocks, a
higher 7, increases the expected return of R;. Consequently, an unexpected decline in
inflation becomes more costly, making inflation risk more important to hedge. This drives
Hﬁ”’ downward. Taken together, these effects imply that total hedging demand declines as
Teo Tises, as shown in Figures 44 and 45.

The impact of the inflation volatility af”) is qualitatively similar to that of ms,. As

Jt(ﬂ) increases, the opportunity-set component of the hedging demand dominates the real-

discounting component, leading to a lower total hedging demand ’ng) under our calibration.
However, we note that the actual hedging weights in the portfolio equal the product of the
hedging demand and the LHP. Since the LHP is proportional to (;, the hedging weights

increase with Ugﬂ)‘ Therefore, even though 'H,EW) declines, the overall hedge in portfolio

weights can still increase as O’iﬂ—) rises. Changes in the inflation correlation pgﬂ) have only

a minor direct effect on the hedging demand ’HEW). However, as with O’t(ﬂ), variations in

pgﬂ) strongly affect the LHP because the weights are proportional to pgﬂ). Consequently, an

increase in pgﬂ) generally leads to a higher overall hedging component.

4.4.3 Shape of the glide path

In the following analysis, we consider a realistic, time-varying risk-aversion parameter -y;
which decreases over time?” as in the previous section. The asset parameters are specified
as follows. For the risky asset S;, we have y; = 5% and o; = 10%. For the inflation-sensitive
asset Ry, we use a; = 5%, by = 0.5, and o; = 10%. The risk-free rate is fixed at r, = 2%.
Inflation follows a mean-reverting process with a long-term mean of 7o, = 2%, a volatility of
at(w) = 1%, and a mean-reversion rate of x = 0.25. The investor’s objective is to maximize
real terminal wealth with ¢ = 1. To ensure a feasible portfolio, we impose long-only and

no-leverage constraints:
Q:{a,ﬂeRQ:azo,BZO,oH—ﬁSl}

In this example, the optimal dynamic allocation v} = (of, ff) is influenced not only by
expected returns, the covariance structure, and correlations with inflation, but also by the
discount factor, portfolio constraints, time-varying risk aversion, and the evolution of the
hedging demand. Consequently, optimal allocations may differ substantially across scenarios.

First, we consider a benchmark case in which both assets are uncorrelated with inflation
(i.e., pr =0, pgs) = 0, and pgR) = 0). In this case, since the liability-hedging portfolio is
(0%,0%), the hedging component is null. Figure 46 illustrates the optimal allocations to
the two assets for different values of m. When = is highly negative, the expected return of
R; is also negative, and the portfolio is allocated almost entirely to the risky asset S;. As 7
approaches 0%, assets R; and S; exhibit similar expected returns, resulting in roughly equal
allocations. When 7 continues to increase, the weight on R; rises and the overall portfolio
becomes more aggressive as both S; and R; become more attractive than the risk-free asset.

4040 = 1/3, v = —50, and k = 0.05 (see Footnote 24 on page 39).
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Figure 46: Dynamic asset allocation v} including the inflation hedging (p; = 0, p§S> =0,
and pgR) =0)
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Figure 47: Dynamic asset allocation v} including the inflation hedging (p: = 0, pis) = 0.5,
and pgR) =0.5)

100 100 100
80 80 80
60 60 60
40 40 40
20 20 20
0 0 0
20 20 20 40 60
Age (in years) Age (in years) Age (in years)
™ =2% = 4% ™ =9%
100 .................. ‘- 100 ................... 100 4444444444444444444444 \
80 80 80
60 60 60
40
20
0!
20 40 60
Age (in years) Age (in years) Age (in years)

74



Retirement Accumulation Strategies with Real Assets and Inflation Risk

Figure 48: Dynamic asset allocation v} including the inflation hedging (p; = 0.5, pgs) = 0.5,

and piR) =0.5)

100

80

60

40

20

20 40 60
Age (in years)
T =2%
100 <<<<<<<<<<
80
60

40

20 40 60
Age (in years)

™= -5%

100

80

60

40

20

20 40 60
Age (in years)

100 ............
80
60

40

20 40 60
Age (in years)

100

80

60

40

20

Age (in years)

™ =9%
100 ,,,,,,,,,,,,,,,

80
60
40

20

20 40 60
Age (in years)

Figure 49: Dynamic asset allocation v} including the inflation hedging (p: = 0, p,(gs) = —0.5,
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Figure 47 presents the case p,ES) = 0.5 and p,ER) = 0.5. Unlike the benchmark, the
liability-hedging portfolio is now strictly positive. As discussed earlier, the hedging compo-
nent offsets both real-discounting risk and opportunity-set risk. In this case, the discounting-
driven component dominates, resulting in a more aggressive portfolio than in the benchmark
case. A larger allocation to risky assets helps hedge inflation risk to real wealth. Notably,
the glide path becomes concave as the target date approaches, reflecting the evolution of
the hedging component over time. In the case of strongly negative inflation, the expected
return of R; remains low, and S; continues to dominate the allocation. However, a non-zero
position in R; is maintained for hedging purposes, and the magnitude is also shaped by
the time-varying risk-aversion parameter ;. When 7 approaches 0%, assets R; and S; have
similar expected returns and identical hedging demands, leading to roughly equal allocations
between the two assets. When the two assets are positively correlated with each other and
with inflation, the benefits of diversification diminish. Figure 48 considers the case in which
all three correlations are positive: p; = 0.5, pis) = 0.5 and pgR) = 0.5. Compared to Figure
47, portfolio allocations become more concentrated in the asset with the higher expected per-
formance at a given inflation level: the risky asset S; when 7 falls, and the inflation-sensitive
asset R; when 7 rises. Figure 49 examines the case in which the two assets have opposite
correlations with inflation shocks: pﬁs) = —0.5 and pgR) = 0.5. In this configuration, the
liability-hedging portfolio has opposite signs for the two assets. The hedging component
strongly favors the inflation-sensitive asset R;, while penalizing the risky asset S;. Com-
pared to Figure 47, Figure 49 exhibits a higher allocation to R; and a lower allocation to
S; across all values of w. Under long-only, no-leverage constraints, the preference to short
S; manifests as a corner solution, with a frequently bounded weight at zero. Meanwhile,
R; often absorbs most of the portfolio allocation. When inflation is strongly negative, the
expected return of R; becomes very low, prompting a temporary shift toward S, despite
its negative discounting-driven hedge component. Nevertheless, a positive position in R; is
maintained for hedging purposes, and its size is determined by the time-varying risk-aversion
parameter v;. Around m = 0%, the expected returns of assets R; and S; are similar, but
the hedging component are opposite: negative for S; and positive for R;. This causes R; to
dominate the allocation, while the weight on S; remains small. At higher inflation levels,
the market portfolio and hedging components favor R;, causing the portfolio to concentrate
on R; for most of the time horizon and constraining S; near zero. As the target date ap-
proaches, intertemporal hedging demand converges to zero. Consequently, the weight on S;
increases, and the dynamic allocation aligns with the market portfolio at retirement.

4.5 Inflation, risk premium, and correlation

We previously identified three primary channels through which inflation influences portfolio
construction:

e Market portfolio
Inflation affects asset risk premia, which depend themselves on the prevailing inflation
level, thereby influencing expected returns on the market portfolio.

e Liability-hedging portfolio
The volatility of inflation and its correlations with various assets shape the composition
and effectiveness of the liability-hedging portfolio.

e Hedging demand
The discounting factor and all inflation-related parameters jointly drive the investor’s
intertemporal hedging demand, which adjusts portfolio exposures dynamically over
time.
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The relationship between inflation, asset returns, and their correlations has been exten-
sively studied in the financial literature*'. However, drawing consensus conclusions remains
challenging, particularly when attempting to disentangle the three effects listed above.

Inflation risk plays a pivotal role in shaping expected returns, especially for asset classes
that are sensitive to changes in the price level. This issue emerged as a central topic during
the 1970s, a period of high inflation, when a growing literature sought to understand how
asset prices incorporate inflation expectations and the effectiveness of different assets as in-
flation hedges (Roll, 1973). One key contribution came from Hagerman and Kim (1976), who
developed a model showing how inflation uncertainty introduces an additional risk dimen-
sion for which investors require compensation. These papers paved the way for considering
inflation as a systematic risk factor and influenced subsequent developments in multi-factor
models that incorporate macroeconomic variables. A crucial step forward was taken by
Fama and Schwert (1977), who distinguished between expected and unexpected inflation:

“We estimate the extent to which various assets were hedges against the ex-
pected and unexpected components of the inflation rate during the 1953-1971
period. We find that U.S. government bonds and bills were a complete hedge
against expected inflation, and private residential real estate was a complete
hedge against both expected and unexpected inflation. [...] The most anoma-
lous result is that common stock returns were negatively related to the expected
component of the inflation rate, and probably also to the unexpected compo-
nent.” (Fama and Schwert, 1977, page 115).

Following this seminal work, inflation hedging and covariance risk became central questions
during the 1980s. For instance, Bodie (1982) concluded that an increase in inflation un-
certainty lowers the risk premia on real assets. Simultaneously, considerable attention was
paid to equity behavior and inflation-hedging properties. By the early 1980s, a consensus
emerged that a negative relationship exists between stock returns and inflation components
— expected inflation, changes in expected inflation, and unexpected inflation (Fama, 1981;
Geske and Roll, 1983; Stulz, 1986). However, Kaul (1987) challenged this view by demon-
strating that nominal assets, such as equities and bonds, have complex and time-varying
correlations with inflation, impacting the associated risk premia. Following this contribution,
researchers increasingly recognized that the relationship between asset returns and inflation
is not stable but instead depends on various factors, for instance the macroeconomic regime*?
(Briere and Signori, 2012; Campbell et al., 2020; Leombroni et al., 2020). Moreover, much of
the subsequent literature concluded that conventional financial assets, particularly publicly
traded equities, provide poor hedges against inflation*® (Bekaert and Wang, 2010; Ang et
al., 2012). In this context, the search for effective inflation hedges has expanded toward
alternative assets such as real estate, gold, and commodities. Among these, Amenc et al.
(2009) find that real estate and commodities display particularly favorable inflation-hedging
properties. Alsati-Morad et al. (2016) confirm these findings and identify infrastructure as
another promising candidate for constructing inflation-hedging portfolios. However, these
results should be interpreted with caution, as inflation-hedging effectiveness often depends
on the investment horizon and is mainly valid over very long time horizons (Brown et al.,
2025).

418ee for example Roll (1973); Hagerman and Kim (1976); Fama and Schwert (1977); Bodie (1982); Stulz
(1986); Kaul (1987); Bekaert and Wang (2010); Leombroni et al. (2020); Cieslak and Pflueger (2023).

42This issue is closely related to the broader question of asset correlations, especially the stock-bond
correlation (Li, 2002; Burkhardt and Hasseltoft, 2012; Portelli and Roncalli, 2024).

43 According to Sathyanarayana and Gargesa (2018), this result is region-dependent, with certain markets
exhibiting stronger inflation-hedging capacities than others.
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5 Conclusion

This paper develops a comprehensive framework for retirement accumulation strategies,
bridging the gap between financial theory and practical implementation. By extending the
classical Merton model to include human capital, multiple asset classes, inflation risk, and
real-world constraints, we provide a solid theoretical foundation and empirical evidence for
optimal lifecycle investing. Although this research does not prescribe a fully implementable
real-life accumulation strategy, its key findings provide valuable guidelines for understanding
and improving current practices in the asset management industry. The contribution of this
work is primarily analytical. We develop the theoretical infrastructure necessary to evaluate
and improve existing retirement investment approaches. Rather than advocating a one-size-
fits-all solution, we show that effective retirement strategies must be context-specific while
remaining grounded in sound theoretical principles.

Our model is a simplified yet robust version of the framework proposed by Bruder et
al. (2012). These authors assumed that individual investor contributions are stochastic and
used the zero-coupon bond maturing at retirement age as the numéraire. In contrast, our
model treats continuous individual contributions as deterministic and uses the risk-free as-
set as the numéraire**. We determine the optimal exposure to risky assets and provide a
precise definition of the glide path as the expected dynamic allocation over time. Our anal-
ysis demonstrates that optimal risky asset allocation depends on four critical factors: the
human-to-financial capital ratio, risk aversion, investment horizon, and prevailing market
parameters. Our framework also shows that continuous contributions systematically increase
the allocation to risky assets compared with the original constant-mix strategy of Merton
(1969, 1971). These findings reconcile the intuitive age-based glide path with rigorous fi-
nancial theory by recognizing that total wealth encompasses both financial capital and the
present value of future contributions. Thus, the concept of human capital is fundamental to
designing effective accumulation retirement strategies. Despite its simplified structure, our
model successfully reproduces most of the key findings from the existing literature on this
subject, particularly the principles established by Bruder et al. (2012). The following sum-
marizes how different factors influence the optimal share of risky assets in the portfolio®®.
The intuition behind these effects can be explained as follows:

#1 Retirement horizon
Young investors should hold a larger percentage of risky assets. This principle underlies
the design of target date funds, though our interpretation differs. Younger individuals
typically anticipate substantial non-financial income, such as labor income, in the
future, which acts as a buffer. Therefore, they can take on more financial risk because
potential losses may be offset by future contributions before retirement.

#2 Risk aversion
The allocation is fundamentally driven by individual risk preferences. Risk-averse
individuals allocate a smaller percentage of their expected total wealth to risky assets,
whereas risk-tolerant individuals allocate a larger percentage.

#3 Current wealth & expected future income
The optimal allocation to risky assets increases when current wealth is low relative
to expected future income. Since total expected retirement wealth includes current
savings and future contributions, a high expected income justifies taking on more risk

44This risk-free asset is a combination of cash and the zero-coupon bond. For computational simplicity, we
approximate it using cash alone. This approximation means that contributions become implicitly stochastic
when expressed in terms of the bond numéraire.

45With our model, we retrieve Principles #1 to #5.
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Table 22: Main principles of retirement accumulation strategies

Rule More risky assets Fewer risky assets

#1 Young > Old

#2 Risk taker > Risk averse

#3 Low current wealth > High current wealth

#4 High expected future income > Low expected future income
#4 High human capital > Low human capital

#5 High risk premium > Low risk premium

#6 Low risky-asset volatility > High risky-asset volatility
#7 Positive stock/bond correlation > Negative stock/bond correlation
#8 Certain income > Uncertain income

V

#9  Income uncorrelated with equities Income correlated with equities

#4

#5

#6

#7

Source: Adapted from Bruder et al. (2012).

today. However, many professional allocation models surprisingly ignore this effect,
treating current wealth and future income as irrelevant. Our analysis highlights an
important distinction. In the retirement context, human capital should be viewed not
as the present value of future income (or a fraction thereof), but rather as the present
value of future contributions. In other words, human capital reflects not only the
investor’s earning potential but also their willingness to channel part of that income
to retirement savings. This is a key departure from the framework of Bruder et al.
(2012).

Risk premium & volatility

A higher risk premium raises the expected return on risky assets, increasing their
attractiveness and optimal allocation. Conversely, for a given Sharpe ratio, the risky
allocation is inversely related to volatility.

Correlation between equities and bonds

In the context of pensions, bonds are essentially risk-free because they guarantee a
fixed payout upon retirement. When equities and bonds are positively correlated, the
volatility of their forward value decreases. This allows for a higher equity allocation
while maintaining the same overall risk level.

Income uncertainty

Greater uncertainty in future income reduces the optimal equity share because vari-
ability in income introduces additional risk to total retirement wealth. Therefore, a
more conservative portfolio is necessary.

Correlation between future income and equities

If future income is highly correlated with stock market performance (e.g., wages in the
financial sector), it is advisable to reduce exposure to the stock market. A downturn
in equities could simultaneously erode capital and labor income, amplifying losses.
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Our analysis solves a fundamental puzzle in retirement planning. Why do practition-
ers implement concave glide paths when theory predicts convex allocation patterns? We
demonstrate that three critical factors*S transform the theoretically optimal convex path
into the concave path observed in practice?”. First, leverage constraints prevent retail in-
vestors from achieving the extreme allocations that would be optimal for young investors
with high human-to-financial capital ratios. Unable to access optimal leveraged positions,
these investors must increase their exposure to risky assets over a longer time horizon to
achieve similar risk-adjusted outcomes. Second, time-varying risk aversion, especially when
following a concave profile, causes an accelerating shift toward conservative investments as
retirement approaches. This behavioral pattern reflects the empirical observation that risk
aversion increases with age. Younger investors typically have a higher risk tolerance than
older investors, who prioritize capital preservation as retirement approaches®. Third, the
increasing contribution patterns typical of real-world careers induce additional concavity in
the human capital component. This factor is readily observable. As investors approach
retirement, they become concerned about retirement adequacy and substantially increase
their savings rates to improve their future pension prospects. In other words, a 50-year-old
investor is generally far more focused on retirement planning than a 30-year-old investor,
resulting in accelerating contribution patterns that create the observed concave glide path
structure. By incorporating these factors, our framework reconciles theoretical predictions
with observed practice. It provides portfolio managers with a rigorous foundation for de-
signing glide paths that align optimal allocation principles with behavioral and institutional
realities.

This study extends the framework beyond a single-asset setting to provide a detailed
comparison of single- and multi-asset approaches. It highlights how allocation constraints
shape optimal portfolio construction and underscores the diversification benefits of broader
investment universes. In the single-asset framework, the allocation problem is divided into
two steps: a mean-variance optimization subproblem and a leverage calibration subproblem.
In contrast, the multi-asset framework unifies these two steps into one optimization problem.
We demonstrate that, under specific assumptions, the two approaches converge. However,
in general, the multi-asset framework yields a more diversified solution than the two-step
approach of the single-asset framework?’. To evaluate performance, we perform three em-
pirical analyses. First, we compare glide path strategies with constant-mix approaches and
find that dynamic strategies informed by lifecycle considerations offer stronger downside
protection and higher probabilities of meeting retirement goals. Second, we examine global
and Eurozone investment universes and find compelling evidence for including real assets
(private equity, private debt, real estate, and infrastructure) in retirement portfolios. These
assets add value through exposure to distinct risk-return drivers, natural inflation hedging,
and illiquidity premium that long-term investors are uniquely positioned to capture. In
the global universe, including these assets in a 50/50 mixed strategy enhances annualized

46Tn the case of the model with inflation risk, a fourth factor can explain the concavity of the glide path.
It corresponds to the impact of the hedging demand.

47In addition to identifying the key principles of retirement accumulation strategies and solving this
puzzle, our baseline model provides analytical solutions for important variables, such as the human-to-
financial capital ratio, risky exposure, the glide path, and wealth dynamics. For instance, we show that the
constant-mix strategy is a special case of the retirement accumulation strategy when the human-to-financial
capital ratio is set to zero. We also derive closed-form formulas for the glide path that are more robust
than those obtained in Bruder et al. (2012). Specifically, we use a third-order Taylor expansion of Jensen’s
inequality and demonstrate that the solution corresponds to log-normal wealth dynamics.

48 This effect differs from the pattern of decreasing human-to-financial capital ratios.

490ur analysis examines the role of cross-correlation in both the one- and two-step approaches. We show
that the leverage constraint alters the treatment of cross-correlation, leading to different impacts across the
two frameworks.
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performance by 87 basis points. In the Eurozone, the improvement is 190 basis points®?,
transforming success rates from approximately 20% to nearly 90% for reasonable return
targets. Third, we propose a dynamic liquidity risk management framework that addresses
the integration of illiquid assets into lifecycle strategies. We demonstrate that the bene-
fits of real asset inclusion persist even after accounting for transaction costs and liquidity
constraints by applying time-varying liquidity weights that gradually shift allocations from
illiquid to liquid assets as retirement approaches. For the 80/20 mixed strategy, this ap-
proach delivers approximately 15 and 45 basis points of additional annualized performance’!
in the global and Eurozone universes, respectively®?. This lifecycle consistent evolution re-
flects changing investor priorities. Younger individuals can sacrifice liquidity for growth,
while older investors prioritize flexibility and capital preservation. The resulting dynamic
allocation patterns demonstrate sophisticated portfolio management by concentrating on
growth-oriented private assets early on before transitioning to income-generating liquid al-
ternatives while maintaining diversification throughout the accumulation phase. Together,
these results show that real assets should play a much larger role in retirement accumulation
strategies than they currently do in most target-date funds.

Finally, inflation risk emerges as a central concern for retirement savings. By model-
ing inflation as a stochastic process and incorporating inflation-sensitive assets, we show
that portfolios can be divided into two components: a growth-oriented performance port-
folio and a liability-hedging portfolio (LHP) designed to preserve purchasing power. This
liability-driven investment (LDI) approach, which has long been used in defined benefit
plans, is equally relevant for defined contribution systems. However, our analytical solution
reveals that the optimal hedging component is not simply the liability-hedging portfolio
itself, but rather the product of the LHP and a hedging demand coefficient. While the
liability-hedging portfolio depends on conventional risk metrics (risk aversion, asset covari-
ance matrix, inflation volatility, and covariance risk between inflation and asset returns),
the hedging demand is more nuanced. It depends critically on two factors: first, the rela-
tionship between expected inflation levels and asset risk premia; and second, the investor’s
objective function, particularly whether they prioritize terminal nominal wealth or real pur-
chasing power. These two forces, the opportunity-set component and the real-discounting
component, jointly determine the sign and magnitude of hedging demand. Consequently, the
optimal dynamic allocation may entail either a long or short position in the liability-hedging
portfolio, depending on which inflation scenario poses the greatest threat to the investment
strategy. For instance, high inflation presents a dual challenge. It increases risk premia
on certain assets while simultaneously eroding real purchasing power. The opportunity-set
effect may generate negative hedging demand if the primary risk is that inflation will revert
to its long-term mean, reducing future expected returns. Conversely, the real-discounting
effect unambiguously favors positive hedging demand to protect real wealth, implying long
exposure to the liability-hedging portfolio. The optimal hedging demand thus reflects the
balance between these competing forces, echoing the classical distinction between expected
inflation risk and unexpected inflation risk. While constructing the optimal liability-hedging
portfolio and precisely estimating hedging demand extends beyond the scope of this study,
our framework underscores that understanding asset-inflation relationships must be a cor-
nerstone of defined contribution solutions. In particular, this finding supports the inclusion

of alternative assets that can partially hedge adverse inflation scenarios®®.

50This sharp increase is also driven by the lower expected returns of Eurozone public equities relative to
the global universe.

51These figures do not account for the friction involved in investing during the ramp-up and run-off phases
when capital is deployed or withdrawn.

52Conservative transactions costs are estimated at 7.5 and 15 bps for w/o and w/ strategies, respectively.

531t is illusory to think that inflation can be perfectly hedged by a static exposure on some financial assets.
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Maintaining living standards after retirement remains a central challenge. Evidence
shows that mandatory public pensions are often insufficient on their own, making supple-
mentary savings essential for securing adequate retirement income. In this context, our
findings suggest that the next generation of retirement investment solutions must go beyond
simple equity-bond splits and static glide paths. A unified lifecycle framework integrating
human capital considerations, real asset allocations, and inflation protection would provide
a more comprehensive foundation for modern retirement planning. Evidence indicates the
necessity of shifting investment thinking from traditional stock-bond allocations to sophis-
ticated multi-asset strategies that reflect the complexity of lifetime wealth accumulation.
For practitioners, the implication is clear: although implementing multi-asset glide paths
that incorporate real assets is operationally complex, the substantial gains in risk-adjusted
returns and retirement security make this evolution indispensable. For policymakers, the re-
sults underscore the importance of regulatory frameworks that facilitate access to diversified
investment opportunities within retirement plans rather than restrict them.

Inflation hedging can only be partial and approximate as noticed by Bekaert and Wang (2010): “This article
starts by discussing the concept of inflation hedging and provides estimates of inflation betas for standard
bond and well-diversified equity indices for over 45 countries. We show that such standard securities are
poor inflation hedges. Expanding the menu of assets to Treasury bills, foreign bonds, real estate and gold
improves matters but inflation risk remains difficult to hedge.”.
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Technical appendix

Notations
0,, is the vector of zeros.
1,, is the vector of ones.

«; is the proportion of total wealth
invested in the risky asset.

By is the proportion of total wealth in-
vested in the inflation-sensitive risky
asset.

B; is the price of the bond at time ¢
(risk-free asset).

B (t,T) = exp (— ftT Ts ds) is the dis-
count factor between times ¢ and T.

¢; is the direct contribution of the in-
vestor to the target date fund.

e; is the unit vector, i.e. [e;], = 1 and
[ei]; = 0 for all j # i.

H, = ftT e~ Jimdug dg is the capi-
talization of the lifetime flow of con-
tribution.

HFCR; = H;/X: is the human-to-
financial capital ratio.

J (t,x) = sup, E¢ [L{ (X7) | X¢ = 1:]
is the value function of the investor.

k is the mean-reversion rate of the in-
flation.

my = E[X;] is the mathematical ex-
pectation of the wealth.

1t is the expected return of the risky
asset.

Wy = ap + by is the expected return
of the inflation-sensitive asset.

u (x) is the expected return of portfo-
lio w.

7 is the inflation rate at time ¢.

Tso 1S long-term mean inflation rate.

r¢ is the nominal interest rate.

R; is the price of the inflation-
sensitive risky asset at time t.

o € {0,1} is the discounting binary
function.

Dt pgs), and p,gR) are the correlation

coefficients between S; and R;, S; and
m, and Ry and 7y, respectively.

S; is the price of the risky asset at
time ¢.

SR; = (ur — r¢) /oy is the Sharpe ratio
of the risky asset.

> is the covariance matrix risky as-
sets.

oy is the volatility of the risky asset.

ot(ﬂ) is the inflation volatility

op = 10% is the volatility of the
inflation-sensitive asset.

o(w) = VzTXx is the volatility of
Portfolio w.

vy = var(X;) is the variance of the
wealth.

Wy = X + H, is the total wealth, i.e.,
the sum of the spot wealth and the
forward wealth.

wy is the vector of portfolio weights in
risky assets at time .

w = ay-wy is the vector of risky asset
exposure at time ¢.

W is the nominal wealth invested in
the risky asset.

X, is the financial wealth of the in-
vestor at time t.
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A.2 Proof of Equations (5) and (6)

We postulate a solution of the form:

:17,‘/
J =h(t
(t,x) = h(t) — S
Since we have 0, (t,x) = h' (t) 27 /7, 0. T (t,x) = h (t) 271, and O2F (t,z) = (y — 1) h (t) 2772,
we deduce the optimal allocation strategy:

N e O BV G
t o? 82J( ,T)
_ (=) h(t)a
o? x(y—1)h(t)zr2
_ Mt — T
(1-7)of
It follows that:
(pe — 7‘::)2 1 (s — rt)Q
maxH (t,z,a) = |ri+ - ——5|h({t)z" — ———5h(t)x”
A () ( TEEr KT P
7
= PBih(t) —
ih (1) 5
where: )
_ )
S R ET:
The HJB equation with the terminal condition becomes®*:
K (t)+Bh(t)=0
h(T)=1
The solution to the differential equation is then h (t) ( f + DBs ds) Finally, we obtain

the value function:

T 2
J (t,z) = exp / <gry+17(“5r5)> ds Lz
¢

2 (1-=9)a3 gl

A.3 Proof of Equations (7) and (8)

We consider the following Hamilton-Jacobi-Bellman equation:

oJ (t,x

oJ (t,
ot ) +SUP{(7"tXt+Olt(Mt—7”t)Xt+Ct) M'ﬁ‘

1
or 2

, 2T (t,@
Oé?O'Xt 8;£2 )}:0

with terminal condition J (T, z) = U (x). Since the solution is not explicit in the presence
of contributions, we perform the following change of variable:

Xt = Xt+Ht

T
Xt—i—/ e_ftsr“d“csds
t

54Since the terminal condition is J (T,z) = h (T) 2" /v = U (z), this implies h (T') = 1.
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The modified dynamics of X, are:

dX, = dX, +dH,
= (T‘tXt + oy (/J,t — 7"t> Xt + Ct) dt + OétO'tXt th + (rth — Ct) dt

= (TtXt +ay (pe — 1) (f(t - Ht)> dt + a0y (f(t - Ht> dW;

This transformation reduces the problem to the classical Merton case without contributions
but with a shifted wealth process X, a transformed value function J (¢,2) = J (¢, % — Hy)

and a new control variable &; such as dtf(t = a4 X;. We deduce that oy X; = oy Xt —H;) =

tht and:
~ Xy o Xy
a = a —_— =
! tXt Xt +Ht

It follows that the dynamics of Xt under the new control &; are:

dXt = (T’t + dt (/Lt — Tt)) Xt dt + dtO'tXt th

This is exactly the classical Merton problem, now expressed in terms of &; and X,. We
deduce that: ~
(:U't - Tt) ) 0z J (tv‘%)
of  §0J (t,&)
In the case of the CRRA utility function, we have:

~x
Qp = —

d*: Kt — Tt
f(1—n)of

Finally, we get:

Mt — T H;
(1—7)%2( Xt>
T
Mt — Tt 1 — [Frudu
= _— 1 _ t U gd
(1—7)03< JrXt/t ‘ “ S)

A.4 Special cases of H;

We recall that: . -
H, = / e Jimudug qg — / B (t,s)csds
¢ t

where B (t, s) is the discount factor between times ¢ and s. We consider several cases:

°c=c
When the contribution is constant, we get:

T
Ht:co/ B(t,s) ds
t

Moreover, if the interest rate is constant — r, = r, the previous formula becomes:

1— —r(T—t)
o5
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because we have:

e ¢, =co+ bt
When the contribution is a linear function, we have:

T T T
H, = / B (t,s) (co+ bes) ds = co/ B(t,s) ds + bc/ sB(t,s) ds
t t t

If the interest rate is constant, we have:

T T
/ sB(t,s)ds = / se” "7 ds
t t

T—t
= / (u+t)e ™ du

0
T—¢ Tt
= / ue " du + t/ e ™du
0 0

ue— v =t T—t e T e T =t
= |- - / - du+t|—
T 0 0 r r 0
T—t T—t T—t
ue~ Y e TU e TU
T 72 r
0 0 0
(T _ t) efr(Tft) 1— efr(Tft) 1— efr(Tft)
T T T

1 —r(T—
T—Q(l—&-rt—(l—i—rT)e (T t))

It follows that:

1— —r(T—t) 1 t— (1 T —r(T—t)
Ht—co<6r>+bc< +rt — ( -17:2?” )e

o c; = co + bet + act?
When the contribution is a second degree polynomial, we have:

T
H = / B(t,s) (co + bes + a632> ds
t

T T
= / B (t,s) (co+ bes) ds + ac/ s2B (t,s) ds
¢ ¢

If the interest rate is constant, we obtain:

1— —r(T—t) 1 +— (1 T —r(T—t)
i co<e>+bc< +r (+2r Je N

r

<2 (1 +7t) + 7262 — (2(1 +7T) +12T2) e~ (T~ >
Gc
TS
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because:
T
/ $?B(t,s)ds = / Zemr(s7h) g
t
T— t
/ 2 e " du
0
Tt Tt Tt
/ " du + 2t/ we " du + t2 / e ™ du
0 0 0
Tt T—t
_| 2+ 2ru3—|— r?u? + ot {_ 1 —|—2ruem] n
r
o 0

1
= 3 ( (1+ ’I“t) 422 (2 (1 +rT) + 7“2T2) e—T(T—f,))

A.5 Calibration of ¢

We assume that we are given an empirical curve ¢(t) of contributions observed at a set
of regular time points ¢t; (j = 0,...,m). For instance, in France, we can use data from
the French savings report published by INSEE to estimate monthly contributions based
on the investor’s age and group. A first approach consists of using a smoothing spline to
fit a non-parametric function ¢ (t) over the interval ¢ € [to,t,,]. A second approach relies
on analytical cases detailed in Appendix A.4. For example, if we assume the contribution
function is constant — e¢; = ¢, we can calibrate ¢g as the mean value:

1 tm m
cy = c(t ~
. tmtO/tO () dim——> el

Jj=0

Alternatively, if we assume a linear contribution function — ¢; = ¢g + bet, we can fit the
parameters using the values of contribution at times ¢y and ¢,,. We obtain the following
solution:
c (to) tmm — C (tm) to
& (1) e (19

tm - tO

Cy) =
be =

In the case of a second degree polynomial contribution function — ¢; = ¢g + bet + act?,
we assume that we know the initial value & (tg) at age to and the maximum contribution
¢ (tmax) = SUp & (tj), which occurs at age tiax. Using the standard properties of quadratic
functions®®, we obtain the following solution:

_ (t()) max + C( max) tO (tO - 2tmax)
Cy — 5
(tmax - tO)
— & (tmax
bc — _200 C( ma;
R tmax
o Cy—C (tmax)
Qe s
tmax
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Figure 50: Monthly savings estimates in 2006 according to INSEE
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Source: Bruder et al. (2012, Figure 7, page 12).

Figure 51: Calibration of the contribution function (in $)
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We consider the monthly saving amounts used by Bruder et al. (2012) to calibrate the
glide path. This savings function is shown in Figure 50. We transform this estimated
savings function 3 (t) into a contribution function ¢ (t), assuming that 50% of the savings
are allocated to retirement contributions®®. We obtain the following values: ¢ (tg) = ¢(25) =
$7332, ¢(t,,) = ¢(65) = $10212, and € (tmax) = €(53.83) = $11536. Using the methods
described above, we calibrate the analytical contribution functions®” and report them in
Figure 51.

A.6 Maximum of H; when ¢, is a quadratic function and the interest
rate is constant

To find the maximum of H;, we rewrite it as:

A+ Bt+Ct? — De (T

3

Hy

where:
A = ¢cor? + ber + 26,
B = b.r? + 2a.r
C = aer?
D = cor? + b, (r + r2T) + Qe (2 + 2rT + 7‘2T2)

The first-order condition for a maximum is:

OH,
—att =0 & B+20t—rDe"TD =0
& 2Ct=—-B+rDe "Tem
- —rB 4 r?De"Tert
Tt =
2C
o i rB  r?De "Te 5 rt+ 58
rt+—=—-————¢
2C 2C
——
w K ew
It follows that:
w=Ke" & —we"=-K
& —w=W/(-K)
r2De T~ 5¢ rB
tr=_Z — 2
< r W ( 2C + 2C

where W (x) is the Lambert W function. Thus, the optimal time ¢* is given by:

1
t* = max (— (W (—Kle_'fTe—Kz) + KQ) 7t0>
T

where:
r2D  cor?+be (r + 7‘2T) + ae (2 +2rT + r2T2) rB ber
K1: = and K2:7:1—|—7
2C 2a, 2C 20,
55The maximum occurs at tmax = —be/ (2ac) and the value of the function at the maximum is ¢y, =

€0 4 betmax + act?,,, = co — b2/ (4ac). We also use the vertex form ¢; = ¢t,,,, + ae (t — tmax)>.

56This means that & (t) = 50% x 12 x & (t).

57We obtain the following results: ¢; = 10407.105 for the constant function, ¢; = 5532.406 + 71.986t for
the linear function, and ¢; = —3 117.869 + 544.408t — 5.056t2 for the quadratic function.
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Remark 12. If a. = 0, the maximum is reached at:

1 1
t*:T—f—;lnbc—;ln(c()r—kbc(l—&—rT))

A.7 Computation of the expected wealth E [X;]

When the utility function is CRRA, we have af Xy = &; (X; + Hy). Substituting o into the
stochastic differential equation of the wealth yields:

dX, = (rnXe+af (u—r) Xe +¢) dt + oo X dW,
= ((Tt + ) Xi + e Hy + Ct) dt + azoy (X¢ + Hy) AW,
where:

(e — Tt)2 _ SR%

) S e T )

Let m; = E[X¢] be the mean process of X;. We deduce that:
dmy = ((r¢ +m) me +mH + ¢) dt

The function m; satisfies the following linear ODE:

dm
T;:(Tt+nt)mt+nth+ct
mto = X0

Let Ay = exp (f ftto (rs +1ms) ds) be the integrating factor. We have:

d
g el =gt A

= —(re+n) deme + A ((Tt +n¢) my +neHy + Ct)
= A (mHi+ )

We deduce that: .
Aemy —mg = / e Jin(rutm) du (nsHs + ¢5) ds

to

Therefore, the solution is:

to

. ¢
my = eleo(retne)ds (xo + / e~ i (rutm) du (nsHs + ¢5) ds) (28)

This is the general closed-form formula for the expectation of wealth. When the parameters
are constant — ry = r, (s = p, oy = o, we get:

¢
my = erHmt=to) (xo +/ e~ (rEmG=to) (n, 4 ¢,) ds) (29)

to

We assume that ¢; = ¢ + bt + act?. Using the expression of H; in Appendix A.4, we
deduce that:
nHy +c,=A+ Bs+ Cs® — De"(T=5)
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where:
r 4+
A = ¢ "+bc%+ac 737
T T
2
B = b4 a 20
T
¢ = ot
T
14 7T 2(1+7T) + r272
D = o+ 20t ) 4 g, 12 a )
T T T
It follows that:
t t t
/e—<r+n><s_to) (nH, + c,) ds = A/ e—(r+n)(s—to>d8+3/ o= (s—t0) g5 |
t[) t() tU
t t
c / $Ze—(rtm(s—t0) g5 _ De—r(T—to) / e—n(5=10) 4
to to
Since we have:
t o —(r+n)(t—t
/ o (s—t0) gg = 1 — e~ (r+m)(—to)
to r+n
t
/ st ge = [t L ) (E L) e
to r+n (Mn) r+n. (r+mn)
¢ 2
/ 2o (rtmis—to) gy — N -
to 7"+77 n) (r+mn)
2
t 2 —(rm) (t—to)
+ 3 ]e
’“+77 +n) (r+mn)
t t—t
/ ns—to) 1y — 1— 1—enlt=to) —n(t—to)
to n
we conclude that:
me = g, T A (co+me=t 1) ¢
+17

B[ _to DY Y LI S I
7"+77 r—i—n r+n  (r+mn)

2 2
C £ 4 2to + 2 = 6(7“+77)(t—t0) _C t T 2t 5 4 2 5| -
r+n o (r4n)? (r+n) rtn o (r+n)”  (r+n)
D vt (6(7"+7I)(t—to) _ er(t—m))

Ui

In the case of a constant contribution function, the expression for m; simplifies to:

my = =t g 4 <(e<r+n><t—to> Pl er(t—m)) <

r
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A.8 Computation of the variance of the wealth

We recall that:
dXt = ((’I"t + ’I7t) Xt + nth + Ct) dt —+ (jétO't (Xt + Ht) th

By Ito’s lemma, we have dX2 = 2X; dX; + (dX,)?. Since (dX;)* = a2o? (X; + H;)? dt, we
deduce that:

dth = (2 ((Tt —|— 77t) Xt —|— 7’]th —|— Ct) Xt + dfotz (Xt + Ht)2> dt + 207150} (Xt + Ht> Xt th
and:

d
a]E |:Xt2:| = E [2 ((Tt"_nt) Xt+7]th +Ct) Xt+C_kt20'tQ (Xt+Ht)2

ato?H? 42 (nth +c + d?ath) E[X,] +
(2 (re + 1) + agag) E [Xﬂ

We denote my = E[X;] and vy = var (X;) = E [th] — m? with my, = w9 and vg = 0. It
follows that:

@ = el
= alolH? 42 (nth +er + @?ath> me +
(2 (re +me) + o’zfof) (Ut + m?) -2 ((rt +ne)me + e He + ct) my
= (2 (re +me) + afot?) v + a2o? (my + Hy)?
We know that the solution of the ODE:

dy;
_— = b
a aYr + 0t

t t s
Yy = efto asds Yo + / e fto Gu dubs ds
to
Finally, we get:

t
vy = exp </ (2 (rs +ms) —|—6¢§Uf) d3> .

to

t s
/ a2 (mg + H,)” exp (—/ (2 (ru +nu) + diai) du) ds
to

to

t ¢
= / a20? (my + Hy)? exp (/ (2 (ro +nu) + 07303) du) ds
to S

When the parameters are constant, the previous expression becomes:

is:

¢
vy = 64202/ (ms + Hy)? (2 +m+a%e?)(t=9) 4 6

to
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Let us now also assume that the contribution is constant. We deduce that:

Mg + HS e e(T+17)Se_(T+77)tO <x0 + @(1 _ e—’I‘(T—to))> +
T

— Co _ Co _
e s [ e rT+2rtg | _ e [ e rT
r r

_ Ae(rJrn)s + Be "5 — (e

and:

2
(ms + H,)? = (AB(’”“”S + Be " — C’e”)
= AUt 4 B2e7?r0 4 026 + 2ABe™ — 2ACe*T — 2BC

Let k =2 (r + 1) + a0, It follows that:

t
v = 07202/(ms+Hs)26”(t75)d5

to

_ @20'26'“

t t t
A2/ e(2(r+"7)—n)sd5+B2/ e(—QT—fi)S d8+02/ e(2r—)~c)sds +

to to to

t t t
AB/ eM=Ms ds — AC e2rtn=r)s 45 — BC e " ds

to to to

— dQJQemtAQ e(2r+277—f”»)t _ e(2r+217—f”»)t0 B aQJQGNtBQ e(—?r—m)t _ e(—QT—K)tO N
2r+2n—k o T

a2olert o2 (6(2r—r€)t — e(2r—n)to> 26202 AB (e(ﬁ—n)t _ e(n—m)t[)) -
2r—k —n

26202 AC <e(2r+nn)t - e(mw)t()) + 26202 BC (em - MO)
K

2a2g2ert

2r4+n—=x

where:

A = e~ (r+mito <£L’0 + @(1 _ eT(TtO))>
T

B = ﬂefrT+2rto

,
C= T

/@:2(7“4-7;7)—1-@202
A.9 Computation of the skewness of the wealth

By It6’s lemma, we have dX? = 3X2 dX; + 3X, (dX;)*. We deduce that:

dx} = 3 ((rt ) XP A+ Hy XP + ¢ XP + ado? (X, + Hy)? Xt) dt +
3agoy (X¢ + Hy) X7 AW,
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and:
SE[x] = sE [m ) XP 4 XE + e XE + ado} (X7 + 2HXE + fot)]
= 3 (rt o+ afof) E [Xf’} +3 ((m + 2@?0—3) H, + ct) E [Xf} +
3alol HAE [X,]
= wE {X?} + by
where:

ar =3 (rt +n + 07%0?)
bt =3 ((’l’]t + 207%0'3) Ht + Ct> (’Ut + m?) + 307%0t2Ht2mt

t
E [Xf’] = elio s 45 (axg +/ e Jio o dup, ds)
to

Finally, we get the formula of the skewness:

It follows that:

E[(X—EXD)’| B [x3] -3 (vi + m2)my + 2m]

sky = =
CoE (X~ E[X])?] v

Remark 13. When the parameters are constant, the previous formula reduces to:

¢
E [Xt?’} = ea(t—to) g3 —|—/ et ds

to

where a = 3 (r +n+ 07202) and by = 3 ((n + 2@202) H; + ct) (’Ut + mf) + 307202Ht2mt.

A.10 Jensen’s inequality and analytics of the glide path
The glide path g; is defined as the expected dynamic asset allocation:
gt = E[a:|fto]

_ Mt — T &
- Elawaf (”X)'E“]

Mt — T 1
-7 ( +E [, 17 )
Let f(z) be a convex function. Jensen’s inequality states that E[f (X;)] > f (E[Xy]).
Applying this to the function f (x) = x~! for z > 0 gives:

1 1
E|l—|Fy| > =—=———=
[Xt | 4 T E[X: | Fi)
Let my = E[Xy], vy = var (X;) = E [(Xt - mt)z} and ¢ = E [(Xt — mt)?’} denote the mean,
variance, and skewness moment of X;, respectively. The Taylor expansion of f (X;) around

my gives:

F(Xe) = f(me) + ' (me) (Xe —my) + %f” (me) (X¢ — mt)2 + éf’” (e¢) (Xt — my)°
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where ¢; € [X;, my]. We deduce that®®:

1 1 V¢ St
ks

mg my &y

By assuming that |¢;| < €}, we get the second-order approximation:

Mt — Tt H; Ht”t)
GgR —5 1+ —+ —=
! (1—7)0?< my  m}

Using the same approach, the third-order approximation is:

- H,  Hw, Hu)”
Mt — T <1+t+ tUt tUt sk,

my  om3 mi

gt =
(1—7)o?

where Uf /% is the standardized third central moment (the numerator of skewness), and sk;

denotes the skewness.

A.11 Glide path formula when the wealth is log-normal distributed

If we assume that X; ~ LN (ﬁt, 63), we know that, for any exponent p # 0, the power X7
also follows a log-normal distribution:

Xi ~ LN (pﬂt7p26t2)
We deduce that:

1
E [X}] =exp (pﬂt + 21926?)
var (X7) = exp (2pfi¢ + p*67) <6XP (p*57) — 1)

In particular, for p = —1, we get:
1 - 1.
5[ x] =ew (e 57%)

var ();) — exp (—2[” + 5?) (exp (of) - 1)

We also note the following identity:

and:

Using the expression:
-2\ var (Xt)
exp <at) =1 + E2 [Xt]
we conclude that:

. [H B E[im (1 e gff) "E [iq s gﬁ)

58We have f (z) =z~ 1, f' (z) = —2~2, " (z) = 2273, and " (z) = —6x~%.
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Applying this result to the glide path formula gives:

o Me—Te 1 var (Xy)
=)o (”Ht (E[Xt] TEX) ))

This expression corresponds to the approximate version of the glide path obtained using

Jensen’s inequality.

A.12 Simulation of the state-control dynamics
A.12.1 The unconstrained case

We recall the following equations:

G — He — Ty
=0t
(1=17)0f
—a 1+ =2
ar = Oy +Xt

ne = Qg (e — 71)
dXt = ((’I"t —+ T]t) Xt + ’I’}th + Ct) dt =+ O_étO't (Xt =+ Ht) th

We discretize the process over a time grid ¢ € {¢o,t1,...,tm =T}, and denote by X, the
numerical solution of X; . Using the Euler-Maruyama scheme, we obtain:

_ /ffm_rm
Ay = &
(1—7y)op,

_ 1+Hm

Ay, = Oy -

Xm

Nm = Qm (ﬂm - Tm)
Em NN(O,tm+1 — tm)
Xm+1 - Xm + ((rm + nm) Xm + anm + cm) (tm-i-l - tm) + @mo'm (Xm + Hm) Em

An alternative approach is to use the Milstein scheme with fixed time steps. In this case,
the update equation becomes:

1
G (X + Hn) €m + 582,07 (Xon + Hy) (gfn - h)

where €, ~ N (0,h) and h = t,41 — &, is the time step.

A.12.2 The constrained case

The previous equations become:

G — Mt — Tt
T (1—9)a?

H
a; = max | 0, min (at (1 + t) 71)
Xi

dXx, = ((rt + ooy (e — 1)) Xo + Ct) dt + apo Xy AWy

100



Retirement Accumulation Strategies with Real Assets and Inflation Risk

and:

_ //fm_rm
« =
T (l-n)ed

Hy,
m = ) i o 1 ~ 71
e’ max | 0, min (a ( + Xm> )

Em ~ N(O,tm+1 - tm)
Xm+1 = Xm + ((Tm + A (Nm - Tm)) Xm + cm) (thrl - tm) + amUmegm

For the Milstein scheme, the update equation is:
Xerl - Xm + ((Tm + am, (,um - Tm)) Xm + cm) h +

1
AmOmXmem + =2 02 X (5% — h)

2 mTm

A.13 Simplex projection methods
Duchi et al. (2008) propose the sort-and-shift (water-filling) method for projecting a vector

onto the simplex 2. Given the unconstrained weight &, the procedure is as follows:
e Sort & in descending order to obtain u; > ug > -+ > up;

Sp—1
k )

e Compute the partial sum Sy = Zle u; and the threshold 0, =

e Select kpax = max{k=1,...,n:up > 0} and set 6§ = b

max )

e Shift the unconstrained weights to constrained weights:

oy = max (& — 6,0)

This method has complexity O (nlogn) due to the sorting step.

Condat (2016) proposes an improved variant that replaces full sorting with a QuickSelect-
style partition, reducing the complexity to O (n) on average. Given the unconstrained
solution &, the algorithm proceeds as follows:

o If > & =1and & >0, then af = & and stop;

e Otherwise, find the threshold 6 such that:
n
Zmax(d,» -0,0)=1
i=1

This can be achieved using a QuickSelect-based routine®®. The algorithm iteratively
partitions around candidate pivots, narrowing the interval until the correct threshold
is found,;

e Finally, shift the unconstrained weights to constrained weights:

a;f = max (& —6,0)

59QuickSelect is a selection algorithm similar to QuickSort. It partitions the array around a pivot and
recursively processes only the side containing the desired element, achieving an average time complexity of
O (n) and finding the k-th smallest element without fully sorting.
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A.14 Separability property under the constraints ¢; = 0, a; > 0 and
1T, < 1

The HJB equation for a CRRA utility function is given by:

0J (t,x) _ _ _
T-}—g}gé?{(t,x,at)—o s.t. J (T, x)=U(z) = 5

where the Hamiltonian takes the form:

oJ (t,x)

2
H(t,z,a) = ((rt +of (e — rtln)) x+ Ct) i S R (OétTEtat> x2m

1
oz 2 0x2

Generally, we guess the form of the value function is separable: J (t,z) = f (t)U (x) with
f(T) = 1. Then, we have:

T (t,x) = Opf (t) vy 'a?
0, T (t,x) = f(t) a1
BT (tx)=f(t)(y—1)a7?

Substituting these into the HJB equation yields:

o0 s { (oo G =ran) ) 502704 T (o7 m) 057} =

When the contribution c¢; is zero, then the HJB equation simplifies to:

o f (t) ﬂ + max {(Tt + a: (et — Ttln)> f@)a" + L_l (a;rztat) f () xv} =0

Y a€Q 2

When the constraint set € is independent of z, this is an ODE in f (¢):

0t () + max { (rt +af (e — Ttln)) f@)+ -1 (O‘tTEto‘t) f (t)} =0

y a:€Q) 2

The optimal solution « is also independent of z. Thus, the separability assumption holds,
and we obtain:

z02J (t,x) B

This is the case when the constraint set € is defined as:
Q:{aeRn:aZO,lTagl}
because it is independent of x.

Remark 14. When the contribution c; is not zero, the HJB equation becomes:

o () + max { (T’t + OétT (e —1e1y) + (;Ut) ft)+ u (atTEto‘t) f (t)} =0

vy ar€Q 2

In this case, the equation explicitly depends on x, and the separability hypothesis for J (t,x)
no longer holds.
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A.15 Computation of the threshold correlation

We consider the two-asset case and note:

i —T
I—»v

T, =

In the two-stage approach, the equality constraint implies ws = 1 — w;. Therefore, the
optimization problem reduces to:

1
wy = argmin 3 (a%w% + 2pooowy (1 —wy) + o2 (1 — wl)z) —muw; —m (1 —wp)

s.t. O§w1§1

The optimal solution wy is the clipped version of the unconstrained solution:

wt = dlip T — T + 05 — o102
1 [0.1] O’% — 2poi02 + O’%
Hence, the necessary and sufficient conditions for the existence of an interior solution
(0 <wy < 1) are:
o9 (poy — 09) < w1 — e < 01 (01 — po2)

Otherwise, the condition fails and w7 is clipped to either 0 or 1, corresponding to full
investment in a single asset. For example, in our setting, as we approach the target date, v
becomes more negative and thus m; — 73 — 0:

09 (p01 702) <0< oy (0'1 7[)02)

In this case, increasing p can break the interior-solution condition, leading to a corner
solution with full investment in one asset. This phenomenon is illustrated in Figure 52
(right panel).

In the one-stage problem, the feasible region is the triangle {w; > 0, w2 > 0,w; + wo < 1}.
Since the objective function is a convex quadratic, the optimum must lie either in the interior
of the triangle or on one of its three edges. The unconstrained solution is:

2
. 1 1 05T — pO102Te
a=X 7r:7221 5 5
0203 (1 —p?) \ oim2 — po102m

Therefore, the necessary and sufficient conditions for the existence of an interior solution
are:
oo — poime > 0
017y — pogmy >0
o3m) — poog (T + o) + o2y
ooz (1—p?)

<1

These conditions can be simplified by expressing them in terms of the Sharpe ratio:

SR; —pSR2 >0
SR> —pSR1 >0
o9 SRy —p (0’1 SR +o9 SRQ) + 01 SRe <

(1 =) o102 (1 = p?)

For example, in our setting, as we approach the target date, v becomes more negative,
so the third condition is automatically satisfied. Moreover, if SR; = SRs > 0, the first
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two conditions also hold. In this case, increasing p does not violate the interior-solution
condition, and the solution remains interior, with strictly positive allocations to both assets.
This is illustrated in Figure 52 (left panel).

We now compute the threshold correlation p*:

e Two-stage approach
When the condition o3 (po; — 02) < ™1 — 73 < 01 (01 — pos) is violated, the interior
solution disappears, and the allocation collapses to a corner solution (weights (0,1) or
(1,0)). Under the general assumptions p; > r, we obtain:

*wo—sae: *:min{ — +27 fz2 — +ﬂ}
Piwostage = P (I1—=v)oio2 o1’ (1—7v)o102 02

e One-stage approach
Using the KKT conditions with Ay = A\ = A2 = 0, we obtain:

U2W1—T)UMM2—W}:ﬂmn{Eﬁ_§E}
01 (/JQ_T')’O'Q (,11,1—7') SRQ’SRl

* ok
pone—stage = p = mmn {

The key difference is that p},._age S independent of the risk-aversion parameter v, whereas
Piwo—stage 15 independent of the risk-free rate r. In particular, when p1 = p2, both formula-

tions coincide:
02 01

* * :
1% _ =p _ =min-<g —
one—stage two—stage o1 ’ o9

Figure 52: Comparison of one-stage and two-stage allocations
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100 - - 100 -

20 30 40 50 60 20 30 40 50 60
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Remark 15. The distinction between one-stage and two-stage allocation arises from the
difference between the inequality constraint, 1} oy < 1, and the equality constraint, 1) w; =
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1. In two-stage allocation, the allocation constraint always applies, forcing all wealth into
risky assets and typically resulting in corner solutions, particularly when assets are highly
correlated. Small changes in expected returns or covariances can cause significant shifts in
allocation, often resulting in all investments being concentrated in a single asset. In contrast,
the one-stage formulation allows the budget constraint to be slack, meaning that some wealth
can remain in the risk-free asset. This flexibility reduces instability. When assets are very
stmilar or highly correlated, the optimal solution is to invest in multiple assets with positive
weights while reducing overall exposure to risky assets. These differences are illustrated in
Figure 52, where the allocation to the second asset vanishes in the two-stage setting as the
correlation increases, even though both assets have the same Sharpe ratio but different levels
of riskS0.

A.16 Proof of Equations (22) and (23)

We remind that the Hamiltonian is:

0T (t
H(t,z,mao,f) = (amz+Ba+bm)a+ (1—a—pB)ra—orz+ c;) % +
1 0*T (t
3 (aQJtQ + 52 (0,’5)2 + 20450:&01:02) x27j8(x’2x’ ™) +

S R ™ 82J(t7$,ﬂ)
(ap,(t )Ut+ﬁp§ )Ué) Ut( 'z Ozx O

We deduce that:

oM (t,x,m,a,3) oJ (t,x,m) 9 N 202T (t,z,m)
T e (e — Tt)mT + <040t + /BPtUtUt) U2 +
o 02T (t,z,7
RO
and:
OH (t,z, 7, B) oJ (t,xz,m) 2 T (t,x,7)
T — (at“!‘btﬂ'_rt)xT‘F (B (0'1/5) +Oépt0't0'£) .I‘ZT‘F
(R) 1 (m), 02T (.2, 7)
Pt 010 T or on

In a matrix form, the first-order conditions are:

2 U (8) ()
o P00y « 2 e — Tt P 010y (0
( pi040} (a;)2 ) ( B >z jf’”( at + by — 1y )Ijﬁ( B gt ™) )f”jm = ( 0 )
where J, = 0,T (t,2,m), Tpp = 02T (t,x,m) and Ty r = Oy T (t,x, 7). Using the nota-

tions 0; = (yy — 74, a4 + by — 1y) and ¢ = (pgs)atoﬁﬂ),pER)agay)} we get:

:Cjz,acEtV + otjx + Ctj$,71' = 02

The optimal solution is then:

* _ a* _ oyl \795 jx,ﬂ'
o ( 5 ) S <9tsz,m Htxjx,m)

60The solutions are obtained with the following parameters: u1 = 8%, us = 10%, o1 = 15%, o2 = 20%,
and r = 2%.
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The matrix form of the Hamiltonian is:
1
H(tw,mv) =3 (mQJz,m> (VTEtV> + (2Ty) (VT% +ry — QW) + (e T) + (2T ) (VTCt>

We have:

2 2
u*thu*=< e ) 932t19t+2j"’”j"”’;2€2t10t+<%’”> oG

xjx,x N il:jx,x
J. _ T _
TP, =——29Tx 19, — =2 Tx"1p
v t xgz,x t “it t -T‘J}Zc,x t “t t
TG = =205 - 2R G

zjm,rc Ijz@
At the optimum, we deduce that:

1 g2 172 -

_ VN _ _
H(t,x,mvf) = = 0, S0, + N0+ F S G -
( t) 2Jm@ t ~t Yt sz:,z Ct t Ut QJI,ICt t Ct
2
jf 0;2;1@ N jsz’wgtTEt_letJrIjmTt*IJmQﬂ'JFC;jr*
ja:,w ja:,w
jxjx,ﬂ' — jx2,7r —
7. 0, =7 G- 7 GG
1 T2 re1,  JoTemmo1,  LJan 1o
= —-=zgln g, - TS, - 2RI TS  +
2jx7$ t & Ut ja:,ac Ct t Yt 2jx,x<t t Ct

A (rtx — omx + cg)

A.17 Proof of Equations (24) and (25)

We set the contribution ¢; to 0 and consider a CRRA utility function. A common approach
is to assume that the value function is separable in wealth and the state variable:

Y

j(t,x,w):h(t,ﬂ)%

with terminal condition h(T,7) = 1. The optimal Hamiltonian is therefore®!:

. 1 T2 te-1y  JaeTem Tw-1, L Tim 1o
H(t,x,m ) = —5‘7&19;Et g, — s G Y; let_ijxvzcht Y + To (1o — om)
1 (h(t,m)z7 ! ? _ h(t,m) 2" 10, h(t,m) 7! _
S ) _orsite,  MEMTIOMED DT
2(y=Dh(t,mx (v=1Dh(tm)a
1 (Oxh(t,m)z7 ! ? _ _
2(’(}/—1)h(t W).T?’)’)—QCtTEt Yt h(tm) 2 (- om)
1Th(t,m)xY +_1 Orh (t,m) Y + ;4
— _ -0 T)r T _ BB Ty _
2 (-n T Ty e
1(0:h(t,m) 27 —
2((’7_1)h()t71')4;2t Yo+ h(t,m) 2 (re — o)
61We have oJ (t,z,7) = h(t,m)y" 1z, 0T (t,x,®) = h(t,w)z’"t, 027 (t,=,m)

Oth (t, _
(v =D h(t,m) 272, 0. T (t,x,7) = Oxh (t, m)y L2V, 02T (t,x,7) = O2h (t,m) v 1a7, and Oy =T (t,x,7) =
Orh (t,m)xY L.
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We obtain the following HJB equation:

0 = Oh(t,m)y ' + k(Moo — ) Ogh (t, ™)y~ Jr;(UTr Yo h(t, )y~ 4+ h(t, ) (re — om) —
1At jre1y _ Oxh(t,m) o, 1 (Oxh (¢, W)) 1
2(y— )0 ¢ 0= (v—1) s 20y —1)h(t, )Ct X G

at—i-btw—rt
0p=0,+0m=( """ )4 0 ™
t t t ay — 74 b,

9;2[19,5 = é:Et_lét + 2@;2;19}7{' + é:E;lémg
G 0= G804 (T8 O

Since 0; = ( He =T > depends on 7, we set:

It follows that:

We deduce that:

0 = Oh(t,m)y " + k(T = m) Orh (t,m) 77 +;( 7t ))237371(1%%)7’1+h(t77r)(?“t—g7r)—
Lh(t,m) v 17 h(tm) 11 1h(tm) are 14
Dy I e U A Ly U
Oxh(t,7) v15 Ozh(t,m) -1 1 (0=h(t, 77))
01: N Gf — t
(v - )Ct t CEE S h—DhEme S

When the constraint set € is independent of z, this is a non-linear partial differential equation
in A (t,7).

We assume a guess solution of h (¢, 7):
h(t,7) = exp (A () + B(t) 7+ C (1) 7r2>
with terminal condition A (T) = B(T) = C (T) = 0. We have:
Oh(t,m)= (A ({t)+B )7+ C (t)*) h(t,)
Orh (t,m) = (B (t) +2C (t) m) h (t, )
o2h(t.m) = (20(1) + (B(®) +2C (1) 7)) h (¢, )

The HJB equation becomes:

0 = (A’(t)JrB'(t)WJrC’/(t)wz)+n(7roo—7r)(B(t)+2C(t)7r)+
1/ (o2
5 (07) 2+ (BW+200)7)") +701— om) -
L v arv-1p Y Ty 1 T5-1j
iﬁet Et et_ﬁet 197571'—5779 191571'2_
~y (B (t) +2C (1) 7T) (TEG, - ’y(B (t)+2C(t )7r) CTE%HA o

’y—l t It t 7_1 t “~t t

1v(B(t) +2C (t)7)°
L2 SRR Losi
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| ar ()77 4 by (B) 7+ e (1) = 0 (31)

where:

2 1 . .
ar () = C'(t)—2xC (t)+2(a§”>) C2 (1) — 5%9;2;1@—

2T OW TN -2 () R

be(t) = B'(t)+k (210C (t) — B(t)) +2 (at(“)) B(t)C () — vo—
e LR e e L DI e SO IR
2B ()C WG

e (t) = A(8)+rmaB (1) + % (a,ﬁ”))Q (B2 (1) +2C (8)) + yri—

1y s A
147510, - Wi =B (1)1, — 3B () (57

2~y —1 2~y —1

Since Equation (31) must be satisfied for all values of 7, we deduce that:

( : (t) )
bTI' (t) = 03
cq (t)

It follows that®2:

d/(lhft) = —KTsB (t) — % (J§W)>2 (BQ (t) +92C (t)) — Tt
% <;9;r2t19t =+ B (t) Ct—rz;lét + %BQ (t) Ct—rztlct>

B0 — s anact -8 0) -2 (647 OO0+ 201
5%%](9t+l3u)Q)T2;1(@-%20(0(0

d(:;t(t) — %O (f) -2 (at(w)>2 i+
;Viil(@-%mfﬁ)Q)ngl(@—%2C(ﬂ§Q

where A(T) = B(T) = C(T) = 0. This is a standard ordinary differential equation with
terminal value, that can be solved with Runge-Kutta algorithm and the change of variable
T=T—1.

A.18 Proof of Equations (26) and (27)

We remind that the HJB equation is:

0J (t,x, )

oF (t,x,m) 1/ (m\2 0T (t,x,m)
5 +I€(7TOO—7T,5)7+*<O' )7

om 2\t om?

62We  use the simplifications 6,510 + 400/ =G + 40?2 ()= =
(h+20wa) 57 (Bor200a)  and TS0+ 20007506+ BOG S0 +
2B()C (1) 6= B+ B(1)G) =7 (0 +20(1)¢).

+maxH (t,z,m,v) =0

108



Retirement Accumulation Strategies with Real Assets and Inflation Risk

where:

H(t,z, 7, v) = (ﬁjx’x) (ytTEtz/t) + (2T%) (ujat +r— gw) + (2T2x) (V:Ct)

N =

2l
By assuming that J (t,z,7) = h (¢, ) T and v 1s fixed, we get:
Y

L @) o2
Ouh (8, 7) + 1 (mos —70) O (t,m) + 5 (017 02h (1) +
1
37 (v—1) (ytTEtut) h(t,m) 4+~ (z/tTHt 47— Q7T) h(t,m) 4+~ (utT(t) Ozh(t,m) = 0
or:
1 ) 2
Oh (t, ) + (KJ (oo — Tt) + (V;Ct)) Oxh (t,m) + 3 (gg )) O2h (t,7) +
T _ 1. T _
vy O + 1y Q7T+2(’Y 1) (v Seve) | R(t,m) = 0

Knowing h (¢, 7), the maximization of the Hamiltonian implies that:

max H (t,x,m, 1) = max% (xQJx,x) (V;Ztut) + (2Tz) (VtTGt + 7y — Qﬂ') + (xjxm) (I/tTCt)

max% (y=1) (I/tTZtl/t> h(t,m)+ <VtT9t + = Q7T> h(t,m) + (VtTCt> Orh (t,m)

1

= maxz (y—1)h(t7) (yjztyt) + (h (t,7) 0] + deh (t,7) gj) v

A.19 Numerical solution of the Howard’s policy-iteration algorithm
(Equations 26 and 27)

We remind that the HJB equation is given by:

oJ (t,x,m) oF (t,x,m) 1 (m\20*T (t,z,m)
e R e G e =

with the terminal condition J (T, x,7) = U () = y~127. Since the CRRA utility function
is homogeneous, we use the standard separation J (t,z,7) =y~ 127h (¢, 7), where h (t,7) is
a function that depends only on time and inflation. The corresponding terminal condition
is h (T, m) = 1. The HJB equation can be rewritten as:

+maxH (t,x,mv) =0
veEQN

1 2
YO (t, ) 4 K (oo — ) v L Orh (t, ) + 3 (O’Eﬂ)) v LO2h (t, ) + meagfg (t,m,v) =0
where:
G(t,mv) = (ry—om)h(t,m)+h(t,m)0 v+
% (y=1h(tm) v+ 0, h (t,m) Cth/

and Q@ = {v € R? | v > 0,1, v < 1}. Therefore, we obtain:
1 ) 2
Ouh (1) + K (oo — ) D5h (8, 7) + (a§ >) 82h (t,7) +

’Y'rynea‘g;{;(7_1>h(t77r)y—rzty+(h(taﬂ->9t+8ﬂh(taﬂ->ct)—ry+(Tt_Qﬂ-)h<t77T)} = 0
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To implement the Howard’s policy-iteration algorithm, we use the finite difference method
for t € [to,T] and 7w € [77_7 7r+]. Let N; and N, denote the number of discretization points
for t and m, respectively. We define At and Ax as the mesh spacings. Let A" = h (t;,, 7;)
be the approximate solution of h (¢, 7) at the grid point (¢, 7;), where t,,, = to+m - At and
= +i-AT.

A.19.1 Policy evaluation

Given a fixed control v, we have:

Oih + % (oﬁ’”)Qa,%h + (m (Moo — ) + 7{?1/) Orht

—_———
a b(m)
1
(27 (v—=1) v S+ 79:V +y(re — Qﬂ'))h = 0

c(m)

To solve this PDE, we use a fully implicit backward-in-time finite difference scheme with
Neumann boundary conditions. The backward step of the PDE from ¢,,, 11 to t,, = t; 41— At
is Oph + ad2h + b (7) Oxh + ¢ (m) h = 0. This gives:

m m—+1
B — b

- (aa}: +b(m) Oy + c(m)) B =0

where a = % (Ut(ﬂ))z, b(m) =k (Too — ™) +7¢ v, and ¢ (m;) = %fy (v=1) (V{”)T S+
70, ™ + (ry — om;). This can be written in matrix form as (I — AtL™) h™ = h™*! where
A = (hgl, hr oL h?\}””) and L™ = ad2 + b(7) O + ¢ (m) with all coefficients evaluated at
time t,,. The spatial derivatives are approximated by:

hifty — 20" + by

21m
h" =~
aﬂ 1 A7T2

and:
() >0
=l i (m) < 0

We then build the tridiagonal matrix A such that AR™ = A1, where:

do (') 0 tee 0
161 d1 Ul .
A=1-AtL" = 0 . 0
: N1 dy-1 un-—1
0o .- 0 Iy dn
Let s = aAt/An? be a constant scalar. At an interior node i = 1,..., N, — 1, the discrete

equation for row i is:
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e when b (m;) > 0:

hi . — 2K 4 B [
7+1 7 1—1 . 1+1 7
Am? b (m) Am

R — B (a +c(m;) h;”) At=0

which gives ¢; = —s, d; = 14+ 2s+b (m;) At/Ar—c(m;) At, and u; = —s—b (m;) At/ Am.

e when b (m;) < 0:

hit, — 2R + R hr—h",
a e

h;-“—h;”“—( s b (m) S

which gives ¢; = —s+b (m;) At/Am, d; = 1425—b(m;) At/An—c(m;) At, and u; = —s.

At the left boundary (i = 0), we impose the Neumann condition d,h{* = 0. Using central
differences, it follows that 92h5* ~ 2 (h* — hi*) /An? and we have:

e when b(m) >0, o =0, do = 1+ 2s + b(m) At/Am — c¢(mo) At, and ug = —2s —
b (mo) At/Am.

e when b(m;) < 0, g =0, dg = 1+ 2s — b(m) At/Am — ¢(mp) At, and ug = —2s +
b(mo) At/Am.

At the right boundary (i = N,), we impose the Neumann condition 0,h%} = 0. It follows
that O2h%} ~ (h’]\}ﬂ_l - h%w) /A7?, and we have:

e when b(m;)) > 0, {n, = —2s + b(nn,) At/Anm, dy, = 1+ 2s + b(nn,) At/AT —
c(mn, ) At, and uy, = 0.

e when b(m;) < 0, {ny, = —2s + b(nn,) At/Ar, dn,
¢(nn,) At, and uy, = 0.

1+ 2s—b(mn,)At/Ar —

Finally, the linear system AR™ = h™*! can be efficiently solved using a tridiagonal matrix
algorithm.

A.19.2 Policy improvement

Given the updated value function h}", we update the control variable v/" by solving the

following constrained optimization problem:

1
vto= argmax{2 (y—1) b 8w+ (h;”@f + aﬂh;”cj) v+ (ry — om) h;”}
st. veQ

Equivalently, this problem can be written as a minimization:

1 m
v* = argmin 3 11—y v Sw— (9: + 82];1 C:) v
st. veQ

Thus, for each time step t,, and grid point 7;, we must solve a quadratic programming prob-
lem. For the sake of simplicity, we define Q = (1 —+)%; and ¢ = — (9 + (Bﬂ In h;”) C)
We approximate the derivative 0, lnh]" using a central difference scheme: 0,Inh]® ~
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(ln hii, —In hﬁl) / (2A7). Hence, the optimization problem takes the compact quadratic
form: )
LT m T
min v Qv+ (¢;")

14

This step yields the optimal control v;™ at each grid point, completing the policy improve-
ment phase of Howard’s algorithm.

A.19.3 Two-asset case

In dimension two, the optimization problem described above can be solved explicitly by
enumerating the KKT-consistent active sets. The feasible set Q = {1/ v > 0o, 1;—1/ < 1}
is a triangle, so the unique minimizer lies either in the interior, on one of the three edges,
or at a corner of this triangle. To formulate the KKT conditions, we write the inequality
constraints as g1 (v) = —v; <0, g2 (V) = =15 <0, g3 (v) =11 + 5 — 1 <0, and introduce
the Lagrange multipliers A1, A2, and A3. The KKT conditions are listed below:

e Stationarity: Qu + ¢ — A1e; — Agea + Azly = 02 where e; = (1,0) and ey = (0,1).
e Complementary slackness: A\jv; = 0, Ao = 0, and A3 (v1 +v2 — 1) = 0.
e Primal feasibility: 11 > 0, 5 > 0, and v + v < 1.
We now enumerate the possible active sets and derive the corresponding candidate solutions:

1. Interior solution
If vy >0, v3 >0, 1 +v5 < 1, then all inequality constraints are inactive: A\ = Ay =
A3 = 0. The optimal solution is v* = —Q~1¢".

2. Edge v1 +v5 =1 with vy > 0and vy >0
In this case, we have \; = Ay = 0 and A3 > 0. Stationarity gives Qv + ¢;" +
Asly = 0g, hence v = —Q! (q;" —1—)\312). Imposing the equality 1J v = 1 yields

1 1T —-1,m
1; (‘Qil (q;"—i—/\glz)) = 1. We deduce that \3 = —4}_27@1(]1
1, Q7 '1,
Q7! (¢ + /\312)-
3. Edge v = 0 with vy € [0,1]

Assume v1 = 0 and 0 < vy < 1, and the sum constraint is not active. Then A\; > 0,
A2 = 0, and A3 = 0. The stationarity conditions become (Q); ; - 0+ (Q); 5 v2 +

(¢7"), =M =0and (Q), 5 0+ (Q)ypv2+ (), = 0. Weget v3 = — (¢]"), / (Q) o If
v} ¢ [0, 1], the one-dimensional convex problem’s solution is its projection onto [0, 1]:

vy = Ijo 1) (_ (q;n)g / (Q)2,2)'
4. Edge v, = 0 with v; € [0, 1]
By symmetry, we get vi = IIjg 1 (— (qz?")1 / (Q)Ll).

and v* =

5. Corners
The remaining corners are (0,0), (1,0), and (0, 1).

Therefore, in the two-asset case, seven candidate solutions must be tested in total (in-
terior, three edges, and three corners). This explicit active-set enumeration approach is
computationally faster and more stable than using a general-purpose QP solver for this
low-dimensional case.
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A.19.4 Convergence

We iterate the two steps (policy evaluation and policy improvement) until convergence for
each time step ¢,,,. This iterative procedure yields the function solution A]” and the optimal
constrained policy v]". The corresponding value function is then given by:

B Additional results

Figure 53: Population pyramid (China, 1960-2100)
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Figure 54: Population pyramid (India, 1960-2100)
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Figure 55: Population pyramid (Japan, 1960-2100)
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Figure 56: Population pyramid (US, 1960-2100)
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Figure 57: Population pyramid (Western Europe, 1960-2100)
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p(w) (in %)

Figure 58: Markowitz efficient frontier (Global, 30-year time horizon)
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Figure 59: Composition of mean-variance optimized portfolios excluding real assets (Global,
30-year time horizon)
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Figure 60: Composition of mean-variance optimized portfolios with real assets (Global,
30-year time horizon)
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Figure 61: Optimal risky portfolio without real assets as a function of risk aversion v (Global,
30-year time horizon)
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Figure 62: Optimal risky portfolio with real assets as a function of risk aversion v (Global,
30-year time horizon)
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Figure 63: Mixed glide path with liquidity constraints (Global, 30-year time horizon, w™ =
50%)
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Figure 64: Impact of the volatility o1 on the optimal solution (two-stage approach, Property
Py)
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Figure 65: Impact of the expected return p; on the optimal solution (two-stage approach,

Property P»)
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Figure 66: Impact of the parameter SRy /o1 on the optimal solution (two-stage approach,

Property Ps)
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Figure 67: Impact of the risk aversion v on the optimal solution (two-stage approach,
Property Py)
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Figure 68: Impact of the correlation p on the optimal solution (two-stage approach, Property
Ps)

QOO rrrrrr e 100

-100 -50 6] 50 100 -100 -50 0 50 100

121



Retirement Accumulation Strategies with Real Assets and Inflation Risk

p(w) (in %)

Figure 69: Markowitz efficient frontier (Eurozone, 30-year time horizon)
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Figure 70: Mixed glide path with liquidity constraints (Eurozone, 30-year time horizon,
wt =100%)
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Figure 71: Mixed glide path with liquidity constraints (Eurozone, 30-year time horizon,
wt =50%)
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