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Abstract

This article presents a comprehensive, dynamic asset allocation framework for re-
tirement savings, extending the classical Merton model to include human capital. This
framework reconciles the intuitive age-based glide path with financial theory, recog-
nizing that total wealth consists of financial capital and the present value of future
contributions. It shows that the optimal allocation of risky assets depends on the ra-
tio of human to financial capital, risk aversion, investment horizon, and key market
parameters, such as the risk premium and volatility. Under CRRA utility, closed-
form solutions are derived, demonstrating that continuous contributions increase risk
exposure relative to the constant-mix strategy. The article also compares glide path
strategies with constant-mix approaches, revealing that glide paths generally provide
better downside protection and higher probabilities of meeting retirement goals, while
dynamically adjusting risk exposure over time. The analysis further examines the
shape of the glide path and shows that practical constraints, such as leverage limits,
time-varying risk aversion, and rising contribution patterns, transform the theoretically
convex allocation path into the empirically observed concave form.

The article expands the model to include multiple asset classes, providing a deep
analysis of the practical differences between single-asset and multi-asset approaches. It
emphasizes how allocation constraints, such as long-only requirements, leverage limits,
and maximum exposure caps, impact optimal portfolio construction. The analysis
shows that incorporating multiple asset classes yields greater diversification benefits,
thereby enhancing risk-adjusted returns and improving retirement savings outcomes.
Including real assets, such as private equity, private debt, real estate, and infrastructure,
is valuable due to their unique risk-return profiles and lower correlations with traditional
public equities and bonds. The framework acknowledges the practical challenges posed
by liquidity risk and transaction costs, recognizing that real assets typically operate in
markets with investment frictions during ramp-up and run-off phases when capital is
deployed or withdrawn. It incorporates a time-varying liquidity weight that adjusts the
portfolio’s exposure to illiquid assets dynamically over the investment horizon. This
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mechanism reflects the natural lifecycle of investments. Younger investors can tolerate
more illiquid investments for their potentially higher returns, while those approaching
retirement gradually shift toward more liquid assets to ensure accessibility when needed.

Recognizing that inflation risk is a critical concern for retirement planning since
inflation erodes the real purchasing power of accumulated wealth, the framework ex-
plicitly incorporates inflation dynamics and inflation-sensitive assets. By modeling
inflation as a stochastic process and introducing assets whose returns are linked to
inflation, the optimal allocation naturally decomposes into two components: a growth-
oriented market portfolio and a liability-hedging portfolio designed to protect against
inflation risk. This decomposition aligns defined contribution strategies with liability-
driven investment principles used by defined benefit plans, ensuring that portfolios
grow nominal wealth and preserve real value over time. From this perspective, assets
serve as performance drivers and hedges against inflation risk. This underscores the
importance of including inflation-sensitive assets, such as real assets.

Keywords: Retirement planning, lifecycle investing, target date fund, dynamic asset al-
location, glide path, accumulation, risk premium, real assets, inflation risk, portfolio op-
timization, utility function, stochastic optimal control, Hamilton-Jacobi-Bellman equation,
hedging demand, liability-driven investment.

JEL Classification: C61, G11, G50.
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1 Introduction

The demographic transformation occurring in developed economies poses one of the most
significant challenges to retirement systems today. Global life expectancy has increased
dramatically, rising from an average of 46 years in 1950 to 73 years in 2025 (United Na-
tions, 2024). Projections suggest it will reach 77 and 82 years by 2050 and 2100, respec-
tively. Meanwhile, fertility rates have plummeted below replacement levels in most advanced
economies, resulting in an unprecedented shift in population age structure. For example,
the median age of the global population was 22 and 30 years in 1950 and 2025, respectively.
However, it is projected to be 36 and 42 years by 2050 and 2100, respectively. Conse-
quently, the proportion of the world’s population aged 60 and older grew from less than 8%
in 1950 to 15% in 2025. We expect this proportion to continue to increase, reaching 22%
and 30% by 2050 and 2100, respectively. This dual demographic transition — longer lifes-
pans combined with fewer working-age individuals supporting each retiree — fundamentally
alters the mathematics of retirement planning. Longevity risk, which is traditionally defined
as uncertainty about one’s lifespan, now encompasses broader systemic issues1. These is-
sues include the risk of outliving one’s savings, whether pay-as-you-go pension systems can
withstand growing demographic pressures, and whether retirement income will suffice for
extended post-career periods that may span three decades or more. These evolving reali-
ties demand dynamic asset allocation strategies that can adapt to the ageing process and
changing macroeconomic conditions over investment horizons that regularly extend 40–50
years.

Figure 1: Population pyramid (world, 1960–2100)
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Source: United Nations (2024) & Authors’ calculations.

1This challenge is illustrated by the old-age dependency ratio, defined as the number of people aged 65
and over relative to those of working age (25–64), expressed as the number of dependents per 100 working-
age individuals. The ratio was 5.6 in 1950, has doubled over the past 75 years, and is projected to rise to
31.3 by the year 2100.

3



Retirement Accumulation Strategies with Real Assets and Inflation Risk

Figure 2: Demographic trends (1950–2100)
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Figure 1 illustrates the evolution of population pyramids. The global population struc-
ture no longer resembles the classic pyramid shape observed in the 20th century. The
population structure has currently changed significantly, and projections indicate that it
will increasingly resemble a barrel or a modern tall skyscraper such as the Gherkin, the
Empire State Building or the Petronas Twin Towers. This profound transformation of the
age structure applies to both developed countries and emerging economies that have ex-
perienced rapid growth over the past 50 years. Figures 53–57 on pages 113–115 compare
the population pyramids of China, India, Japan, the United States, and Western Europe.
China and India already have constrictive pyramids, and their bases are expected to narrow
further by the year 2100. Figure 2 highlights these demographic trends, showing the rise in
life expectancy and median age, the growing share of individuals aged 60 and older, and the
increasing old-age dependency ratio. Currently, China lags behind Europe and the United
States in these indicators, but it is projected to surpass them after 2050. Consequently, re-
tirement planning challenges are no longer confined to developed countries. These challenges
are becoming a global issue that increasingly affects emerging economies, such as China and
India. In the coming decades, these countries will face problems similar to those developed
countries have already experienced in recent years. Naturally, the situation remains hetero-
geneous across countries and regions. For example, Tables 1 and 2 present statistics for a
sample of countries. Regarding the old-age dependency ratio, Hong Kong is projected to
reach 144.8 by the year 2100. In contrast, the ratio will remain very low in Middle Africa,
around 12.

In parallel with these demographic pressures, the retirement savings landscape has un-
dergone a structural transformation, shifting from traditional defined benefit (DB) plans
to defined contribution (DC) schemes. Additionally, most public pay-as-you-go (PAYG)
pension systems2 are under significant strain and pose serious long-term sustainability chal-

2A pay-as-you-go pension scheme is a retirement system in which the pensions of current retirees are
financed directly from the contributions of current workers, rather than from returns on an accumulated fund.
The sustainability of such schemes depends critically on the balance between contributors and beneficiaries,
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Table 1: Trends in life expectancy and median age (1950–2100)

ISO
Life expectancy Median age

1950 2025 2050 2100 1950 2025 2050 2100
AUS 69.0 84.2 87.2 92.6 29.4 38.3 42.0 44.8
BRA 48.5 76.2 80.3 86.8 17.5 34.8 43.9 50.7
CAN 68.2 82.9 86.2 91.7 26.7 40.6 45.1 46.9
CHN 43.8 78.4 83.4 89.8 22.2 40.1 52.1 60.7
FRA 66.4 83.6 86.6 92.1 33.4 42.3 43.5 47.1
DEU 66.8 81.7 85.2 90.8 32.9 45.5 47.9 47.4
HKG 57.8 85.8 89.1 94.4 22.8 47.4 62.0 72.4
IND 41.2 72.5 77.5 85.3 20.0 28.8 38.3 47.8
ITA 65.7 84.0 87.2 92.8 27.5 48.2 52.9 53.4
JPN 59.3 85.0 88.4 94.4 21.3 49.8 52.8 53.0
SAU 40.0 79.2 84.0 90.3 18.0 29.6 32.0 35.8
SGP 54.1 84.0 87.1 92.7 18.9 36.2 50.9 56.0
SWE 71.1 83.6 86.8 92.2 33.2 40.3 44.1 48.6
CHE 68.9 84.2 87.3 92.8 32.2 42.9 47.8 48.1
TWN 56.6 80.9 84.9 90.9 17.7 44.8 56.3 56.8
USA 68.1 79.6 83.2 89.2 29.0 38.5 41.9 45.3
EAA 43.2 79.3 83.8 90.1 21.8 41.0 52.2 59.5
LCN 48.7 76.0 80.1 86.4 18.3 31.7 40.5 49.1
MIA 36.6 62.4 66.3 72.6 18.5 16.4 20.6 32.2
WEU 67.0 82.5 85.9 91.5 32.6 43.6 45.8 47.6
WLD 46.4 73.5 77.0 81.7 22.2 30.9 36.1 42.1

Table 2: Trends in percentage of population aged 60+ and old-age dependency ratio (1950–
2100)

ISO
% of population aged 60+ Old-age dependency ratio
1950 2025 2050 2100 1950 2025 2050 2100

AUS 12.5 23.8 29.9 33.8 7.9 20.4 30.0 40.6
BRA 4.0 16.6 29.3 39.9 3.0 11.0 24.8 48.6
CAN 11.3 27.0 31.9 36.0 8.0 21.6 32.1 43.3
CHN 8.0 21.5 40.0 52.2 5.3 14.5 37.3 80.8
FRA 16.2 28.8 33.0 36.5 11.5 27.3 38.8 46.4
DEU 13.6 31.7 37.0 36.7 8.3 26.5 41.1 46.3
HKG 3.7 32.1 55.2 66.3 2.6 22.7 67.2 144.8
IND 5.4 11.1 20.6 36.3 3.7 7.1 14.7 40.6
ITA 12.0 32.7 42.9 43.4 8.2 28.7 55.3 59.4
JPN 7.7 36.3 43.3 43.1 5.5 40.1 57.5 60.9
SAU 5.6 5.4 12.1 20.9 3.7 2.5 7.4 20.2
SGP 3.7 19.7 34.8 46.7 2.8 12.7 30.1 64.0
SWE 14.9 26.8 32.2 37.8 9.9 25.5 32.9 48.5
CHE 13.9 27.5 36.9 37.5 9.1 22.6 40.3 48.4
TWN 3.7 27.8 46.0 47.5 2.4 18.4 51.0 71.4
USA 12.0 24.6 29.0 34.1 7.8 19.8 28.9 39.8
EAA 7.8 22.9 40.3 50.7 5.2 16.4 39.0 77.1
LCN 5.2 14.7 25.0 38.0 4.0 10.3 20.9 44.9
MIA 5.8 4.6 6.0 16.1 4.7 3.9 4.4 11.9
WEU 14.5 29.8 35.0 37.0 9.5 25.9 39.3 46.9
WLD 7.9 14.9 21.8 29.7 5.6 11.2 19.0 31.3

AUS: Australia, BRA: Brazil, CAN: Canada, CHN: China, FRA: France, DEU: Germany, HKG: Hong Kong,

IND: India, ITA: Italy, JPN: Japan, SAU: Saudi Arabia, SGP: Singapore, SWE: Sweden, CHE: Switzerland, TWN:

Taiwan, USA: United States of America, EAA: Eastern Asia, LCN: Latin America and the Caribbean, MIA: Middle

Africa, WEU: Western Europe, WLD: World.

Source: United Nations (2024) & Authors’ calculations.
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Table 3: Public expenditure on old-age and survivor benefits in percentage of government
spending and GDP

Country
Gov’t spending % of GDP

Country
Gov’t spending % of GDP

2000 2019 2000 2019 2000 2019 2000 2019
Australia 12.8 10.3 4.7 4.3 Austria 23.9 26.8 12.2 13.0
Belgium 17.8 20.6 8.8 10.7 Canada 10.1 11.3 4.2 5.0
Denmark 12.0 16.4 6.3 8.1 Finland 15.5 22.4 7.4 11.9
France 22.2 24.3 11.5 13.4 Germany 22.8 23.1 10.9 10.4
Greece 21.9 32.7 10.2 15.7 Iceland 4.6 6.6 2.1 2.9
Ireland 10.3 13.7 3.1 3.3 Italy 29.0 32.8 13.5 15.9
Netherlands 10.9 11.8 4.6 5.0 Norway 11.1 13.8 4.7 7.1
Poland 24.3 26.2 10.5 10.9 Portugal 18.3 29.3 7.8 12.4
Spain 21.5 26.7 8.4 11.3 Sweden 12.8 14.2 6.8 7.0
Switzerland 17.8 19.6 5.9 6.4 United Kingdom 13.4 11.5 4.8 4.9
United States 16.4 18.6 5.7 7.1 OECD 16.2 18.1 6.5 7.7

Source: OECD (2023, Table 8.2, page 211).

lenges, particularly given the recent increase in public debt and deficits that have worsened
since the covid-19 pandemic3. This evolution is not coincidental. It is a direct consequence
of the challenges posed by increasing longevity4. Under DB plans, employers bore the full
weight of both investment risk and longevity risk, guaranteeing a specific income for the
entire duration of a retiree’s life. As lifespans extended and financial markets remained
volatile, the long-term cost and uncertainty of these guarantees became unsustainable for
many corporations5 and public entities. The resulting shift to DC plans has effectively (or

because workers today fund retirees today, and the next generation of workers will fund their pensions when
they retire. Most public pension systems in Europe, including those in France, Germany, and Italy, operate
predominantly on a PAYG basis.

3While public expenditure on old-age and survivor benefits accounted for 16.2% of total government
spending in OECD countries in 2000, this share had risen to 18.1% by 2019, just before the covid-19 crisis.
In terms of GDP, these expenditures represented 7.7% of OECD GDP (OECD, 2023, page 10). There are,
however, significant disparities across countries. For example, public pension spending reached 15.9% and
15.7% of total government expenditure in Italy and Greece, respectively, while it was only 2.9% and 3.3%
in Iceland and Ireland (Table 3).

4Undoubtedly, we have reached a point where it is appropriate to speak of a retirement savings crisis
(Benartzi and Thaler, 2013). The problem has long been recognized:

“Better recognition and mitigation of longevity risk should be undertaken now. Measures
will take years to bear fruit and effectively addressing this issue will become more difficult if
remedial action is delayed. Attention to population aging and the additional risk of longevity
is part of the set of reforms needed to rebuild confidence in the viability of private and public
sector balance sheets.” (International Monetary Fund, 2012, page 123).

However, finding an effective solution has proven increasingly difficult.
5The financial health of DB systems is usually evaluated using funding ratios, which is the percentage

of pension liabilities covered by available assets. Currently, aggregate funding ratios are relatively high,
with many plans reporting values above 100%. For instance, OECD (2023, Figure 9.6, page 233) estimated
the following funding ratios in 2022: 112.3% in Finland, 116.1% in Germany, 127.6% in Iceland, 126.0% in
Ireland, 104.4% in Luxembourg, 66.7% in Mexico, 116.0% in the Netherlands, 115.4% in Norway, 106.0% in
Switzerland, 113.1% in the United Kingdom, 63.6% in the United States, and 96.6% in Indonesia. However,
these figures can be misleading. First, there is significant heterogeneity both across and within countries.
Within a single jurisdiction, funding ratios can vary widely, with the interquartile range (between the 25th
and 75th percentiles) often being around 20 percentage points. This means that even when the national
average exceeds 100%, a significant portion of DB pension schemes remain underfunded. Second, today’s
relatively high funding ratios largely reflect the strong performance of the stock market since the global
financial crisis of 2008. For instance, the estimated aggregate full buyout funding ratio in the United Kingdom
was 55.9% in 2006, increased to 71.5% in 2019, and reached 94.4% in 2024 (Pension Protection Fund, 2025,
Figure 4.3, page 12). In the United States, the funding ratio of the 100 largest corporate DB pension plans
was 123% in 2000, falling to 82% in 2002, 106% in 2007, 79% in 2008, 88% in 2020, and recovered to 101% in
2024 (Wadia et al., 2025, Figure 3, page 2). These figures illustrate how equity downturns can trigger sharp
declines in DB funding ratios, exposing both pension schemes and their sponsoring companies to financial
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Table 4: Gross and net pension replacement rates from mandatory (public and private) and
voluntary pension schemes (in %)

Country
Mandatory Voluntary

Country
Mandatory Voluntary

Gross Net Gross Net Gross Net Gross Net
Australia 26.0 33.7 Austria 74.1 87.4
Belgium 43.5 60.9 52.4 73.8 Canada 36.8 44.2 57.0 66.0
Denmark 73.1 77.3 Estonia 28.1 34.4 47.4 54.7
Finland 58.4 65.1 France 57.6 71.9
Germany 43.9 55.3 54.7 69.5 Greece 80.8 90.0
Iceland 43.1 52.1 Ireland 26.2 36.1 55.7 74.3
Israel 38.0 47.3 51.7 63.2 Italy 76.1 82.6
Japan 32.4 38.8 Lithuania 18.2 28.9 30.1 47.9
Mexico 55.5 62.4 64.7 72.7 Netherlands 74.7 93.2
New Zealand 39.7 43.5 54.9 61.9 Norway 44.5 54.8
Poland 29.3 40.3 Portugal 73.9 98.8
Spain 80.4 86.5 Sweden 62.3 65.3
Switzerland 39.9 45.3 United Kingdom 41.9 54.4
United States 39.1 50.5 73.2 87.7 OECD 50.7 61.4 55.2 66.9

Source: OECD (2023, Table 4.5, page 159).

partially) transferred these complex risks from the institution to the individual6. This trans-
fer is particularly concerning when measured by gross and net replacement rates7 (Table
4). In several OECD countries, gross mandatory replacement rates fall below 50%, with
net rates often relying heavily on tax advantages or voluntary schemes to reach adequate
levels. Across the OECD, gross mandatory replacement rates range from 18.2% in Lithuania
to 80.8% in Greece, averaging 50.7%. After taxation, net replacement rates are generally
higher, averaging 61.4%. However, significant adequacy gaps remain. In jurisdictions with
relatively low mandatory coverage, retirees depend heavily on voluntary private pensions to
maintain their standard of living. For instance, the gross replacement rate from mandatory
plans in the United States is only 39.1%, but it rises to 73.2% when voluntary contributions
are included. Taken together, these figures suggest that mandatory public pensions are often
insufficient on their own and that supplementary savings are essential for maintaining living
standards in retirement. No longer promised a predictable lifelong income, each person is
now personally responsible for managing their own investment portfolio to accumulate suf-
ficient capital and for ensuring those savings last through a retirement period of uncertain
and increasing length. This profound transfer of responsibility has created an urgent need
for investment strategies that can systematically manage risk over a multi-decade horizon.
This need is particularly critical for individuals who lack financial expertise (Poterba et al.,
2009) and the literacy needed to navigate these complex decisions independently (Lusardi
and Mitchell, 2014). It is precisely this need that has fueled the rise of default investment
solutions, such as target date funds, decumulation strategies, annuities, and tontines8.

stress (Antoĺın and Stewart, 2009). The risks for companies are not merely theoretical. One of the most
prominent cases was the merger between British Airways and Iberia in 2009–2010. The deal was jeopardized
by British Airways’ substantial DB pension deficit (£3.7 billion at the end of 2009), which posed a significant
financial burden and became a focal point in the negotiations.

6This highlights the importance of the third pillar of retirement planning. Voluntary private pension
schemes are essential for individuals who wish to maintain their standard of living after retiring.

7According to OECD (2023, pages 150 and 156), “the gross pension replacement rate is defined as gross
pension entitlement divided by gross pre-retirement earnings. The net pension replacement rate is defined as
the individual net pension entitlement divided by net pre-retirement earnings, taking into account personal
income taxes and social security contributions paid by workers and pensioners.” Both indicators capture how
effectively a pension system provides a retirement income to replace earnings, the main source of income
before retirement.

8Annuities and tontines are mechanisms that pool longevity risk. They provide guaranteed income and
distribute risk among participants, offering protection against uncertainty regarding lifespan. These products
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As shown in Figure 3, a complete pension scheme consists of two phases: pre-retirement
accumulation and post-retirement decumulation. The accumulation phase is the period
during which a person saves and makes long-term investments to accumulate retirement
funds. In contrast, the decumulation phase is the process by which investors convert their
retirement savings into income to meet their needs while continuing to invest their remaining
funds (Bruder et al., 2023). During this phase, there is a regular outflow of cash from the
reserve. The two phases are closely interconnected. The adequacy of decumulation depends
critically on the wealth accumulated beforehand, while accumulation choices depend on
expectations about retirement consumption. Rising life expectancy complicates this balance
by increasing the necessary resources for an adequate income and extending the period
over which savings must be managed. Consequently, voluntary savings and supplementary
pension plans are necessary to bridge the gap left by public and mandatory programs. This
interdependence highlights the fact that retirement planning is an ongoing process in which
saving, investing, and spending decisions are continuously linked. The accumulation phase
is particularly important in this context. Without sufficient wealth at retirement, the choice
of decumulation options, such as systematic withdrawals, annuities, and tontines, becomes
largely irrelevant. This highlights the importance of sound accumulation strategies, such as
target date funds and other lifecycle investment approaches, which balance growth and risk
over time.

Figure 3: Accumulation and decumulation
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Stocks Bonds Cash Bequest

Accumulation

Consumption

Consumption

Consumption

Decumulation
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Target date funds are typically structured as portfolios of underlying funds representing
different investment styles or asset classes. As their name suggests, they are designed with
a specific retirement year in mind, such as 2040 or 2050 vintage. The investment firm
manages the asset allocation on behalf of investors, and it evolves over time as the target
date approaches. John C. Bogle, the founder of Vanguard and proponent of simple investing,
promoted the rule of thumb that investors should hold a percentage of bonds equal to
their age, with the remainder in equities. This heuristic has intuitive appeal and aligns
with the expectations of many investors. However, it appears inconsistent with financial
theory at first glance. Academic literature on optimal portfolios generally recommends
maintaining a relatively stable mix of equities and bonds throughout one’s life. According
to this theory, the optimal allocation is primarily determined by the equity risk premium
and the investor’s risk aversion. The investment horizon plays only a secondary role. Under
this view, the equity-to-bond ratio should remain largely constant over time9. The apparent

complement or substitute traditional decumulation strategies.
9This is another asset allocation puzzle (Jagannathan and Kocherlakota, 1996; Canner et al., 1997).
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contradiction between the glide path strategy of target date funds and the constant-mix
strategy of balanced funds can be reconciled by introducing the concept of human capital
(Viceira, 2001; Campbell and Viceira, 2002; Cocco et al., 2005). Human capital is defined as
the sum of current financial wealth and the present value of expected future contributions
(“forward wealth”). At retirement, human capital reduces to financial capital alone because
there are no remaining future contributions. Earlier in life, however, human capital far
exceeds current financial wealth. The theory suggests that investors should maintain a stable
proportion of their total wealth in equities, including financial assets and human capital.
For younger investors decades away from retirement, this principle results in a higher equity
allocation within their financial portfolio. The reason is straightforward. Younger investors
have substantial human capital in the form of future earning potential, which naturally
hedges against financial market volatility and enables them to take on more investment
risk. This framework provides a solid theoretical foundation for Bogle’s famous age-based
investment rule. Although equity allocation appears to decrease with age when viewed solely
through the lens of financial assets, it actually remains consistent when human capital
is considered. As investors age and their human capital diminishes, they naturally shift
toward more conservative investments to maintain the same risk profile relative to their
total wealth. This is one of the key results confirmed by the model developed in this
research paper10. Another implication is that the optimal glide path should be convex in
theory. Investors would de-risk relatively early in life, slowing the pace of risk reduction as
they age. However, in practice, most glide paths of target-date funds are concave. Investors
maintain relatively high risky exposure for much of their working life, de-risking only as
they approach retirement. Our model addresses this apparent puzzle. By relaxing the
assumptions of constant risk aversion and linear income contributions, we demonstrate that
the glide path can be concave. This occurs when risk aversion is time-varying, a feature
supported by empirical evidence showing that individuals tend to become more risk-averse as
they age. Similarly, if investors accelerate their retirement savings during the accumulation
phase, particularly after age 50 when education and debt-related expenses typically decline
and the need to increase retirement income becomes more urgent, the resulting glide path
becomes naturally concave.

Building on this foundational insight, we expand our framework to include a comprehen-
sive multi-asset universe. Modern portfolio construction for long-term goals like retirement
requires more than a simple stock-bond mix to achieve true diversification. The objective
is not merely to add assets with low correlations but also to build a more resilient portfolio
by tapping into fundamentally different risk and return drivers. A well-diversified portfolio
should perform well in various macroeconomic environments, including periods of high in-
flation and slow growth. This helps to ensure a steady accumulation of wealth and provides
superior downside protection, which is critical as an investor approaches retirement. In this
context, real assets, such as private equity, real estate, infrastructure, and private debt, are
essential components. These asset classes offer benefits that are particularly valuable for
long-term investors, including unique return drivers, inflation hedging, and an illiquidity
premium (Amenc et al., 2009). Their performance is often tied to long-term contractual
cash flows, operational improvements, or specific economic activities, such as rental income
or toll road usage, rather than the daily sentiment of public markets. This provides a pow-
erful diversifying effect. Many real assets, particularly infrastructure and real estate, have
revenue streams that are explicitly linked to inflation. This provides a natural hedge that
preserves the purchasing power of the portfolio over time. Since these assets are not as easily
bought or sold as public stocks, investors typically receive higher expected returns. Savers

10This key result has been documented repeatedly in the academic literature (Merton, 1971; Bruder et
al., 2012).
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with a time horizon of several decades can benefit from this illiquidity premium because they
do not need immediate access to their capital. Incorporating these assets into a portfolio en-
hances its efficiency, leading to better risk-adjusted returns. However, including these assets
introduces complexity. Our framework addresses the practical constraints that these assets
impose, including leverage limits, long-only requirements, and most importantly, liquidity
considerations. These considerations are critical in shaping the feasible set of allocations
and influencing the optimal glide path.

Inflation risk is another factor in retirement planning because inflation erodes the real
purchasing power of accumulated wealth. Over long investment horizons, even moderate
inflation can significantly reduce the value of retirement savings if portfolios are not ad-
equately protected. The seminal contribution of Brennan and Xia (2002) established the
foundation for dynamic asset allocation under inflation risk. Since then, their framework
has been extended to optimal investment problems in DC pension plans in several directions
(Munk et al., 2004; Munk and Sørensen, 2010; Han and Hung, 2012; Yao et al., 2013; Park
et al., 2023). The question of how best to manage inflation risk is also closely connected to
household portfolio choices such as housing decisions — whether to buy, rent, or invest — as
highlighted by Kraft and Munk (2011). Our model explicitly incorporates inflation dynam-
ics and inflation-sensitive assets. This allows us to decompose the optimal portfolio into two
components: a performance portfolio that seeks long-term returns and a liability-hedging
portfolio (LHP) that protects against inflation risk. This structure aligns DC investment
strategies with the liability-driven investment (LDI) principles traditionally applied in DB
pension schemes. It ensures that portfolios are managed to grow not only nominal wealth,
but also to preserve real purchasing power over time. A key challenge lies in calibrating
the LHP. Early foundational work by Fama and Schwert (1977) documented the complex
relationship between inflation and asset returns. They showed that inflation can have sig-
nificant and sometimes adverse effects on real returns, particularly for nominal bonds and
equities. This motivates the inclusion of alternative inflation-sensitive assets, such as trea-
sury inflation-protected securities, as well as real assets like real estate, infrastructure, and
commodities (Brière and Signori, 2012). However, reliably aligning portfolio returns with
changes in the cost of living remains challenging. This highlights the importance of carefully
incorporating these assets into retirement portfolios to safeguard nominal balances and real
wealth over the long term.

This paper is structured as follows. Section Two provides background on the modeling
of glide path strategies. We extend the classical Merton model by incorporating future
contributions, introduce the concept of the human-to-financial capital ratio, and analyze
the properties of the optimal dynamic allocation. We then derive analytical formulas for
the glide path and wealth dynamics, discuss the convexity/concavity of the glide path, and
illustrate dynamic asset allocation in a setting that combines public and private assets.
Section Three extends the baseline model to multiple asset classes. We show that in the
absence of allocation constraints, the analytical solution can be derived using a one-stage
approach, and we compare this to the two-stage solution from the baseline model. We then
derive the optimal allocation under allocation constraints and demonstrate how it can be
obtained using Howard’s policy-iteration algorithm. This section also includes an empirical
application, where we simulate an optimal glide path for an investor in the Eurozone. Section
Four addresses inflation risk. We solve a simplified model with two assets — both correlated
with inflation volatility, but only one with a risk premium linked to the inflation level —
and derive analytical solutions for several cases. We further provide examples and empirical
evidence to illustrate how the liability-hedging portfolio affects dynamic allocation. Finally,
Section Five concludes with closing remarks.
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2 Baseline modeling of glide path strategy

2.1 Theoretical Model

We follow the framework introduced by Merton (1969) and the extension proposed by Bruder
et al. (2012), which incorporates stochastic permanent contributions. We consider a dynamic
asset allocation problem in which an individual invests in a risky asset St and a risk-free
zero-coupon bond Bt, while making regular contributions ct to a target date strategy. The
investor’s wealth process Xt evolves according to the following stochastic differential equa-
tion:

dXt

Xt
= αt

dSt
St

+ (1− αt)
dBt
Bt

+
ct
Xt

dt

where αt is the proportion of wealth invested in the risky asset at time t and ct is the
contribution flow at time t, typically originating from savings. Moreover, we have the
following standard dynamics for St and Bt: dSt = µtSt dt + σtSt dWt where µt is the
expected return and σt is the volatility of the risky asset, and dBt = rtBt dt where rt is
the short-term interest rate. The investor aims to maximize the expected utility of terminal
wealth:

α?t = arg max Et
[
U (XT )

]
2.1.1 The no-contribution case

We first consider the case of no contributions: ct = 0. The model reduces then to the
classical framework of Merton (1969, 1971).

Optimal general solution Let J (t, x) be the value function associated with the in-
vestor’s problem:

J (t, x) = sup
α

Et
[
U (XT ) | Xt = x

]
By defining the Hamiltonian function as follows:

H (t, x, α) =
(
αµtx+ (1− α) rtx

) ∂J (t, x)

∂x
+

1

2
α2σ2

t x
2 ∂

2J (t, x)

∂x2
(1)

the function J (t, x) satisfies the Hamilton-Jacobi-Bellman (HJB) equation:

∂J (t, x)

∂t
+ max

αt
H (t, x, αt) = 0 (2)

with terminal condition:
J (T, x) = U (x) (3)

The first-order condition of the maximization of the Hamiltonian function is:

∂H (t, x, α)

∂α
= 0 ⇔ (µtx− rtx) ∂xJ (t, x) + ασ2

t x
2∂2
xJ (t, x) = 0

⇔ α?t = −µt − rt
σ2
t

· ∂xJ (t, x)

x∂2
xJ (t, x)

(4)

The optimal allocation α?t can then be expressed as the Sharpe ratio SRt = (µt − rt) /σt
divided by the product of the volatility σt and the Arrow-Pratt measure of relative risk
aversion R (t, x) = −x∂2

xJ (t, x) /∂xJ (t, x). Solving the system of equations (1–4) yields
the optimal value function and the optimal allocation strategy. While a closed-form solution
exists in the CRRA case, in general we use numerical methods and a finite difference scheme.
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Remark 1. When the value function is separable — J (t, x) = f (t)U (x) with f (T ) = 1,
the investor’s relative risk aversion is:

R (t, x) = −x∂
2
xJ (t, x)

∂xJ (t, x)
= −x∂

2
xU (x)

∂xU (x)

The optimal exposure is an increasing function of the Sharpe ratio of the risky asset, and
a decreasing function of both the asset’s volatility and the investor’s relative risk aversion.
This result aligns with the classical findings of the Markowitz mean-variance optimization
framework.

The CRRA case We now consider the case when the utility function corresponds to the
CRRA form:

U (x) =
xγ

γ

with γ ≤ 1. In Appendix A.2 on page 88, we show that:

α?t =
µt − rt

(1− γ)σ2
t

:= ᾱt (5)

and:

J (t, x) = exp

∫ T

t

(
γrs +

1

2

γ (µs − rs)2

(1− γ)σ2
s

)
ds

 · xγ
γ

(6)

The optimal strategy corresponds to a constant-mix allocation. In particular, when the
risk premium and the volatility of the risky asset are constant over time, then the optimal
proportion invested in the risky asset also remains constant.

The solution ᾱt arises from the classical Tobin-Markowitz mean-variance analysis. Con-
sidering an investment universe of n assets, we have:

w?t = arg max U (wt) = w>t (µt − rt)−
(1− γ)

2
w>t Σtwt

where wt is the vector of portfolio weights, U (wt) is the mean-variance utility function, µt
is the vector of expected returns and Σt is the covariance matrix of asset returns. Since the
first-order condition is ∂w U (wt) = (µt − rt)− (1− γ) Σtwt = 0n, we get:

w?t =
1

(1− γ)
Σ−1
t (µt − rt)

In the special case of a single risky asset, this reduces to:

w?t =
µt − rt

(1− γ)σ2
t

= ᾱt

Hence, ᾱt represents the optimal allocation to the tangency portfolio, while 1−ᾱt represents
the optimal allocation to the risk-free asset.

Remark 2. If the Markowitz optimization problem is written in quadratic programming
(QP) form:

w?t = arg min
1

2
w>t Σtwt − ϕw>t (µt − rt)

we have the following correspondence:

ϕ =
1

1− γ
∈ [0,∞)

While γ measures the relative risk aversion, ϕ measures the investor’s risk tolerance.
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2.1.2 The case with contributions

When we have contributions ct ≥ 0, Equations (1–4) are exactly the same but, with the
following change of variables11:

α̃t = αt
Xt

Xt +Ht

X̃t = Xt +Ht

Ht =
∫ T
t
e−

∫ s
t
ru ducs ds

J̃ (t, x̃) = J (t, x) = J (t, x̃−Ht)

For the CRRA utility function, the optimal allocation is:

α?t =
µt − rt

(1− γ)σ2
t

+
µt − rt

(1− γ)σ2
t x

∫ T

t

e−
∫ s
t
ru ducs ds (7)

while the optimal value function is:

J (t, x) = exp

∫ T

t

(
rsγ +

1

2

γ (µs − rs)2

(1− γ)σ2
s

)
ds

 ·
(
x+

∫ T
t
e−

∫ s
t
ru ducs ds

)γ
γ

(8)

We observe that the optimal allocation is composed of two components:

α?t = ᾱt +
ᾱt
x

∫ T

t

B (t, s) cs ds

where B (t, s) = exp
(
−
∫ s
t
ru du

)
is the discount factor or zero-coupon bond price between

times t and s. The first term corresponds to the classical Merton solution ᾱt while the
second term reflects the present value of the cumulative future contributions. Assuming

that ct ≥ 0, we deduce that
∫ T
t
B (t, s) cs ds ≥ 0. It follows that:

α?t ≥ ᾱt
This allocation strategy is adjusted upward to account for the investor’s future contribu-
tions12. This result was already established by Merton (1971) when he introduced the
concept of non-capital gain income:

“[...] one finds that, in computing the optimal decision rules, the individual
capitalizes the lifetime flow of wage income as the market (risk-free) rate of
interest and then treats the capitalized value of an addition to the current stock
of wealth” (Merton, 1971, Section 7, page 395).

In our model, capital gain income corresponds to the wealth generated by Xt, while the non-
capital gain income corresponds to the wealth generated by Ht. Let WS

t be the nominal
wealth invested in the risky asset. We have:

WS
t = α∗tXt = ᾱt (Xt +Ht) = ᾱtWt (9)

In Merton terminology, the interest rate is constant and Ht =
∫ T
t
e−r(s−t)cs ds represents the

“capitalization of the lifetime flow of contributions”. This interpretation remains consistent
with the constant-mix allocation solution if we generalize the investor’s wealth to include
not only current (spot) wealth but also the present value of future contributions. Typically,
these future contributions stem from the investor’s expected wage income. Hence, Ht can
be interpreted as human capital, which contributes to the investor’s total wealth.

11The different proofs are given in Appendix A.3 on page 88.
12Note that α?t decreases monotonically with time t. At maturity, the optimal allocation converges to the

baseline allocation: α?T = ᾱT .
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Table 5: Optimal exposure α?t in %

x
Contribution c0

0 100 1 000 10 000
1 000 34.6 51.1 199.2 1 681.0
2 000 34.6 42.8 116.9 857.8
5 000 34.6 37.9 67.5 363.9

10 000 34.6 36.2 51.1 199.2
50 000 34.6 34.9 37.9 67.5

To illustrate the impact of human capital, let us consider an example. We assume that
rt = 2%, µt = 6%, σt = 17%, and γ = −3.0. Table 5 shows the values of α?t when the initial
wealth Xt is equal to x, the contribution equals c0, and the investment horizon T − t is five
years. Without a contribution, the optimal strategy is the constant-mix strategy, allocating
34.6% to the risky asset and 65.4% to the risk-free asset, regardless of the initial wealth level.
However, when annual contributions are made, the value of α?t becomes more sensitive to the
initial wealth. For instance, if the contribution equals $100 and the initial wealth is $1 000,
then α?t = 51.1%. However, if the initial wealth is $50 000, then α?t = 34.9%. Therefore,
the impact is more significant for lower initial wealth levels. This effect stems from the
relative size of current wealth compared to the present value of future contributions. For
example, if c0 = $100, then the human capital Ht equals $476. If the annual contribution
increases to $10 000, Ht becomes $47 581. In this case, the investor has substantial future
wealth. However, if the initial wealth is only $1 000, the optimal allocation requires an
investment of 1 681% in the risky asset, which is highly leveraged. The investor’s total
wealth is Wt = $48 581. Applying the constant-mix strategy to this total wealth implies
that the investor should allocate 34.6% × 48 581 = $16 810 to the risky asset. Since the
investor only has $1 000 in current wealth, they must borrow $15 810, resulting in a leverage
ratio of 16.81. Table 6 presents the values of total wealth Wt and the amount WS

t invested
in the risky asset. Regardless of the values of x and c0, the ratio WS

t /Wt remains constant
at 34.6%, confirming the result derived in Equation (9).

Table 6: Total wealth and amount invested in the risky asset

x/c0
Total Wealth Wt Nominal exposure WS

t

0 100 1 000 10 000 0 100 1 000 10 000
1 000 1 000 1 476 5 758 48 581 346 511 1 992 16 810
2 000 2 000 2 476 6 758 49 581 692 857 2 338 17 156
5 000 5 000 5 476 9 758 52 581 1 730 1 895 3 377 18 194

10 000 10 000 10 476 14 758 57 581 3 460 3 625 5 107 19 924
50 000 50 000 50 476 54 758 97 581 17 301 17 466 18 947 33 765

Remark 3. We observe that when both initial wealth x and future contributions ct are
multiplied by the same factor, the optimal exposure α?t remains unchanged. This suggests
that the results can be normalized because they depend only on the relative ratio between future
contributions and current wealth. For example, Table 5 shows that the optimal exposure is
the same for x = $1 000 and ct = $100 as it is for x = $10 000 and ct = $1 000. Therefore,
without loss of generality, we can normalize x to 1.

The specification of the contribution function plays a significant role in determining risk
exposure. In Appendix A.5 on page 91, we consider a quadratic convex function defined as:

ct = c0 + bct+ act
2
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and we explain how to calibrate the parameters (c0, bc, ac). This specification allows us to
represent different scenarios.

• A special case is the constant contribution function: ct = c0. In this case, the individ-
ual invests a fixed nominal amount of their salary each month into their pension plan.
However, this is not very realistic since salaries typically increase with age. Young
individuals tend to save less than older individuals.

• Another case is a linear contribution function: ct = c0 + bct. Here, contributions
increase with age, which is more realistic. However, this model still omits an impor-
tant stylized fact: savings do not increase indefinitely. In practice, older individuals
may reduce their savings due to health issues or unemployment risks. Therefore, the
maximum contribution may occur before retirement age T .

• This behavior can be captured using a quadratic contribution function — ct = c0 +
bct+act

2 — with a negative coefficient ac, which ensures the function has a maximum.
In this case, the maximum contribution is reached at:

tmax = − bc
2ac

and the corresponding maximum contribution level is:

cmax = c0 −
b2c

4ac

Let us illustrate the impact of the spot contribution ct on the forward contribution Ht with
an example. We assume that the initial contribution of an individual at age 20 is equal to
c (20) = 1, and that the maximum contribution of 2.50 is reached at age 50. Based on these
assumptions, we obtain the following calibrated functions:

Function Expression
Constant ct = 1.75
Linear ct = 0.5× t
Quadratic ct = −1.667 + 0.167× t− 1.667× 10−3 × t2
Quadratic #2 ct = −6.875 + 0.375× t− 3.75× 10−3 × t2

These functions are illustrated in Figure 4. The convexity of the quadratic function plays an
important role. For instance, consider the same maximum contribution point (age 50) with
a new initial point: c (30) = 1. This leads to the curve labeled Quadratic #2. We observe
that the function is symmetric around tmax = 50 years. To achieve an asymmetric convex
shape, a polynomial of degree higher than two would be required. Next, we compute the
forward contribution Ht, assuming an interest rate rt = 2%, and plot the results in Figure 5.
We see that Ht is decreasing in the constant case, while it is increasing and then decreasing
in the other cases13. At first glance, this may seem counterintuitive, especially when the
spot contribution ct is strictly positive. However, the forward contribution Ht reflects time
preference, and the discount rate can have a significant impact. This explains why, in the
linear case of ct, Ht increases up to age 30 and decreases thereafter.

13In Appendix A.6 on page 93, we derive the time at which Ht reaches its maximum. The exact solutions
are 29.94 years for the linear case, 25.63 years for the quadratic case, and 32.31 years for the quadratic #2
case.
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Figure 4: Spot contribution function ct
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Figure 5: Forward contribution function Ht (human capital)
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2.1.3 Properties of the optimal exposure α?t

We recall that the optimal exposure is given by:

α?t =
µt − rt

(1− γ)σ2
t

(
1 +

Ht

Xt

)
=

SRt

(1− γ)σt

(
1 +

Ht

Xt

)
We deduce the following properties:

• α?t is an increasing function of the risk premium µt and the Sharpe ratio SRt. In other
words, an individual will allocate more to a risky asset if it offers a higher excess return
relative to its risk.

• α?t is a decreasing function of volatility σt. Risky assets with higher volatility are
penalized in the allocation strategy.

• α?t decreases as risk aversion increases (i.e., it increases with the coefficient γ). A more
risk-tolerant individual will have a higher exposure to risky assets.

• α?t is inversely related to current financial wealth Xt. An individual with lower current
wealth will allocate a higher proportion of their wealth to risky assets.

• α?t increases with expected future contributions Ht. Individuals who anticipate higher
future income or contributions will have a higher exposure.

In fact, the last two properties can be unified, since the optimal exposure depends on the
ratio Ht/Xt rather than the individual absolute values of Ht and Xt. Notably, Ht reflects
expectations about future wealth. For example, consider an individual who has just finished
school and currently earns a low salary. If he anticipates a significant increase in earnings
due to his high level of education, we can expect a large future contribution relative to his
current wealth. In this context, the ratio Ht/Xt can be interpreted in multiple ways:

Ht

Xt
=

Forward wealth

Current wealth
=

Human capital

Financial capital
:= HFCRt

This ratio highlights the individual’s balance between human capital (expected future earn-
ings) and financial capital (current accumulated wealth). This ratio is generally called the
human-to-financial capital ratio (HFCR).

Incorporating human capital fundamentally alters an individual’s perception of risk.
Since human capital serves as a buffer against financial risk, individuals can afford to take
on more financial risk in the present. In this context, the optimal allocation can be rewritten
in the form of the traditional Merton-Markowitz solution:

α?t =
µt − rt

(1− γ̄t)σ2
t

where the adjusted relative risk aversion γ̄t accounts for human capital and is defined as
follows:

γ̄t =
γ

1 + HFCRt
+

HFCRt

1 + HFCRt

As the HFCR becomes large (i.e., human capital dominates financial capital), the adjusted
relative risk aversion γ̄t tends toward 1:

lim
HFCRt→∞

γ̄t = 1⇒ ϕ→∞
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In practical terms, individuals with a high HFCR exhibit nearly infinite risk tolerance.
This is because human capital acts as a cushion against financial losses. When future
earnings are expected to be substantial relative to current financial wealth, individuals are
more comfortable taking on risky investments today, knowing that future income will help
compensate for potential short-term losses. In essence, the presence of significant human
capital plays a role similar to a risk-free asset. It provides stability and predictability in
overall wealth, even if financial assets fluctuate.

Figure 6: Relationship between optimal exposure and human-to-financial capital ratio
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Remark 4. Let us consider an example with SRt = 0.30, σt = 20%, rt = 2% and γ = −3.
The resulting optimal allocation is illustrated in Figure 6. When HFCRt exceeds a certain
threshold HFCR?

t = (1− γ)σt/ SRt−1, individuals begin to use leverage. While this solution
is theoretically optimal, it may not be practical due to real-world frictions such as transaction
costs, borrowing constraints, and regulatory limits on leverage. Nevertheless, this example
demonstrates how expectations about future wealth, as captured by forward-looking human
capital, significantly influence present-day risk aversion and investment behavior.

In this context, we observe that the adjusted relative risk aversion γ̄t becomes dynamic.
Unlike in the classical Merton framework, where risk aversion remains constant over time, the
inclusion of human capital introduces variability over time. As individuals progress through
their life cycle, their HFCR evolves. For example, young individuals usually have more
human capital than financial capital, resulting in lower effective risk aversion. Over time, as
they accumulate financial wealth and their expected lifetime earnings decrease, their HFCR
declines and their implied risk aversion increases. This shift leads to a natural lifecycle
investment strategy where exposure to risky assets decreases with age or career progression.
We illustrate this property in Figure 7. The parameters are set as follows: µt = 8%,
σt = 20%, rt = 2%, γ = −3, t0 = 20, T = 60, Xt0 = 1, and ct = 0.05. The first panel shows
the relationship between the wealth Xt and the optimal exposure α?t for three different values
of t. Since Ht = 0 when the current time t is the retirement date T , α?t is constant and equal
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Figure 7: Dynamics of the optimal exposure α?t
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Figure 8: Probability density function of the optimal exposure α?t
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to ᾱt = 37.5%, regardless of Xt. In contrast, when t = 20 years, the value of human capital
Ht is 1.38. In this case, we observe the decreasing behavior of α?t with respect to Xt, as
predicted by theory. The second panel shows the relationship between age t and α?t for three
values of financial wealth Xt. Since human capital Ht decreases over time — from 1.38 to 0,
we again observe a decreasing pattern in α?t as individuals approach retirement. Finally, the
third and fourth panel show three simulated paths of the state-control system (Xt, α

?
t ). Due

to the randomness introduced by the Brownian motion Wt, each simulation yields a distinct
trajectory. Despite this variability, a clear trend emerges: Wealth Xt tends to increase
over time, while optimal exposure α?t tends to decrease, reflecting the empirical lifecycle
pattern in which individuals reduce their exposure to risky assets as they age. However, it
is important to note that the path of α?t is not deterministic. Because of the uncertainty in
the performance of the risky asset, which is captured by the stochastic component Wt, the
optimal exposure α?t is a random variable for all t ∈ (t0, T ). There are only two exceptions:

• At the initial date t0, when the current wealth Xt0 is known with certainty;

• At the retirement date T , when human capital HT is supposed to be known with
certainty and equals zero.

Between these two dates t0 and T , α?t evolves stochastically. Figure 8 illustrates this by
showing the probability density function of α?t for four selected time points t. In Figure 9,
we verify that the Standard deviation of the optimal exposure α?t is zero at the current date,
increases sharply during the first five years, and then gradually decreases until it reaches
again zero at retirement. Interestingly, a higher volatility of the risky asset does not lead
to an increase in σ (α?t ). Rather, it results in a lower standard deviation. This occurs
because greater volatility reduces the overall level of optimal exposure, thereby dampening
its variability.

Figure 9: Standard deviation of the optimal exposure α?t
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2.1.4 Dynamics of the wealth Xt

The wealth follows a stochastic differential equation:

dXt =
(
(rt + ηt)Xt + ηtHt + ct

)
dt+ ᾱtσt (Xt +Ht) dWt

where:

ηt =
SR2

t

(1− γ)

Xt can be simulated using numerical schemes such as Euler-Maruyama or Milstein14. To
characterize the dynamics of Xt, we analyse its expected wealth mt = E [Xt] and variance
υt = var (Xt). To gain intuition, we consider the case where all parameters are constant.
Under this assumption, we obtain15:

mt = e(r+η)(t−t0)

(
x0 +

∫ t

t0

e−(r+η)(s−t0) (ηHs + cs) ds

)
(10)

and:

υt = ᾱ2σ2

∫ t

t0

(ms +Hs)
2
e(2(r+η)+ᾱ2σ2)(t−s) ds (11)

The expected wealth mt is an increasing function of the initial wealth x0, the contribution
policy ct, the interest rate rt, the Sharpe ratio SRt and the risk aversion parameter γ.
Similar monotonicity properties hold for the variance process υt.

We consider again the same example: µt = 8%, σt = 20%, rt = 2%, γ = −3, and
Xt0 = 1. We assume that t0 = 20, and T = 60. Figure 10 illustrates the evolution of
expected wealth over age t for different contributions ct. Even modest contributions exhibit
a multiplicative effect on expected wealth growth. For a constant contribution function,
Equation (10) becomes:

mt = e(r+η)(t−t0)x0 +

((
e(r+η)(t−t0) − 1

)
− e−r(T−t0)

(
e(r+η)(t−t0) − er(t−t0)

)) c0

r

If we assume that x0 ≈ 0, we find that mt is proportional to the constant contribution level
c0:

mt = f (t)
c0

r

This homogeneity property is particularly important, as it shows that the expected wealth
scales linearly with the contribution level.

We now analyze the relationship between the Sharpe ratio SR and the expected terminal
wealth mT = E [XT ], which simplifies to:

mT = e(r+η)(T−t0)x0 +
(
e(r+η)(T−t0) − eη(T−t0)

) c0

r

As shown in Figure 11, this relationship exhibits strong log-concavity, as shown by the
following identity:

ln
(
mT | SR 6= 0

)
= SR2 (T − t0)

1− γ
+ ln

(
mT | SR = 0

)
This result is particularly significant, because it highlights that the performance of the
strategy scales linearly with the investment horizon (T − t0), but quadratically with respect
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Figure 10: Relationship between an individual’s age and their expected wealth
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Figure 11: Relationship between the Sharpe ratio of the risky asset and expected terminal
wealth
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to the Sharpe ratio. In other words, any improvement in the Sharpe ratio has a squared
effect on terminal wealth, as its impact is effectively doubled.

We now address the following question: What Sharpe ratio is required to achieve a
terminal wealth equal to β times the initial wealth? This inverse calibration problem can
be solved numerically by solving the equation mT = βx0. In fact, we can show that the
implied Sharpe ratio is given analytically by16:

SR? =

√
1− γ
T − t0

ln

(
β

λ

)
Figure 12 illustrates the calibration of SR? for the example discussed earlier. These results
confirm the leverage impact of the Sharpe ratio on the wealth.

Figure 12: Implied Sharpe ratio to target an expected terminal wealth
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Remark 5. Figure 12 shows that the variation of the implied Sharpe ratio SR? is signifi-
cantly smaller than the variation of the multiplier β. This notable property indicates that the
strategy greatly benefits from even small improvements in the Sharpe ratio. The underlying
reason is the convex relationship between the Sharpe ratio and terminal wealth. In fact, we
can demonstrate that:

∆ SR? ≈ 1

2
√

lnβ − lnλ

√
1− γ
T − t0

∆β

β

Thus, the absolute variation of the Sharpe ratio translates into the relative variation of
terminal wealth. In other words, modest gains in the Sharpe ratio have an amplified effect
on performance, especially in long-term strategies.

14See Appendix A.12 on page 100.
15General formulas are provided in Appendices A.7 and A.8 on pages 94 and 96, respectively.
16We have:

λ = er(T−t0)x0 +
(
er(T−t0) − 1

) c0

r
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Figure 13: 95% confidence interval of the wealth when ct = 0 (gaussian approximation)
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The variance process υt can be used to build a confidence interval for the wealth Xt. For
instance, the Gaussian confidence interval is given by:

CIα (Xt) =
[
mt − zα

√
υt,mt + zα

√
υt
]

where zα = Φ−1
(
(1 + α) /2

)
. Figure 13 shows the 95% confidence interval of Xt when

ct = 0. However, the issue is that Xt is far from Gaussian. In fact, it inherits the log-
normal property of the geometric Brownian motion St. Figure 14 represents the probability
density function of XT . If we assume that Xt ∼ LN

(
µ̃t, σ̃

2
t

)
, we must have: mt = exp

(
µ̃t +

1

2
σ̃2
t

)
υt = exp

(
2µ̃t + σ̃2

t

) (
exp

(
σ̃2
t

)
− 1
)

The solution is: 
µ̃t = 2 lnmt −

1

2
ln
(
υt +m2

t

)
σ̃2
t = ln

(
υt +m2

t

m2
t

)
In Figure 14, we also show the fitted log-normal distribution of XT , verifying that the true
and calibrated density functions are very close. Therefore, it is more appropriate to consider
a log-normal confidence interval:

CIα (Xt) =
[
exp (µ̃t − zασ̃t) , exp (µ̃t + zασ̃t)

]
Figure 15 shows the 95% log-normal confidence interval of Xt when ct = 0. This interval is
more realistic than the one shown in Figure 13.
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Figure 14: Probability density function of the terminal wealth
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Figure 15: 95% confidence interval of the wealth when ct = 0 (log-normal approximation)
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2.2 Definition of the glide path gt

The glide path refers to the dynamic asset allocation strategy used by target date funds.
In theory, the glide path aligns with the optimal dynamic exposure {α∗t , t ≤ T}. However,
it is important to note that the allocation at each point in time depends on the path of
the investor’s wealth, which is influenced by the allocation itself. This feedback loop makes
both the optimal exposure and the wealth process endogenous: Xt −→ α∗t −→ dXt −→
Xt+dt. As a result, there is not a single deterministic glide path, but rather a multitude
of potential paths, as illustrated by the Monte Carlo simulations17 in Figure 16. From a
practical standpoint, implementing such personalized, path-dependent dynamic allocations
in a collective investment vehicles is infeasible. This is because the optimal exposure α∗t varies
across individuals, depending on factors such as risk preferences, contribution patterns, and
investment horizons.

Figure 16: Monte Carlo simulations of the glide path

2.2.1 Analytical expression and main properties

The glide path gt is the deterministic, dynamic asset allocation computed at the initial date
t0. It corresponds to the conditional expectation of the stochastic optimal exposure α?t with
respect to the filtration Ft0 :

gt = E
[
α?t | Ft0

]
=

µt − rt
(1− γ)σ2

t

1 +HtE

[
1

Xt

∣∣∣∣Ft0
] (12)

17We continue to use the same example: µt = 8%, σt = 20%, rt = 2%, γ = −3, Xt0 = 1, t0 = 20, T = 60,
and ct = 0.04.
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In Bruder et al. (2012), the expectation of 1/Xt is approximated using the inverse of the
expected wealth:

E

[
1

Xt

∣∣∣∣Ft0
]
≈ 1

E
[
Xt| Ft0

] =
1

mt

which leads to the approximate formula:

gt ≈
µt − rt

(1− γ)σ2
t

(
1 +

Ht

mt

)
(13)

This approximation can be refined by applying Jensen’s inequality. As shown in Appendix
A.10 on page 98, a second-order correction gives:

E

[
1

Xt

∣∣∣∣Ft0
]
≈ 1

mt
+

υt
m3
t

We deduce that:

gt ≈
µt − rt

(1− γ)σ2
t

(
1 +

Ht

mt
+
Htυt
m3
t

)
(14)

If we assume that Xt ∼ LN
(
µ̃t, σ̃

2
t

)
, we can compute the exact conditional expectation:

E

[
1

Xt

∣∣∣∣Ft0
]

= exp

(
−µ̃t +

1

2
σ̃2
t

)

= exp

−2 lnmt +
1

2
ln
(
υt +m2

t

)
+

1

2
ln

(
υt +m2

t

m2
t

)
= exp

(
−3 lnmt + ln

(
υt +m2

t

))
=

υt +m2
t

m3
t

Therefore, Equation (12) becomes:

gt =
µt − rt

(1− γ)σ2
t

(
1 +Ht exp

(
−µ̃t +

1

2
σ̃2
t

))

=
µt − rt

(1− γ)σ2
t

1 +Ht

(
υt +m2

t

m3
t

) (15)

Thus, Equations (14) and (15) are mathematically equivalent18.

If we denote by g−t and g+
t the approximations of the glide path given in Equations 13 and

14, respectively, we have g−t < g+
t because υt ≥ 0. Figure 17 shows the true glide path gt,

along with the two approximations g−t and g+
t . We observe that g−t ≤ gt and gt ≈ g+

t . This
inequality holds because, by analyzing the Taylor expansion underlying Jensen’s inequality,
we can show that g−t provides a lower bound, due to the fact that the variance and skewness
of the wealth are always positive. In practice, the second-order approximation is generally

18See Appendix A.11 on page 99 for a formal proof demonstrating the equivalence between the Jensen-
corrected glide path and the exact formulation under a log-normal wealth assumption.
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Figure 17: Exact computation and approximation of the glide path
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sufficient for estimating the glide path, and incorporating skewness does not significantly
improve the accuracy.

The glide path gt inherits key properties from the optimal allocation α?t . As discussed in
Bruder et al. (2012), it is useful to categorize the model parameters into two main families:

• Parameters related to financial assets

• Parameters related to the individual or investor

These two types of parameters influence the design of the investment strategy in fundamen-
tally different ways. Parameters related to financial assets, such as the expected return or
volatility of the risky asset, are typically associated with the portfolio manager’s decisions.
In the context of a target date fund, for instance, the manager is mandated to adjust the
asset allocation based on short- or long-term market views. In this sense, asset-related pa-
rameters are somewhat endogenous, as they can vary across portfolio managers and target
date funds. Conversely, individual-related parameters, such as the investor’s risk aversion,
retirement date, age, and current or projected wealth, are more exogenous. These factors
are intrinsic to the investor and do not depend on the portfolio manager. These factors help
shape the target date fund market and explain why such funds are typically structured by
generation and risk profile.

2.2.2 Shape of the glide path

Until now, we have assumed that the optimal exposure α?t is unconstrained. This results in
a convex glide path, as shown in Figure 18. However, this hypothesis is not realistic since
individuals cannot borrow to invest and be leveraged, implying α?t ∈ [0, 1]. The constrained
glide path is therefore defined by the conditional expectation:

gct = E
[
α?t | α?t ∈ [0, 1]

]
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Figure 18: Constrained vs. unconstrained glide path
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Figure 19: Approximation of the constrained glide path
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The value of gct can be estimated using Monte Carlo simulations. In Figure 18, we com-
pare the unconstrained glide path gt with the constrained glide path gct . As expected, the
difference is more pronounced when individuals are young, due to higher forward wealth19.
The shape of gct is also sensitive to the relative risk aversion γ, as shown in Figure 18. A
practical approximation of the constrained glide path is:

gct ≈ g̃t := min

(
µt − rt

(1− γ)σ2
t

(
1 +

Ht

mt
+
Htvt
m3
t

)
, 1

)

The comparison between gct and g̃t is provided in Figure 19.

If all parameters in Equation (7) are held constant, the glide path gt is convex in t.
However, in practice, the glide paths implemented by asset managers are usually concave.
This raises the question of what factors lead to a concave glide path. One key factor is
time-varying risk preferences, specifically a changing coefficient of relative risk aversion. In
reality, an individual’s risk tolerance evolves over time. At the initial date t0, an investor
may be relatively risk-tolerant, implying a small negative value for γt. As the retirement date
T approaches, however, the same investor typically becomes more risk-averse, leading to a
significant decrease of γt. Since the optimal portfolio exposure α?t is calibrated to the current
value of γt, any change in risk aversion makes the original allocation suboptimal. This leads
to a form of time inconsistency, where the optimal decision at one time is no longer optimal
at a future date. These types of problems fall within the framework of time-inconsistent
stochastic control. Following the foundational idea of Strotz (1955) and its continuous-time
formulation by Ekeland and Lazrak (2008), we model the investor as a continuum of selves,
one for each instant t, each controlling the portfolio over the infinitesimal interval [t, t+ dt].
We assume a no-commitment setting, meaning the investor can revise their plan at any
future time. In this framework, the appropriate solution concept is a subgame-perfect Nash
equilibrium rather than the standard Bellman optimality principle. Björk et al. (2017) derive
the associated equilibrium HJB equations for such time-inconsistent problems. They show
that, for a CRRA utility function with a time-varying coefficient γt, the optimal exposure
still admits a closed-form solution:

α?t =
µt − rt

(1− γt)σ2
t

(
1 +

Ht

Xt

)
This expression mirrors the earlier solution derived under constant risk aversion. The main
difference is that the constant γ has been replaced by the time-varying function γt.

To illustrate the impact of time-varying risk aversion, we consider the following functional
form for γt:

γt = γ0 + (γT − γ0)

(
ek(t−t0) − 1

ek(T−t0) − 1

)
where γ0 > γT . This function provides a smooth interpolation between γ0 at time t0 and
γT at the retirement date T , with the curvature governed by the parameter k. It exhibits
the following limiting cases:

γt =


γ0 if k → +∞

γ0 + (γT − γ0)

(
t− t0
T − t0

)
if k → 0

γT if k → −∞
19We continue to use the same numerical example, but with a lower volatility — σt = 15% — and a higher

contribution — ct = 0.10.
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Figure 20: Time-varying risk aversion γt: concave vs. convex profiles
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Figure 21: Effect of the curvature parameter k on the convexity of the glide path gt
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Moreover, it can be shown that γt is concave when k > 0 and convex when k < 0. In Figure
20, we set γ0 = −2 and γT = −4, and plot the function γt for three values of k: 0.05, −0.05,
and −∞. The case k = 0.05 corresponds to a concave risk aversion profile, while k = −0.05
yields a convex profile. Using these three specifications for γt we compare the resulting glide
paths20. As expected, we observe the following ordering:

gt (γt = −4) ≤ gt (k = 0.05) ≤ gt (k = −0.05)

This illustrates that, while the glide path gt is convex in t when relative risk aversion is
constant or convex, it becomes concave when γt itself is concave. The degree of concavity of
the glide path increases with the curvature of the risk aversion profile, i.e., with increasing
values of k (Figure 21).

Figure 22: Impact of the contribution ct on the convexity of the glide path gt
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The shape of the risk aversion function is not the only factor that can result in a concave
glide path. A similar effect can be achieved by assuming that the contribution ct is an
increasing function of time. This behavior reflects the psychology of real-world investors.
Young people tend to have less wealth and generally don’t worry much about planning for
retirement. However, as retirement approaches, they become more aware of the need to
save and increase their contributions. In such cases, it can be shown that the accumulated
future contribution Ht becomes a concave function. The curvature of the glide path is then

primarily driven by the second derivative of the ratio Ht/mt: curvature (gt) ∝ ∂2
t

(
Ht

mt

)
.

Figure 22 illustrates this relationship under the assumption that the relative risk aversion
γt is time-varying and concave, with a shape parameter k = 0.05. However, it is important
to note that concavity in the glide path gt also arises when the time-varying risk aversion
function γt is convex.

20We use the following example: µt = 8%, σt = 15%, rt = 2%, Xt0 = 1, t0 = 20, T = 60, and ct = 0.10.
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To summarize, the glide path gt is theoretically convex when all model parameters are
held constant. In practice, however, it becomes concave due to three key factors that reflect
real-world constraints and investor behavior:

1. Leverage constraints — Individuals cannot borrow or use leverage, imposing a bound
on exposure (α?t ∈ [0, 1])
This constraint fundamentally alters the shape of the glide path, especially for younger
investors. In an unconstrained theoretical scenario, optimal exposure could exceed
100%, resulting in a convex path in which young investors would hold leveraged posi-
tions in risky assets. However, regulatory restrictions and practical limitations prevent
retail investors from borrowing to invest. This constraint is most significant at the be-
ginning of the investment horizon, when human capital is relatively high compared to
financial wealth and an unconstrained optimal allocation would suggest extreme lever-
age. Consequently, the constrained glide path gct has reduced curvature compared to
the theoretical optimum, providing a more moderate and feasible allocation strategy,
particularly at early stages of the life cycle.

2. Time-varying risk aversion — Risk aversion tends to vary over time and often follows
a concave profile (k > 0)
This may be the model’s most psychologically realistic feature. Young investors typ-
ically exhibit lower risk aversion because they have longer investment horizons, more
human capital, and different life priorities. However, as retirement approaches, in-
vestors naturally become more conservative, seeking to preserve their accumulated
wealth rather than maximize growth. The concave profile (k > 0) realistically cap-
tures this accelerating shift in risk preferences. This behavioral evolution counteracts
theoretical convexity because the denominator (1− γt) in the optimal allocation for-
mula changes more rapidly in later years, reducing equity exposure more aggressively
as retirement approaches.

3. Increasing contribution patterns — Contribution rates typically increase with age,
which induces concavity in Ht

This factor reflects the typical career progression in which earnings — and consequently
retirement contributions — increase over time due to promotions, salary growth, and a
greater awareness of retirement needs. As contributions grow, the accumulated future
contributions Ht become a concave function of time21. Since the glide path’s curvature
is proportional to ∂2

t

(
Ht/mt

)
, additional concavity is created in the allocation path.

Economically, this makes sense. As future contributions grow larger relative to current
wealth, the insurance value of these contributions justifies holding riskier assets early
in one’s career. However, this effect diminishes as retirement approaches and future
contribution streams shorten.

Taken together, these factors reflect institutional constraints and behavioral tendencies.
They explain why the glide paths implemented by asset managers tend to be concave.
Initially, these paths prioritize high equity exposure, shifting cautiously toward safer assets
as retirement approaches. The concave structure more closely aligns with observed investor
behavior and the practical constraints of financial markets than the theoretically convex
solution.

21This also challenges the simplistic interpretation of Ht as human capital, which typically increases over
time. A more accurate view considers Ht as the discounted sum of future contributions, which can have a
concave shape depending on the trajectory of contributions.
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2.3 Empirical results

2.3.1 Comparison with constant-mix strategies

In the constant-mix strategy CMα/1−α, the individual allocates a fixed proportion α of their
wealth to stocks and the remaining 1−α to bonds. Therefore, the investor’s wealth process
Xt evolves according to the following stochastic differential equation:

dXt

Xt
= α

dSt
St

+ (1− α)
dBt
Bt

+
ct
Xt

dt

We assume that µt = 8%, σt = 20%, rt = 2%, Xt0 = 1, t0 = 20, T = 60, and ct = 0.10.
We evaluate three constant-mix strategies: CM0/100 which is fully invested in bonds (no
exposure to equities), CM60/40 with 60% in stocks and 40% in bonds, and CM100/0 which
is fully invested in stocks. These are compared against three glide path strategies, each
defined by a different time-varying relative risk aversion profile: GP1 with γt = −4, GP2

with γt0 = −2, γT = −4, and k = 0.05, and GP3 with γt = −1.

Table 7: Comparison of the terminal wealth XT (µt = 8%, SRt = 0.30)

Strategy E [XT ]
Quantile Q (XT , p) Hit ratio

5% 10% 25% 50% 75% 90% R = 2% R = 4%
CM0/100 8.4 8.4
CM60/40 24.3 7.7 9.4 13.3 19.9 30.1 44.2 93.2% 69.0%
CM100/0 53.7 6.0 8.4 15.0 29.5 60.3 117.3 90.0% 75.4%
GP1 17.1 8.5 9.8 12.3 15.9 20.6 25.9 95.4% 57.4%
GP2 21.6 8.2 9.8 13.3 18.8 26.7 36.5 94.6% 68.0%
GP3 40.8 6.8 9.1 15.3 27.4 49.8 85.4 91.8% 76.2%

Table 8: Comparison of the terminal wealth (µt = 4%, SRt = 0.10)

Strategy E [XT ]
Quantile Q (XT , p) Hit ratio

5% 10% 25% 50% 75% 90% R = 2% R = 3%
CM0/100 8.4 8.4
CM60/40 11.7 4.1 5.0 6.8 9.8 14.4 20.5 61.6% 41.5%
CM100/0 14.8 2.4 3.1 5.1 9.0 17.0 30.8 53.5% 41.2%
GP1 9.0 7.3 7.6 8.2 9.0 9.8 10.6 71.5% 4.9%
GP2 9.3 6.9 7.3 8.2 9.2 10.4 11.5 70.2% 14.8%
GP3 10.2 5.7 6.5 7.8 9.7 12.0 14.5 68.0% 34.2%

Results are given in Table 7. The pure equity strategy CM100/0 yields the highest ex-
pected terminal wealth ($53.7), followed by the glide path strategy GP3 and the balanced
constant-mix strategy CM60/40. GP3 notably outperforms CM60/40 in terms of average ter-
minal wealth, highlighting the advantages of dynamically adjusting risk exposure over time.
Glide path strategies offer superior downside protection. For instance, the 5% quantile of
terminal wealth for GP1 is $8.5, which is significantly higher than the $7.7 quantile for
the constant-mix strategy CM60/40. Even the conservative glide path GP1 exhibits strong
performance in the lower tail of the distribution. While CM100/0 achieves the highest 90%
quantile ($117.3), it does so at the cost of much greater dispersion in outcomes. In contrast,
glide path strategies deliver more stable results by reducing extreme outcomes, sacrificing
some upside potential in exchange for enhanced stability and predictability. All glide path
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strategies have hit ratios22 above 92%, indicating a greater likelihood of outperforming the
risk-free benchmark. This makes them particularly attractive from a pension adequacy and
risk management perspective. Table 8 presents results with a lower Sharpe ratio scenario
(SRt = 0.10), simulating a less favorable market environment. As expected, all strate-
gies generate lower terminal wealth compared to the high Sharpe ratio case. However, the
relative advantage of glide path strategies becomes more pronounced. These strategies pro-
vide better downside protection and higher hit ratios than their constant-mix counterparts.
While constant-mix strategies may outperform glide paths on average during strong market
conditions, they are also more vulnerable to downside risk. Glide path strategies, by grad-
ually reducing risk exposure as retirement approaches, better align with behavioral pattern
and real-world investment constraints. Consequently, they tend to deliver more consistent
outcomes and increase the probability of meeting long-term retirement goals.

Table 9: Comparison of average risky exposure

Strategy µt = 8% µt = 4%
CM60/40 60.0% 60.0%
GP1 46.3% 16.5%
GP2 60.3% 23.9%
GP3 90.0% 41.4%

Remark 6. The previous comparison is not entirely fair because the average exposure of
each glide path strategy to risky assets depends on its specifications and parameter values.
For example, when µt = 8%, the average exposure of strategy GP2 to risky assets is similar to
the exposure of the 60/40 constant-mix strategy (Table 9). However, when µt = 4%, none of
the glide path strategies have an average exposure close to the 60/40 benchmark. Therefore,
direct comparisons between constant-mix and glide path strategies are difficult because their
risk profiles do not align.

2.3.2 Comparison with industry solutions

In practice, the glide path is typically divided into several distinct phases that correspond to
different stages of an investor’s journey toward retirement. Inspired by the FTSE Lifecycle
Screened Select Index, we can divide a 40-year accumulation period into four 10-year phases.

1. Stabilising phase
During the first decade of accumulation, the portfolio maintains a high equity alloca-
tion of 90%. This enables investors to benefit from long-term growth while they are
still far from retirement.

2. Early gradual de-risking
Over the next 10 years, the equity allocation is reduced by 1% per year, gradually
shifting into less volatile assets as investors approach mid-career milestones.

3. Mid-term gradual de-risking
During the third decade, de-risking accelerates, reducing equity exposure by 2% an-
nually. This reflects the growing importance of capital preservation as retirement
approaches.

22The hit ratio measures the probability that the strategy outperforms a risk-free investment with an
annualized return of R. For example, if R = rt = 2%, the hit ratio represents the probability that the
strategy delivers a higher return than the risk-free bond.
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Figure 23: Phases of a target date fund
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4. Late rapid de-risking
In the final 10 years before retirement, the equity allocation declines linearly from its
level at T − 10 to 0% at the target retirement date. By that time, the portfolio has
fully transitioned to low-risk, income-oriented assets.

This approach balances the need for long-term growth with prudent risk management. It
begins with a high equity allocation and gradually shifts toward capital protection as the
target date approaches. The corresponding risky asset exposure αt is shown in Figure 24.
Based on this, we calibrate the implied relative risk aversion using the formula:

γt = 1− µt − rt
αtσ2

t

(16)

We then estimate the functional form of γt, yielding the approximation23:

γt ≈ −1− 1.01× 10−7 × e0.5(t−20) (17)

We refer to this as the Merton solution. Figure 24 compares the industry glide path to
the Merton solution in terms of both risky asset allocation αt and aversion risk γt. The
two approaches align closely, except between years 30 and 50, where the industry method
reduces risky exposure more aggressively than the Merton-derived solution.

Table 10: Winning Probability of Merton Solutions vs. Industry Solution

µt
SRt = 0.10 SRt = 0.20 SRt = 0.30

γ
(1)
t γ

(2)
t γ

(3)
t γ

(1)
t γ

(2)
t γ

(3)
t γ

(1)
t γ

(2)
t γ

(3)
t

4% 51.0 48.6 51.7 78.7 74.1 72.7 92.1 89.3 87.5
5% 41.2 55.4 57.5 74.7 74.3 70.7 90.8 87.4 85.4
6% 32.2 62.0 63.7 70.4 37.7 58.5 89.2 84.8 83.0
7% 25.1 68.3 69.8 65.8 38.2 51.1 87.4 82.6 81.7
8% 20.2 73.9 75.2 60.7 40.8 49.9 85.5 83.6 80.3

To evaluate the performance of each approach, we simulate a competition between the
industry solution and the Merton solution by computing the probability that the Merton
solution yields higher terminal wealth. The simulation uses the following assumptions:
rt = 2%, Xt0 = 1, t0 = 20, T = 60, and ct = 0.10. We explore a range of expected
returns µt, and compute the volatility σt based on a given Sharpe ratio SRt. Table 10
shows the probability that the Merton strategy outperforms the industry strategy across
different Sharpe ratios. Three versions of the Merton solution are considered, which are dis-

tinguished by their specification of γt. γ
(1)
t corresponds to the implied relative risk aversion

23We have γ0 = −1, γT = −50, and k = 0.50.
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Figure 24: Industry solution vs. Merton solution

20 30 40 50 60
Age (in years)

0

20

40

60

80

100
,

t
(i
n

%
)

Risk asset exposure

20 30 40 50 60
Age (in years)

-8

-6

-4

-2

0

. t

Risk aversion

Industry solution

Merton solution

based directly on Equation (16), γ
(2)
t is the functional form given by Equation (17), and

γ
(3)
t is a equal to −1. Several insights emerge from the results. First, the probability of the

Merton solution outperforming the industry glide path increases with the Sharpe ratio be-
cause higher risk-adjusted returns enhance the effectiveness of dynamic allocation strategies.

Among the three specifications, the constant risk aversion case γ
(3)
t consistently performs

well, particularly for moderate to high values of µt, suggesting that simple allocation rules

can be effective in favorable market conditions. The implied aversion γ
(1)
t , although directly

calibrated from the industry glide path, often underperforms the other two specifications

— especially at higher Sharpe ratios. The functional form γ
(2)
t generally delivers strong

results, but it is somewhat unstable at intermediate Sharpe ratios (e.g., SRt = 0.20). These
differences underscore the critical role of the contribution rate ct in determining the optimal

exposure α?t . For example, when ct = 0, the strategy based on γ
(1)
t should, in theory, closely

align with the industry solution, resulting in a performance probability approaching 50%.

However, in practice, the Merton strategy using γ
(1)
t tends to outperform because it results

in higher effective risk exposure due to the wealth-contribution dynamics captured in the
Merton formula:

α?t =
(µt − rt)(

1− γ(1)
t

)
σ2
t

(
1 +

Ht

Xt

)
≥ (µt − rt)(

1− γ(1)
t

)
σ2
t

Here, the term
Ht

Xt
reflects the impact of future contributions relative to current wealth, am-

plifying the overall risk exposure compared to the industry allocation. Overall, the findings
suggest that Merton-based strategies can outperform traditional glide paths significantly,
provided the specification of risk aversion is well chosen. In many cases, a simple constant-
aversion profile offers a robust and practical alternative to more complex, time-varying
formulations.
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2.3.3 Dynamic asset allocation

To illustrate asset allocation dynamics along a typical glide path, we examine a seven asset-
class portfolio consisting of government bonds, investment-grade corporate bonds, public
equities, private equities, private debt, real estate, and infrastructure. The first three rep-
resent traditional liquid assets commonly used in strategic asset allocation (bonds, credit,
and stocks). The remaining four fall under the category of real (or private) assets, which
are being considered more and more in long-term investment strategies. Table 11 and 12
show the expected returns, volatilities, and correlations for each asset class over a 30-year
investment horizon. These values were simulated using the Amundi CASM model (Global
calibration, USD, as of June 2025).

Table 11: Expected return (%), volatility (%) and Sharpe ratio of asset classes (Global,
30-year time horizon)

Asset class µi σi SRi SRi /σi
Govt Bonds 4.25 4.12 0.21 5.01
IG Corp Bonds 5.16 5.46 0.32 5.90
Public Equity 7.46 16.63 0.24 1.47
Private Equity 10.75 20.11 0.37 1.82
Private Debt 7.94 10.10 0.45 4.45
Real Estate 7.35 11.68 0.34 2.90
Infrastructure 8.10 14.86 0.32 2.13

Source: Simulated with the Amundi CASM model (Global model, USD, June 2025), Amundi (2021).

Asset classes can be grouped based on their return characteristics. Private equity has
the highest expected return at 10.75%, followed by a group of real assets, including private
debt, real estate, and infrastructure, as well as public equity, with expected returns between
7% and 8%. Government and IG corporate bonds exhibit lower expected returns. In terms
of volatility, private equity is the most volatile asset class at 20.1%, followed by public equity
at 16.6%. The annual return of the risk-free asset (cash) is assumed to be 3.40%. Using
these figures, we calculate the Sharpe ratio, ranging from 0.21 for government bonds to 0.45
for private debt. As expected, real assets display higher Sharpe ratios due to the illiquidity
premium they carry.

Table 12: Correlation matrix in % (Global, 30-year time horizon)

Govt Bonds 100.0 60.5 −15.4 −21.0 −33.8 −18.7 40.0
IG Corp Bonds 60.5 100.0 50.6 37.7 24.4 2.9 46.6
Public Equity −15.4 50.6 100.0 79.8 59.6 37.5 29.2
Private Equity −21.0 37.7 79.8 100.0 66.6 54.4 26.4
Private Debt −33.8 24.4 59.6 66.6 100.0 45.7 10.1
Real Estate −18.7 2.9 37.5 54.4 45.7 100.0 26.3
Infrastructure 40.0 46.6 29.2 26.4 10.1 26.3 100.0

Source: Simulated with the Amundi CASM model (Global model, USD, June 2025), Amundi (2021).

The correlation matrix reveals several well-known facts. For example, the negative cor-
relation (-15.4%) between government bonds and public equities reflects their traditional
role as diversified assets. IG corporate bonds and equities are strongly positively correlated
(50.6%), indicating that credit and equity risks are partially intertwined. Private equity and
private debt are highly correlated (66.6%), as are public equity and private equity (79.8%).
Private debt is also highly correlated with public equities (59.6%) and investment-grade
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(IG) credit (24.4%). Real estate and infrastructure show moderate correlations with other
asset classes, contributing to the overall diversification potential. However, these correla-
tions depend on geographic region, investment horizon, and macroeconomic environment,
particularly prevailing monetary policy.

To determine the dynamic asset allocation along the glide path, we first compute the
efficient frontier using the Markowitz optimization framework:

w? (ϕ) = arg min
1

2
w>Σw − ϕw> (µ− r)

s.t.

{
1>nw = 1
w ≥ 0n

For each optimal portfolio, we calculate the expected return µ (w) = w>µ and the volatil-

ity σ (w) =
√
w>Σw. Results are shown in Figure 58 on page 116, which compares the

investment universe both with and without the inclusion of real assets. We observe that
incorporating real assets improves the Sharpe ratio of the mean-variance optimized port-
folios. The detailed portfolio compositions are illustrated in Figures 59 and 60 on page
117. When the investor’s risk tolerance ϕ is low, the portfolio predominantly consists of
sovereign bonds. When ϕ is high, however, the allocation shifts toward public equities. For
intermediate values of ϕ, the portfolio is a mix of corporate bonds and public equities. By
using the relationship between risk tolerance ϕ and relative risk aversion γ = 1 − ϕ−1, we
map the optimized portfolios w? (ϕ) into the corresponding portfolios w? (γ), and obtain
the resulting allocations in Figures 61 and 62 on page 118.

We use the function form of γt, which is calibrated to the industry solution24, and assume
that ct = 0. Figure 25 illustrates the change in risk portfolio allocations when comparing
strategies with and without real assets25. In both cases, the allocation shifts from riskier to
more conservative assets, consistent with lifecycle investment principles. However, including
real assets in the investment universe results in greater portfolio diversification, particularly
during the middle stages of life (ages 20–40). During this period, asset classes such as private
equity, private debt, real estate, and infrastructure are utilized more heavily, replacing some
exposure to traditional public equities. This expanded allocation can improve risk-adjusted
returns by spreading exposure across less correlated assets. In contrast, the glide path
without real assets relies more heavily on public equities and corporate bonds, resulting in a
less diversified and potentially more volatile investment strategy. As retirement approaches,
both strategies converge toward a conservative allocation dominated by government bonds.
Figure 26 presents a mixed glide path, where the optimal portfolio at each point in time is
a convex combination of the solutions with and without real assets:

w?mixed (γt) = (1− ω) · w?w/o (γt) + ω · w?w/ (γt)

where w?w/o (γt) and w?w/ (γt) denote the optimal portfolios without and with real assets,

respectively, γt is the time-varying risk aversion, and ω ∈ [0, 1] is the relative weight assigned
to the real asset-enhanced solution. An important advantage of this mixed approach is that it
provides a built-in mechanism to cap exposure to real assets. Specifically, the total allocation
to the set of real assets satisfies

∑
i∈Real Assets w

?
mixed,i (γt) ≤ ω. This constraint ensures

that exposure to real assets remains controlled, offering flexibility in portfolio construction
while preserving diversification benefits.

24γ0 is set to 1/3, γT is set to −50, and k is set to 0.05.
25We show the dynamical evolution of the vector of risky asset exposures at time t, i.e., $?t = α?tw

?
t .
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Figure 25: Optimal glide path with and without real assets (Global, 30-year time horizon)
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Figure 26: Mixed glide path (Global, 30-year time horizon, ω = 50%)
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Figure 27: Probability density function of the terminal gross wealth with and without real
assets
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As expected, the inclusion of real assets in the investment universe leads to superior
outcomes in terms of terminal wealth. Figure 27 presents the probability density functions
of terminal wealth XT under both strategies (with and without real assets), highlighting a
clear rightward shift when real assets are included26. The corresponding cumulative distri-
bution functions demonstrate second-order stochastic dominance of the real asset strategy,
confirming that it not only increases expected terminal wealth but does so with lower down-
side risk across the distribution. Table 13 summarizes key performance statistics. Notably,
the inclusion of real assets nearly doubles the expected terminal wealth compared to the
strategy without them, delivering 164 bps of additional annualized performance. The mixed
strategy yields an intermediate gain of 87 basis points per year. These results highlight the
substantial benefits of improved diversification and the contribution of private markets in
enhancing long-term retirement outcomes.

Table 13: Comparison of the terminal gross wealth with and without real assets

Strategy E [XT ]
∆R Quantile Q (XT , p) Hit ratio

(in bps) 5% 25% 50% 75% 90% R = 4% R = 5%
w/o real assets 6.3 3.4 4.7 5.9 7.4 9.1 70.3% 25.7%
w/ real assets 12.1 164 5.4 8.2 11.0 14.8 19.3 96.7% 81.7%
Mixed (ω = 50%) 8.9 87 4.6 6.5 8.3 10.7 13.3 92.5% 63.0%

Remark 7. The previous application highlights that the investor holds a large exposure to
the risk-free asset, which is not very realistic. Those results correspond to those of a prudent
or conservative investor. By contrast, if we adopt a more aggressive risk-tolerance function,
the outcomes differ significantly for moderate or aggressive investors. This naturally raises
the question of what constitutes the risk-free asset in this framework. It can be interpreted as
a combination of cash and a zero-coupon bond maturing at the retirement date. For young

26We have also included the mixed strategy with ω = 50%.
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investors, the risk-free asset primarily consists of the zero-coupon bond that matches the
retirement horizon. As retirement approaches, the allocation gradually shifts toward cash,
with the weight on cash increasing most strongly in the final years before retirement. Another
way to increase exposure to risky assets is to exclude bonds from the investment universe
altogether. Bruder et al. (2012) take this approach in their model, which is a more general
version of ours. They adopt the zero-coupon bond maturing at T as the numéraire and derive
formulas similar to ours. The main distinction lies in how they treat risk premia. In our
framework, the risk premium is defined relative to the risk-free asset and is approximated
using the risk-free rate as the numéraire. In contrast, the risk premium in the model of
Bruder et al. (2012) is defined directly with respect to the bond numéraire. Their model is
therefore theoretically more precise, but also more difficult to implement. Nevertheless, when
comparing results, both approaches lead to very similar outcomes.

2.3.4 Introducing liquidity risk management

Liquidity risk encompasses several aspects related to the efficient trading of assets. Trans-
action costs are incurred each time the portfolio is rebalanced. These costs vary by asset
class, time period, and market condition. Generally, transaction costs are relatively low
for traditional asset classes. Sovereign bonds and public equities typically incur the lowest
costs, followed by corporate bonds. In contrast, transaction costs are substantially higher
for real assets. However, liquidity risk is not limited to bid-ask spreads. It also includes
other factors, most notably market impact. Market impact refers to the price effect caused
by executing large orders or trading in markets with limited depth. Market impact can
result from the size of a trade or from a significant imbalance between supply and demand,
especially during periods of market stress when liquidity dries up. Real assets are partic-
ularly vulnerable in such conditions because they are traded less frequently and often lack
active secondary markets. These characteristics can amplify liquidity risk precisely when
investors need flexibility the most. Thus, liquidity risk reflects the cost of trading and the
potential difficulty of executing trades without significantly affecting market prices, espe-
cially in adverse conditions. Additionally, management fees can differ substantially between
liquid and illiquid assets. For example, public equities accessed through exchange-traded
funds or passive funds can carry management fees of less than 50 basis points (bps). In con-
trast, private equity typically involves much higher fees, often exceeding 150 bps, due to the
complexity and illiquidity of the underlying investments. As shown in Figure 27 and Table
13, our simulations reflect terminal gross wealth, not terminal net wealth. This distinction
is important, as the difference in management fees and transaction costs across asset classes
can significantly impact net outcomes.

To assess the impact of liquidity costs, we calculate the expected turnover of the glide
path strategy27:

τ = E

 T∑
th=t0

∥∥∥$?
th
−$?

th−1

∥∥∥
1


where th is a set of portfolio rebalancing dates, and $?

th
= α?thw

?
th

is the vector of optimal
risky asset exposures at rebalancing date th. Figure 28 shows the turnover profile28 for the

27This formula for turnover ignores portfolio weight drift that arises passively from asset price changes
between rebalancing dates. In other words, it only captures the explicit reallocation decisions made at each
rebalancing date and not the natural evolution of asset weights due to market movements. Consequently,
this turnover reflects only active trading and not the total change in portfolio composition over time.

28The model parameters remain unchanged. However, we set the contribution term ct = 0 to isolate the
impact of rebalancing activity. A non-zero contribution would introduce periodic inflows, which artificially
inflate the turnover by requiring additional trades to absorb the new capital. By setting ct = 0, we ensure
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mixed glide path strategy as a function of ω ∈ [0, 1]. Over a 40-year horizon, the strategy
that is fully invested in liquid assets yields a total turnover of 360%, which corresponds to
an annual turnover of 9%. When ω = 1, the turnover increases slightly to 420%, or 10.5%
per year. These relatively modest turnover levels are typical of retirement strategies, where
allocations change gradually and investment horizons are long term. However, turnover
alone does not capture liquidity risk because it treats all assets equally regardless of their
individual trading characteristics.

Table 14: Numerical values of unit trading costs

Asset Sovereign Corporate Public Private Private Real Infra-
class bonds bonds equity equity debt estate structure

Ci (in bps) 15 30 30 200 150 200 200

To account for this, we compute the expected trading cost:

C = E

 T∑
th=t0

n∑
i=1

∣∣∣$?
i,th
−$?

i,th−1

∣∣∣ · Ci


where n is the number of assets in the portfolio and Ci denotes the unit trading cost of
asset i. This formulation allows us to capture asset-specific liquidity effects, providing a
more accurate measure of the true cost of rebalancing across heterogeneous assets. Using
the unit costs shown in Table 14, the estimated trading cost ranges between 100 and 600
basis points, depending on the value of ω. This implies that allocating more to illiquid real
assets can increase trading costs by up to six times compared to strategies invested solely
in liquid assets.

There are several approaches to incorporate liquidity risk into retirement strategies. One
simple and effective method is to introduce a time-varying liquidity weight ωt, which blends
two portfolio policies:

w?t (γt) = (1− ωt) · w?w/o (γt) + ωt · w?w/ (γt)

where w?w/o (γt) is the optimal allocation with liquid assets, w?w/ (γt) is the optimal allocation
accounting for illiquid assets and γt denotes the risk aversion at time t. The function ωt
governs the transition between the regimes:

ωt =

 ω+ if t ≤ t?1
is decreasing if t ∈ [t?1, t

?
2]

0 if t > t?2

This structure reflects a progressive shift toward liquidity as the investor approaches retire-
ment. Before time t?1, the long investment horizon justifies holding illiquid assets. After t?2,
typically five to ten years before retirement, the investor is assumed to fully transition into
liquid assets to ensure flexibility and reduce liquidity-related risks. Importantly, this does
not imply a complete shift out of risky assets. For instance, an investor may still hold public
equities, but would avoid illiquid instruments such as private equity, private debt, or real
assets, which could be difficult to sell quickly or at a low cost. This gradual transition from
illiquid to liquid holdings is illustrated in Figure 29, where the liquidity weight ωt decreases
linearly between t?1 = 30 years and t?2 = 50 years.

that the turnover measure reflects pure reallocation effects rather than changes driven by external cash flows.

43



Retirement Accumulation Strategies with Real Assets and Inflation Risk

Figure 28: Turnover and liquidity cost of glide path strategy
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Figure 29: Mixed glide path with liquidity constraints (Global, 30-year time horizon, ω+ =
100%)
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Table 15: Comparison of the terminal gross wealth with and without liquidity risk manage-
ment

Strategy E [XT ]
∆R Quantile Q (XT , p) Hit ratio

(in bps) 5% 25% 50% 75% 90% R = 4% R = 5%
w/o real assets 6.3 3.4 4.7 5.9 7.4 9.1 70.3% 25.7%
w/ real assets 12.1 164 5.4 8.2 11.0 14.8 19.3 96.7% 81.7%
Mixed (ω = 50%) 8.9 87 4.6 6.5 8.3 10.7 13.3 92.5% 63.0%
LRM (ω+ = 100%) 10.0 118 4.6 6.9 9.2 12.2 15.8 92.6% 69.1%
LRM (ω+ = 50%) 8.0 61 4.2 5.9 7.5 9.6 11.9 87.6% 51.4%
LRM (ω+ = 20%) 6.9 25 3.8 5.2 6.5 8.2 10.1 79.5% 36.2%

Remark 8. Table 15 compares terminal gross wealth with and without liquidity risk manage-
ment. The results show that private assets continue to deliver superior performance relative
to portfolios composed solely of public assets. For example, when ω+ = 20%, the inclusion
of private assets generates an additional annualized performance of 25 bps.

3 Extension to multi-asset classes

In this section, we extend the previous framework by incorporating multiple risky assets.
First, we compare the single-asset and multi-asset solutions in the absence of allocation
constraints. Then, we analyze the impact of imposing such constraints on the multi-asset
setting.

3.1 Theoretical Model

We consider a dynamic asset allocation problem where an investor allocates wealth among n
risky assets St =

(
S1,t, . . . , Sn,t

)
and a risk-free zero-coupon bond Bt, while making regular

contributions according to a target date strategy. Each risky asset Si,t follows the following
stochastic differential equation:

dSi,t = µiSi,t dt+ σiSi,t dWi,t

where the Brownian motions
{
Wi,t

}n
i=1

are correlated such that E
[
dWi,t dWj,t

]
= ρi,j dt

and ρi,i = 1. We denote by αt = (α1,t, . . . , αn,t) the vector of portfolio weights allocated to
the n risky assets at time t. In particular, each weight αi,t represents the fraction of total
wealth invested in risky asset i, while the remainder

(
1− 1>nαt

)
is allocated to the risk-free

asset. The resulting wealth process Xt satisfies the stochastic differential equation:

dXt =

((
rt + α>t (µt − rt1n)

)
Xt + ct

)
dt+ α>t σtXt dWt

where Wt =
(
W1,t, . . . ,Wn,t

)
, µt =

(
µ1,t, . . . , µn,t

)
, σt = diag

(
σ1,t, . . . , σn,t

)
, and rt is

the constant risk-free rate. The investor aims to maximize the expected utility of terminal
wealth:

α?t = arg max Et
[
U (XT )

]
We define the covariance matrix by Σt, so that (Σt)i,j = ρi,jσi,tσj,t. The associated HJB
equation is:

∂J (t, x)

∂t
+ max

αt
H (t, x, αt) = 0 s.t. J (T, x) = U (x) (18)
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where:

H (t, x, α) =

((
rt + α>t (µt − rt1n)

)
x+ ct

)
∂J (t, x)

∂x
+

1

2

(
α>t Σtαt

)
x2 ∂

2J (t, x)

∂x2

The first-order condition of the maximization of the Hamiltonian function is:

∂H (t, x, α)

∂α
= 0n ⇔ (µt − rt1n)x∂xJ (t, x) +

1

2
(2Σtαt)x

2∂2
xJ (t, x) = 0n

⇔ α?t = − ∂xJ (t, x)

x∂2
xJ (t, x)

Σ−1
t (µt − rt1n) (19)

In the case of CRRA utility, the optimal weights take the form:

α?t = ᾱt

(
1 +

Ht

Xt

)
where:

ᾱt =
Σ−1
t (µt − rt1n)

1− γ

3.2 The case without allocation constraints

We now compare the single-asset and multi-asset solutions. In the single-asset case, the
optimal total exposure is:

$?
t = α?tw

?
t =

(
µ (w?t )− r

)
(1− γt)σ2 (w?t )

(
1 +

Ht

Xt

)
w?t

where w?t is the mean-variance optimized portfolio:

w?t := w? (ϕt) = arg min
1

2
w>Σtw − ϕtw> (µt − r1n)

where ϕt = (1− γt)−1
. The closed-form solution is:

w? (γt) =
1

1− γt
Σ−1 (µ− r1n)

Assuming normalized portfolio weights, we have:

w? (γt) =
θt

1− γt
Σ−1 (µ− r1n)

where θt = (1− γt)−1
1>nΣ−1 (µ− r1n). We deduce that:

µ (w?t )− r = w? (γt)
>
µ− r

= w? (γt)
>

(µ− r1n)

=
θt

1− γt
(µ− r1n)

>
Σ−1 (µ− r1n)

and:

σ2 (w?t ) = w? (γt)
>

Σw? (γt)

=
θt

1− γt
(µ− r1n)

>
Σ−1Σ

θt
1− γt

Σ−1 (µ− r1n)

=
θ2
t

(1− γt)2 (µ− r1n)
>

Σ−1 (µ− r1n)
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It follows that:
µ (w?t )− r
σ2 (w?t )

=
1− γt
θt

and:

$?
t := α?tw

?
t =

(
µ (w?t )− r

)
(1− γt)σ2 (w?t )

(
1 +

Ht

Xt

)
w?t

=
1

θt

(
1 +

Ht

Xt

)
w?t

=
1

1− γt
Σ−1 (µ− r1n)

(
1 +

Ht

Xt

)
(20)

Recall that the multi-asset solution is:

α?t = ᾱt

(
1 +

Ht

Xt

)
=

1

1− γt
Σ−1
t (µ− r1n)

(
1 +

Ht

Xt

)
(21)

By comparing Equations (20) and (21), we can see that both approaches lead to the same
optimal exposure vector. However, the two differ in methodology:

• In the single-asset approach, the total exposure α?t to risky assets is first determined.
Then the Markowitz model is applied to find the optimal fully-invested portfolio w?t .
Finally, the vector of exposures $?

t is obtained by scaling the portfolio weights w?t by
the total exposure α?t .

• In the multi-asset approach, the vector of exposures α?t is directly computed and
coincides with the vector $?

t of the single-asset approach.

In the absence of allocation constraints, this leads to a dynamic two-fund separation result,
where the portfolio composition is determined independently of the total exposure or leverage
ratio.

3.3 The case with allocation constraints

In practice, we generally include weight constraints, meaning that the multi-asset approach
can not be solved using the single-asset approach. For example, we cannot invest more
than 100% of our wealth in the risky assets, implying the constraint 1>nαt ≤ 1. A common
additional restriction is the long-only constraint: αt ≥ 0n. Other constraints may also apply,
such as limiting the allocation to real assets to a maximum of 50%, or capping private equity
exposure at 20%. Let αt ∈ Ω denote the admissible set of portfolio weights satisfying all
such constraints. Under these constraints, there is generally no closed-form solution for the
optimal allocation α?t . However, the problem can still be solved numerically using Howard’s
policy iteration algorithm applied to Equation (18):

• Initialization
Begin with an initial guess for the control policy αt, for example by using the uncon-
strained solution. Then repeat until convergence:

• Policy evaluation
With αt held fixed, discretize the HJB equation using a finite-difference scheme and
compute an approximation of J (t, x) over the chosen (t, x) grid. From these values,
estimate the partial derivatives ∂xJ (t, x) and ∂2

xJ (t, x) numerically.
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• Policy improvement
At each grid point (t, x), update the control αt by solving the constrained maximization
program

α?t = arg maxH (t, x, αt)

s.t. αt ∈ Ω

where the Hamiltonian is given by:

H (t, x, α) =

((
rt + α>t (µt − rt1n)

)
x+ ct

)
∂J (t, x)

∂x
+

1

2

(
α>t Σtαt

)
x2 ∂

2J (t, x)

∂x2

The previous algorithm can be simplified because the maximization step can be reformulated
as a quadratic programming problem:

α?t = arg min
1

2
α>t Σ̃tαt − α>t µ̃t

s.t. αt ∈ Ω

where: {
µ̃t = x (µt − rt1n) ∂xJ (t, x)

Σ̃t = −x2Σt∂
2
xJ (t, x)

Consequently, when applying Howard’s policy-iteration algorithm, we must repeatedly solve
a QP program at each grid node (t, x) until convergence, which makes the computation
time-consuming. Because of this, the single-stage optimization approach is not scalable in
practical applications.

Remark 9. We have:

H (t, x, α) = (rtx+ ct)
∂J (t, x)

∂x
− x2 ∂

2J (t, x)

∂x2

(
−1

2
α>t Σtαt −

∂xJ (t, x)

x∂2
xJ (t, x)

α>t (µt − rt1n)

)
We deduce that:

α?t = arg min
1

2
α>t Σtαt − ϕ̃tα>t (µt − rt)

s.t. αt ∈ Ω

where:

ϕ̃t = − ∂xJ (t, x)

x∂2
xJ (t, x)

It might be tempting to conjecture that ϕ̃t =
1

1− γt
, but this is not generally correct. The

constraint αt ∈ Ω modifies the value function J (t, x), which implies that:

−x∂
2
xJ (t, x)

∂xJ (t, x)
6= −x∂

2
xU (x)

∂xU (x)
⇒ −x∂

2
xJ (t, x)

∂xJ (t, x)
6= 1− γt

However, there are specific cases where the approximation ϕ̃t ≈
1

1− γt
remains acceptable.
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3.4 Empirical results

We consider the numerical example described on page 38, under the following set of con-
straints:

Ω =
{
α ∈ Rn : α ≥ 0,1>nα ≤ 1

}
This formulation imposes both a long-only constraint and a no-leverage constraint. Since Ω
is a standard simplex, the feasible region is convex, which simplifies the maximization step
in the HJB equation. In this setting, the optimal portfolio weights can be computed using
the projected gradient descent (PGD) method. We start with the unconstrained solution

α
(0)
t = (1− γt)−1

Σ−1
t (µt − rt1n) and we repeat the following steps until convergence:

1. At iteration k, we apply the gradient step:

ᾰ = α
(k)
t − η∇f

(
α

(k)
t

)
where η > 0 is the step size and ∇f (α) = α>Σt −

1

1− γt
(µt − rt1n) is the gradient

of the objective function.

2. We project onto the simplex:

α
(k+1)
t = ΠΩ (ᾰ)

where ΠΩ (x) = arg miny∈Ω ‖y − x‖22 is the projection onto the simplex Ω. This pro-
jection can be efficiently computed using the method described in Appendix A.13 on
page 101.

Figure 30: Optimal glide path (Global, 30-year time horizon, multi-asset solution)
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Using the same parameters as in Figure 25 (identical risk aversion γt and no contribution
ct = 0), we obtain the solutions29 shown in Figure 30. These results reproduce most of the
stylized facts observed in the two-stage (single-asset) approach. For instance:

• The allocation shifts from riskier to more conservative assets as the retirement date
approaches;

• Introducing private assets reduces the share invested in public assets, especially public
equity;

• The overall shape of the allocations is very similar between Figures 25 and 30.

However, the allocations are not identical. Although the two-stage (single-asset) and one-
stage (multi-asset) formulations share the same objective function, they differ in their con-
straint sets:

• Two-stage (single-asset) approach:

w?t = arg min 1
2w
>
t Σtwt −

1

1− γt
w>t (µt − rt) s.t. Ω =

{
wt : wt ≥ 0,1>nwt = 1

}
α?t = min

 1

1− γt

(
µ>t w

?
t − rt

w?>t Σtw?t

)
, 1


$?
t = α?tw

?
t

• One-stage (multi-asset) approach:

α?t = arg min
1

2
α>t Σtαt −

1

1− γt
α>t (µt − rt) s.t. Ω =

{
αt : αt ≥ 0,1>nαt ≤ 1

}
The key difference lies in how leverage is handled. In the two-stage approach, leverage is
adjusted in the second step, outside of the quadratic program. In contrast, the one-stage
approach incorporates leverage directly into the QP constraints. This structural distinction
explains the allocation differences observed between Figures 25 and 30. The two-stage
approach generates smoother dynamic allocations than the one-stage method. However, the
one-stage approach produces more diversified portfolios. This diversification advantage is
particularly evident in the treatment of investment-grade corporate bonds. While the two-
stage approach eliminates this allocation after 40 years, the one-stage approach maintains
exposure to IG corporate bonds through retirement. Despite these differences in allocation,
both approaches yield comparable turnover metrics.

3.5 Insights into the multi-asset optimal solution

In this section, we analyze the drivers of the dynamic optimal allocation by considering the
following optimization problem:

w? = arg min
1

2
w>Σw − 1

1− γ
w> (µ− r1n)

s.t.

{
w ≥ 0n
1>nw ≤ 1 (or 1>nw = 1)

The inequality constraint 1>nw ≤ 1 corresponds to the one-stage approach, while the equality
constraint 1>nw = 1 relates to the two-stage approach.

29We exploit the fact that the value function J (t, x) is separable (see Appendix A.14 on page 102).
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3.5.1 Mathematical properties of the optimal weights

The associated Lagrange function is:

L (w;λ0, λ) =
1

2
w>Σw − 1

1− γ
w> (µ− r1n) + λ0

(
1>nw − 1

)
− λ>w

where λ0 ≥ 0 and λ ≥ 0n (or λ ∈ R if 1>nw = 1). The first-order conditions are:

Σw − 1

1− γ
(µ− r1n) + λ01n − λ = 0n

The optimal solution is:

w? = Σ−1

(
µ− r1n

1− γ
+ λ− λ01n

)
The Kuhn-Tucker complementary slackness conditions are λ0

(
1− 1>nw

?
)

= 0 if 1>nw ≤ 1,
and λiw

?
i = 0 for all i = 1 . . . , n.

To obtain analytical solutions, we consider the two-asset case n = 2. We have µ =
(µ1, µ2) and:

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
We deduce that:

Σ−1 =
1

(1− ρ2)σ2
1σ

2
2

(
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

)
and: 

w?1 ∝ σ2
2

(
µ1 − r
1− γ

+ λ1 − λ0

)
− ρσ1σ2

(
µ2 − r
1− γ

+ λ2 − λ0

)
w?2 ∝ σ2

1

(
µ2 − r
1− γ

+ λ2 − λ0

)
− ρσ1σ2

(
µ1 − r
1− γ

+ λ1 − λ0

)
where the proportionality constant is

(
1− ρ2

)−1
σ−2

1 σ−2
2 . The optimal weights depend on

risk-adjusted returns, the covariance structure, the constraint multipliers, and risk aversion.
Here are some properties:

(P1) Let us assume that λ1 = λ2 = 0 and µ1 = µ2. It follows that:

w?1 ≥ w?2 ⇔ σ1 ≤ σ2

The optimal weight decreases as volatility increases.

(P2) Let us assume that λ1 = λ2 = 0 and σ1 = σ2. It follows that:

w?1 ≥ w?2 ⇔ µ1 ≥ µ2

The optimal weight increases with the expected return.

(P3) Let us assume that ρ = 0. In this case, λ1 = λ2 = 0 and we get:

w?i =
1

σ2
i

(
µi − r
1− γ

− λ0

)
for i ∈ {1, 2}

Thus, the optimal weight is inversely proportional to volatility and increasing in ex-
pected return. If additionally λ0 = 0 (which occurs, for example, when γ → −∞
under the one-stage approach), we get:

w?i ∝
µi − r
σ2
i

for i ∈ {1, 2}

In this case, the optimal weight is proportional to the Sharpe ratio divided by volatility.
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(P4) Let us assume that λ1 = λ2 = 0. It follows that:

w?i ∝
1

1− γ

(
σ2
6=i (µi − r)− ρσiσ 6=i

(
µ6=i − r

))
− λ0

(
σ2
6=i − ρσiσ 6=i

)
for i ∈ {1, 2}

The optimal weight is increasing with γ.

(P5) The relationship between the correlation parameter ρ and the allocation (w?1 , w
?
2) is

nontrivial. In the two-stage approach, the dependence is monotonic. As ρ increases,
the weight allocated to the asset with the higher Sharpe ratio rises, while the weight in
the lower Sharpe ratio asset declines. In the one-stage approach, the same qualitative
pattern generally holds, but the relationship may fail to be monotonic over certain
intervals [ρ1, ρ2]. Let ρ? denote the threshold correlation such that:{

ρ < ρ? ⇔ w?1w
?
2 > 0

ρ ≥ ρ? ⇔ w?1w
?
2 = 0

The value ρ? is the highest correlation level below which both assets are included in the
optimal portfolio. Once correlation reaches or exceeds ρ?, the optimization allocates
weight to only one asset. In the one-stage approach, we get:

ρ? = min

(
SR1

SR2
,

SR2

SR1

)
In the two-stage approach, the threshold becomes:

ρ? = min

(
µ1 − µ2

(1− γ)σ1σ2
+
σ2

σ1
,

µ2 − µ1

(1− γ)σ1σ2
+
σ1

σ2

)
3.5.2 Numerical examples

We consider the following parameters: µ1 = 10%, µ2 = 10%, σ1 = 20%, σ2 = 25%, r = 3%,
and γ = −1. Figures 31–34 illustrate Properties P1–P4 for different values of the correlation
parameter ρ under the one-stage approach. For Property P5, we use the following parameter
sets30:

Set σ1 σ2 γ
#1 25% 25% −1
#2 30% 25% −1
#3 25% 30% −1
#4 25% 30% −10

Results for the two-stage approach are reported in Figures 64–68 on pages 119–121. The
behavior of the two approaches is broadly consistent. However, it is worth noting that in
Set #3, the allocation to Asset 1 is monotonic in ρ under the two-stage approach, whereas
this is not the case under the one-stage approach.

We now have the background to better interpret the glide path obtained previously when
real assets are introduced. Remember that the allocation to public equities disappears. This
is because public equities have a relatively low Sharpe ratio compared to other asset classes.
Not only are they dominated by private equity, but also by the other three real asset classes:
private debt, real estate and infrastructure. For example, if the Sharpe ratio of public
equities increases, the optimiser will start allocating to them (Figure 36, top-left panel).
Moreover, when the Sharpe ratio is set to 0.45, the allocation to private equity disappears

30Results are shown in Figure 35. The dashed line is the threshold correlation ρ?.
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Figure 31: Impact of the volatility σ1 on the optimal solution (one-stage approach, Property
P1)
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Figure 32: Impact of the expected return µ1 on the optimal solution (one-stage approach,
Property P2)
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Figure 33: Impact of the parameter SR1 /σ1 on the optimal solution (one-stage approach,
Property P3)
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Figure 34: Impact of the risk aversion γ on the optimal solution (one-stage approach, Prop-
erty P4)
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Figure 35: Impact of the correlation ρ on the optimal solution (one-stage approach, Property
P5)
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Figure 36: Optimal glide path under four different assumptions (Global, one-stage approach)
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(Figure 36, top-right panel). This illustrates the strong trade-off between public and private
equities (and, to a certain extent, private debt), given that these asset classes are highly
correlated. The case of investment-grade corporate bonds is different. Even when Sharpe
ratios are equalised across asset classes, the optimal dynamic solution assigns no weight to IG
corporate bonds (Figure 36, bottom-left panel). This exclusion is not driven by Sharpe ratio
considerations, but rather by their high correlation with other assets, especially government
bonds. For instance, when all correlations are strictly positive, the glide path includes an
allocation to IG corporate bonds (Figure 36, bottom-right panel).

3.6 The case of the investor in the Eurozone

As in our previous analysis, we conduct a dynamic asset allocation exercise, but this time
we focus on an investment universe restricted to the Eurozone. Using the Amundi CASM
model, we calculate the expected returns, volatilities, Sharpe ratios and correlations, which
are reported in Tables 16 and 17.

Table 16: Expected return (%), volatility (%) and Sharpe ratio of asset classes (Eurozone,
30-year time horizon)

Asset class µi σi SRi SRi /σi
Govt Bonds 3.39 4.90 0.22 4.46
IG Corp Bonds 3.74 4.64 0.31 6.60
Public Equity 6.77 19.53 0.23 1.17
Private Equity 11.96 19.00 0.51 2.67
Private Debt 6.77 10.10 0.44 4.36
Real Estate 5.62 10.01 0.33 3.29
Infrastructure 7.61 14.64 0.36 2.47

Source: Simulated with the Amundi CASM model (Eurozone model, EUR, June 2025), Amundi (2021).

Table 17: Correlation matrix in % (Eurozone, 30-year time horizon)

Govt Bonds 100.0 68.8 −3.1 −7.4 −20.0 −1.8 38.6
IG Corp Bonds 68.8 100.0 45.7 36.7 −1.3 10.0 23.5
Public Equity −3.1 45.7 100.0 58.6 21.9 22.8 3.8
Private Equity −7.4 36.7 58.6 100.0 −19.7 22.9 −11.9
Private Debt −20.0 −1.3 21.9 −19.7 100.0 34.8 28.3
Real Estate −1.8 10.0 22.8 22.9 34.8 100.0 8.7
Infrastructure 38.6 23.5 3.8 −11.9 28.3 8.7 100.0

Source: Simulated with the Amundi CASM model (Eurozone model, EUR, June 2025), Amundi (2021).

A comparison with the global investment universe highlights several differences. Firstly,
expected returns are generally lower in the Eurozone than at a global level, except for
private equity. For example, the expected returns on government bonds, corporate bonds
and public equities are 3.39%, 3.74% and 6.77% respectively, compared to 4.25%, 5.16% and
7.46% in the global investment universe. The annual cash return is assumed to be 2.32%
in the Eurozone, which is 109 basis points lower than the global figure. Due to this lower
risk-free rate, the Sharpe ratios of Eurozone assets are broadly comparable to those of global
assets. The main exception is private equity, which exhibits a higher Sharpe ratio in the
Eurozone. Correlation patterns are generally similar across the two universes, but there are
some notable differences. The average cross-correlation is substantially lower in the eurozone

56



Retirement Accumulation Strategies with Real Assets and Inflation Risk

(17.1% versus 29.0% globally). The stock-bond correlation is also different, being close to
zero in the Eurozone. This suggests that government bonds are less effective as a safe-haven
asset in the Eurozone than in the global context. Additionally, real assets tend to be less
correlated in the Eurozone on average31. Overall, these patterns suggest that the benefits
of diversification are likely to be greater in the Eurozone investment universe.

Figure 37: Optimal glide path (Eurozone, 30-year time horizon)
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Figure 37 illustrates the dynamic allocation within the Eurozone investment universe
with and without real assets. In both cases, the resulting portfolio is more diversified than
that in the global investment universe. Notably, the allocation without real assets retains a
significant exposure to corporate bonds until the retirement date. When real assets are in-
cluded, private equity remains part of the allocation until the end of the investment period.
Figure 38 shows the mixed glide path, which also demonstrates greater diversification. Ini-
tially, the portfolio is fully invested in public and private equities. Over time, the allocation
shifts progressively towards income-generating assets, such as government and corporate
bonds, private debt, and infrastructure. As with the global investment universe, we run a
Monte Carlo experiment to estimate the probability density function of terminal wealth XT .
The results show that the density function shifts to the left when real assets are excluded
and to the right when they are included (see Figure 39). This outcome is consistent with

31The average correlations are:

Asset class Global Eurozone
Govt Bonds 1.9 12.5
IG Corp Bonds 37.1 30.6
Public Equity 40.2 25.0
Private Equity 40.7 13.2
Private Debt 28.8 7.3
Real Estate 24.7 16.2
Infrastructure 29.8 15.2
Total 29.0 17.1
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Figure 38: Mixed glide path (Eurozone, 30-year time horizon, ω = 50%)
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Figure 39: Probability density function of the terminal gross wealth with and without real
assets (Eurozone, 30-year time horizon)
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expectations. Without real assets, the efficient frontier in the Eurozone is below that of the
global universe. With real assets, however, it is above32. Consequently, the density func-
tion with real assets clearly dominates that without real assets. Table 18 reports summary
statistics. These results suggest that achieving the investment objective in terms of the hit
ratio is challenging when relying solely on public assets. By contrast, incorporating real
assets significantly increases the probability of success. When we consider the mixed glide
path, the results are very similar to those previously obtained with the global investment
universe.

Table 18: Comparison of the terminal gross wealth with and without real assets, and with
and without liquidity risk management (Eurozone, 30-year time horizon)

Strategy E [XT ]
∆R Quantile Q (XT , p) Hit ratio

(in bps) 5% 25% 50% 75% 90% R = 4% R = 5%
w/o real assets 3.9 2.4 2.9 3.7 4.7 5.7 20.0% 2.2%
w/ real assets 16.9 370 8.0 10.8 15.0 20.9 28.0 98.8% 92.6%
Mixed (ω = 50%) 8.4 190 4.8 6.0 7.8 10.1 12.6 88.5% 55.4%
LRM (ω+ = 100%) 10.6 250 4.5 7.0 9.5 13.0 17.1 92.3% 70.7%
LRM (ω+ = 50%) 6.5 128 3.4 4.8 6.1 7.8 9.7 71.8% 30.2%
LRM (ω+ = 20%) 4.8 52 2.6 3.6 4.6 5.8 7.1 40.4% 8.0%

Remark 10. Figures 70 and 71 show the mixed glide path with liquidity risk management.
Compared to the global universe, the Eurozone-only portfolio is penalized when limited to
public assets. The expected terminal wealth is 3.9, versus 6.3 in the global case. However,
when private assets and liquidity risk management are included, terminal wealth rises to 6.5
when ω+ = 50% and 4.8 when ω+ = 20%, respectively. Performance thus converges toward
that of the global investment universe. Including European private assets further improves
outcomes, adding an additional annualized return of 128 and 52 bps, respectively.

4 Incorporating inflation risk

In the previous sections, we analyzed dynamic asset allocation in terms of nominal wealth.
However, one of the major risks in retirement planning is inflation risk, which implies that the
analysis must also be conducted in real terms rather than being limited to nominal outcomes.
In what follows, we develop an approach that explicitly incorporates inflation risk into the
dynamic asset allocation framework and compare the results with those obtained previously
when maximizing only nominal wealth.

4.1 General framework

To account for inflation risk, we extend the model to include both financial assets and
an inflation process. For simplicity, we assume the portfolio is invested in three financial
instruments:

• A risk-free asset Bt, with an instantaneous rate of return rt:

dBt = rtBt dt

• A risky asset St, whose price follows a geometric Brownian motion with deterministic
drift µt and volatility σt:

dSt = µtSt dt+ σtSt dWt

32See Figures 58 on page 116 and 69 on page 122.
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• An inflation-sensitive risky asset Rt, whose price follows a geometric Brownian motion
with stochastic drift µ′t = a+ bπt and deterministic volatility σ′t:

dRt = (at + btπt)Rt dt+ σ′tRt dW ′t

where at and bt are two parameters. The parameter at captures the asset’s inflation-
independent expected return, while bt quantifies the sensitivity of expected return to
the current inflation rate πt.

• The inflation rate is modeled as an Ornstein-Uhlenbeck process:

dπt = κ (π∞ − πt) dt+ σ
(π)
t dW

(π)
t

where κ > 0 is the mean-reversion rate, π∞ is the long-term mean inflation rate, and

σ
(π)
t > 0 is the volatility of inflation.

At time t, we assume that a proportion αt of the wealth is invested in the risky asset St, a
proportion βt is allocated to the inflation-sensitive asset Rt, and the remaining proportion
1 − αt − βt is invested in the risk-free asset Bt. In the following, we define the discounted

wealth as Xt = X̃tYt where X̃t is the nominal wealth process, Yt = e
−

∫ t
t0
%πs ds

is the inflation
discount factor, and % ∈ {0, 1} is a scaling parameter:

• If % = 0, the analysis is conducted in nominal terms as in the previous sections.

• If % = 1, the analysis is done in real terms.

The dynamics of the nominal wealth process X̃t is given by:

dX̃t

X̃t

= αt
dSt
St

+ βt
dRt
Rt

+ (1− αt − βt)
dBt
Bt

+
ct

X̃t

dt

We deduce that:

dX̃t =
(
αtµtX̃t + βt (at + btπt) X̃t + (1− αt − βt) rtX̃t + ct

)
dt+

αtσtX̃t dWt + βtσ
′
tX̃t dW ′t

Since Yt has finite variation, we have dYt = −%πtYt dt and d
〈
X̃, Y

〉
t

= 0. We get:

dXt = Yt dX̃t + X̃t dYt =
Xt

X̃t

dX̃t − X̃t%πtYt dt =

(
dX̃t

X̃t

− %πt dt

)
Xt

Using the dynamics for X̃t, we deduce that:

dXt =
(
αtµtXt + βt (at + btπt)Xt + (1− αt − βt) rtXt − %πtXt + c′t

)
dt+

αtσtXt dWt + βtσ
′
tXt dW ′t

where c′t = cte
−

∫ t
t0
%πs ds

is the discounted value of the contribution. We assume that the

Brownian motionsWt, W
′
t , andW

(π)
t are correlated with E

[
dWt dW ′t

]
= ρt dt, E

[
dW ′t dW

(π)
t

]
=

ρ
(R)
t dt and E

[
dWt dW

(π)
t

]
= ρ

(S)
t dt. It follows that:

(dXt)
2

=
(
α2
tσ

2
t + β2

t

(
σ′t
)2

+ 2αtβtρtσtσ
′
t

)
X2
t dt

(dπt)
2

=
(
σ

(π)
t

)2

dt

dXt dπt =
(
αtρ

(S)
t σt + βtρ

(R)
t σ′t

)
σ

(π)
t Xt dt
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Let J (t, x, π) be the value function:

J (t, x, π) = sup
(α,β)

Et
[
U (XT ) | Xt = x, πt = π

]
The HJB equation is:

∂J (t, x, π)

∂t
+ κ (π∞ − πt)

∂J (t, x, π)

∂π
+

1

2

(
σ

(π)
t

)2 ∂2J (t, x, π)

∂π2
+ max

(α,β)
H (t, x, π, α, β) = 0

with terminal condition:
J (T, x, π) = U (x)

The expression of the Hamiltonian is:

H (t, x, π, α, β) =
(
αµtx+ β (at + btπ)x+ (1− α− β) rtx− %πx+ c′t

) ∂J (t, x, π)

∂x
+

1

2

(
α2σ2

t + β2
(
σ′t
)2

+ 2αβρtσtσ
′
t

)
x2 ∂

2J (t, x, π)

∂x2
+(

αρ
(S)
t σt + βρ

(R)
t σ′t

)
σ

(π)
t x

∂2J (t, x, π)

∂x ∂π

4.2 The case without allocation constraints

4.2.1 General solution

In Appendix A.16 on page 105, we show that the optimal solution is:

ν?t =

(
α?t
β?t

)
= −Σ−1

t

(
θt
Jx
xJx,x

+ ζt
Jx,π
xJx,x

)
(22)

where Jx = ∂xJ (t, x, π), Jx,x = ∂2
xJ (t, x, π), Jx,π = ∂x,πJ (t, x, π), and:

Σt =

(
σ2
t ρtσtσ

′
t

ρtσtσ
′
t

(
σ′t
)2 )

, θt =

(
µt − rt

at + btπ − rt

)
and ζt =

(
ρ

(S)
t σtσ

(π)
t

ρ
(R)
t σ′tσ

(π)
t

)
It follows that:

H (t, x, π, α?t , β
?
t ) = −1

2

J 2
x

Jx,x
θ>t Σ−1

t θt−
JxJx,π
Jx,x

ζ>t Σ−1
t θt−

1

2

J 2
x,π

Jx,x
ζ>t Σ−1

t ζt+Jx
(
rtx− %πx+ c′t

)
(23)

Risk-premium interpretation of the optimal solution When ζt = 02, inflation

shocks are uncorrelated with asset shocks (ρ
(S)
t = ρ

(R)
t = 0). In this case, we recover

the solution of the standard multi-asset case presented in the previous section33:(
α?t
β?t

)
= − Jx

xJx,x
Σ−1
t θt = − ∂xJ (t, x, π)

x∂2
xJ (t, x, π)

(
σ2
t ρtσtσ

′
t

ρtσtσ
′
t

(
σ′t
)2 )−1((

µt
µ′t

)
− rt12

)
When ζt 6= 02, we obtain a similar expression, but with a correction term:(

α?t
β?t

)
= − ∂xJ (t, x, π)

x∂2
xJ (t, x, π)

(
σ2
t ρtσtσ

′
t

ρtσtσ
′
t

(
σ′t
)2 )−1((

µ̃t
µ̃′t

)
− rt12

)
33See Equation (19) on page 46.
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where: (
µ̃t
µ̃′t

)
=

(
µt
µ′t

)
+
∂2
x,πJ (t, x, π)

∂xJ (t, x, π)

(
ρ

(S)
t σtσ

(π)
t

ρ
(R)
t σ′tσ

(π)
t

)
In this case, the effective expected returns are adjusted to reflect the covariance risk with

inflation. The direction of this adjustment depends on the signs of ρ
(S)
t , ρ

(R)
t , and the

cross-derivative ∂2
x,πJ (t, x, π):

ρ
(S)
t > 0 ρ

(S)
t < 0 ρ

(R)
t > 0 ρ

(R)
t < 0

∂2
x,πJ (t, x, π) > 0 µ̃t > µt µ̃t < µt µ̃′t > µ′t µ̃′t < µ′t
∂2
x,πJ (t, x, π) < 0 µ̃t < µt µ̃t > µt µ̃′t < µ′t µ̃′t > µ′t

For instance, if ρ
(S)
t < 0, ρ

(R)
t > 0 and ∂2

x,πJ (t, x, π) > 0 — a configuration that is arguably
the most realistic — we get µ̃t < µt and µ̃′t > µ′t. Compared to the pure multi-asset
solution, the optimal exposure to the standard risky asset decreases, while the exposure to
the inflation-sensitive risky asset increases.

Liability-hedging interpretation of the optimal solution The optimal solution (22)
can be expressed as:(

α?t
β?t

)
=

(
− Jx
xJx,x

)
Σ−1
t θt +

(
− Jx,π
xJx,x

)
Σ−1
t ζt

= $(msr) · Σ−1
t θt︸ ︷︷ ︸

Market portfolio

+$(π) · Σ−1
t ζt︸ ︷︷ ︸

Liability-hedging portfolio

= $(msr) ·

(
α

(msr)
t

β
(msr)
t

)
+$(π) ·

(
α

(π)
t

β
(π)
t

)

where $(msr) = − Jx
xJx,x

> 0 and $(π) = − Jx,π
xJx,x

≶ 0. Thus, the optimal allocation has two

components. The first is the market component, corresponding to the classical Markowitz
solution and representing the maximum Sharpe ratio (MSR) portfolio. The second is the
inflation component, which depends on the covariance risk premium associated with infla-
tion. The two component portfolios are weighted by $(msr) and $(π), which depend on
the utility function, the current wealth, and the current level of inflation. Remarkably, this
decomposition recovers a principle from liability-driven investment (LDI) used by defined
benefit (DB) pension funds. Specifically, the inflation component can be interpreted as a
liability-hedging portfolio (LHP), where the liability is the inflation risk (Roncalli, 2013). By
explicitly accounting for inflation risk in retirement accumulation strategies, defined contri-
bution (DC) solutions converge toward DB-style liability-hedging solutions, linking classical
portfolio optimization with practical retirement planning. However, the dynamic allocation
may take either a long or short position in the liability-hedging portfolio, depending on the
sign of $(π). This is a key distinction from traditional DB investment policies.

The expression of the LHP is:

(
α

(π)
t

β
(π)
t

)
=

σ
(π)
t

(1− γ)
(
1− ρ2

t

)

(
ρ

(S)
t − ρtρ(R)

t

)
/σt(

ρ
(R)
t − ρtρ(S)

t

)
/σ′t


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The sign of each weight is fully determined by the correlations: sgnα
(π)
t = sgn

(
ρ

(S)
t − ρtρ(R)

t

)
and sgnβ

(π)
t = sgn

(
ρ

(R)
t − ρtρ(S)

t

)
. Here are some special cases:

Special cases sgn
(
α

(π)
t

)
sgn

(
β

(π)
t

)
ρt = 0 sgn

(
ρ

(S)
t

)
sgn

(
ρ

(R)
t

)
ρ

(S)
t > ρ

(R)
t > 0 +

0 < ρ
(S)
t < ρ

(R)
t +

ρ
(S)
t = 0 − sgn

(
ρtρ

(R)
t

)
sgn

(
ρ

(R)
t

)
ρt −→ 1 sgn

(
ρ

(S)
t − ρ(R)

t

)
sgn

(
ρ

(R)
t − ρ(S)

t

)
For example, if ρt = 50%, ρ

(S)
t = −10%, ρ

(R)
t = 25%, we get α

(π)
t < 0 and β

(π)
t > 0.

While the sign is governed entirely by the correlation triplet
(
ρt, ρ

(S)
t , ρ

(R)
t

)
, the magnitude

depends on volatilities. Each weight is:

• proportional to the inflation volatility σ
(π)
t ,

• inversely proportional to its own asset volatility (σt or σ′t),

• and amplified as |ρt| → 1, since
(
1− ρ2

t

)−1
becomes large.

4.2.2 CRRA solution with ct = 0

In the general case, there is no closed-form solution. To obtain one, we set the contribution
ct to 0 and consider a CRRA utility function. In this case, we have:

J (t, x, π) = h (t, π)
xγ

γ

where h (t, π) is the solution34 of the nonlinear partial differential equation35:

1

2

(
σ

(π)
t

)2

∂2
πh (t, π) +

(
κ (π∞ − π)− qθ,ζt

)
∂πh (t, π)

+

(
γ (rt − %π)− 1

2
qθt

)
h (t, π) + ∂th (t, π)− 1

2
qζt

(
∂πh (t, π)

)2
h (t, π)

= 0 (24)

with terminal condition h (T, π) = 1 and:
qθt =

γ

γ − 1
θ>t Σ−1

t θt

qθ,ζt =
γ

γ − 1
ζ>t Σ−1

t θt

qζt =
γ

γ − 1
ζ>t Σ−1

t ζt

34The proof is given in Appendix A.17 on page 106.
35The PDE is not linear because of the last term.
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The optimal solution is given by:(
α?t
β?t

)
=

1

1− γ
Σ−1
t

(
θt + ζt

∂πh (t, π)

h (t, π)

)
=

1

1− γ
Σ−1
t θt︸ ︷︷ ︸

Market portfolio

+ ∂π lnh (t, π)︸ ︷︷ ︸
Hedging demand

× 1

1− γ
Σ−1
t ζt︸ ︷︷ ︸

Liability-hedging portfolio

=

(
ᾱ?t
β̄?t

)
+ ∂π lnh (t, π)×

(
α

(π)
t

β
(π)
t

)

This result shows that the optimal allocation consists of two portfolios:

• The market portfolio, designed to capture the performance of risky investments and
achieve wealth accumulation for retirement;

• The liability-hedging portfolio, constructed to hedge inflation risk.

The hedging component corresponds to the product of the hedging demand and the LHP.

Since the hedging demand, given by H(π)
t = ∂π lnh (t, π), can take either positive or negative

values, the resulting position in the LHP may be long or short. This allocation principle is
the foundation of dynamic allocation decisions in the presence of liability risk (Martellini
and Milhau, 2012).

Remark 11. The inflation component can be expressed as:

(
α

(π)
t

β
(π)
t

)
=

σ
(π)
t

(1− γ)
(
1− ρ2

t

)

(
ρ

(S)
t − ρtρ(R)

t

)
/σt(

ρ
(R)
t − ρtρ(S)

t

)
/σ′t


Let us assume that ρ

(S)
t = 0 and ρ

(R)
t ≥ 0. Then the hedging component satisfies:

α
(π)
t +

cov

(
dSt
St

,
dRt
Rt

)
var

(
dSt
St

) β
(π)
t = 0

In this case, β
(π)
t > 0 while α

(π)
t < 0. This means that the long position in the inflation-

sensitive asset is partially financed by a short position in the risky asset, with the hedging
ratio given by the beta of the inflation-sensitive asset relative to the risky asset.

4.2.3 Approximate closed-form solution

To solve Equation (24), we can use the finite-difference method (Roncalli, 2020). An alter-
native approach is to assume that:

h (t, π) = exp
(
A (t) +B (t)π + C (t)π2

)
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Therefore, the functions A (t), B (t) and C (t) satisfy the following system of ODEs36:

dA (t)

dt
= −κπ∞B (t)− 1

2

(
σ

(π)
t

)2 (
B2 (t) + 2C (t)

)
− γrt+

1

2

γ

γ − 1

(
θ̄t +B (t) ζt

)>
Σ−1
t

(
θ̄t +B (t) ζt

)
dB (t)

dt
= −κ

(
2π∞C (t)−B (t)

)
− 2

(
σ

(π)
t

)2

B (t)C (t) + γ%+
γ

γ − 1

(
θ̄t +B (t) ζt

)>
Σ−1
t

(
θ̂t + 2C (t) ζt

)
dC (t)

dt
= 2κC (t)− 2

(
σ

(π)
t

)2

C2 (t) +

1

2

γ

γ − 1

(
θ̂t + 2C (t) ζt

)>
Σ−1
t

(
θ̂t + 2C (t) ζt

)
(25)

with terminal conditions A (T ) = B (T ) = C (T ) = 0. The numerical solution can be
obtained with a Runge-Kutta scheme. Finally, the optimal weights are equal to:(

α?t
β?t

)
=

1

1− γ
Σ−1
t θt +

1

1− γ
(
B (t) + 2C (t)π

)
Σ−1
t ζt

We now consider the case bt = 0, implying θ̂t = 02. Since C (T ) = 0 and:

dC (t)

dt
= 2κ · C (t)− 2

((
σ

(π)
t

)2

+
γ

γ − 1
ζ>t Σ−1

t ζt

)
· C2 (t)

we deduce that C (t) = 0. It follows that:

dB (t)

dt
= κB (t) + γ%

Using the terminal condition B (T ) = 0, we get:

B (t) = %γ

(
eκ(t−T ) − 1

κ

)

The optimal solution becomes37:(
α?t
β?t

)
=

1

1− γ
Σ−1
t θt + %

γ

1− γ

(
eκ(t−T ) − 1

κ

)
Σ−1
t ζt

If γ < 0, the hedging demand is positive and decreases over time. At the retirement date
T , the inflation-hedging demand vanishes.

We consider the following numerical application: µt = 8%, σt = 20%, rt = 2%, at = 4%,

bt = 0, σ′t = 15%, ρt = 10%, κ = 0.5, π∞ = 4%, σ
(π)
t = 2%, ρ

(S)
t = 20%, ρ

(R)
t = 50%, % = 1

and γ = −1. We solve the ODE system using the Runge-Kutta algorithm for t ∈ [20, 60]
and find the following initial values: A (20) = −0.3460, B (20) = 2, C (20) = 0. Figure 40
shows the solutions A (t), B (t), C (t) and h (t, π) for two values of π. If we assume that
bt = 1, the initial values are A (20) = −1.6145, B (20) = 0.4750, and C (20) = −10.4705,
while the solutions A (t), B (t), C (t) and h (t, π) are shown in Figure 41.

36The proof is given in Appendix A.17 on page 106.
37If bt = 0 and % = 0, meaning that the investor is not sensitive to their real wealth, there is no hedging

demand.
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Figure 40: Solution of h (t, π) for bt = 0
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Figure 41: Solution of h (t, π) for bt = 1
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Table 19: Market and liability-hedging portfolios (in %)

bt = 0 bt = 1
πt = −10% πt = +10% πt = −30% πt = −10% πt = +10%

ᾱ?t 72.39 72.39 122.90 89.23 55.56
β̄?t 34.79 34.79 −638.61 −189.67 259.26

α
(π)
t 0.76 0.76 0.76 0.76 0.76

β
(π)
t 3.23 3.23 3.23 3.23 3.23

H(π)
t0 200.00 200.00 675.73 256.91 −161.91

H(π)
T 0.00 0.00 0.00 0.00 0.00

In Table 19, we report the market portfolio
(
ᾱ?t , β̄

?
t

)
, the liability-hedging portfolio(

α
(π)
t , β

(π)
t

)
, and the hedging demand H(π)

t at both the initial date and the retirement date.

When bt = 0, the market portfolio, the LHP, and the hedging demand are independent of
the inflation level πt. However, when bt = 1, the hedging demand becomes sensitive to

inflation. In this case, H(π)
t may take negative values, indicating that the optimal allocation

involves a short position in the liability-hedging portfolio.

4.3 The case with allocation constraints

When we impose constraints on αt and βt, a closed-form solution is generally no longer
available. If the constraint set Ω is independent of wealth x, then under CRRA utility and
no contributions ct, the value function J (t, x, π) remains x-separable:

J (t, x, π) = h (t, π)
xγ

γ

We deduce that
Jx
xJx,x

=
1

γ − 1
and

Jx,π
xJx,x

=
1

γ − 1

∂πh (t, π)

h (t, π)
. However, in this case we

cannot use the method from the previous section38, because the unconstrained optimizer
itself depends on B (t) and C (t), whose functional forms are unknown. Instead, we solve
the problem numerically with Howard’s policy-iteration algorithm, as described in Section
3.3 on page 47. As the x-separability holds when there are no contributions, we work directly
with the PDE for h (t, π). At each time step t, we proceed in two steps:

• Policy evaluation
Given a fixed control ν = (α, β), we solve the PDE backward in time using an implicit
scheme:

γ

(
ν>t θt + rt − %π +

1

2
(γ − 1)

(
ν>t Σtνt

))
h (t, π) + ∂th (t, π)

+

(
κ (π∞ − πt) + γ

(
ν>t ζt

))
∂πh (t, π) +

1

2

(
σ

(π)
t

)2

∂2
πh (t, π) = 0 (26)

• Policy improvement
With the updated function h (t, π), we solve the constrained maximization program:

ν?t = arg max
1

2
(γ − 1)h (t, π)

(
ν>t Σtνt

)
+
(
h (t, π) θ>t + ∂πh (t, π) ζ>t

)
νt

s.t. νt ∈ Ω (27)

38Namely, first computing the unconstrained optimizer and then obtaining the constrained one via a
projected gradient descent approach.

67



Retirement Accumulation Strategies with Real Assets and Inflation Risk

We iterate these two steps until convergence for each time step t. The numerical procedure
used to implement Howard’s policy-iteration method is detailed in Appendix A.19.

4.4 Empirical results

The optimal portfolio weights can be expressed as the sum of two components:(
α?t
β?t

)
=

1

1− γ
Σ−1
t θt︸ ︷︷ ︸

Market portfolio

+H(π)
t × 1

1− γ
Σ−1
t ζt︸ ︷︷ ︸

Hedging component

The first term represents myopic demand and corresponds to the standard mean-variance
allocation based on current asset return dynamics. This component ignores potential future
changes in the economic environment. The second term captures intertemporal hedging
demand and reflects the investor’s desire to hedge against the adverse impact of future
changes in inflation π, either on asset return dynamics or on the real discounting of wealth.

This hedging term is the product of the sensitivity factor H(π)
t and the LHP.

In this section, we focus on the case with no contributions (ct = 0). We solve the
partial differential equation governing h (t, π) numerically using Howard’s policy-iteration
algorithm. The parameters used in the base case are as follows:

• Risky asset St: µt = 5%, σt = 10%.

• Inflation-sensitive asset Rt: at = 5%, σ′t = 10%.

• Risk-free asset: rt = 2%.

• Inflation process: the parameters are long-term mean π∞ = 2%, volatility σ
(π)
t = 3%,

and mean-reversion rate39 κ = 0.25.

First, we examine the impact of the discount factor on the hedging demand H(π)
t . Next, we

fix the scaling parameter at % = 1 and analyze the relationship between the hedging demand
and the parameters of the inflation process. Finally, we introduce a decreasing risk-aversion
coefficient γ and impose portfolio constraints to obtain more realistic results. We also vary

the correlation ρt between the two risky assets, and the correlations ρ
(S)
t and ρ

(R)
t between

asset returns and inflation shocks to assess their respective effects on portfolio behavior.

4.4.1 Understanding the hedging demand

In this section, we examine how the discounting factor affects the hedging demand. To this
end, we consider two cases: (i) maximizing the utility of nominal terminal wealth (% = 0),
and (ii) maximizing the utility of discounted terminal wealth (% = 1). To gain additional
insights, we combine these cases with two specifications for the parameter b:

1. b = 0
The expected returns of the two risky assets are independent of inflation.

2. b = 0.5
The expected return of asset Rt increases with inflation.

We set the remaining parameters as follows: ρt = 0, ρ
(S)
t = 0.5, ρ

(R)
t = 0.5, and γ = −3.

39A mean-reversion speed of κ = 0.25 corresponds to a half-life of approximately 2.77 years.
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We begin with bt = 0 and % = 0, implying that the expected returns of the two risky assets

are independent of inflation. Thus, the market portfolio
1

1− γ
Σ−1
t θt equals

(
75%, 75%

)
for

any value of π, and the liability-hedging portfolio
1

1− γ
Σ−1
t ζt equals

(
3.75%, 3.75%

)
. The

hedging component depends on the hedging demand H(π)
t = ∂π lnh(t, π). As shown in

Section 4.2.3 on page 64, when bt = 0 and % = 0, we have H(π)
t = 0. Therefore, regardless

of the values of π, ρt, ρ
(S)
t , or ρ

(R)
t , there is no hedging demand, and the optimal portfolio

reduces to: (
α?t
β?t

)
=

1

1− γ
Σ−1
t θt =

(
75%
75%

)
However, when % 6= 0, the hedging demand becomes non-zero and can be expressed as
follows:

H(π)
t = %γ

(
eκ(t−T ) − 1

κ

)
This expression shows that the hedging demand decreases over time:

• as t −→ T , H(π)
t −→ 0;

• as t −→ t0 and T becomes large, H(π)
t −→ −%κ−1γ.

Setting % = 1 yields −%κ−1γ = 12, so the hedging component H(π)
t converges to 12 ×(

3.75%, 3.75%
)

=
(
45%, 45%

)
, as reported in Table 20. Importantly, this value is indepen-

dent of π.

Table 20: Behavior of the hedging component over time

Asset
Market Hedging component

portfolio t = 30 t = 40 t = 50 t = 55 t = 57 t = 58 t = 59 t = 60
St 75.0% 45.0% 44.7% 41.3% 32.1% 23.7% 17.7% 10.0% 0.0%
Rt 75.0% 45.0% 44.7% 41.3% 32.1% 23.7% 17.7% 10.0% 0.0%

From an economic standpoint, the intuition is straightforward. The hedging component
provides protection against adverse future changes where “adverse” depends on the context.
In this case, even though the expected returns of both assets are independent of inflation
(b = 0), the investor maximizes real terminal wealth, which is directly affected by the
inflation path through the discounting factor. An unexpected rise in inflation constitutes a
negative shock, because it erodes real purchasing power via the discounting term −%π and
reduces the growth rate of real wealth. To hedge against this risk, the investor optimally
tilts the portfolio toward assets whose returns are positively correlated with inflation. These
assets increase in value when inflation rises unexpectedly, thereby offsetting some of the
loss caused by higher real discounting. This mechanism explains why the optimal policy
recommends increased exposure to assets that co-move positively with inflation shocks.

Now consider the case bt = 0.5. The market portfolio
1

1− γ
Σ−1
t θt changes with π, while

the liability-hedging portfolio
1

1− γ
Σ−1
t ζt remains constant at

(
3.75%, 3.75%

)
. When % = 0,

the investor maximizes the utility of nominal terminal wealth. In this case, hedging demand
arises solely from the effect of inflation on the investment opportunity set (i.e., the dynamics
of asset returns), rather than from real discounting. When bt > 0, a higher inflation rate
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Figure 42: Heatmap of the hedging demand H(π)
t for % = 0
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Figure 43: Heatmap of the hedging demand H(π)
t for % = 1

-20 -10 0 10 20 30
In.ation (in %)

20

25

30

35

40

45

50

55

60

A
ge

(i
n

ye
ar

s)

Positive
hedging demand

-2

0

2

4

6

8

10

70



Retirement Accumulation Strategies with Real Assets and Inflation Risk

π increases the expected return of asset Rt. Consequently, the market portfolio increases
its allocation to Rt. The main intertemporal risk then becomes an unexpected decline in π,
which lowers the future expected excess return of Rt. To hedge against this risk, the hedging
component should take positions that profit when π falls. Since risky assets are positively

correlated with inflation shocks (ρ
(S)
t = ρ

(R)
t = 0.5), negative inflation shocks tend to depress

their returns. As a result, the intertemporal hedging component adopts a short exposure

along
1

1− γ
Σ−1
t ζt, which makes ∂π lnh(t, π) markedly negative across most values of π (see

Figures 42 and Table 21). However, when π becomes very negative, the expected return of
Rt turns negative. In this situation, the market portfolio already shorts the asset Rt. In
particular, when π ≤ −12% and µ′t ≤ −µt, the short position in Rt can exceed the long
position in St, leaving the aggregate portfolio net short to inflation shocks. In this case, the
adverse future change is an unexpected increase in π. To hedge this risk, the intertemporal
hedging demand reverses sign. ∂π lnh (t, π) becomes positive when π ≤ −12%, adding a long
position in the hedging component that benefits from an unexpected rebound in inflation.

Table 21: Values of the hedging demand H(π)
t (% = 0 vs. % = 1)

% = 0 % = 1
π −10% −5% 0% 5% 10% −10% −5% 0% 5% 10%

t = 30 −0.3 −1.8 −3.3 −4.8 −6.3 8.9 7.5 6.0 4.5 3.0
t = 40 −0.3 −1.8 −3.3 −4.8 −6.3 8.9 7.4 6.0 4.5 3.0
t = 50 −0.2 −1.7 −3.2 −4.7 −6.2 8.7 7.2 5.7 4.2 2.8
t = 55 0.2 −1.3 −2.7 −4.1 −5.6 7.6 6.2 4.8 3.3 1.9
t = 57 0.4 −0.8 −2.1 −3.4 −4.7 6.2 5.0 3.7 2.4 1.1
t = 58 0.5 −0.6 −1.6 −2.7 −3.8 5.0 3.9 2.8 1.7 0.7
t = 59 0.4 −0.3 −1.0 −1.7 −2.4 3.0 2.3 1.6 0.9 0.2
t = 60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

When % = 1, the current hedging demand reflects the impact of inflation on both real
discounting and its impact on the investment opportunity set. As previously shown, the
discounting channel makes an unexpected rise in inflation detrimental to real wealth, pushing
∂π lnh (t, π) positive. Conversely, when bt > 0 and π is not too negative, an unexpected
decline in π lowers the future expected return of Rt, which pushes ∂π lnh (t, π) negative.
Therefore, the overall hedging demand depends on the balance between these two effects
and the current level of inflation. It also varies with the time remaining until the target
date, since ∂π lnh (t, π) gradually converges to zero as the retirement date approaches. In
this case, ∂π lnh (t, π) is predominantly positive across most inflation levels (see Figures 43
and Table 21). However, it can turn negative when π becomes very high, because the effect
of the opportunity set dominates. In that regime, since the market portfolio tilts strongly
toward Rt, the hedging component partially offsets this exposure.

4.4.2 Sensitivity analysis of the hedging demand

In the following analysis, we set bt = 0.5 and % = 1. We then examine how the hedging

demand H(π)
t depends on the key inflation parameters: the mean-reversion rate κ, the long-

term inflation rate π∞, the inflation volatility σ
(π)
t , and the inflation correlation ρ

(π)
t =

ρ
(S)
t = ρ

(R)
t . Two distinct cases must be considered. The drift parameters κ and π∞ affect

only the hedging demand, while the risk parameters σ
(π)
t and ρ

(π)
t influence both the hedging

demand and the liability-hedging portfolio.

71



Retirement Accumulation Strategies with Real Assets and Inflation Risk

Figure 44: Sensitivity analysis of the hedging demand H(π)
t (π = −10%)
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Figure 45: Sensitivity analysis of the hedging demand H(π)
t (π = +10%)
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As discussed earlier, the sign and magnitude of H(π)
t are determined by the interplay

between the real-discounting effect and the opportunity-set effect. When κ increases, infla-
tion shocks become less persistent, causing inflation to more rapidly revert to its long-term

mean π∞. As a result, both effects are dampened and the absolute value ‖H(π)
t ‖ decreases,

as illustrated in Figures 44 and 45. However, the influence of π∞ on the hedging demand
differs. When bt > 0 and asset returns are positively correlated with inflation shocks, a
higher π∞ increases the expected return of Rt. Consequently, an unexpected decline in
inflation becomes more costly, making inflation risk more important to hedge. This drives

H(π)
t downward. Taken together, these effects imply that total hedging demand declines as

π∞ rises, as shown in Figures 44 and 45.

The impact of the inflation volatility σ
(π)
t is qualitatively similar to that of π∞. As

σ
(π)
t increases, the opportunity-set component of the hedging demand dominates the real-

discounting component, leading to a lower total hedging demand H(π)
t under our calibration.

However, we note that the actual hedging weights in the portfolio equal the product of the
hedging demand and the LHP. Since the LHP is proportional to ζt, the hedging weights

increase with σ
(π)
t . Therefore, even though H(π)

t declines, the overall hedge in portfolio

weights can still increase as σ
(π)
t rises. Changes in the inflation correlation ρ

(π)
t have only

a minor direct effect on the hedging demand H(π)
t . However, as with σ

(π)
t , variations in

ρ
(π)
t strongly affect the LHP because the weights are proportional to ρ

(π)
t . Consequently, an

increase in ρ
(π)
t generally leads to a higher overall hedging component.

4.4.3 Shape of the glide path

In the following analysis, we consider a realistic, time-varying risk-aversion parameter γt
which decreases over time40 as in the previous section. The asset parameters are specified
as follows. For the risky asset St, we have µt = 5% and σt = 10%. For the inflation-sensitive
asset Rt, we use at = 5%, bt = 0.5, and σ′t = 10%. The risk-free rate is fixed at rt = 2%.
Inflation follows a mean-reverting process with a long-term mean of π∞ = 2%, a volatility of

σ
(π)
t = 1%, and a mean-reversion rate of κ = 0.25. The investor’s objective is to maximize

real terminal wealth with % = 1. To ensure a feasible portfolio, we impose long-only and
no-leverage constraints:

Ω =
{
α, β ∈ R2 : α ≥ 0, β ≥ 0, α+ β ≤ 1

}
In this example, the optimal dynamic allocation ν?t = (α?t , β

?
t ) is influenced not only by

expected returns, the covariance structure, and correlations with inflation, but also by the
discount factor, portfolio constraints, time-varying risk aversion, and the evolution of the
hedging demand. Consequently, optimal allocations may differ substantially across scenarios.

First, we consider a benchmark case in which both assets are uncorrelated with inflation

(i.e., ρt = 0, ρ
(S)
t = 0, and ρ

(R)
t = 0). In this case, since the liability-hedging portfolio is(

0%, 0%
)
, the hedging component is null. Figure 46 illustrates the optimal allocations to

the two assets for different values of π. When π is highly negative, the expected return of
Rt is also negative, and the portfolio is allocated almost entirely to the risky asset St. As π
approaches 0%, assets Rt and St exhibit similar expected returns, resulting in roughly equal
allocations. When π continues to increase, the weight on Rt rises and the overall portfolio
becomes more aggressive as both St and Rt become more attractive than the risk-free asset.

40γ0 = 1/3, γT = −50, and k = 0.05 (see Footnote 24 on page 39).
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Figure 46: Dynamic asset allocation ν?t including the inflation hedging (ρt = 0, ρ
(S)
t = 0,

and ρ
(R)
t = 0)
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Figure 47: Dynamic asset allocation ν?t including the inflation hedging (ρt = 0, ρ
(S)
t = 0.5,

and ρ
(R)
t = 0.5)
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Figure 48: Dynamic asset allocation ν?t including the inflation hedging (ρt = 0.5, ρ
(S)
t = 0.5,

and ρ
(R)
t = 0.5)
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Figure 49: Dynamic asset allocation ν?t including the inflation hedging (ρt = 0, ρ
(S)
t = −0.5,

and ρ
(R)
t = 0.5)
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Figure 47 presents the case ρ
(S)
t = 0.5 and ρ

(R)
t = 0.5. Unlike the benchmark, the

liability-hedging portfolio is now strictly positive. As discussed earlier, the hedging compo-
nent offsets both real-discounting risk and opportunity-set risk. In this case, the discounting-
driven component dominates, resulting in a more aggressive portfolio than in the benchmark
case. A larger allocation to risky assets helps hedge inflation risk to real wealth. Notably,
the glide path becomes concave as the target date approaches, reflecting the evolution of
the hedging component over time. In the case of strongly negative inflation, the expected
return of Rt remains low, and St continues to dominate the allocation. However, a non-zero
position in Rt is maintained for hedging purposes, and the magnitude is also shaped by
the time-varying risk-aversion parameter γt. When π approaches 0%, assets Rt and St have
similar expected returns and identical hedging demands, leading to roughly equal allocations
between the two assets. When the two assets are positively correlated with each other and
with inflation, the benefits of diversification diminish. Figure 48 considers the case in which

all three correlations are positive: ρt = 0.5, ρ
(S)
t = 0.5 and ρ

(R)
t = 0.5. Compared to Figure

47, portfolio allocations become more concentrated in the asset with the higher expected per-
formance at a given inflation level: the risky asset St when π falls, and the inflation-sensitive
asset Rt when π rises. Figure 49 examines the case in which the two assets have opposite

correlations with inflation shocks: ρ
(S)
t = −0.5 and ρ

(R)
t = 0.5. In this configuration, the

liability-hedging portfolio has opposite signs for the two assets. The hedging component
strongly favors the inflation-sensitive asset Rt, while penalizing the risky asset St. Com-
pared to Figure 47, Figure 49 exhibits a higher allocation to Rt and a lower allocation to
St across all values of π. Under long-only, no-leverage constraints, the preference to short
St manifests as a corner solution, with a frequently bounded weight at zero. Meanwhile,
Rt often absorbs most of the portfolio allocation. When inflation is strongly negative, the
expected return of Rt becomes very low, prompting a temporary shift toward St, despite
its negative discounting-driven hedge component. Nevertheless, a positive position in Rt is
maintained for hedging purposes, and its size is determined by the time-varying risk-aversion
parameter γt. Around π = 0%, the expected returns of assets Rt and St are similar, but
the hedging component are opposite: negative for St and positive for Rt. This causes Rt to
dominate the allocation, while the weight on St remains small. At higher inflation levels,
the market portfolio and hedging components favor Rt, causing the portfolio to concentrate
on Rt for most of the time horizon and constraining St near zero. As the target date ap-
proaches, intertemporal hedging demand converges to zero. Consequently, the weight on St
increases, and the dynamic allocation aligns with the market portfolio at retirement.

4.5 Inflation, risk premium, and correlation

We previously identified three primary channels through which inflation influences portfolio
construction:

• Market portfolio
Inflation affects asset risk premia, which depend themselves on the prevailing inflation
level, thereby influencing expected returns on the market portfolio.

• Liability-hedging portfolio
The volatility of inflation and its correlations with various assets shape the composition
and effectiveness of the liability-hedging portfolio.

• Hedging demand
The discounting factor and all inflation-related parameters jointly drive the investor’s
intertemporal hedging demand, which adjusts portfolio exposures dynamically over
time.

76



Retirement Accumulation Strategies with Real Assets and Inflation Risk

The relationship between inflation, asset returns, and their correlations has been exten-
sively studied in the financial literature41. However, drawing consensus conclusions remains
challenging, particularly when attempting to disentangle the three effects listed above.

Inflation risk plays a pivotal role in shaping expected returns, especially for asset classes
that are sensitive to changes in the price level. This issue emerged as a central topic during
the 1970s, a period of high inflation, when a growing literature sought to understand how
asset prices incorporate inflation expectations and the effectiveness of different assets as in-
flation hedges (Roll, 1973). One key contribution came from Hagerman and Kim (1976), who
developed a model showing how inflation uncertainty introduces an additional risk dimen-
sion for which investors require compensation. These papers paved the way for considering
inflation as a systematic risk factor and influenced subsequent developments in multi-factor
models that incorporate macroeconomic variables. A crucial step forward was taken by
Fama and Schwert (1977), who distinguished between expected and unexpected inflation:

“We estimate the extent to which various assets were hedges against the ex-
pected and unexpected components of the inflation rate during the 1953–1971
period. We find that U.S. government bonds and bills were a complete hedge
against expected inflation, and private residential real estate was a complete
hedge against both expected and unexpected inflation. [...] The most anoma-
lous result is that common stock returns were negatively related to the expected
component of the inflation rate, and probably also to the unexpected compo-
nent.” (Fama and Schwert, 1977, page 115).

Following this seminal work, inflation hedging and covariance risk became central questions
during the 1980s. For instance, Bodie (1982) concluded that an increase in inflation un-
certainty lowers the risk premia on real assets. Simultaneously, considerable attention was
paid to equity behavior and inflation-hedging properties. By the early 1980s, a consensus
emerged that a negative relationship exists between stock returns and inflation components
— expected inflation, changes in expected inflation, and unexpected inflation (Fama, 1981;
Geske and Roll, 1983; Stulz, 1986). However, Kaul (1987) challenged this view by demon-
strating that nominal assets, such as equities and bonds, have complex and time-varying
correlations with inflation, impacting the associated risk premia. Following this contribution,
researchers increasingly recognized that the relationship between asset returns and inflation
is not stable but instead depends on various factors, for instance the macroeconomic regime42

(Brière and Signori, 2012; Campbell et al., 2020; Leombroni et al., 2020). Moreover, much of
the subsequent literature concluded that conventional financial assets, particularly publicly
traded equities, provide poor hedges against inflation43 (Bekaert and Wang, 2010; Ang et
al., 2012). In this context, the search for effective inflation hedges has expanded toward
alternative assets such as real estate, gold, and commodities. Among these, Amenc et al.
(2009) find that real estate and commodities display particularly favorable inflation-hedging
properties. Alsati-Morad et al. (2016) confirm these findings and identify infrastructure as
another promising candidate for constructing inflation-hedging portfolios. However, these
results should be interpreted with caution, as inflation-hedging effectiveness often depends
on the investment horizon and is mainly valid over very long time horizons (Brown et al.,
2025).

41See for example Roll (1973); Hagerman and Kim (1976); Fama and Schwert (1977); Bodie (1982); Stulz
(1986); Kaul (1987); Bekaert and Wang (2010); Leombroni et al. (2020); Cieslak and Pflueger (2023).

42This issue is closely related to the broader question of asset correlations, especially the stock-bond
correlation (Li, 2002; Burkhardt and Hasseltoft, 2012; Portelli and Roncalli, 2024).

43According to Sathyanarayana and Gargesa (2018), this result is region-dependent, with certain markets
exhibiting stronger inflation-hedging capacities than others.

77



Retirement Accumulation Strategies with Real Assets and Inflation Risk

5 Conclusion

This paper develops a comprehensive framework for retirement accumulation strategies,
bridging the gap between financial theory and practical implementation. By extending the
classical Merton model to include human capital, multiple asset classes, inflation risk, and
real-world constraints, we provide a solid theoretical foundation and empirical evidence for
optimal lifecycle investing. Although this research does not prescribe a fully implementable
real-life accumulation strategy, its key findings provide valuable guidelines for understanding
and improving current practices in the asset management industry. The contribution of this
work is primarily analytical. We develop the theoretical infrastructure necessary to evaluate
and improve existing retirement investment approaches. Rather than advocating a one-size-
fits-all solution, we show that effective retirement strategies must be context-specific while
remaining grounded in sound theoretical principles.

Our model is a simplified yet robust version of the framework proposed by Bruder et
al. (2012). These authors assumed that individual investor contributions are stochastic and
used the zero-coupon bond maturing at retirement age as the numéraire. In contrast, our
model treats continuous individual contributions as deterministic and uses the risk-free as-
set as the numéraire44. We determine the optimal exposure to risky assets and provide a
precise definition of the glide path as the expected dynamic allocation over time. Our anal-
ysis demonstrates that optimal risky asset allocation depends on four critical factors: the
human-to-financial capital ratio, risk aversion, investment horizon, and prevailing market
parameters. Our framework also shows that continuous contributions systematically increase
the allocation to risky assets compared with the original constant-mix strategy of Merton
(1969, 1971). These findings reconcile the intuitive age-based glide path with rigorous fi-
nancial theory by recognizing that total wealth encompasses both financial capital and the
present value of future contributions. Thus, the concept of human capital is fundamental to
designing effective accumulation retirement strategies. Despite its simplified structure, our
model successfully reproduces most of the key findings from the existing literature on this
subject, particularly the principles established by Bruder et al. (2012). The following sum-
marizes how different factors influence the optimal share of risky assets in the portfolio45.
The intuition behind these effects can be explained as follows:

#1 Retirement horizon
Young investors should hold a larger percentage of risky assets. This principle underlies
the design of target date funds, though our interpretation differs. Younger individuals
typically anticipate substantial non-financial income, such as labor income, in the
future, which acts as a buffer. Therefore, they can take on more financial risk because
potential losses may be offset by future contributions before retirement.

#2 Risk aversion
The allocation is fundamentally driven by individual risk preferences. Risk-averse
individuals allocate a smaller percentage of their expected total wealth to risky assets,
whereas risk-tolerant individuals allocate a larger percentage.

#3 Current wealth & expected future income
The optimal allocation to risky assets increases when current wealth is low relative
to expected future income. Since total expected retirement wealth includes current
savings and future contributions, a high expected income justifies taking on more risk

44This risk-free asset is a combination of cash and the zero-coupon bond. For computational simplicity, we
approximate it using cash alone. This approximation means that contributions become implicitly stochastic
when expressed in terms of the bond numéraire.

45With our model, we retrieve Principles #1 to #5.
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Table 22: Main principles of retirement accumulation strategies

Rule More risky assets Fewer risky assets

#1 Young HH
�� Old

#2 Risk taker HH
�� Risk averse

#3 Low current wealth HH
�� High current wealth

#4 High expected future income HH
�� Low expected future income

#4’ High human capital HH
�� Low human capital

#5 High risk premium HH
�� Low risk premium

#6 Low risky-asset volatility HH
�� High risky-asset volatility

#7 Positive stock/bond correlation HH
�� Negative stock/bond correlation

#8 Certain income HH
�� Uncertain income

#9 Income uncorrelated with equities HH
�� Income correlated with equities

Source: Adapted from Bruder et al. (2012).

today. However, many professional allocation models surprisingly ignore this effect,
treating current wealth and future income as irrelevant. Our analysis highlights an
important distinction. In the retirement context, human capital should be viewed not
as the present value of future income (or a fraction thereof), but rather as the present
value of future contributions. In other words, human capital reflects not only the
investor’s earning potential but also their willingness to channel part of that income
to retirement savings. This is a key departure from the framework of Bruder et al.
(2012).

#4 Risk premium & volatility
A higher risk premium raises the expected return on risky assets, increasing their
attractiveness and optimal allocation. Conversely, for a given Sharpe ratio, the risky
allocation is inversely related to volatility.

#5 Correlation between equities and bonds
In the context of pensions, bonds are essentially risk-free because they guarantee a
fixed payout upon retirement. When equities and bonds are positively correlated, the
volatility of their forward value decreases. This allows for a higher equity allocation
while maintaining the same overall risk level.

#6 Income uncertainty
Greater uncertainty in future income reduces the optimal equity share because vari-
ability in income introduces additional risk to total retirement wealth. Therefore, a
more conservative portfolio is necessary.

#7 Correlation between future income and equities
If future income is highly correlated with stock market performance (e.g., wages in the
financial sector), it is advisable to reduce exposure to the stock market. A downturn
in equities could simultaneously erode capital and labor income, amplifying losses.
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Our analysis solves a fundamental puzzle in retirement planning. Why do practition-
ers implement concave glide paths when theory predicts convex allocation patterns? We
demonstrate that three critical factors46 transform the theoretically optimal convex path
into the concave path observed in practice47. First, leverage constraints prevent retail in-
vestors from achieving the extreme allocations that would be optimal for young investors
with high human-to-financial capital ratios. Unable to access optimal leveraged positions,
these investors must increase their exposure to risky assets over a longer time horizon to
achieve similar risk-adjusted outcomes. Second, time-varying risk aversion, especially when
following a concave profile, causes an accelerating shift toward conservative investments as
retirement approaches. This behavioral pattern reflects the empirical observation that risk
aversion increases with age. Younger investors typically have a higher risk tolerance than
older investors, who prioritize capital preservation as retirement approaches48. Third, the
increasing contribution patterns typical of real-world careers induce additional concavity in
the human capital component. This factor is readily observable. As investors approach
retirement, they become concerned about retirement adequacy and substantially increase
their savings rates to improve their future pension prospects. In other words, a 50-year-old
investor is generally far more focused on retirement planning than a 30-year-old investor,
resulting in accelerating contribution patterns that create the observed concave glide path
structure. By incorporating these factors, our framework reconciles theoretical predictions
with observed practice. It provides portfolio managers with a rigorous foundation for de-
signing glide paths that align optimal allocation principles with behavioral and institutional
realities.

This study extends the framework beyond a single-asset setting to provide a detailed
comparison of single- and multi-asset approaches. It highlights how allocation constraints
shape optimal portfolio construction and underscores the diversification benefits of broader
investment universes. In the single-asset framework, the allocation problem is divided into
two steps: a mean-variance optimization subproblem and a leverage calibration subproblem.
In contrast, the multi-asset framework unifies these two steps into one optimization problem.
We demonstrate that, under specific assumptions, the two approaches converge. However,
in general, the multi-asset framework yields a more diversified solution than the two-step
approach of the single-asset framework49. To evaluate performance, we perform three em-
pirical analyses. First, we compare glide path strategies with constant-mix approaches and
find that dynamic strategies informed by lifecycle considerations offer stronger downside
protection and higher probabilities of meeting retirement goals. Second, we examine global
and Eurozone investment universes and find compelling evidence for including real assets
(private equity, private debt, real estate, and infrastructure) in retirement portfolios. These
assets add value through exposure to distinct risk-return drivers, natural inflation hedging,
and illiquidity premium that long-term investors are uniquely positioned to capture. In
the global universe, including these assets in a 50/50 mixed strategy enhances annualized

46In the case of the model with inflation risk, a fourth factor can explain the concavity of the glide path.
It corresponds to the impact of the hedging demand.

47In addition to identifying the key principles of retirement accumulation strategies and solving this
puzzle, our baseline model provides analytical solutions for important variables, such as the human-to-
financial capital ratio, risky exposure, the glide path, and wealth dynamics. For instance, we show that the
constant-mix strategy is a special case of the retirement accumulation strategy when the human-to-financial
capital ratio is set to zero. We also derive closed-form formulas for the glide path that are more robust
than those obtained in Bruder et al. (2012). Specifically, we use a third-order Taylor expansion of Jensen’s
inequality and demonstrate that the solution corresponds to log-normal wealth dynamics.

48This effect differs from the pattern of decreasing human-to-financial capital ratios.
49Our analysis examines the role of cross-correlation in both the one- and two-step approaches. We show

that the leverage constraint alters the treatment of cross-correlation, leading to different impacts across the
two frameworks.
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performance by 87 basis points. In the Eurozone, the improvement is 190 basis points50,
transforming success rates from approximately 20% to nearly 90% for reasonable return
targets. Third, we propose a dynamic liquidity risk management framework that addresses
the integration of illiquid assets into lifecycle strategies. We demonstrate that the bene-
fits of real asset inclusion persist even after accounting for transaction costs and liquidity
constraints by applying time-varying liquidity weights that gradually shift allocations from
illiquid to liquid assets as retirement approaches. For the 80/20 mixed strategy, this ap-
proach delivers approximately 15 and 45 basis points of additional annualized performance51

in the global and Eurozone universes, respectively52. This lifecycle consistent evolution re-
flects changing investor priorities. Younger individuals can sacrifice liquidity for growth,
while older investors prioritize flexibility and capital preservation. The resulting dynamic
allocation patterns demonstrate sophisticated portfolio management by concentrating on
growth-oriented private assets early on before transitioning to income-generating liquid al-
ternatives while maintaining diversification throughout the accumulation phase. Together,
these results show that real assets should play a much larger role in retirement accumulation
strategies than they currently do in most target-date funds.

Finally, inflation risk emerges as a central concern for retirement savings. By model-
ing inflation as a stochastic process and incorporating inflation-sensitive assets, we show
that portfolios can be divided into two components: a growth-oriented performance port-
folio and a liability-hedging portfolio (LHP) designed to preserve purchasing power. This
liability-driven investment (LDI) approach, which has long been used in defined benefit
plans, is equally relevant for defined contribution systems. However, our analytical solution
reveals that the optimal hedging component is not simply the liability-hedging portfolio
itself, but rather the product of the LHP and a hedging demand coefficient. While the
liability-hedging portfolio depends on conventional risk metrics (risk aversion, asset covari-
ance matrix, inflation volatility, and covariance risk between inflation and asset returns),
the hedging demand is more nuanced. It depends critically on two factors: first, the rela-
tionship between expected inflation levels and asset risk premia; and second, the investor’s
objective function, particularly whether they prioritize terminal nominal wealth or real pur-
chasing power. These two forces, the opportunity-set component and the real-discounting
component, jointly determine the sign and magnitude of hedging demand. Consequently, the
optimal dynamic allocation may entail either a long or short position in the liability-hedging
portfolio, depending on which inflation scenario poses the greatest threat to the investment
strategy. For instance, high inflation presents a dual challenge. It increases risk premia
on certain assets while simultaneously eroding real purchasing power. The opportunity-set
effect may generate negative hedging demand if the primary risk is that inflation will revert
to its long-term mean, reducing future expected returns. Conversely, the real-discounting
effect unambiguously favors positive hedging demand to protect real wealth, implying long
exposure to the liability-hedging portfolio. The optimal hedging demand thus reflects the
balance between these competing forces, echoing the classical distinction between expected
inflation risk and unexpected inflation risk. While constructing the optimal liability-hedging
portfolio and precisely estimating hedging demand extends beyond the scope of this study,
our framework underscores that understanding asset-inflation relationships must be a cor-
nerstone of defined contribution solutions. In particular, this finding supports the inclusion
of alternative assets that can partially hedge adverse inflation scenarios53.

50This sharp increase is also driven by the lower expected returns of Eurozone public equities relative to
the global universe.

51These figures do not account for the friction involved in investing during the ramp-up and run-off phases
when capital is deployed or withdrawn.

52Conservative transactions costs are estimated at 7.5 and 15 bps for w/o and w/ strategies, respectively.
53It is illusory to think that inflation can be perfectly hedged by a static exposure on some financial assets.
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Maintaining living standards after retirement remains a central challenge. Evidence
shows that mandatory public pensions are often insufficient on their own, making supple-
mentary savings essential for securing adequate retirement income. In this context, our
findings suggest that the next generation of retirement investment solutions must go beyond
simple equity-bond splits and static glide paths. A unified lifecycle framework integrating
human capital considerations, real asset allocations, and inflation protection would provide
a more comprehensive foundation for modern retirement planning. Evidence indicates the
necessity of shifting investment thinking from traditional stock-bond allocations to sophis-
ticated multi-asset strategies that reflect the complexity of lifetime wealth accumulation.
For practitioners, the implication is clear: although implementing multi-asset glide paths
that incorporate real assets is operationally complex, the substantial gains in risk-adjusted
returns and retirement security make this evolution indispensable. For policymakers, the re-
sults underscore the importance of regulatory frameworks that facilitate access to diversified
investment opportunities within retirement plans rather than restrict them.

Inflation hedging can only be partial and approximate as noticed by Bekaert and Wang (2010): “This article
starts by discussing the concept of inflation hedging and provides estimates of inflation betas for standard
bond and well-diversified equity indices for over 45 countries. We show that such standard securities are
poor inflation hedges. Expanding the menu of assets to Treasury bills, foreign bonds, real estate and gold
improves matters but inflation risk remains difficult to hedge.”.
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A Technical appendix

A.1 Notations

• 0n is the vector of zeros.

• 1n is the vector of ones.

• αt is the proportion of total wealth
invested in the risky asset.

• βt is the proportion of total wealth in-
vested in the inflation-sensitive risky
asset.

• Bt is the price of the bond at time t
(risk-free asset).

• B (t, T ) = exp
(
−
∫ T
t
rs ds

)
is the dis-

count factor between times t and T .

• ct is the direct contribution of the in-
vestor to the target date fund.

• ei is the unit vector, i.e. [ei]i = 1 and
[ei]j = 0 for all j 6= i.

• Ht =
∫ T
t
e−

∫ s
t
ru ducs ds is the capi-

talization of the lifetime flow of con-
tribution.

• HFCRt = Ht/Xt is the human-to-
financial capital ratio.

• J (t, x) = supα Et
[
U (XT ) | Xt = x

]
is the value function of the investor.

• κ is the mean-reversion rate of the in-
flation.

• mt = E [Xt] is the mathematical ex-
pectation of the wealth.

• µt is the expected return of the risky
asset.

µ′t = at + btπt is the expected return
of the inflation-sensitive asset.

• µ (x) is the expected return of portfo-
lio w.

• πt is the inflation rate at time t.

• π∞ is long-term mean inflation rate.

• rt is the nominal interest rate.

• Rt is the price of the inflation-
sensitive risky asset at time t.

• % ∈ {0, 1} is the discounting binary
function.

• ρt, ρ(S)
t , and ρ

(R)
t are the correlation

coefficients between St and Rt, St and
πt, and Rt and πt, respectively.

• St is the price of the risky asset at
time t.

• SRt = (µt − rt) /σt is the Sharpe ratio
of the risky asset.

• Σt is the covariance matrix risky as-
sets.

• σt is the volatility of the risky asset.

• σ(π)
t is the inflation volatility

• σ′t = 10% is the volatility of the
inflation-sensitive asset.

• σ (w) =
√
x>Σx is the volatility of

Portfolio w.

• υt = var (Xt) is the variance of the
wealth.

• Wt = Xt +Ht is the total wealth, i.e.,
the sum of the spot wealth and the
forward wealth.

• wt is the vector of portfolio weights in
risky assets at time t.

• $t = αt ·wt is the vector of risky asset
exposure at time t.

• WS
t is the nominal wealth invested in

the risky asset.

• Xt is the financial wealth of the in-
vestor at time t.
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A.2 Proof of Equations (5) and (6)

We postulate a solution of the form:

J (t, x) = h (t)
xγ

γ

Since we have ∂tJ (t, x) = h′ (t)xγ/γ, ∂xJ (t, x) = h (t)xγ−1, and ∂2
xJ (t, x) = (γ − 1)h (t)xγ−2,

we deduce the optimal allocation strategy:

α?t = − (µt − rt)
σ2
t

· ∂xJ (t, x)

x∂2
xJ (t, x)

= − (µt − rt)
σ2
t

· h (t)xγ−1

x (γ − 1)h (t)xγ−2

=
µt − rt

(1− γ)σ2
t

It follows that:

max
α
H (t, x, α) =

(
rt +

(µt − rt)2

(1− γ)σ2
t

)
h (t)xγ − 1

2

(µt − rt)2

(1− γ)σ2
t

h (t)xγ

= βth (t)
xγ

γ

where:

βt = rtγ +
1

2

γ (µt − rt)2

(1− γ)σ2
t

The HJB equation with the terminal condition becomes54:{
h′ (t) + βh (t) = 0
h (T ) = 1

The solution to the differential equation is then h (t) = exp
(∫ T

t
βs ds

)
. Finally, we obtain

the value function:

J (t, x) = exp

∫ T

t

(
rsγ +

1

2

γ (µs − rs)2

(1− γ)σ2
s

)
ds

 · xγ
γ

A.3 Proof of Equations (7) and (8)

We consider the following Hamilton-Jacobi-Bellman equation:

∂J (t, x)

∂t
+ sup

αt

{(
rtXt + αt (µt − rt)Xt + ct

) ∂J (t, x)

∂x
+

1

2
α2
tσ

2
tX

2
t

∂2J (t, x)

∂x2

}
= 0

with terminal condition J (T, x) = U (x). Since the solution is not explicit in the presence
of contributions, we perform the following change of variable:

X̃t = Xt +Ht

= Xt +

∫ T

t

e−
∫ s
t
ru ducs ds

54Since the terminal condition is J (T, x) = h (T )xγ/γ = U (x), this implies h (T ) = 1.
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The modified dynamics of X̃t are:

dX̃t = dXt + dHt

=
(
rtXt + αt (µt − rt)Xt + ct

)
dt+ αtσtXt dWt + (rtHt − ct) dt

=

(
rtX̃t + αt (µt − rt)

(
X̃t −Ht

))
dt+ αtσt

(
X̃t −Ht

)
dWt

This transformation reduces the problem to the classical Merton case without contributions
but with a shifted wealth process X̃t, a transformed value function J̃ (t, x̃) = J (t, x̃−Ht)

and a new control variable α̃t such as α̃tX̃t = αtXt. We deduce that αtXt = αt

(
X̃t −Ht

)
=

α̃tX̃t and:

α̃t = αt
Xt

X̃t

=
αtXt

Xt +Ht

It follows that the dynamics of X̃t under the new control α̃t are:

dX̃t =
(
rt + α̃t (µt − rt)

)
X̃t dt+ α̃tσtX̃t dWt

This is exactly the classical Merton problem, now expressed in terms of α̃t and X̃t. We
deduce that:

α̃?t = − (µt − rt)
σ2
t

· ∂x̃J̃ (t, x̃)

x̃∂2
x̃J̃ (t, x̃)

In the case of the CRRA utility function, we have:

α̃?t =
µt − rt

(1− γ)σ2
t

Finally, we get:

α?t = α̃?t
X̃t

Xt

=
µt − rt

(1− γ)σ2
t

(
1 +

Ht

Xt

)
=

µt − rt
(1− γ)σ2

t

(
1 +

1

Xt

∫ T

t

e−
∫ s
t
ru ducs ds

)

A.4 Special cases of Ht

We recall that:

Ht =

∫ T

t

e−
∫ s
t
ru ducs ds =

∫ T

t

B (t, s) cs ds

where B (t, s) is the discount factor between times t and s. We consider several cases:

• ct = c0

When the contribution is constant, we get:

Ht = c0

∫ T

t

B (t, s) ds

Moreover, if the interest rate is constant — rt = r, the previous formula becomes:

Ht = c0

(
1− e−r(T−t)

r

)
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because we have:∫ T

t

B (t, s) ds =

∫ T

t

e−r(s−t) ds =

[
−e
−r(s−t)

r

]T
t

=
1− e−r(T−t)

r

• ct = c0 + bct
When the contribution is a linear function, we have:

Ht =

∫ T

t

B (t, s) (c0 + bcs) ds = c0

∫ T

t

B (t, s) ds+ bc

∫ T

t

sB (t, s) ds

If the interest rate is constant, we have:∫ T

t

sB (t, s) ds =

∫ T

t

se−r(s−t) ds

=

∫ T−t

0

(u+ t) e−ru du

=

∫ T−t

0

ue−ru du+ t

∫ T−t

0

e−ru du

=

[
−ue

−ru

r

]T−t
0

−
∫ T−t

0

−e
−ru

r
du+ t

[
−e
−ru

r

]T−t
0

=

[
−ue

−ru

r

]T−t
0

+

[
−e
−ru

r2

]T−t
0

+ t

[
−e
−ru

r

]T−t
0

= − (T − t) e−r(T−t)

r
+

1− e−r(T−t)

r2
+ t

(
1− e−r(T−t)

r

)

=
1

r2

(
1 + rt− (1 + rT ) e−r(T−t)

)
It follows that:

Ht = c0

(
1− e−r(T−t)

r

)
+ bc

(
1 + rt− (1 + rT ) e−r(T−t)

r2

)

• ct = c0 + bct+ act
2

When the contribution is a second degree polynomial, we have:

Ht =

∫ T

t

B (t, s)
(
c0 + bcs+ acs

2
)

ds

=

∫ T

t

B (t, s) (c0 + bcs) ds+ ac

∫ T

t

s2B (t, s) ds

If the interest rate is constant, we obtain:

Ht = c0

(
1− e−r(T−t)

r

)
+ bc

(
1 + rt− (1 + rT ) e−r(T−t)

r2

)
+

ac

(
2 (1 + rt) + r2t2 −

(
2 (1 + rT ) + r2T 2

)
e−r(T−t)

r3

)
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because:∫ T

t

s2B (t, s) ds =

∫ T

t

s2e−r(s−t) ds

=

∫ T−t

0

(u+ t)
2
e−ru du

=

∫ T−t

0

u2e−ru du+ 2t

∫ T−t

0

ue−ru du+ t2
∫ T−t

0

e−ru du

=

[
−2 + 2ru+ r2u2

r3
e−ru

]T−t
0

+ 2t

[
−1 + ru

r2
e−ru

]T−t
0

+

t2

[
−e
−ru

r

]T−t
0

=
1

r3

(
2 (1 + rt) + r2t2 −

(
2 (1 + rT ) + r2T 2

)
e−r(T−t)

)

A.5 Calibration of ct

We assume that we are given an empirical curve ĉ (t) of contributions observed at a set
of regular time points tj (j = 0, . . . ,m). For instance, in France, we can use data from
the French savings report published by INSEE to estimate monthly contributions based
on the investor’s age and group. A first approach consists of using a smoothing spline to
fit a non-parametric function c (t) over the interval t ∈ [t0, tm]. A second approach relies
on analytical cases detailed in Appendix A.4. For example, if we assume the contribution
function is constant — ct = c0, we can calibrate c0 as the mean value:

c0 =
1

tm − t0

∫ tm

t0

ĉ (t) dt ≈ 1

m+ 1

m∑
j=0

ĉ
(
tj
)

Alternatively, if we assume a linear contribution function — ct = c0 + bct, we can fit the
parameters using the values of contribution at times t0 and tm. We obtain the following
solution: 

c0 =
ĉ (t0) tm − ĉ (tm) t0

tm − t0
bc =

ĉ (tm)− ĉ (t0)

tm − t0
In the case of a second degree polynomial contribution function — ct = c0 + bct + act

2,
we assume that we know the initial value ĉ (t0) at age t0 and the maximum contribution
ĉ (tmax) = sup ĉ

(
tj
)
, which occurs at age tmax. Using the standard properties of quadratic

functions55, we obtain the following solution:

c0 =
ĉ (t0) t2max + ĉ (tmax) t0 (t0 − 2tmax)

(tmax − t0)
2

bc = −2
c0 − ĉ (tmax)

tmax

ac =
c0 − ĉ (tmax)

t2max
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Figure 50: Monthly savings estimates in 2006 according to INSEE
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Source: Bruder et al. (2012, Figure 7, page 12).

Figure 51: Calibration of the contribution function (in $)
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We consider the monthly saving amounts used by Bruder et al. (2012) to calibrate the
glide path. This savings function is shown in Figure 50. We transform this estimated
savings function ŝ (t) into a contribution function ĉ (t), assuming that 50% of the savings
are allocated to retirement contributions56. We obtain the following values: ĉ (t0) = ĉ (25) =
$7 332, ĉ (tm) = ĉ (65) = $10 212, and ĉ (tmax) = ĉ (53.83) = $11 536. Using the methods
described above, we calibrate the analytical contribution functions57 and report them in
Figure 51.

A.6 Maximum of Ht when ct is a quadratic function and the interest
rate is constant

To find the maximum of Ht, we rewrite it as:

Ht =
A+Bt+ Ct2 −De−r(T−t)

r3

where: 
A = c0r

2 + bcr + 2ac
B = bcr

2 + 2acr
C = acr

2

D = c0r
2 + bc

(
r + r2T

)
+ ac

(
2 + 2rT + r2T 2

)
The first-order condition for a maximum is:

∂Ht

∂t
= 0 ⇔ B + 2Ct− rDe−r(T−t) = 0

⇔ 2Ct = −B + rDe−rT ert

⇔ rt =
−rB + r2De−rT ert

2C

⇔ rt+
rB

2C︸ ︷︷ ︸
w

=
r2De−rT e−

rB
2C

2C︸ ︷︷ ︸
K

ert+
rB
2C︸ ︷︷ ︸

ew

It follows that:

w = Kew ⇔ −we−w = −K
⇔ −w = W (−K)

⇔ t? = −1

r

W (
−r

2De−rT e−
rB
2C

2C

)
+
rB

2C


where W (x) is the Lambert W function. Thus, the optimal time t? is given by:

t? = max

(
−1

r

(
W
(
−K1e

−rT e−K2

)
+K2

)
, t0

)
where:

K1 =
r2D

2C
=
c0r

2 + bc
(
r + r2T

)
+ ac

(
2 + 2rT + r2T 2

)
2ac

and K2 =
rB

2C
= 1 +

bcr

2ac
55The maximum occurs at tmax = −bc/ (2ac) and the value of the function at the maximum is ctmax =

c0 + bctmax + act2max = c0 − b2c/ (4ac). We also use the vertex form ct = ctmax + ac (t− tmax)2.
56This means that ĉ (t) = 50%× 12× ŝ (t).
57We obtain the following results: ct = 10 407.105 for the constant function, ct = 5 532.406 + 71.986t for

the linear function, and ct = −3 117.869 + 544.408t− 5.056t2 for the quadratic function.
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Remark 12. If ac = 0, the maximum is reached at:

t? = T +
1

r
ln bc −

1

r
ln
(
c0r + bc (1 + rT )

)
A.7 Computation of the expected wealth E [Xt]

When the utility function is CRRA, we have α∗tXt = ᾱt (Xt +Ht). Substituting α∗t into the
stochastic differential equation of the wealth yields:

dXt =
(
rtXt + α∗t (µt − rt)Xt + ct

)
dt+ α∗tσtXt dWt

=
(
(rt + ηt)Xt + ηtHt + ct

)
dt+ ᾱtσt (Xt +Ht) dWt

where:

ηt = ᾱt (µt − rt) =
(µt − rt)2

(1− γ)σ2
t

=
SR2

t

(1− γ)

Let mt = E [Xt] be the mean process of Xt. We deduce that:

dmt =
(
(rt + ηt)mt + ηtHt + ct

)
dt

The function mt satisfies the following linear ODE: dmt

dt
= (rt + ηt)mt + ηtHt + ct

mt0 = x0

Let λt = exp
(
−
∫ t
t0

(rs + ηs) ds
)

be the integrating factor. We have:

d

dt
[λtmt] =

dλt
dt

mt + λt
dmt

dt

= − (rt + ηt)λtmt + λt
(
(rt + ηt)mt + ηtHt + ct

)
= λt (ηtHt + ct)

We deduce that:

λtmt −m0 =

∫ t

t0

e
−

∫ s
t0

(ru+ηu) du
(ηsHs + cs) ds

Therefore, the solution is:

mt = e
∫ t
t0

(rs+ηs) ds

(
x0 +

∫ t

t0

e
−

∫ s
t0

(ru+ηu) du
(ηsHs + cs) ds

)
(28)

This is the general closed-form formula for the expectation of wealth. When the parameters
are constant — rt = r, µt = µ, σt = σ, we get:

mt = e(r+η)(t−t0)

(
x0 +

∫ t

t0

e−(r+η)(s−t0) (ηHs + cs) ds

)
(29)

We assume that ct = c0 + bct + act
2. Using the expression of Ht in Appendix A.4, we

deduce that:
ηHs + cs = A+Bs+ Cs2 −De−r(T−s)
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where:

A = c0
r + η

r
+ bc

η

r2
+ ac

2η

r3

B = bc
r + η

r
+ ac

2η

r2

C = ac
r + η

r

D = c0
η

r
+ bc

η (1 + rT )

r2
+ ac

η
(
2 (1 + rT ) + r2T 2

)
r3

It follows that:∫ t

t0

e−(r+η)(s−t0) (ηHs + cs) ds = A

∫ t

t0

e−(r+η)(s−t0) ds+B

∫ t

t0

se−(r+η)(s−t0) ds+

C

∫ t

t0

s2e−(r+η)(s−t0) ds−De−r(T−t0)

∫ t

t0

e−η(s−t0) ds

Since we have:∫ t

t0

e−(r+η)(s−t0) ds =
1− e−(r+η)(t−t0)

r + η∫ t

t0

se−(r+η)(s−t0) ds =

(
t0

r + η
+

1

(r + η)
2

)
−

(
t

r + η
+

1

(r + η)
2

)
e−(r+η)(t−t0)

∫ t

t0

s2e−(r+η)(s−t0) ds =

(
t20

r + η
+

2t0

(r + η)
2 +

2

(r + η)
3

)
−(

t2

r + η
+

2t

(r + η)
2 +

2

(r + η)
3

)
e−(r+η)(t−t0)

∫ t

t0

e−η(s−t0) ds =
1− e−η(t−t0)

η

we conclude that:

mt = e(r+η)(t−t0)x0 +
A

r + η

(
e(r+η)(t−t0) − 1

)
+

B

(
t0

r + η
+

1

(r + η)
2

)
e(r+η)(t−t0) −B

(
t

r + η
+

1

(r + η)
2

)
+

C

(
t20

r + η
+

2t0

(r + η)
2 +

2

(r + η)
3

)
e(r+η)(t−t0) − C

(
t2

r + η
+

2t

(r + η)
2 +

2

(r + η)
3

)
−

D

η
e−r(T−t0)

(
e(r+η)(t−t0) − er(t−t0)

)
In the case of a constant contribution function, the expression for mt simplifies to:

mt = e(r+η)(t−t0)x0 +

((
e(r+η)(t−t0) − 1

)
− e−r(T−t0)

(
e(r+η)(t−t0) − er(t−t0)

)) c0

r
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A.8 Computation of the variance of the wealth

We recall that:

dXt =
(
(rt + ηt)Xt + ηtHt + ct

)
dt+ ᾱtσt (Xt +Ht) dWt

By Itô’s lemma, we have dX2
t = 2Xt dXt + (dXt)

2
. Since (dXt)

2
= ᾱ2

tσ
2
t (Xt +Ht)

2
dt, we

deduce that:

dX2
t =

(
2
(
(rt + ηt)Xt + ηtHt + ct

)
Xt + ᾱ2

tσ
2
t (Xt +Ht)

2
)

dt+ 2ᾱtσt (Xt +Ht)Xt dWt

and:

d

dt
E
[
X2
t

]
= E

[
2
(
(rt + ηt)Xt + ηtHt + ct

)
Xt + ᾱ2

tσ
2
t (Xt +Ht)

2
]

= ᾱ2
tσ

2
tH

2
t + 2

(
ηtHt + ct + ᾱ2

tσ
2
tHt

)
E [Xt] +(

2 (rt + ηt) + ᾱ2
tσ

2
t

)
E
[
X2
t

]
We denote mt = E [Xt] and υt = var (Xt) = E

[
X2
t

]
−m2

t with mt0 = x0 and υ0 = 0. It
follows that:

dυt
dt

=
d

dt
E
[
X2
t

]
− 2mt

dmt

dt

= ᾱ2
tσ

2
tH

2
t + 2

(
ηtHt + ct + ᾱ2

tσ
2
tHt

)
mt +(

2 (rt + ηt) + ᾱ2
tσ

2
t

)(
υt +m2

t

)
− 2

(
(rt + ηt)mt + ηtHt + ct

)
mt

=
(

2 (rt + ηt) + ᾱ2
tσ

2
t

)
υt + ᾱ2

tσ
2
t (mt +Ht)

2

We know that the solution of the ODE:

dyt
dt

= atyt + bt

is:

yt = e
∫ t
t0
as ds

(
y0 +

∫ t

t0

e
−

∫ s
t0
au du

bs ds

)
Finally, we get:

υt = exp

(∫ t

t0

(
2 (rs + ηs) + ᾱ2

sσ
2
s

)
ds

)
·

∫ t

t0

ᾱ2
sσ

2
s (ms +Hs)

2
exp

(
−
∫ s

t0

(
2 (ru + ηu) + ᾱ2

uσ
2
u

)
du

)
ds

=

∫ t

t0

ᾱ2
sσ

2
s (ms +Hs)

2
exp

(∫ t

s

(
2 (ru + ηu) + ᾱ2

uσ
2
u

)
du

)
ds

When the parameters are constant, the previous expression becomes:

υt = ᾱ2σ2

∫ t

t0

(ms +Hs)
2
e(2(r+η)+ᾱ2σ2)(t−s) ds
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Let us now also assume that the contribution is constant. We deduce that:

ms +Hs = e(r+η)se−(r+η)t0

(
x0 +

c0

r
(1− e−r(T−t0))

)
+

e−rs
(
c0

r
e−rT+2rt0

)
− ers

(
c0

r
e−rT

)
= Ae(r+η)s +Be−rs − Cers

and:

(ms +Hs)
2

=
(
Ae(r+η)s +Be−rs − Cers

)2

= A2e2(r+η)s +B2e−2rs + C2e2rs + 2ABeηs − 2ACe(2r+η)s − 2BC

Let κ = 2 (r + η) + ᾱ2σ2. It follows that:

υt = ᾱ2σ2

∫ t

t0

(ms +Hs)
2eκ(t−s) ds

= ᾱ2σ2eκt

[
A2

∫ t

t0

e(2(r+η)−κ)s ds+B2

∫ t

t0

e(−2r−κ)s ds+ C2

∫ t

t0

e(2r−κ)s ds

]
+

2ᾱ2σ2eκt

[
AB

∫ t

t0

e(η−κ)s ds−AC
∫ t

t0

e(2r+η−κ)s ds−BC
∫ t

t0

e−κs ds

]

= ᾱ2σ2eκtA2

(
e(2r+2η−κ)t − e(2r+2η−κ)t0

2r + 2η − κ

)
− ᾱ2σ2eκtB2

(
e(−2r−κ)t − e(−2r−κ)t0

2r + κ

)
+

ᾱ2σ2eκtC2

(
e(2r−κ)t − e(2r−κ)t0

2r − κ

)
+ 2ᾱ2σ2eκtAB

(
e(η−κ)t − e(η−κ)t0

η − κ

)
−

2ᾱ2σ2eκtAC

(
e(2r+η−κ)t − e(2r+η−κ)t0

2r + η − κ

)
+ 2ᾱ2σ2eκtBC

(
e−κt − e−κt0

κ

)

where: 

A = e−(r+η)t0

(
x0 +

c0

r
(1− e−r(T−t0))

)
B =

c0

r
e−rT+2rt0

C = e−rT
c0

r
κ = 2 (r + η) + ᾱ2σ2

A.9 Computation of the skewness of the wealth

By Itô’s lemma, we have dX3
t = 3X2

t dXt + 3Xt (dXt)
2
. We deduce that:

dX3
t = 3

(
(rt + ηt)X

3
t + ηtHtX

2
t + ctX

2
t + ᾱ2

tσ
2
t (Xt +Ht)

2
Xt

)
dt+

3ᾱtσt (Xt +Ht)X
2
t dWt

97



Retirement Accumulation Strategies with Real Assets and Inflation Risk

and:

d

dt
E
[
X3
t

]
= 3E

[
(rt + ηt)X

3
t + ηtHtX

2
t + ctX

2
t + ᾱ2

tσ
2
t

(
X3
t + 2HtX

2
t +H2

tXt

)]
= 3

(
rt + ηt + ᾱ2

tσ
2
t

)
E
[
X3
t

]
+ 3

((
ηt + 2ᾱ2

tσ
2
t

)
Ht + ct

)
E
[
X2
t

]
+

3ᾱ2
tσ

2
tH

2
t E [Xt]

= atE
[
X3
t

]
+ bt

where:  at = 3
(
rt + ηt + ᾱ2

tσ
2
t

)
bt = 3

((
ηt + 2ᾱ2

tσ
2
t

)
Ht + ct

) (
υt +m2

t

)
+ 3ᾱ2

tσ
2
tH

2
tmt

It follows that:

E
[
X3
t

]
= e

∫ t
t0
as ds

(
x3

0 +

∫ t

t0

e
−

∫ s
t0
au du

bs ds

)
Finally, we get the formula of the skewness:

skt =
E
[(
Xt − E [Xt]

)3]
E3/2

[(
Xt − E [Xt]

)2] =
E
[
X3
t

]
− 3

(
υt +m2

t

)
mt + 2m3

t

υ
3/2
t

Remark 13. When the parameters are constant, the previous formula reduces to:

E
[
X3
t

]
= ea(t−t0)x3

0 +

∫ t

t0

ea(t−s)bs ds

where a = 3
(
r + η + ᾱ2σ2

)
and bt = 3

((
η + 2ᾱ2σ2

)
Ht + ct

) (
υt +m2

t

)
+ 3ᾱ2σ2H2

tmt.

A.10 Jensen’s inequality and analytics of the glide path

The glide path gt is defined as the expected dynamic asset allocation:

gt = E
[
α?t | Ft0

]
= E

[
µt − rt

(1− γ)σ2
t

(
1 +

Ht

Xt

)
| Ft0

]

=
µt − rt

(1− γ)σ2
t

(
1 + E

[
1

Xt
| Ft0

]
Ht

)
Let f (x) be a convex function. Jensen’s inequality states that E

[
f (Xt)

]
≥ f

(
E [Xt]

)
.

Applying this to the function f (x) = x−1 for x > 0 gives:

E
[

1

Xt
| Ft0

]
≥ 1

E
[
Xt | Ft0

]
Let mt = E [Xt], vt = var (Xt) = E

[
(Xt −mt)

2
]

and ςt = E
[
(Xt −mt)

3
]

denote the mean,

variance, and skewness moment of Xt, respectively. The Taylor expansion of f (Xt) around
mt gives:

f (Xt) = f (mt) + f ′ (mt) (Xt −mt) +
1

2
f ′′ (mt) (Xt −mt)

2
+

1

6
f ′′′ (εt) (Xt −mt)

3
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where εt ∈ [Xt,mt]. We deduce that58:

E
[

1

Xt

]
=

1

mt
+

vt
m3
t

− ςt
ε4
t

By assuming that |ςt| � ε4
t , we get the second-order approximation:

gt ≈
µt − rt

(1− γ)σ2
t

(
1 +

Ht

mt
+
Htvt
m3
t

)
Using the same approach, the third-order approximation is:

gt ≈
µt − rt

(1− γ)σ2
t

(
1 +

Ht

mt
+
Htvt
m3
t

− Htυ
3/2
t

m4
t

skt

)

where υ
3/2
t is the standardized third central moment (the numerator of skewness), and skt

denotes the skewness.

A.11 Glide path formula when the wealth is log-normal distributed

If we assume that Xt ∼ LN
(
µ̃t, σ̃

2
t

)
, we know that, for any exponent p 6= 0, the power Xp

t

also follows a log-normal distribution:

Xp
t ∼ LN

(
pµ̃t, p

2σ̃2
t

)
We deduce that:  E

[
Xp
t

]
= exp

(
pµ̃t +

1

2
p2σ̃2

t

)
var
(
Xp
t

)
= exp

(
2pµ̃t + p2σ̃2

t

) (
exp

(
p2σ̃2

t

)
− 1
)

In particular, for p = −1, we get:

E
[

1

Xt

]
= exp

(
−µ̃t +

1

2
σ̃2
t

)
and:

var

(
1

Xt

)
= exp

(
−2µ̃t + σ̃2

t

)(
exp

(
σ̃2
t

)
− 1

)
We also note the following identity:

E
[

1

Xt

]
=

exp
(
σ̃2
t

)
E [Xt]

Using the expression:

exp
(
σ̃2
t

)
= 1 +

var (Xt)

E2 [Xt]

we conclude that:

E
[

1

Xt

]
=

1

E [Xt]

(
1 +

var (Xt)

E2 [Xt]

)
=

1

E [Xt]
+

var (Xt)

E3 [Xt]

58We have f (x) = x−1, f ′ (x) = −x−2, f ′′ (x) = 2x−3, and f ′′′ (x) = −6x−4.
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Applying this result to the glide path formula gives:

gt =
µt − rt

(1− γ)σ2
t

(
1 +Ht

(
1

E [Xt]
+

var (Xt)

E3 [Xt]

))

This expression corresponds to the approximate version of the glide path obtained using
Jensen’s inequality.

A.12 Simulation of the state-control dynamics

A.12.1 The unconstrained case

We recall the following equations:

ᾱt =
µt − rt

(1− γ)σ2
t

αt = ᾱt

(
1 +

Ht

Xt

)
ηt = ᾱt (µt − rt)
dXt =

(
(rt + ηt)Xt + ηtHt + ct

)
dt+ ᾱtσt (Xt +Ht) dWt

We discretize the process over a time grid t ∈ {t0, t1, . . . , tm = T}, and denote by Xm the
numerical solution of Xtm . Using the Euler-Maruyama scheme, we obtain:

ᾱm =
µm − rm

(1− γ)σ2
m

αm = ᾱm

(
1 +

Hm

Xm

)
ηm = ᾱm (µm − rm)
εm ∼ N (0, tm+1 − tm)
Xm+1 = Xm +

(
(rm + ηm)Xm + ηmHm + cm

)
(tm+1 − tm) + ᾱmσm (Xm +Hm) εm

An alternative approach is to use the Milstein scheme with fixed time steps. In this case,
the update equation becomes:

Xm+1 = Xm +
(
(rm + ηm)Xm + ηmHm + cm

)
h+

ᾱmσm (Xm +Hm) εm +
1

2
ᾱ2
mσ

2
m (Xm +Hm)

(
ε2
m − h

)
where εm ∼ N (0, h) and h = tm+1 − tm is the time step.

A.12.2 The constrained case

The previous equations become:

ᾱt =
µt − rt

(1− γ)σ2
t

αt = max

0,min

(
ᾱt

(
1 +

Ht

Xt

)
, 1

)
dXt =

((
rt + αt (µt − rt)

)
Xt + ct

)
dt+ αtσtXt dWt
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and:

ᾱm =
µm − rm

(1− γ)σ2
m

αm = max

0,min

(
ᾱm

(
1 +

Hm

Xm

)
, 1

)
εm ∼ N (0, tm+1 − tm)

Xm+1 = Xm +
((
rm + αm (µm − rm)

)
Xm + cm

)
(tm+1 − tm) + αmσmXmεm

For the Milstein scheme, the update equation is:

Xm+1 = Xm +
((
rm + αm (µm − rm)

)
Xm + cm

)
h+

αmσmXmεm +
1

2
α2
mσ

2
mXm

(
ε2
m − h

)
A.13 Simplex projection methods

Duchi et al. (2008) propose the sort-and-shift (water-filling) method for projecting a vector
onto the simplex Ω. Given the unconstrained weight ᾰ, the procedure is as follows:

• Sort ᾰ in descending order to obtain u1 ≥ u2 ≥ · · · ≥ un;

• Compute the partial sum Sk =
∑k
i=1 ui and the threshold θk =

Sk − 1

k
;

• Select kmax = max {k = 1, . . . , n : uk > θk} and set θ = θkmax
;

• Shift the unconstrained weights to constrained weights:

α?t = max (ᾰ− θ, 0)

This method has complexity O (n log n) due to the sorting step.

Condat (2016) proposes an improved variant that replaces full sorting with a QuickSelect-
style partition, reducing the complexity to O (n) on average. Given the unconstrained
solution ᾰ, the algorithm proceeds as follows:

• If
∑n
i=1 ᾰi = 1 and ᾰi ≥ 0, then α?t = ᾰ and stop;

• Otherwise, find the threshold θ such that:

n∑
i=1

max (ᾰi − θ, 0) = 1

This can be achieved using a QuickSelect-based routine59. The algorithm iteratively
partitions around candidate pivots, narrowing the interval until the correct threshold
is found;

• Finally, shift the unconstrained weights to constrained weights:

α?t = max (ᾰ− θ, 0)

59QuickSelect is a selection algorithm similar to QuickSort. It partitions the array around a pivot and
recursively processes only the side containing the desired element, achieving an average time complexity of
O (n) and finding the k-th smallest element without fully sorting.
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A.14 Separability property under the constraints ct = 0, αt ≥ 0 and
1>αt ≤ 1

The HJB equation for a CRRA utility function is given by:

∂J (t, x)

∂t
+ max
αt∈Ω

H (t, x, αt) = 0 s.t. J (T, x) = U (x) =
xγ

γ

where the Hamiltonian takes the form:

H (t, x, α) =

((
rt + α>t (µt − rt1n)

)
x+ ct

)
∂J (t, x)

∂x
+

1

2

(
α>t Σtαt

)
x2 ∂

2J (t, x)

∂x2

Generally, we guess the form of the value function is separable: J (t, x) = f (t)U (x) with
f (T ) = 1. Then, we have:  ∂tJ (t, x) = ∂tf (t) γ−1xγ

∂xJ (t, x) = f (t)xγ−1

∂2
xJ (t, x) = f (t) (γ − 1)xγ−2

Substituting these into the HJB equation yields:

∂tf (t)
xγ

γ
+max
αt∈Ω

{((
rt + α>t (µt − rt1n)

)
x+ ct

)
f (t)xγ−1 +

γ − 1

2

(
α>t Σtαt

)
f (t)xγ

}
= 0

When the contribution ct is zero, then the HJB equation simplifies to:

∂tf (t)
xγ

γ
+ max
αt∈Ω

{(
rt + α>t (µt − rt1n)

)
f (t)xγ +

γ − 1

2

(
α>t Σtαt

)
f (t)xγ

}
= 0

When the constraint set Ω is independent of x, this is an ODE in f (t):

∂tf (t)

γ
+ max
αt∈Ω

{(
rt + α>t (µt − rt1n)

)
f (t) +

γ − 1

2

(
α>t Σtαt

)
f (t)

}
= 0

The optimal solution α?t is also independent of x. Thus, the separability assumption holds,
and we obtain:

− x∂2
xJ (t, x)

∂xJ (t, x)
= 1− γ (30)

This is the case when the constraint set Ω is defined as:

Ω =
{
α ∈ Rn : α ≥ 0,1>α ≤ 1

}
because it is independent of x.

Remark 14. When the contribution ct is not zero, the HJB equation becomes:

∂tf (t)

γ
+ max
αt∈Ω

{(
rt + α>t (µt − rt1n) +

ct
x

)
f (t) +

γ − 1

2

(
α>t Σtαt

)
f (t)

}
= 0

In this case, the equation explicitly depends on x, and the separability hypothesis for J (t, x)
no longer holds.
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A.15 Computation of the threshold correlation

We consider the two-asset case and note:

πi =
µi − r
1− γ

In the two-stage approach, the equality constraint implies w2 = 1 − w1. Therefore, the
optimization problem reduces to:

w?1 = arg min
1

2

(
σ2

1w
2
1 + 2ρσ1σ2w1 (1− w1) + σ2

2 (1− w1)
2
)
− π1w1 − π2 (1− w1)

s.t. 0 ≤ w1 ≤ 1

The optimal solution w?1 is the clipped version of the unconstrained solution:

w?1 = clip[0,1]

(
π1 − π2 + σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

)

Hence, the necessary and sufficient conditions for the existence of an interior solution
(0 < w1 < 1) are:

σ2 (ρσ1 − σ2) < π1 − π2 < σ1 (σ1 − ρσ2)

Otherwise, the condition fails and w?1 is clipped to either 0 or 1, corresponding to full
investment in a single asset. For example, in our setting, as we approach the target date, γ
becomes more negative and thus π1 − π2 → 0:

σ2 (ρσ1 − σ2) < 0 < σ1 (σ1 − ρσ2)

In this case, increasing ρ can break the interior-solution condition, leading to a corner
solution with full investment in one asset. This phenomenon is illustrated in Figure 52
(right panel).

In the one-stage problem, the feasible region is the triangle {w1 ≥ 0, w2 ≥ 0, w1 + w2 ≤ 1}.
Since the objective function is a convex quadratic, the optimum must lie either in the interior
of the triangle or on one of its three edges. The unconstrained solution is:

ᾰ = Σ−1π =
1

σ2
1σ

2
2 (1− ρ2)

(
σ2

2π1 − ρσ1σ2π2

σ2
1π2 − ρσ1σ2π1

)
Therefore, the necessary and sufficient conditions for the existence of an interior solution
are: 

σ2π1 − ρσ1π2 > 0
σ1π2 − ρσ2π1 > 0
σ2

2π1 − ρσ1σ2 (π1 + π2) + σ2
1π2

σ2
1σ

2
2 (1− ρ2)

< 1

These conditions can be simplified by expressing them in terms of the Sharpe ratio:
SR1−ρSR2 > 0
SR2−ρSR1 > 0
σ2 SR1−ρ (σ1 SR1 +σ2 SR2) + σ1 SR2

(1− γ)σ1σ2 (1− ρ2)
< 1

For example, in our setting, as we approach the target date, γ becomes more negative,
so the third condition is automatically satisfied. Moreover, if SR1 = SR2 > 0, the first
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two conditions also hold. In this case, increasing ρ does not violate the interior-solution
condition, and the solution remains interior, with strictly positive allocations to both assets.
This is illustrated in Figure 52 (left panel).

We now compute the threshold correlation ρ?:

• Two-stage approach
When the condition σ2 (ρσ1 − σ2) < π1 − π2 < σ1 (σ1 − ρσ2) is violated, the interior
solution disappears, and the allocation collapses to a corner solution (weights (0, 1) or
(1, 0)). Under the general assumptions µi > r, we obtain:

ρ?two−stage = ρ? = min

{
µ1 − µ2

(1− γ)σ1σ2
+
σ2

σ1
,

µ2 − µ1

(1− γ)σ1σ2
+
σ1

σ2

}
• One-stage approach

Using the KKT conditions with λ0 = λ1 = λ2 = 0, we obtain:

ρ?one−stage = ρ? = min

{
σ2 (µ1 − r)
σ1 (µ2 − r)

,
σ1 (µ2 − r)
σ2 (µ1 − r)

}
= min

{
SR1

SR2
,

SR2

SR1

}
The key difference is that ρ?one−stage is independent of the risk-aversion parameter γ, whereas
ρ?two−stage is independent of the risk-free rate r. In particular, when µ1 = µ2, both formula-
tions coincide:

ρ?one−stage = ρ?two−stage = min

{
σ2

σ1
,
σ1

σ2

}

Figure 52: Comparison of one-stage and two-stage allocations
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Remark 15. The distinction between one-stage and two-stage allocation arises from the
difference between the inequality constraint, 1>nαt ≤ 1, and the equality constraint, 1>nwt =
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1. In two-stage allocation, the allocation constraint always applies, forcing all wealth into
risky assets and typically resulting in corner solutions, particularly when assets are highly
correlated. Small changes in expected returns or covariances can cause significant shifts in
allocation, often resulting in all investments being concentrated in a single asset. In contrast,
the one-stage formulation allows the budget constraint to be slack, meaning that some wealth
can remain in the risk-free asset. This flexibility reduces instability. When assets are very
similar or highly correlated, the optimal solution is to invest in multiple assets with positive
weights while reducing overall exposure to risky assets. These differences are illustrated in
Figure 52, where the allocation to the second asset vanishes in the two-stage setting as the
correlation increases, even though both assets have the same Sharpe ratio but different levels
of risk60.

A.16 Proof of Equations (22) and (23)

We remind that the Hamiltonian is:

H (t, x, π, α, β) =
(
αµtx+ β (at + btπ)x+ (1− α− β) rtx− %πx+ c′t

) ∂J (t, x, π)

∂x
+

1

2

(
α2σ2

t + β2
(
σ′t
)2

+ 2αβρtσtσ
′
t

)
x2 ∂

2J (t, x, π)

∂x2
+(

αρ
(S)
t σt + βρ

(R)
t σ′t

)
σ

(π)
t x

∂2J (t, x, π)

∂x ∂π

We deduce that:

∂H (t, x, π, α, β)

∂α
= (µt − rt)x

∂J (t, x, π)

∂x
+
(
ασ2

t + βρtσtσ
′
t

)
x2 ∂

2J (t, x, π)

∂x2
+

ρ
(S)
t σtσ

(π)
t x

∂2J (t, x, π)

∂x ∂π

and:

∂H (t, x, π, α, β)

∂β
= (at + btπ − rt)x

∂J (t, x, π)

∂x
+
(
β
(
σ′t
)2

+ αρtσtσ
′
t

)
x2 ∂

2J (t, x, π)

∂x2
+

ρ
(R)
t σ′tσ

(π)
t x

∂2J (t, x, π)

∂x ∂π

In a matrix form, the first-order conditions are:(
σ2
t ρtσtσ

′
t

ρtσtσ
′
t

(
σ′t
)2 )(

α
β

)
x2Jx,x+

(
µt − rt

at + btπ − rt

)
xJx+

(
ρ

(S)
t σtσ

(π)
t

ρ
(R)
t σ′tσ

(π)
t

)
xJx,π =

(
0
0

)
where Jx = ∂xJ (t, x, π), Jx,x = ∂2

xJ (t, x, π) and Jx,π = ∂x,πJ (t, x, π). Using the nota-

tions θt = (µt − rt, at + btπ − rt) and ζt =
(
ρ

(S)
t σtσ

(π)
t , ρ

(R)
t σ′tσ

(π)
t

)
, we get:

xJx,xΣtν + θtJx + ζtJx,π = 02

The optimal solution is then:

ν? =

(
α?

β?

)
= −Σ−1

t

(
θt
Jx
xJx,x

+ ζt
Jx,π
xJx,x

)
60The solutions are obtained with the following parameters: µ1 = 8%, µ2 = 10%, σ1 = 15%, σ2 = 20%,

and r = 2%.
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The matrix form of the Hamiltonian is:

H (t, x, π, ν) =
1

2

(
x2Jx,x

)(
ν>Σtν

)
+ (xJx)

(
ν>θt + rt − %π

)
+
(
c′tJx

)
+
(
xJx,π

) (
ν>ζt

)
We have:

ν?>Σtν
? =

(
Jx
xJx,x

)2

θ>t Σ−1
t θt + 2

JxJx,π(
xJx,x

)2 ζ>t Σ−1
t θt +

(
Jx,π
xJx,x

)2

ζ>t Σ−1
t ζt

ν?>θt = − Jx
xJx,x

θ>t Σ−1
t θt −

Jx,π
xJx,x

ζ>t Σ−1
t θt

ν?>ζt = − Jx
xJx,x

θ>t Σ−1
t ζt −

Jx,π
xJx,x

ζ>t Σ−1
t ζt

At the optimum, we deduce that:

H (t, x, π, ν?t ) =
1

2

J 2
x

Jx,x
θ>t Σ−1

t θt +
JxJx,π
Jx,x

ζ>t Σ−1
t θt +

1

2

J 2
x,π

Jx,x
ζ>t Σ−1

t ζt −

J 2
x

Jx,x
θ>t Σ−1

t θt −
JxJx,π
Jx,x

ζ>t Σ−1
t θt + xJxrt − xJx%π + c′tJx −

JxJx,π
Jx,x

θ>t Σ−1
t ζt −

J 2
x,π

Jx,x
ζ>t Σ−1

t ζt

= −1

2

J 2
x

Jx,x
θ>t Σ−1

t θt −
JxJx,π
Jx,x

ζ>t Σ−1
t θt −

1

2

J 2
x,π

Jx,x
ζ>t Σ−1

t ζt +

Jx
(
rtx− %πx+ c′t

)
A.17 Proof of Equations (24) and (25)

We set the contribution ct to 0 and consider a CRRA utility function. A common approach
is to assume that the value function is separable in wealth and the state variable:

J (t, x, π) = h (t, π)
xγ

γ

with terminal condition h(T, π) = 1. The optimal Hamiltonian is therefore61:

H (t, x, π, ν?t ) = −1

2

J 2
x

Jx,x
θ>t Σ−1

t θt −
JxJx,π
Jx,x

ζ>t Σ−1
t θt −

1

2

J 2
x,π

Jx,x
ζ>t Σ−1

t ζt + Jx (rtx− %πx)

= −1

2

(
h (t, π)xγ−1

)2
(γ − 1)h (t, π)xγ−2

θ>t Σ−1
t θt −

h (t, π)xγ−1∂πh (t, π)xγ−1

(γ − 1)h (t, π)xγ−2
ζ>t Σ−1

t θt −

1

2

(
∂πh (t, π)xγ−1

)2
(γ − 1)h (t, π)xγ−2

ζ>t Σ−1
t ζt + h (t, π)xγ−1 (rt − %π)x

= −1

2

h (t, π)xγ

(γ − 1)
θ>t Σ−1

t θt −
∂πh (t, π)xγ

(γ − 1)
ζ>t Σ−1

t θt −

1

2

(
∂πh (t, π)

)2
xγ

(γ − 1)h (t, π)
ζ>t Σ−1

t ζt + h (t, π)xγ (rt − %π)

61We have ∂tJ (t, x, π) = ∂th (t, π) γ−1xγ , ∂xJ (t, x, π) = h (t, π)xγ−1, ∂2xJ (t, x, π) =
(γ − 1)h (t, π)xγ−2, ∂πJ (t, x, π) = ∂πh (t, π) γ−1xγ , ∂2πJ (t, x, π) = ∂2πh (t, π) γ−1xγ , and ∂x,πJ (t, x, π) =
∂πh (t, π)xγ−1.
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We obtain the following HJB equation:

0 = ∂th (t, π) γ−1 + κ (π∞ − π) ∂πh (t, π) γ−1 +
1

2

(
σ

(π)
t

)2

∂2
πh (t, π) γ−1 + h (t, π) (rt − %π)−

1

2

h (t, π)

(γ − 1)
θ>t Σ−1

t θt −
∂πh (t, π)

(γ − 1)
ζ>t Σ−1

t θt −
1

2

(
∂πh (t, π)

)2
(γ − 1)h (t, π)

ζ>t Σ−1
t ζt

Since θt =

(
µt − rt

at + btπ − rt

)
depends on π, we set:

θt = θ̄t + θ̂tπ =

(
µt − rt
at − rt

)
+

(
0
bt

)
π

It follows that: {
θ>t Σ−1

t θt = θ̄>t Σ−1
t θ̄t + 2θ̄>t Σ−1

t θ̂tπ + θ̂>t Σ−1
t θ̂tπ

2

ζ>t Σ−1
t θt = ζ>t Σ−1

t θ̄t + ζ>t Σ−1
t θ̂tπ

We deduce that:

0 = ∂th (t, π) γ−1 + κ (π∞ − π) ∂πh (t, π) γ−1 +
1

2

(
σ

(π)
t

)2

∂2
πh (t, π) γ−1 + h (t, π) (rt − %π)−

1

2

h (t, π)

(γ − 1)
θ̄>t Σ−1

t θ̄t −
h (t, π)

(γ − 1)
θ̄>t Σ−1

t θ̂tπ −
1

2

h (t, π)

(γ − 1)
θ̂>t Σ−1

t θ̂tπ
2 −

∂πh (t, π)

(γ − 1)
ζ>t Σ−1

t θ̄t −
∂πh (t, π)

(γ − 1)
ζ>t Σ−1

t θ̂tπ −
1

2

(
∂πh (t, π)

)2
(γ − 1)h (t, π)

ζ>t Σ−1
t ζt

When the constraint set Ω is independent of x, this is a non-linear partial differential equation
in h (t, π).

We assume a guess solution of h (t, π):

h (t, π) = exp
(
A (t) +B (t)π + C (t)π2

)
with terminal condition A (T ) = B (T ) = C (T ) = 0. We have:

∂th (t, π) =
(
A′ (t) +B′ (t)π + C ′ (t)π2

)
h (t, π)

∂πh (t, π) =
(
B (t) + 2C (t)π

)
h (t, π)

∂2
πh (t, π) =

(
2C (t) +

(
B (t) + 2C (t)π

)2)
h (t, π)

The HJB equation becomes:

0 =
(
A′ (t) +B′ (t)π + C ′ (t)π2

)
+ κ (π∞ − π)

(
B (t) + 2C (t)π

)
+

1

2

(
σ

(π)
t

)2 (
2C (t) +

(
B (t) + 2C (t)π

)2)
+ γ (rt − %π)−

1

2

γ

γ − 1
θ̄>t Σ−1

t θ̄t −
γ

γ − 1
θ̄>t Σ−1

t θ̂tπ −
1

2

γ

γ − 1
θ̂>t Σ−1

t θ̂tπ
2 −

γ
(
B (t) + 2C (t)π

)
γ − 1

ζ>t Σ−1
t θ̄t −

γ
(
B (t) + 2C (t)π

)
γ − 1

ζ>t Σ−1
t θ̂tπ −

1

2

γ
(
B (t) + 2C (t)π

)2
γ − 1

ζ>t Σ−1
t ζt
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or:

aπ (t)π2 + bπ (t)π + cπ (t) = 0 (31)

where:

aπ (t) = C ′ (t)− 2κC (t) + 2
(
σ

(π)
t

)2

C2 (t)− 1

2

γ

γ − 1
θ̂>t Σ−1

t θ̂t−

2
γ

γ − 1
C (t) ζ>t Σ−1

t θ̂t − 2
γ

γ − 1
C2 (t) ζ>t Σ−1

t ζt

bπ (t) = B′ (t) + κ
(
2π∞C (t)−B (t)

)
+ 2

(
σ

(π)
t

)2

B (t)C (t)− γ%−
γ

γ − 1
θ̄>t Σ−1

t θ̂t − 2
γ

γ − 1
C (t) ζ>t Σ−1

t θ̄t −
γ

γ − 1
B (t) ζ>t Σ−1

t θ̂t−

2
γ

γ − 1
B (t)C (t) ζ>t Σ−1

t ζt

cπ (t) = A′ (t) + κπ∞B (t) +
1

2

(
σ

(π)
t

)2 (
B2 (t) + 2C (t)

)
+ γrt−

1

2

γ

γ − 1
θ̄>t Σ−1

t θ̄t −
γ

γ − 1
B (t) ζ>t Σ−1

t θ̄t −
1

2

γ

γ − 1
B2 (t) ζ>t Σ−1

t ζt

Since Equation (31) must be satisfied for all values of π, we deduce that: aπ (t)
bπ (t)
cπ (t)

 = 03

It follows that62:

dA (t)

dt
= −κπ∞B (t)− 1

2

(
σ

(π)
t

)2 (
B2 (t) + 2C (t)

)
− γrt+

γ

γ − 1

(
1

2
θ̄>t Σ−1

t θ̄t +B (t) ζ>t Σ−1
t θ̄t +

1

2
B2 (t) ζ>t Σ−1

t ζt

)
dB (t)

dt
= −κ

(
2π∞C (t)−B (t)

)
− 2

(
σ

(π)
t

)2

B (t)C (t) + γ%+
γ

γ − 1

(
θ̄t +B (t) ζt

)>
Σ−1
t

(
θ̂t + 2C (t) ζt

)
dC (t)

dt
= 2κC (t)− 2

(
σ

(π)
t

)2

C2 (t) +

1

2

γ

γ − 1

(
θ̂t + 2C (t) ζt

)>
Σ−1
t

(
θ̂t + 2C (t) ζt

)
where A (T ) = B (T ) = C (T ) = 0. This is a standard ordinary differential equation with
terminal value, that can be solved with Runge-Kutta algorithm and the change of variable
τ = T − t.

A.18 Proof of Equations (26) and (27)

We remind that the HJB equation is:

∂J (t, x, π)

∂t
+ κ (π∞ − πt)

∂J (t, x, π)

∂π
+

1

2

(
σ

(π)
t

)2 ∂2J (t, x, π)

∂π2
+ maxH (t, x, π, νt) = 0

62We use the simplifications θ̂>t Σ−1
t θ̂>t + 4C (t) θ̂>t Σ−1

t ζt + 4C2 (t) ζ>t Σ−1
t ζt =(

θ̂t + 2C (t) ζt
)>

Σ−1
t

(
θ̂t + 2C (t) ζt

)
and θ̄>t Σ−1

t θ̂t + 2C (t) θ̄>t Σ−1
t ζt + B (t) ζ>t Σ−1

t θ̂t +

2B (t)C (t) ζ>t Σ−1
t ζt =

(
θ̄t +B (t) ζt

)>
Σ−1
t

(
θ̂t + 2C (t) ζt

)
.
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where:

H (t, x, π, νt) =
1

2

(
x2Jx,x

)(
ν>t Σtνt

)
+ (xJx)

(
ν>t θt + rt − %π

)
+
(
xJx,π

) (
ν>t ζt

)
By assuming that J (t, x, π) = h (t, π)

xγ

γ
and νt is fixed, we get:

∂th (t, π) + κ (π∞ − πt) ∂πh (t, π) +
1

2

(
σ

(π)
t

)2

∂2
πh (t, π) +

1

2
γ (γ − 1)

(
ν>t Σtνt

)
h (t, π) + γ

(
ν>t θt + rt − %π

)
h (t, π) + γ

(
ν>t ζt

)
∂πh (t, π) = 0

or:

∂th (t, π) +

(
κ (π∞ − πt) + γ

(
ν>t ζt

))
∂πh (t, π) +

1

2

(
σ

(π)
t

)2

∂2
πh (t, π) +

γ

(
ν>t θt + rt − %π +

1

2
(γ − 1)

(
ν>t Σtνt

))
h (t, π) = 0

Knowing h (t, π), the maximization of the Hamiltonian implies that:

maxH (t, x, π, νt) = max
1

2

(
x2Jx,x

)(
ν>t Σtνt

)
+ (xJx)

(
ν>t θt + rt − %π

)
+
(
xJx,π

) (
ν>t ζt

)
= max

1

2
(γ − 1)

(
ν>t Σtνt

)
h (t, π) +

(
ν>t θt + rt − %π

)
h (t, π) +

(
ν>t ζt

)
∂πh (t, π)

= max
1

2
(γ − 1)h (t, π)

(
ν>t Σtνt

)
+
(
h (t, π) θ>t + ∂πh (t, π) ζ>t

)
νt

A.19 Numerical solution of the Howard’s policy-iteration algorithm
(Equations 26 and 27)

We remind that the HJB equation is given by:

∂J (t, x, π)

∂t
+ κ (π∞ − π)

∂J (t, x, π)

∂π
+

1

2

(
σ

(π)
t

)2 ∂2J (t, x, π)

∂π2
+ max

ν∈Ω
H (t, x, π, ν) = 0

with the terminal condition J (T, x, π) = U (x) = γ−1xγ . Since the CRRA utility function
is homogeneous, we use the standard separation J (t, x, π) = γ−1xγh (t, π), where h (t, π) is
a function that depends only on time and inflation. The corresponding terminal condition
is h (T, π) = 1. The HJB equation can be rewritten as:

γ−1∂th (t, π) + κ (π∞ − π) γ−1∂πh (t, π) +
1

2

(
σ

(π)
t

)2

γ−1∂2
πh (t, π) + max

ν∈Ω
G (t, π, ν) = 0

where:

G (t, π, ν) = (rt − %π)h (t, π) + h (t, π) θ>t ν +

1

2
(γ − 1)h (t, π) ν>Σtν + ∂πh (t, π) ζ>t ν

and Ω =
{
ν ∈ R2 | ν ≥ 0n,1

>
n ν ≤ 1

}
. Therefore, we obtain:

∂th (t, π) + κ (π∞ − π) ∂πh (t, π) +
1

2

(
σ

(π)
t

)2

∂2
πh (t, π) +

γ ·max
ν∈Ω

{
1

2
(γ − 1)h (t, π) ν>Σtν +

(
h (t, π) θt + ∂πh (t, π) ζt

)>
ν + (rt − %π)h (t, π)

}
= 0
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To implement the Howard’s policy-iteration algorithm, we use the finite difference method
for t ∈ [t0, T ] and π ∈

[
π−, π+

]
. Let Nt and Nπ denote the number of discretization points

for t and π, respectively. We define ∆t and ∆π as the mesh spacings. Let hmi ≈ h (tm, πi)
be the approximate solution of h (t, π) at the grid point (tm, πi), where tm = t0 +m ·∆t and
πi = π− + i ·∆π.

A.19.1 Policy evaluation

Given a fixed control ν, we have:

∂th+
1

2

(
σ

(π)
t

)2

︸ ︷︷ ︸
a

∂2
πh+

(
κ (π∞ − π) + γζ>t ν

)
︸ ︷︷ ︸

b(π)

∂πh+

(
1

2
γ (γ − 1) ν>Σtν + γθ>t ν + γ (rt − %π)

)
︸ ︷︷ ︸

c(π)

h = 0

To solve this PDE, we use a fully implicit backward-in-time finite difference scheme with
Neumann boundary conditions. The backward step of the PDE from tm+1 to tm = tm+1−∆t
is ∂th+ a∂2

πh+ b (π) ∂πh+ c (π)h = 0. This gives:

hmi − h
m+1
i

∆t
−
(
a∂2

π + b (πi) ∂π + c (πi)
)
hmi = 0

where a =
1

2

(
σ

(π)
t

)2

, b (πi) = κ (π∞ − πi) + γζ>t ν
m
i , and c (πi) =

1

2
γ (γ − 1)

(
νmi
)>

Σtν
m
i +

γθ>t ν
m
i + γ (rt − %πi). This can be written in matrix form as (I −∆tLm)hm = hm+1 where

hm =
(
hm0 , h

m
1 , . . . , h

m
Nπ

)
and Lm = a∂2

π + b (π) ∂π + c (π) with all coefficients evaluated at

time tm. The spatial derivatives are approximated by:

∂2
πh

m
i ≈

hmi+1 − 2hmi + hmi−1

∆π2

and:

∂πh
m
i ≈


hmi+1 − hmi

∆π
if b (πi) ≥ 0

hmi − hmi−1

∆π
if b (πi) < 0

We then build the tridiagonal matrix A such that Ahm = hm+1, where:

A = I −∆tLm =



d0 u0 0 · · · 0

`1 d1 u1
. . .

...

0
. . .

. . .
. . . 0

...
. . . `N−1 dN−1 uN−1

0 · · · 0 `N dN


Let s = a∆t/∆π2 be a constant scalar. At an interior node i = 1, . . . , Nπ − 1, the discrete
equation for row i is:
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• when b (πi) ≥ 0:

hmi − hm+1
i −

(
a
hmi+1 − 2hmi + hmi−1

∆π2
+ b (πi)

hmi+1 − hmi
∆π

+ c (πi)h
m
i

)
∆t = 0

which gives `i = −s, di = 1+2s+b (πi) ∆t/∆π−c (πi) ∆t, and ui = −s−b (πi) ∆t/∆π.

• when b (πi) < 0:

hmi − hm+1
i −

(
a
hmi+1 − 2hmi + hmi−1

∆π2
+ b (πi)

hmi − hmi−1

∆π
+ c (πi)h

m
i

)
∆t = 0

which gives `i = −s+b (πi) ∆t/∆π, di = 1+2s−b (πi) ∆t/∆π−c (πi) ∆t, and ui = −s.

At the left boundary (i = 0), we impose the Neumann condition ∂πh
m
0 = 0. Using central

differences, it follows that ∂2
πh

m
0 ≈ 2 (hm1 − hm0 ) /∆π2 and we have:

• when b (πi) ≥ 0, `0 = 0, d0 = 1 + 2s + b (π0) ∆t/∆π − c (π0) ∆t, and u0 = −2s −
b (π0) ∆t/∆π.

• when b (πi) < 0, `0 = 0, d0 = 1 + 2s − b (π0) ∆t/∆π − c (π0) ∆t, and u0 = −2s +
b (π0) ∆t/∆π.

At the right boundary (i = Nπ), we impose the Neumann condition ∂πh
m
Nπ

= 0. It follows

that ∂2
πh

m
Nπ
≈ 2

(
hmNπ−1 − hmNπ

)
/∆π2, and we have:

• when b (πi) ≥ 0, `Nπ = −2s + b (πNπ ) ∆t/∆π, dNπ = 1 + 2s + b (πNπ ) ∆t/∆π −
c (πNπ ) ∆t, and uNπ = 0.

• when b (πi) < 0, `Nπ = −2s + b (πNπ ) ∆t/∆π, dNπ = 1 + 2s − b (πNπ ) ∆t/∆π −
c (πNπ ) ∆t, and uNπ = 0.

Finally, the linear system Ahm = hm+1 can be efficiently solved using a tridiagonal matrix
algorithm.

A.19.2 Policy improvement

Given the updated value function hmi , we update the control variable νmi by solving the
following constrained optimization problem:

ν? = arg max

{
1

2
(γ − 1)hmi ν

>Σtν +
(
hmi θ

>
t + ∂πh

m
i ζ
>
t

)
ν + (rt − %π)hmi

}
s.t. ν ∈ Ω

Equivalently, this problem can be written as a minimization:

ν? = arg min

1

2
(1− γ) ν>Σtν −

(
θ>t +

∂πh
m
i

hmi
ζ>t

)
ν


s.t. ν ∈ Ω

Thus, for each time step tm and grid point πi, we must solve a quadratic programming prob-

lem. For the sake of simplicity, we define Q = (1− γ) Σt and qmi = −
(
θ +

(
∂π lnhmi

)
ζ
)

.

We approximate the derivative ∂π lnhmi using a central difference scheme: ∂π lnhmi ≈
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(
lnhmi+1 − lnhmi−1

)
/ (2∆π). Hence, the optimization problem takes the compact quadratic

form:

min
ν∈Ω

1

2
ν>Qν + (qmi )

>
ν

This step yields the optimal control νmi at each grid point, completing the policy improve-
ment phase of Howard’s algorithm.

A.19.3 Two-asset case

In dimension two, the optimization problem described above can be solved explicitly by
enumerating the KKT-consistent active sets. The feasible set Ω =

{
ν : ν ≥ 02,1

>
2 ν ≤ 1

}
is a triangle, so the unique minimizer lies either in the interior, on one of the three edges,
or at a corner of this triangle. To formulate the KKT conditions, we write the inequality
constraints as g1 (ν) = −ν1 ≤ 0, g2 (ν) = −ν2 ≤ 0, g3 (ν) = ν1 + ν2 − 1 ≤ 0, and introduce
the Lagrange multipliers λ1, λ2, and λ3. The KKT conditions are listed below:

• Stationarity: Qν + qmi − λ1e1 − λ2e2 + λ312 = 02 where e1 = (1, 0) and e2 = (0, 1).

• Complementary slackness: λ1ν1 = 0, λ2ν2 = 0, and λ3 (ν1 + ν2 − 1) = 0.

• Primal feasibility: ν1 ≥ 0, ν2 ≥ 0, and ν1 + ν2 ≤ 1.

We now enumerate the possible active sets and derive the corresponding candidate solutions:

1. Interior solution
If ν1 > 0, ν2 > 0, ν1 + ν2 < 1, then all inequality constraints are inactive: λ1 = λ2 =
λ3 = 0. The optimal solution is ν? = −Q−1qmi .

2. Edge ν1 + ν2 = 1 with ν1 > 0 and ν2 > 0
In this case, we have λ1 = λ2 = 0 and λ3 ≥ 0. Stationarity gives Qν + qmi +
λ312 = 02, hence ν = −Q−1

(
qmi + λ312

)
. Imposing the equality 1>2 ν = 1 yields

1>2

(
−Q−1

(
qmi + λ312

))
= 1. We deduce that λ3 = −1 + 1>2 Q

−1qmi
1>2 Q

−112
and ν? =

−Q−1
(
qmi + λ312

)
.

3. Edge ν1 = 0 with ν2 ∈ [0, 1]
Assume v1 = 0 and 0 ≤ v2 ≤ 1, and the sum constraint is not active. Then λ1 ≥ 0,
λ2 = 0, and λ3 = 0. The stationarity conditions become (Q)1,1 · 0 + (Q)1,2 v2 +(
qmi
)

1
−λ1 = 0 and (Q)1,2 ·0+(Q)2,2 v2 +

(
qmi
)

2
= 0. We get v?2 = −

(
qmi
)

2
/ (Q)2,2. If

v?2 /∈ [0, 1], the one-dimensional convex problem’s solution is its projection onto [0, 1]:

v?2 = Π[0,1]

(
−
(
qmi
)

2
/ (Q)2,2

)
.

4. Edge ν2 = 0 with ν1 ∈ [0, 1]

By symmetry, we get v?1 = Π[0,1]

(
−
(
qmi
)

1
/ (Q)1,1

)
.

5. Corners
The remaining corners are (0, 0), (1, 0), and (0, 1).

Therefore, in the two-asset case, seven candidate solutions must be tested in total (in-
terior, three edges, and three corners). This explicit active-set enumeration approach is
computationally faster and more stable than using a general-purpose QP solver for this
low-dimensional case.
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A.19.4 Convergence

We iterate the two steps (policy evaluation and policy improvement) until convergence for
each time step tm. This iterative procedure yields the function solution hmi and the optimal
constrained policy νmi . The corresponding value function is then given by:

J (tm, x, πi) =
xγ

γ
hmi

B Additional results

Figure 53: Population pyramid (China, 1960–2100)
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Figure 54: Population pyramid (India, 1960–2100)
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Figure 55: Population pyramid (Japan, 1960–2100)
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Figure 56: Population pyramid (US, 1960–2100)

6% 4% 2% 0 2% 4% 6%
0

20

40

60

80

100
1960

Male Female

6% 4% 2% 0 2% 4% 6%
0

20

40

60

80

100
2025

6% 4% 2% 0 2% 4% 6%
0

20

40

60

80

100
2050

6% 4% 2% 0 2% 4% 6%
0

20

40

60

80

100
2100

Source: United Nations (2024) & Authors’ calculations.

Figure 57: Population pyramid (Western Europe, 1960–2100)
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Figure 58: Markowitz efficient frontier (Global, 30-year time horizon)
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Figure 59: Composition of mean-variance optimized portfolios excluding real assets (Global,
30-year time horizon)
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Figure 60: Composition of mean-variance optimized portfolios with real assets (Global,
30-year time horizon)
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Figure 61: Optimal risky portfolio without real assets as a function of risk aversion γ (Global,
30-year time horizon)
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Figure 62: Optimal risky portfolio with real assets as a function of risk aversion γ (Global,
30-year time horizon)
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Figure 63: Mixed glide path with liquidity constraints (Global, 30-year time horizon, ω+ =
50%)
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Figure 64: Impact of the volatility σ1 on the optimal solution (two-stage approach, Property
P1)
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Figure 65: Impact of the expected return µ1 on the optimal solution (two-stage approach,
Property P2)
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Figure 66: Impact of the parameter SR1 /σ1 on the optimal solution (two-stage approach,
Property P3)

; = !50%

0 2 4 6 8 10
SR1=<1 (in %)

0

20

40

60

80

100
; = 0%

0 2 4 6 8 10
SR1=<1 (in %)

0

20

40

60

80

100

; = 50%

0 2 4 6 8 10
SR1=<1 (in %)

0

20

40

60

80

100
; = 90%

0 2 4 6 8 10
SR1=<1 (in %)

0

20

40

60

80

100

Asset #1

Asset #2

120



Retirement Accumulation Strategies with Real Assets and Inflation Risk

Figure 67: Impact of the risk aversion γ on the optimal solution (two-stage approach,
Property P4)
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Figure 68: Impact of the correlation ρ on the optimal solution (two-stage approach, Property
P5)
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Figure 69: Markowitz efficient frontier (Eurozone, 30-year time horizon)
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Figure 70: Mixed glide path with liquidity constraints (Eurozone, 30-year time horizon,
ω+ = 100%)
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Figure 71: Mixed glide path with liquidity constraints (Eurozone, 30-year time horizon,
ω+ = 50%)
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