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Exercise

We consider the bivariate Pareto distribution:

F (x1, x2) = 1−
(
θ1 + x1

θ1

)−α
−
(
θ2 + x2

θ2

)−α
+(

θ1 + x1

θ1
+
θ2 + x2

θ2
− 1

)−α
where x1 ≥ 0, x2 ≥ 0, θ1 > 0, θ2 > 0 and α > 0.
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Question 1

Show that the marginal functions of F (x1, x2) correspond to univariate
Pareto distributions.
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We have:

F1 (x1) = Pr {X1 ≤ x1}
= Pr {X1 ≤ x1,X2 ≤ ∞}
= F (x1,∞)

We deduce that:

F1 (x1) = 1−
(
θ1 + x1

θ1

)−α
−
(
θ2 +∞
θ2

)−α
+(

θ1 + x1

θ1
+
θ2 +∞
θ2

− 1

)−α
= 1−

(
θ1 + x1

θ1

)−α
We conclude that F1 (and F2) is a Pareto distribution.
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Question 2

Find the copula function associated to the bivariate Pareto distribution.
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We have:
C (u1, u2) = F

(
F−1

1 (u1) ,F−1
2 (u2)

)
It follows that:

1−
(
θ1 + x1

θ1

)−α
= u1

⇔
(
θ1 + x1

θ1

)−α
= 1− u1

⇔ θ1 + x1

θ1
= (1− u1)−1/α

We deduce that:

C (u1, u2) = 1− (1− u1)− (1− u2) +(
(1− u1)−1/α + (1− u2)−1/α − 1

)−α
= u1 + u2 − 1 +

(
(1− u1)−1/α + (1− u2)−1/α − 1

)−α
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Question 3

Deduce the copula density function.
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We have:

∂ C (u1, u2)

∂ u1
= 1− α

(
(1− u1)−1/α + (1− u2)−1/α − 1

)−α−1

×(
− 1

α

)
(1− u1)−1/α−1 × (−1)

= 1−
(

(1− u1)−1/α + (1− u2)−1/α − 1
)−α−1

×

(1− u1)−1/α−1
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We deduce that the probability density function of the copula is:

c (u1, u2) =
∂2 C (u1, u2)

∂ u1 ∂ u2

= − (−α− 1)
(

(1− u1)−1/α + (1− u2)−1/α − 1
)−α−2

×(
− 1

α

)
(1− u2)−1/α−1 × (−1)× (1− u1)−1/α−1

=

(
α + 1

α

)(
(1− u1)−1/α + (1− u2)−1/α − 1

)−α−2

×

(1− u1 − u2 + u1u2)−1/α−1

Thierry Roncalli Course 2023-2024 in Financial Risk Management 10 / 131



Copulas and Stochastic Dependence Modeling
Extreme Value Theory

Monte Carlo Simulation Methods
Stress Testing and Scenario Analysis

The bivariate Pareto copula
Calculation of correlation bounds

The bivariate Pareto copula

Remark

Another expression of c (u1, u2) is:

c (u1, u2) =

(
α + 1

α

)
((1− u1) (1− u2))1/α ×(

(1− u1)1/α + (1− u2)1/α − (1− u1)1/α (1− u2)1/α
)−α−2
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In this Figure, we have reported the density of the Pareto copula when α is
equal to 1 and 10.
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Question 4

Show that the bivariate Pareto copula function has no lower tail
dependence, but an upper tail dependence.
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We have:

λ− = lim
u→0+

C (u, u)

u

= 2 lim
u→0+

∂ C (u, u)

∂ u1

= 2 lim
u→0+

1−
(

(1− u)−1/α + (1− u)−1/α − 1
)−α−1

(1− u)−1/α−1

= 2 lim
u→0+

(1− 1)

= 0

Thierry Roncalli Course 2023-2024 in Financial Risk Management 14 / 131



Copulas and Stochastic Dependence Modeling
Extreme Value Theory

Monte Carlo Simulation Methods
Stress Testing and Scenario Analysis

The bivariate Pareto copula
Calculation of correlation bounds

The bivariate Pareto copula

We have:

λ+ = lim
u→1−

1− 2u + C (u, u)

1− u

= lim
u→1−

(
(1− u)−1/α + (1− u)−1/α − 1

)−α
1− u

= lim
u→1−

(
1 + 1− (1− u)1/α

)−α
= 2−α

The tail dependence coefficients λ− and λ+ are given with respect to the
parameter α in previous Figure. We deduce that the bivariate Pareto
copula function has no lower tail dependence (λ− = 0), but an upper tail
dependence (λ+ = 2−α).
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Question 5

Do you think that the bivariate Pareto copula family can reach the copula
functions C−, C⊥ and C+? Justify your answer.
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The bivariate Pareto copula family cannot reach C− because λ− is never
equal to 1. We notice that:

lim
α→∞

λ+ = 0

and
lim
α→0

λ+ = 1

This implies that the bivariate Pareto copula may reach C⊥ and C+ for
these two limit cases: α→∞ and α→ 0. In fact, α→ 0 does not
correspond to the copula C+ because λ− is always equal to 0.
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Question 6

Let X1 and X2 be two Pareto-distributed random variables, whose
parameters are (α1, θ1) and (α2, θ2).
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Question 6.a

Show that the linear correlation between X1 and X2 is equal to 1 if and
only if the parameters α1 and α2 are equal.
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We note U1 = F1 (X1) and U2 = F2 (X2). X1 and X2 are comonotonic if
and only if:

U2 = U1

We deduce that:

1−
(
θ2 + X2

θ2

)−α2

= 1−
(
θ1 + X1

θ1

)−α1

⇔
(
θ2 + X2

θ2

)−α2

=

(
θ1 + X1

θ1

)−α1

⇔ X2 = θ2

((
θ1 + X1

θ1

)α1/α2

− 1

)
We know that ρ 〈X1,X2〉 = 1 if and only if there is an increasing linear
relationship between X1 and X2. This implies that:

α1

α2
= 1
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Question 6.b

Show that the linear correlation between X1 and X2 can never reached the
lower bound −1.
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X1 and X2 are countermonotonic if and only if:

U2 = 1− U1

We deduce that: (
θ2 + X2

θ2

)−α2

= 1−
(
θ1 + X1

θ1

)−α1

⇔
(
θ2 + X2

θ2

)−α2

= 1−
(
θ1 + X1

θ1

)−α1

⇔ X2 = θ2

(1−
(
θ1 + X1

θ1

)−α1
)1/α2

− 1


It is not possible to obtain a decreasing linear function between X1 and X2.
This implies that ρ 〈X1,X2〉 > −1.
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Question 6.c

Build a new bivariate Pareto distribution by assuming that the marginal
distributions are P (α1, θ1) and P (α2, θ2) and the dependence is a
bivariate Pareto copula function with parameter α. What is the relevance
of this approach for building bivariate Pareto distributions?
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We have:

F′ (x1, x2) = C (F1 (x1) ,F2 (x2))

= 1−
(
θ1 + x1

θ1

)−α1

−
(
θ2 + x2

θ2

)−α2

+((
θ1 + x1

θ1

)α1/α

+

(
θ2 + x2

θ2

)α2/α

− 1

)−α
The traditional bivariate Pareto distribution F (x1, x2) is a special case of
F′ (x1, x2) when:

α1 = α2 = α

Using F′ instead of F, we can control the tail dependence, but also the
univariate tail index of the two margins.
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Question 1

Give the mathematical definition of the copula functions C−, C⊥ and C+.
What is the probabilistic interpretation of these copulas?
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We have:

C− (u1, u2) = max (u1 + u2 − 1, 0)

C⊥ (u1, u2) = u1u2

C+ (u1, u2) = min (u1, u2)

Let X1 and X2 be two random variables. We have:

(i) C 〈X1,X2〉 = C− if and only if there exists a non-increasing function f
such that we have X2 = f (X1);

(ii) C 〈X1,X2〉 = C⊥ if and only if X1 and X2 are independent;

(iii) C 〈X1,X2〉 = C+ if and only if there exists a non-decreasing function
f such that we have X2 = f (X1).
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Question 2

We note τ and LGD the default time and the loss given default of a
counterparty. We assume that τ ∼ E (λ) and LGD ∼ U[0,1].
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We note U1 = 1− exp (−λτ ) and U2 = LGD.
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Question 2.a

Show that the dependence between τ and LGD is maximum when the
following equality holds:

LGD+e−λτ − 1 = 0
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The dependence between τ and LGD is maximum when we have
C 〈τ ,LGD〉 = C+. Since we have U1 = U2, we conclude that:

LGD+e−λτ − 1 = 0
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Question 2.b

Show that the linear correlation ρ (τ ,LGD) verifies the following
inequality:

|ρ 〈τ ,LGD〉| ≤
√

3

2
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We know that:

ρ 〈τ ,LGD〉 ∈ [ρmin 〈τ ,LGD〉 , ρmax 〈τ ,LGD〉]

where ρmin 〈τ ,LGD〉 (resp. ρmax 〈τ ,LGD〉) is the linear correlation
corresponding to the copula C− (resp. C+). It comes that:

E [τ ] = σ (τ ) =
1

λ

and:

E [LGD] =
1

2

σ (LGD) =

√
1

12
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In the case C 〈τ ,LGD〉 = C−, we have U1 = 1− U2. It follows that
LGD = e−λτ . We have:

E [τ LGD] = E
[
τ e−λτ

]
=

∫ ∞
0

te−λtλe−λt dt

=

∫ ∞
0

tλe−2λt dt

=

[
− te−2λt

2

]∞
0

+
1

2

∫ ∞
0

e−2λt dt

= 0 +
1

2

[
−e−2λt

2λ

]∞
0

=
1

4λ

We deduce that:

ρmin 〈τ ,LGD〉 =

(
1

4λ
− 1

2λ

)/(
1

λ

√
1

12

)
= −
√

3

2
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In the case C 〈τ ,LGD〉 = C+, we have LGD = 1− e−λτ . We have:

E [τ LGD] = E
[
τ
(
1− e−λτ

)]
=

∫ ∞
0

t
(
1− e−λt

)
λe−λt dt

=

∫ ∞
0

tλe−λt dt −
∫ ∞

0

tλe−2λt dt

=

([
−te−λt

]∞
0

+

∫ ∞
0

e−λt dt

)
− 1

4λ

= 0 +

[
−e−λt

λ

]∞
0

− 1

4λ

=
3

4λ

We deduce that:

ρmax 〈τ ,LGD〉 =

(
3

4λ
− 1

2λ

)/(
1

λ

√
1

12

)
=

√
3

2

Thierry Roncalli Course 2023-2024 in Financial Risk Management 34 / 131



Copulas and Stochastic Dependence Modeling
Extreme Value Theory

Monte Carlo Simulation Methods
Stress Testing and Scenario Analysis

The bivariate Pareto copula
Calculation of correlation bounds

Calculation of correlation bounds

We finally obtain the following result:

|ρ 〈τ ,LGD〉| ≤
√

3

2
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Question 2.c

Comment on these results.
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We notice that |ρ 〈τ ,LGD〉| is lower than 86.6%, implying that the
bounds −1 and +1 can not be reached.
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Question 3

We consider two exponential default times τ 1 and τ 2 with parameters λ1

and λ2.
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Question 3.a

We assume that the dependence function between τ 1 and τ 2 is C+.
Demonstrate that the following relation is true:

τ 1 =
λ2

λ1
τ 2
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If the copula function of (τ 1, τ 2) is the Fréchet upper bound copula, τ 1

and τ 2 are comonotone. We deduce that:

U1 = U2 ⇐⇒ 1− e−λ1τ 1 = 1− e−λ2τ 2

and:

τ 1 =
λ2

λ1
τ 2
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Question 3.b

Show that there exists a function f such that τ 2 = f (τ 2) when the
dependence function is C−.
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We have U1 = 1− U2. It follows that S1 (τ 1) = 1− S2 (τ 2). We deduce
that:

e−λ1τ 1 = 1− e−λ2τ 2

and:

τ 1 =
− ln

(
1− e−λ2τ 2

)
λ1

There exists then a function f such that τ 1 = f (τ 2) with:

f (t) =
− ln

(
1− e−λ2t

)
λ1
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Question 3.c

Show that the lower and upper bounds of the linear correlation satisfy the
following relationship:

−1 < ρ 〈τ 1, τ 2〉 ≤ 1
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Using Question 2(b), we known that ρ ∈ [ρmin, ρmax] where ρmin and ρmax

are the correlations of (τ 1, τ 2) when the copula function is respectively
C− and C+. We also know that ρ = 1 (resp. ρ = −1) if there exists a
linear and increasing (resp. decreasing) function f such that τ 1 = f (τ 2).
When the copula is C+, we have f (t) = λ2

λ1
t and f ′ (t) = λ2

λ1
> 0. As it is

a linear and increasing function, we deduce that ρmax = 1. When the
copula is C−, we have:

f (t) =
− ln

(
1− e−λ2t

)
λ1

and:

f ′ (t) = −
λ2e
−λ2t ln

(
1− e−λ2t

)
λ1 (1− e−λ2t)

< 0

The function f (t) is decreasing, but it is not linear. We deduce that
ρmin 6= −1 and:

−1 < ρ ≤ 1
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Question 3.d

In the more general case, show that the linear correlation of a random
vector (X1,X2) can not be equal to −1 if the support of the random
variables X1 and X2 is [0,+∞].
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When the copula is C−, we know that there exists a decreasing function f
such that X2 = f (X1). We also know that the linear correlation reaches
the lower bound −1 if the function f is linear:

X2 = a + bX1

This implies that b < 0. When X1 takes the value +∞, we obtain:

X2 = a + b ×∞

As the lower bound of X2 is equal to zero 0, we deduce that a = +∞.
This means that the function f (x) = a + bx does not exist. We conclude
that the lower bound ρ = −1 can not be reached.
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Question 4

We assume that (X1,X2) is a Gaussian random vector where
X1 ∼ N

(
µ1, σ

2
1

)
, X2 ∼ N

(
µ2, σ

2
2

)
and ρ is the linear correlation between

X1 and X2. We note θ = (µ1, σ1, µ2, σ2, ρ) the set of parameters.
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Question 4.a

Find the probability distribution of X1 + X2.
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Calculation of correlation bounds

X1 +X2 is a Gaussian random variable because it is a linear combination of
the Gaussian random vector (X1,X2). We have:

E [X1 + X2] = µ1 + µ2

and:
var (X1 + X2) = σ2

1 + 2ρσ1σ2 + σ2
2

We deduce that:

X1 + X2 ∼ N
(
µ1 + µ2, σ

2
1 + 2ρσ1σ2 + σ2

2

)
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Question 4.b

Then show that the covariance between Y1 = eX1 and Y2 = eX2 is equal to:

cov (Y1,Y2) = eµ1+ 1
2σ

2
1eµ2+ 1

2σ
2
2 (eρσ1σ2 − 1)
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Calculation of correlation bounds

We have:

cov (Y1,Y2) = E [Y1Y2]− E [Y2]E [Y2]

= E
[
eX1+X2

]
− E [Y2]E [Y2]

We know that eX1+X2 is a lognormal random variable. We deduce that:

E
[
eX1+X2

]
= exp

(
E [X1 + X2] +

1

2
var (X1 + X2)

)
= exp

(
µ1 + µ2 +

1

2

(
σ2

1 + 2ρσ1σ2 + σ2
2

))
= eµ1+ 1

2σ
2
1eµ2+ 1

2σ
2
2eρσ1σ2

We finally obtain:

cov (Y1,Y2) = eµ1+ 1
2σ

2
1eµ2+ 1

2σ
2
2 (eρσ1σ2 − 1)
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Question 4.c

Deduce the correlation between Y1 and Y2.
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Calculation of correlation bounds

We have:

ρ 〈Y1,Y2〉 =
eµ1+ 1

2σ
2
1eµ2+ 1

2σ
2
2 (eρσ1σ2 − 1)√

e2µ1+σ2
1

(
eσ

2
1 − 1

)√
e2µ2+σ2

2

(
eσ

2
2 − 1

)
=

eρσ1σ2 − 1√
eσ

2
1 − 1

√
eσ

2
2 − 1
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Calculation of correlation bounds

Question 4.d

For which values of θ does the equality ρ 〈Y1,Y2〉 = +1 hold? Same
question when ρ 〈Y1,Y2〉 = −1.
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ρ 〈Y1,Y2〉 is an increasing function with respect to ρ. We deduce that:

ρ 〈Y1,Y2〉 = 1⇐⇒ ρ = 1 and σ1 = σ2

The lower bound of ρ 〈Y1,Y2〉 is reached if ρ is equal to −1. In this case,
we have:

ρ 〈Y1,Y2〉 =
e−σ1σ2 − 1√

eσ
2
1 − 1

√
eσ

2
2 − 1

> −1

It follows that ρ 〈Y1,Y2〉 6= −1.
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Question 4.e

We consider the bivariate Black-Scholes model:{
dS1 (t) = µ1S1 (t) dt + σ1S1 (t) dW1 (t)
dS2 (t) = µ2S2 (t) dt + σ2S2 (t) dW2 (t)

with E [W1 (t)W2 (t)] = ρt. Deduce the linear correlation between S1 (t)
and S2 (t). Find the limit case limt→∞ ρ 〈S1 (t) ,S2 (t)〉.
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It is obvious that:

ρ 〈S1 (t) ,S2 (t)〉 =
eρσ1σ2t − 1√

eσ
2
1t − 1

√
eσ

2
2t − 1

In the case σ1 = σ2 and ρ = 1, we have ρ 〈S1 (t) ,S2 (t)〉 = 1. Otherwise,
we obtain:

lim
t→∞

ρ 〈S1 (t) ,S2 (t)〉 = 0
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Question 4.f

Comment on these results.
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Calculation of correlation bounds

In the case of lognormal random variables, the linear correlation does not
necessarily range between −1 and +1.
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Question 1

What is an extreme value (EV) copula C?
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Extreme value theory in the bivariate case

An extreme value copula C satisfies the following relationship:

C
(
ut1, u

t
2

)
= Ct (u1, u2)

for all t > 0.
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Question 2

Show that C⊥ and C+ are EV copulas. Why C− can not be an EV copula?
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The product copula C⊥ is an EV copula because we have:

C⊥
(
ut1, u

t
2

)
= ut1u

t
2

= (u1u2)t

=
[
C⊥ (u1, u2)

]t
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For the copula C+, we obtain:

C+
(
ut1, u

t
2

)
= min

(
ut1, u

t
2

)
=

{
ut1 if u1 ≤ u2

ut2 otherwise

= (min (u1, u2))t

=
[
C+ (u1, u2)

]t
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However, the EV property does not hold for the Fréchet lower bound
copula C−:

C−
(
ut1, u

t
2

)
= max

(
ut1 + ut2 − 1, 0

)
6= max (u1 + u2 − 1, 0)t

Indeed, we have C− (0.5, 0.8) = max (0.5 + 0.8− 1, 0) = 0.3 and:

C−
(
0.52, 0.82

)
= max (0.25 + 0.64− 1, 0)

= 0

6= 0.32
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Question 3

We define the Gumbel-Hougaard copula as follows:

C (u1, u2) = exp

(
−
[
(− ln u1)θ + (− ln u2)θ

]1/θ
)

with θ ≥ 1. Verify that it is an EV copula.
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We have:

C
(
ut1, u

t
2

)
= exp

(
−
[(
− ln ut1

)θ
+
(
− ln ut2

)θ]1/θ
)

= exp

(
−
[
(−t ln u1)θ + (−t ln u2)θ

]1/θ
)

= exp

(
−t
[
(− ln u1)θ + (− ln u2)θ

]1/θ
)

=
(
e−[(− ln u1)θ+(− ln u2)θ]1/θ)t

= Ct (u1, u2)
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Question 4

What is the definition of the upper tail dependence λ? What is its
usefulness in multivariate extreme value theory?
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Extreme value theory in the bivariate case

The upper tail dependence λ is defined as follows:

λ = lim
u→1+

1− 2u + C (u1, u2)

1− u

It measures the probability to have an extreme in one direction knowing
that we have already an extreme in the other direction. If λ is equal to 0,
extremes are independent and the EV copula is the product copula C⊥. If
λ is equal to 1, extremes are comonotonic and the EV copula is the
Fréchet upper bound copula C+. Moreover, the upper tail dependence of
the copula between the random variables is equal to the upper tail
dependence of the copula between the extremes.
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Question 5

Let f (x) and g (x) be two functions such that
limx→x0 f (x) = limx→x0 g (x) = 0. If g ′ (x0) 6= 0, L’Hospital’s rule states
that:

lim
x→x0

f (x)

g (x)
= lim

x→x0

f ′ (x)

g ′ (x)

Deduce that the upper tail dependence λ of the Gumbel-Hougaard copula
is 2− 21/θ. What is the correlation of two extremes when θ = 1?
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Using L’Hospital’s rule, we have:

λ = lim
u→1+

1− 2u + e−[(− ln u)θ+(− ln u)θ]1/θ

1− u

= lim
u→1+

1− 2u + e−[2(− ln u)θ]1/θ

1− u

= lim
u→1+

1− 2u + u21/θ

1− u

= lim
u→1+

0− 2 + 21/θu21/θ−1

−1

= lim
u→1+

2− 21/θu21/θ−1

= 2− 21/θ
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If θ is equal to 1, we obtain λ = 0. It comes that the EV copula is the
product copula. Extremes are then not correlated. This result is not
surprising because the Gumbel-Houggard copula is equal to the product
copula when θ = 1:

e−[(− ln u1)1+(− ln u2)1]1

= u1u2 = C⊥ (u1, u2)
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Question 6

We define the Marshall-Olkin copula as follows:

C (u1, u2) = u1−θ1
1 u1−θ2

2 min
(
uθ1

1 , u
θ2
2

)
with {θ1, θ2} ∈ [0, 1]2.

Thierry Roncalli Course 2023-2024 in Financial Risk Management 73 / 131



Copulas and Stochastic Dependence Modeling
Extreme Value Theory

Monte Carlo Simulation Methods
Stress Testing and Scenario Analysis

Extreme value theory in the bivariate case
Maximum domain of attraction in the bivariate case

Extreme value theory in the bivariate case

Question 6.a

Verify that it is an EV copula.
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We have:

C
(
ut1, u

t
2

)
= u

t(1−θ1)
1 u

t(1−θ2)
2 min

(
utθ1

1 , utθ2
2

)
=

(
u1−θ1

1

)t (
u1−θ2

2

)t (
min

(
uθ1

1 , u
θ2
2

))t
=

(
u1−θ1

1 u1−θ2
2 min

(
uθ1

1 , u
θ2
2

))t
= Ct (u1, u2)
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Question 6.b

Find the upper tail dependence λ of the Marshall-Olkin copula.
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If θ1 > θ2, we obtain:

λ = lim
u→1+

1− 2u + u1−θ1u1−θ2 min
(
uθ1 , uθ2

)
1− u

= lim
u→1+

1− 2u + u1−θ1u1−θ2uθ1

1− u

= lim
u→1+

1− 2u + u2−θ2

1− u

= lim
u→1+

0− 2 + (2− θ2) u1−θ2

−1

= lim
u→1+

2− 2u1−θ2 + θ2u
1−θ2

= θ2

If θ2 > θ1, we have λ = θ1. We deduce that the upper tail dependence of
the Marshall-Olkin copula is min (θ1, θ2).
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Question 6.c

What is the correlation of two extremes when min (θ1, θ2) = 0?
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If θ1 = 0 or θ2 = 0, we obtain λ = 0. It comes that the copula of the
extremes is the product copula. Extremes are then not correlated.
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Question 6.d

In which case are two extremes perfectly correlated?
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Two extremes are perfectly correlated when we have θ1 = θ2 = 1. In this
case, we obtain:

C (u1, u2) = min (u1, u2) = C+ (u1, u2)
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Question 1

We consider the following distributions of probability:

Distribution F (x)
Exponential E (λ) 1− e−λx

Uniform U[0,1] x

Pareto P (α, θ) 1−
(
θ+x
θ

)−α

Thierry Roncalli Course 2023-2024 in Financial Risk Management 82 / 131



Copulas and Stochastic Dependence Modeling
Extreme Value Theory

Monte Carlo Simulation Methods
Stress Testing and Scenario Analysis

Extreme value theory in the bivariate case
Maximum domain of attraction in the bivariate case

Maximum domain of attraction in the bivariate case

Question 1

For each distribution, we give the normalization parameters an and bn of
the Fisher-Tippet theorem and the corresponding limit distribution
distribution G (x):

Distribution an bn G (x)

Exponential λ−1 λ−1 ln n Λ (x) = e−e
−x

Uniform n−1 1− n−1 Ψ1 (x − 1) = ex−1

Pareto θα−1n1/α θn1/α − θ Φα

(
1 + x

α

)
= e−(1+ x

α )−α

We note G (x1, x2) the asymptotic distribution of the bivariate random
vector (X1,n:n,X2,n:n) where X1,i (resp. X2,i ) are iid random variables.
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Let (X1,X2) be a bivariate random variable whose probability distribution
is:

F (x1, x2) = C〈X1,X2〉 (F1 (x1) ,F2 (x2))

We know that the corresponding EV probability distribution is:

G (x1, x2) = C?〈X1,X2〉 (G1 (x1) ,G2 (x2))

where G1 and G2 are the two univariate EV probability distributions and
C?〈X1,X2〉 is the EV copula associated to C〈X1,X2〉.
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Question 1.a

What is the expression of G (x1, x2) when X1,i and X2,i are independent,
X1,i ∼ E (λ) and X2,i ∼ U[0,1]?
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We deduce that:

G (x1, x2) = C⊥ (G1 (x1) ,G2 (x2))

= Λ (x1) Ψ1 (x2 − 1)

= exp
(
−e−x1 + x2 − 1

)
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Question 1.b

Same question when X1,i ∼ E (λ) and X2,i ∼ P (θ, α).
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We have:

G (x1, x2) = Λ (x1) Φα

(
1 +

x2

α

)
= exp

(
−e−x1 −

(
1 +

x2

α

)−α)
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Question 1.c

Same question when X1,i ∼ U[0,1] and X2,i ∼ P (θ, α).
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We have:

G (x1, x2) = Ψ1 (x1 − 1) Φα

(
1 +

x2

α

)
= exp

(
x1 − 1−

(
1 +

x2

α

)−α)
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Question 2

What becomes the previous results when the dependence function between
X1,i and X2,i is the Normal copula with parameter ρ < 1?
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We know that the upper tail dependence is equal to zero for the Normal
copula when ρ < 1. We deduce that the EV copula is the product copula.
We then obtain the same results as previously.
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Question 3

Same question when the parameter of the Normal copula is equal to one.
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When the parameter ρ is equal to 1, the Normal copula is the Frchet upper
bound copula C+, which is an EV copula. We deduce the following results:

G (x1, x2) = min (Λ (x1) ,Ψ1 (x2 − 1))

= min
(
exp

(
−e−x1

)
, exp (x2 − 1)

)
(a)

G (x1, x2) = min
(

Λ (x1) ,Φα

(
1 +

x2

α

))
= min

(
exp

(
−e−x1

)
, exp

(
−
(

1 +
x2

α

)−α))
(b)

G (x1, x2) = min
(

Ψ1 (x1 − 1) ,Φα

(
1 +

x2

α

))
= min

(
exp (x2 − 1) , exp

(
−
(

1 +
x2

α

)−α))
(c)
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Question 4

Find the expression of G (x1, x2) when the dependence function is the
Gumbel-Hougaard copula.
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In the previous exercise, we have shown that the Gumbel-Houggard copula
is an EV copula.
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We deduce that:

G (x1, x2) = e−[(− ln Λ(x1))θ+(− ln Ψ1(x2−1))θ]1/θ

= exp

(
−
[
e−θx1 + (1− x2)θ

]1/θ
)

(a)

G (x1, x2) = e
−
[

(− ln Λ(x1))θ+(− ln Φα(1+
x2
α ))θ

]1/θ

= exp

(
−
[
e−θx1 +

(
1 +

x2

α

)−αθ]1/θ
)

(b)

G (x1, x2) = e
−
[

(− ln Ψ1(x1−1))θ+(− ln Φα(1+
x2
α ))θ

]1/θ

= exp

(
−
[

(1− x1)θ +
(

1 +
x2

α

)−αθ]1/θ
)

(c)
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Exercise

Let X = (X1,X2) be a standard Gaussian vector with correlation ρ. We
note U1 = Φ (X1) and U2 = Φ (X2).

Thierry Roncalli Course 2023-2024 in Financial Risk Management 98 / 131



Copulas and Stochastic Dependence Modeling
Extreme Value Theory

Monte Carlo Simulation Methods
Stress Testing and Scenario Analysis

Simulation of the bivariate Normal copula

Simulation of the bivariate Normal copula

Question 1

We note Σ the matrix defined as follows:

Σ =

(
1 ρ
ρ 1

)
Calculate the Cholesky decomposition of Σ. Deduce an algorithm to
simulate X .
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P is a lower triangular matrix such that we have Σ = PP>. We know that:

P =

(
1 0

ρ
√

1− ρ2

)
We verify that:

PP> =

(
1 0

ρ
√

1− ρ2

)(
1 ρ

0
√

1− ρ2

)
=

(
1 ρ
ρ 1

)
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We deduce that: (
X1

X2

)
=

(
1 0

ρ
√

1− ρ2

)(
N1

N2

)
where N1 and N2 are two independent standardized Gaussian random
variables. Let n1 and n2 be two independent random variates, whose
probability distribution is N (0, 1). Using the Cholesky decomposition, we
deduce that can simulate X in the following way:{

x1 ← n1

x2 ← ρn1 +
√

1− ρ2n2

Thierry Roncalli Course 2023-2024 in Financial Risk Management 101 / 131



Copulas and Stochastic Dependence Modeling
Extreme Value Theory

Monte Carlo Simulation Methods
Stress Testing and Scenario Analysis

Simulation of the bivariate Normal copula

Simulation of the bivariate Normal copula

Question 2

Show that the copula of (X1,X2) is the same that the copula of the
random vector (U1,U2).
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We have

C 〈X1,X2〉 = C 〈Φ (X1) ,Φ (X2)〉
= C 〈U1,U2〉

because the function Φ (x) is non-decreasing. The copula of U = (U1,U2)
is then the copula of X = (X1,X2).
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Question 3

Deduce an algorithm to simulate the Normal copula with parameter ρ.
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We deduce that we can simulate U with the following algorithm:{
u1 ← Φ (x1) = Φ (n1)

u2 ← Φ (x2) = Φ
(
ρn1 +

√
1− ρ2n2

)
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Question 4

Calculate the conditional distribution of X2 knowing that X1 = x . Then
show that:

Φ2 (x1, x2; ρ) =

∫ x1

−∞
Φ

(
x2 − ρx√

1− ρ2

)
φ (x) dx
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Let X3 be a Gaussian random variable, which is independent from X1 and
X2. Using the Cholesky decomposition, we know that:

X2 = ρX1 +
√

1− ρ2X3

It follows that:

Pr {X2 ≤ x2|X1 = x} = Pr
{
ρX1 +

√
1− ρ2X3 ≤ x2

∣∣∣X1 = x
}

= Pr

{
X3 ≤

x2 − ρx√
1− ρ2

}

= Φ

(
x2 − ρx√

1− ρ2

)
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Then we deduce that:

Φ2 (x1, x2; ρ) = Pr {X1 ≤ x1,X2 ≤ x2}

= Pr

{
X1 ≤ x1,X3 ≤

x2 − ρX1√
1− ρ2

}

= E

[
Pr

{
X1 ≤ x1,X3 ≤

x2 − ρX1√
1− ρ2

∣∣∣∣∣X1

}]

=

∫ x1

−∞
Φ

(
x2 − ρx√

1− ρ2

)
φ (x) dx
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Question 5

Deduce an expression of the Normal copula.
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Using the relationships u1 = Φ (x1), u2 = Φ (x2) and
Φ2 (x1, x2; ρ) = C (Φ (x1) ,Φ (x2) ; ρ), we obtain:

C (u1, u2; ρ) =

∫ Φ−1(u1)

−∞
Φ

(
Φ−1 (u2)− ρx√

1− ρ2

)
φ (x) dx

=

∫ u1

0

Φ

(
Φ−1 (u2)− ρΦ−1 (u)√

1− ρ2

)
du
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Question 6

Calculate the conditional copula function C2|1. Deduce an algorithm to
simulate the Normal copula with parameter ρ.
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We have:

C2|1 (u2 | u1) = ∂u1 C (u1, u2)

= Φ

(
Φ−1 (u2)− ρΦ−1 (u1)√

1− ρ2

)

Let v1 and v2 be two independent uniform random variates. The
simulation algorithm corresponds to the following steps:{

u1 = v1

C2|1 (u1, u2) = v2

We deduce that:{
u1 ← v1

u2 ← Φ
(
ρΦ−1 (v1) +

√
1− ρ2Φ−1 (v2)

)
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Question 7

Show that this algorithm is equivalent to the Cholesky algorithm found in
Question 3.
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We obtain the same algorithm, because we have the following
correspondence: {

v1 = Φ (n1)
v2 = Φ (n2)

The algorithm described in Question 6 is then a special case of the
Cholesky algorithm if we take n1 = Φ−1 (v1) and n2 = Φ−1 (v2). Whereas
n1 and n2 are directly simulated in the Cholesky algorithm with a Gaussian
random generator, they are simulated using the inverse transform in the
conditional distribution method.
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Question 1

We note an and bn the normalization constraints and G the limit
distribution of the Fisher-Tippet theorem.
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We recall that:

Pr

{
Xn:n − bn

an
≤ x

}
= Pr {Xn:n ≤ anx + bn}

= Fn (anx + bn)

and:
G (x) = lim

n→∞
Fn (anx + bn)
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Question 1.a

Find the limit distribution G when X ∼ E (λ), an = λ−1 and bn = λ−1 ln n.
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We have:

Fn (anx + bn) =
(

1− e−λ(λ−1x+λ−1 ln n)
)n

=

(
1− 1

n
e−x

)n

We deduce that:

G (x) = lim
n→∞

(
1− 1

n
e−x

)n

= e−e
−x

= Λ (x)
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Question 1.b

Same question when X ∼ U[0,1], an = n−1 and bn = 1− n−1.
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We have:

Fn (anx + bn) =
(
n−1x + 1− n−1

)n
=

(
1 +

1

n
(x − 1)

)n

We deduce that:

G (x) = lim
n→∞

(
1 +

1

n
(x − 1)

)n

= ex−1 = Ψ1 (x − 1)
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Question 1.c

Same question when X is a Pareto distribution:

F (x) = 1−
(
θ + x

θ

)−α
,

an = θα−1n1/α and bn = θn1/α − θ.
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We have:

Fn (anx + bn) =

(
1−

(
θ

θ + θα−1n1/αx + θn1/α − θ

)α)n

=

(
1−

(
1

α−1n1/αx + n1/α

)α)n

=

(
1− 1

n

(
1 +

x

α

)−α)n

We deduce that:

G (x) = lim
n→∞

(
1− 1

n

(
1 +

x

α

)−α)n

= e−(1+ x
α )−α

= Φα

(
1 +

x

α

)
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Question 2

We denote by G the GEV probability distribution:

G (x) = exp

{
−
[

1 + ξ

(
x − µ
σ

)]−1/ξ
}

What is the interest of this probability distribution? Write the
log-likelihood function associated to the sample {x1, . . . , xT}.

Thierry Roncalli Course 2023-2024 in Financial Risk Management 123 / 131



Copulas and Stochastic Dependence Modeling
Extreme Value Theory

Monte Carlo Simulation Methods
Stress Testing and Scenario Analysis

Construction of a stress scenario with the GEV distribution

Construction of a stress scenario with the GEV distribution

The GEV distribution encompasses the three EV probability distributions.
This is an interesting property, because we have not to choose between the
three EV distributions. We have:

g (x) =
1

σ

[
1 + ξ

(
x − µ
σ

)]−( 1+ξ
ξ )

exp

{
−
[

1 + ξ

(
x − µ
σ

)]− 1
ξ

}

We deduce that:

` = −n

2
lnσ2 −

(
1 + ξ

ξ

) n∑
i=1

ln

(
1 + ξ

(
xi − µ
σ

))
−

n∑
i=1

[
1 + ξ

(
xi − µ
σ

)]− 1
ξ
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Question 3

Show that for ξ → 0, the distribution G tends toward the Gumbel
distribution:

Λ (x) = exp

(
− exp

(
−
(
x − µ
σ

)))
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We notice that:
lim
ξ→0

(1 + ξx)−1/ξ = e−x

Then we obtain:

lim
ξ→0

G (x) = lim
ξ→0

exp

{
−
[

1 + ξ

(
x − µ
σ

)]−1/ξ
}

= exp

{
− lim
ξ→0

[
1 + ξ

(
x − µ
σ

)]−1/ξ
}

= exp

(
− exp

(
−
(
x − µ
σ

)))
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Question 4

We consider the minimum value of daily returns of a portfolio for a period
of n trading days. We then estimate the GEV parameters associated to the
sample of the opposite of the minimum values. We assume that ξ is equal
to 1.
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Question 4.a

Show that we can approximate the portfolio loss (in %) associated to the
return period T with the following expression:

r (T ) ' −
(
µ̂+

(
T
n
− 1

)
σ̂

)
where µ̂ and σ̂ are the ML estimates of GEV parameters.
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We have:
G−1 (α) = µ− σξ−1

[
1− (− lnα)−ξ

]
When the parameter ξ is equal to 1, we obtain:

G−1 (α) = µ− σ
(

1− (− lnα)−1
)

By definition, we have T = (1− α)−1 n. The return period T is then
associate to the confidence level α = 1− n/T . We deduce that:

R (T ) ≈ −G−1 (1− n/t)

= −
(
µ− σ

(
1− (− ln (1− n/T ))−1

))
= −

(
µ+

(
T
n
− 1

)
σ

)
We then replace µ and σ by their ML estimates µ̂ and σ̂.
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Question 4.b

We set n equal to 21 trading days. We obtain the following results for two
portfolios:

Portfolio µ̂ σ̂ ξ
#1 1% 3% 1
#2 10% 2% 1

Calculate the stress scenario for each portfolio when the return period is
equal to one year. Comment on these results.
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For Portfolio #1, we obtain:

R (1Y) = −
(

1% +

(
252

21
− 1

)
× 3%

)
= −34%

For Portfolio #2, the stress scenario is equal to:

R (1Y) = −
(

10% +

(
252

21
− 1

)
× 2%

)
= −32%

We conclude that Portfolio #1 is more risky than Portfolio #2 if we
consider a stress scenario analysis.
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