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General information

1 Overview
The objective of this course is to understand the theoretical and
practical aspects of risk management

2 Prerequisites
M1 Finance or equivalent

3 ECTS
4

4 Keywords
Finance, Risk Management, Applied Mathematics, Statistics

5 Hours
Lectures: 36h, Training sessions: 15h, HomeWork: 30h

6 Evaluation
There will be a final three-hour exam, which is made up of questions
and exercises

7 Course website
http://www.thierry-roncalli.com/RiskManagement.html
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Objective of the course

The objective of the course is twofold:

1 knowing and understanding the financial regulation (banking and
others) and the international standards (especially the Basel Accords)

2 being proficient in risk measurement, including the mathematical
tools and risk models
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Class schedule

Course sessions

September 15 (6 hours, AM+PM)

September 22 (6 hours, AM+PM)

September 19 (6 hours, AM+PM)

October 6 (6 hours, AM+PM)

October 13 (6 hours, AM+PM)

October 27 (6 hours, AM+PM)

Tutorial sessions

October 20 (3 hours, AM)

October 20 (3 hours, PM)

November 10 (3 hours, AM)

November 10 (3 hours, PM)

November 17 (3 hours, PM)

Class times: Fridays 9:00am-12:00pm, 1:00pm–4:00pm, University of Evry, Room 209 IDF
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Agenda

Lecture 1: Introduction to Financial Risk Management

Lecture 2: Market Risk

Lecture 3: Credit Risk

Lecture 4: Counterparty Credit Risk and Collateral Risk

Lecture 5: Operational Risk

Lecture 6: Liquidity Risk

Lecture 7: Asset Liability Management Risk

Lecture 8: Model Risk

Lecture 9: Copulas and Extreme Value Theory

Lecture 10: Monte Carlo Simulation Methods

Lecture 11: Stress Testing and Scenario Analysis

Lecture 12: Credit Scoring Models
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Agenda

Tutorial Session 1: Market Risk

Tutorial Session 2: Credit Risk

Tutorial Session 3: Counterparty Credit Risk and Collateral Risk

Tutorial Session 4: Operational Risk & Asset Liability Management
Risk

Tutorial Session 5: Copulas, EVT & Stress Testing
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Textbook

Roncalli, T. (2020), Handbook of Financial Risk Management,
Chapman & Hall/CRC Financial Mathematics Series.
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Additional materials

Slides, tutorial exercises and past exams can be downloaded at the
following address:

http://www.thierry-roncalli.com/RiskManagement.html

Solutions of exercises can be found in the companion book, which can
be downloaded at the following address:

http://www.thierry-roncalli.com/RiskManagementBook.html
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Agenda

Lecture 1: Introduction to Financial Risk Management

Lecture 2: Market Risk

Lecture 3: Credit Risk

Lecture 4: Counterparty Credit Risk and Collateral Risk

Lecture 5: Operational Risk

Lecture 6: Liquidity Risk

Lecture 7: Asset Liability Management Risk

Lecture 8: Model Risk

Lecture 9: Copulas and Extreme Value Theory

Lecture 10: Monte Carlo Simulation Methods

Lecture 11: Stress Testing and Scenario Analysis

Lecture 12: Credit Scoring Models
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Credit scoring

Credit scoring refers to statistical models to measure the
creditworthiness of a person or a company

Mortgage, credit card, personal loan, etc.

Credit scoring first emerged in the United States

The FICO score was introduced in 1989 by Fair Isaac Corporation
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The emergence of credit scoring
Variable selection
Score modeling, validation and follow-up

Judgmental credit systems versus credit scoring systems

In 1941, Durand presented a statistical analysis of credit valuation

He showed that credit analysts uses similar factors, and proposed a
credit rating formula based on nine factors: (1) age, (2) sex, (3)
stability of residence, (4) occupation, (5) industry, (6) stability of
employment, (7) bank account, (8) real estate and (9) life insurance

The score is additive and can take values between 0 and 3.46

From an industrial point of view, a credit scoring system has two
main advantages compared to a judgmental credit system:

1 it is cost efficient, and can treat a huge number of applicants;
2 decision-making process is rapid and consistent across customers.
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Scoring models for corporate bankruptcy

Altman Z score model (1968)

The score was equal to:

Z = 1.2 · X1 + 1.4 · X2 + 3.3 · X3 + 0.6 · X4 + 1.0 · X5

The variables Xj represent the following financial ratios:

Xj Ratio
X1 Working capital / Total assets
X2 Retained earnings / Total assets
X3 Earnings before interest and tax / Total assets
X4 Market value of equity / Total liabilities
X5 Sales / Total assets

If we note Zi the score of the firm i , we can calculate the normalized score:

Z?i = (Zi −mz) /σz

where mz and σz are the mean and standard deviation of the observed scores

A low value of Z?i (for instance Z?i < 2.5) indicates that the firm has a high probability of
default
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New developments

Default of corporate firms

Consumer credit and retail debt management (credit cards,
mortgages, etc.)

Statistical methods: discriminant analysis, logistic regression, survival
model, machine learning techniques
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Choice of the risk factors

The five Cs:

1 Capacity measures the applicant’s ability to meet the loan payments
(e.g., debt-to-income, job stability, cash flow dynamics)

2 Capital is the size of assets that are held by the borrower (e.g. net
wealth of the borrower)

3 Character measures the willingness to repay the loan (e.g. payment
history of the applicant)

4 Collateral concerns additional forms of security that the borrower can
provide to the lender

5 Conditions refer to the characteristics of the loan and the economic
conditions that might affect the borrower (e.g. maturity, interests
paid)
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Choice of the risk factors

Table: An example of risk factors for consumer credit

Character Age of applicant
Marital status
Number of children
Educational background
Time with bank
Time at present address

Capacity Annual income
Current living expenses
Current debts
Time with employer

Capital Purpose of the loan
Home status
Saving account

Condition Maturity of the loan
Paid interests
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Choice of the risk factors

Scores are developed by banks and financial institutions, but they can
also be developed by consultancy companies

This is the case of the FICO R© scores, which are the most widely used
credit scoring systems in the world

5 main categories

1 Payment history (35%)

2 Amount of debt (30%)

3 Length of credit history (15%)

4 New credit (10%)

5 Credit mix (10%)

Range

Generally from 300 to 850 (average
score of US consumers is 695)

Exceptional (800+)

Very good (740-799)

Good (670-739)

Fair (580-669)

Poor (580−)
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Choice of the risk factors

Corporate credit scoring systems use financial ratios:

1 Profitability: gross profit margin, operating profit margin,
return-on-equity (ROE), etc.

2 Solvency: debt-to-assets ratio, debt-to-equity ratio, interest coverage
ratio, etc.

3 Leverage: liabilities-to-assets ratio (financial leverage ratio),
long-term debt/assets, etc.

4 Liquidity: current assets/current liabilities (current ratio), quick
assets/current liabilities (quick or cash ratio), total net working
capital, assets with maturities of less than one year, etc.
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Data preparation

Check the data and remove outliers or fill missing values

Variable transformation

Slicing-and-dicing segmentation

Potential interaction
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Variable selection

Many candidate variables X = (X1, . . . ,Xm) for explaining the
variable Y

The variable selection problem consists in finding the best set of
optimal variables

We assume the following statistical model:

Y = f (X ) + u

where u ∼ N
(
0, σ2

)
We denote the prediction by Ŷ = f̂ (X ). We have:

E
[(

Y − Ŷ
)2
]

= E
[(

f (X ) + u − f̂ (X )
)2
]

=
(
E
[
f̂ (X )

]
− f (X )

)2

+ E
[(

f̂ (X )− E
[
f̂ (X )

])2
]

+ σ2

= Bias2 + Variance + Error
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Variable selection

Best subset selection:

AIC (α) = −2`(k)

(
θ̂
)

+ α · df(model)
(k)

Stepwise approach:

F =
RSS

(
θ̂(k)

)
− RSS

(
θ̂(k+1)

)
RSS

(
θ̂(k+1)

)
/ df

(residual)
(k+1)

Lasso approach:

yi =
K∑

k=1

βkxi,k + ui s.t.
K∑

k=1

|βk | ≤ τ
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Score modeling, validation and follow-up

Cross-validation approach (leave-p-out cross-validation or LpOCV,
leave-one-out cross-validation or LOOCV, Press statistic)

Score modeling

S = f
(
X ; θ̂

)
is the score

Decision rule: {
S < s =⇒ Y = 0 =⇒ reject
S ≥ s =⇒ Y = 1 =⇒ accept

Score follow-up

Stability
Rejected applicants (reject inference)
Backtesting

Thierry Roncalli Course 2023-2024 in Financial Risk Management 21 / 100



The method of scoring
Statistical methods

Performance evaluation criteria and score consistency

Unsupervised learning
Parametric supervised methods
Non-parametric supervised methods

Statistical methods

Unsupervised learning is a branch of statistical learning, where test
data does not include a response variable

It is opposed to supervised learning, whose goal is to predict the value
of the response variable Y given a set of explanatory variables X

In the case of unsupervised learning, we only know the X -values,
because the Y -values do not exist or are not observed

Supervised and unsupervised learning are also called ‘learning
with/without a teacher ’ (Hastie et al., 2009)
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Unsupervised learning
Parametric supervised methods
Non-parametric supervised methods

Clustering

K -means clustering

Hierarchical clustering
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Unsupervised learning
Parametric supervised methods
Non-parametric supervised methods

Clustering

Figure: An example of dendrogram
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Unsupervised learning
Parametric supervised methods
Non-parametric supervised methods

Dimension reduction

Principal component analysis

Non-negative matrix factorization

Thierry Roncalli Course 2023-2024 in Financial Risk Management 25 / 100



The method of scoring
Statistical methods

Performance evaluation criteria and score consistency

Unsupervised learning
Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis

Figure: Classification statistical problem
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Discriminant analysis
The two-dimensional case

Using the Bayes theorem, we have:

Pr {A ∩ B} = Pr {A | B} · Pr {B} = Pr {B | A} · Pr {A}

It follows that:

Pr {A | B} = Pr {B | A} · Pr {A}
Pr {B}

If we apply this result to the conditional probability
Pr {i ∈ C1 | X = x}, we obtain:

Pr {i ∈ C1 | X = x} = Pr {X = x | i ∈ C1} ·
Pr {i ∈ C1}
Pr {X = x}
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Discriminant analysis
The two-dimensional case

The log-probability ratio is then equal to:

ln
Pr {i ∈ C1 | X = x}
Pr {i ∈ C2 | X = x}

= ln

(
Pr {X = x | i ∈ C1}
Pr {X = x | i ∈ C2}

· Pr {i ∈ C1}
Pr {i ∈ C2}

)
= ln

f1 (x)

f2 (x)
+ ln

π1

π2

where πj = Pr {i ∈ Cj} is the probability of the jth class and
fj (x) = Pr {X = x | i ∈ Cj} is the conditional pdf of X
By construction, the decision boundary is defined such that we are
indifferent to an assignment rule (i ∈ C1 and i ∈ C2), implying that:

Pr {i ∈ C1 | X = x} = Pr {i ∈ C2 | X = x} =
1

2

Finally, we deduce that the decision boundary satisfies the following
equation:

ln
f1 (x)

f2 (x)
+ ln

π1

π2
= 0
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Unsupervised learning
Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis
Quadratic discriminant analysis (QDA)

If we model each class density as a multivariate normal distribution:

X | i ∈ Cj ∼ N (µj ,Σj)

we have:

fj (x) =
1

(2π)K/2 |Σj |1/2
exp

(
−1

2
(x − µj)

>Σ−1
j (x − µj)

)
We deduce that:

ln
f1 (x)

f2 (x)
=

1

2
ln
|Σ2|
|Σ1|
−1

2
(x − µ1)> Σ−1

1 (x − µ1)+
1

2
(x − µ2)>Σ−1

2 (x − µ2)

The decision boundary is then given by:

1

2
ln
|Σ2|
|Σ1|
−1

2
(x − µ1)> Σ−1

1 (x − µ1)+
1

2
(x − µ2)>Σ−1

2 (x − µ2)+ln
π1

π2
= 0
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Discriminant analysis
Linear discriminant analysis (LDA)

If we assume that Σ1 = Σ2 = Σ, we obtain:

1

2
(x − µ2)>Σ−1 (x − µ2)− 1

2
(x − µ1)>Σ−1 (x − µ1) + ln

π1

π2
= 0

We deduce that:

(µ2 − µ1)>Σ−1x =
1

2

(
µ>2 Σ−1µ2 − µ>1 Σ−1µ1

)
+ ln

π2

π1

The decision boundary is then linear in x (and not quadratic)
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Parametric supervised methods
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Discriminant analysis

Example #1

We consider two classes and two explanatory variables X = (X1,X2) where
π1 = 50%, π2 = 1− π1 = 50%, µ1 = (1, 3), µ2 = (4, 1), Σ1 = I2 and
Σ2 = γI2 where γ = 1.5.
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Unsupervised learning
Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis

Figure: Boundary decision of discriminant analysis
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Non-parametric supervised methods

Discriminant analysis

Figure: Impact of the parameters on LDA/QDA boundary decisions
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Discriminant analysis
The general case

We can generalize the previous analysis to J classes

The Bayes formula gives:

Pr {i ∈ Cj | X = x} = Pr {X = x | i ∈ Cj} ·
Pr {i ∈ Cj}
Pr {X = x}

= c · fj (x) · πj

where c = 1/Pr {X = x} is a normalization constant that does not
depend on j

We note Sj (x) = ln Pr {i ∈ Cj | X = x} the discriminant score
function for the j th class

We have:
Sj (x) = ln c + ln fj (x) + lnπj
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Discriminant analysis
The general case

If we again assume that X | i ∈ Cj ∼ N (µj ,Σj), the QDA score
function is:

Sj (x) = ln c ′ + lnπj −
1

2
ln |Σj | −

1

2
(x − µj)

> Σ−1
j (x − µj)

∝ lnπj −
1

2
ln |Σj | −

1

2
(x − µj)

>Σ−1
j (x − µj)

where ln c ′ = ln c − K

2
ln 2π

Given an input x , we calculate the scores Sj (x) for j = 1, . . . , J and
we choose the label j? with the highest score value
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Discriminant analysis
The general case

If we assume an homoscedastic model (Σj = Σ), the LDA score
function becomes:

Sj (x) = ln c ′′ + lnπj −
1

2
(x − µj)

>Σ−1
j (x − µj)

∝ lnπj + µ>j Σ−1x − 1

2
µ>j Σ−1µj

where ln c ′′ = ln c ′ − 1

2
ln |Σ| − 1

2
x>Σ−1x

Remark

In practice, the parameters πj , µj and Σj are unknown. We replace them

by the corresponding estimates π̂j , µ̂j and Σ̂j . For the linear discriminant

analysis, Σ̂ is estimated by pooling all the classes.
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Discriminant analysis
The general case

Example #2

We consider the classification problem of 33 observations with two
explanatory variables X1 and X2, and three classes C1, C2 and C3:

i Cj X1 X2 i Cj X1 X2 i Cj X1 X2

1 1 1.03 2.85 12 2 3.70 5.08 23 3 3.55 0.58
2 1 0.20 3.30 13 2 2.81 1.99 24 3 3.86 1.83
3 1 1.69 3.73 14 2 3.66 2.61 25 3 5.39 0.47
4 1 0.98 3.52 15 2 5.63 4.19 26 3 3.15 −0.18
5 1 0.98 5.15 16 2 3.35 3.64 27 3 4.93 1.91
6 1 3.47 6.56 17 2 2.97 3.55 28 3 3.87 2.61
7 1 3.94 4.68 18 2 3.16 2.92 29 3 4.09 1.43
8 1 1.55 5.99 19 3 3.00 0.98 30 3 3.80 2.11
9 1 1.15 3.60 20 3 3.09 1.99 31 3 2.79 2.10

10 2 1.20 2.27 21 3 5.45 0.60 32 3 4.49 2.71
11 2 3.66 5.49 22 3 3.59 −0.46 33 3 3.51 1.82
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Discriminant analysis
The general case

Table: Parameter estimation of the discriminant analysis

Class C1 C2 C3

π̂j 0.273 0.273 0.455
µ̂j 1.666 4.376 3.349 3.527 3.904 1.367

Σ̂j
1.525 0.929 1.326 0.752 0.694 −0.031
0.929 1.663 0.752 1.484 −0.031 0.960

For the LDA method, we have:

Σ̂ =

(
1.91355 −0.71720
−0.71720 3.01577

)
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The general case

Table: Computation of the discriminant scores Sj (x)

i
QDA LDA LDA2

S1 (x) S2 (x) S3 (x) S1 (x) S2 (x) S3 (x) S1 (x) S2 (x) S3 (x)
1 −2.28 −3.69 −7.49 0.21 −0.96 −0.79 6.93 5.60 5.76
2 −2.28 −6.36 −12.10 −0.26 −2.17 −2.34 1.38 −2.13 −1.89
3 −1.76 −3.13 −6.79 2.84 2.16 1.71 12.13 12.01 11.38
4 −1.80 −4.43 −8.88 1.35 0.09 −0.22 7.73 6.20 5.93
5 −2.36 −7.75 −13.70 4.32 2.93 1.45 8.12 5.54 4.76
6 −3.16 −5.63 −14.68 10.75 11.36 8.95 14.82 13.99 12.96
7 −3.79 −1.92 −6.32 8.06 9.22 8.15 17.36 19.03 17.89
8 −2.85 −8.43 −15.23 6.73 5.76 3.70 10.47 8.09 7.15
9 −1.74 −4.12 −8.37 1.76 0.64 0.27 8.94 7.77 7.39

10 −3.14 −3.21 −6.17 −0.58 −1.56 −0.98 6.59 5.55 6.15
11 −2.87 −3.01 −9.45 9.10 9.96 8.31 16.89 17.65 16.42
12 −3.04 −2.38 −7.77 8.42 9.34 7.98 17.28 18.50 17.28
13 −6.32 −2.29 −1.62 1.41 1.82 2.64 12.48 13.94 14.46
14 −6.91 −2.07 −1.42 3.86 4.94 5.34 15.15 17.41 17.34
15 −9.79 −3.62 −7.12 9.79 12.43 11.75 12.58 14.01 13.50
16 −3.90 −1.47 −3.44 5.25 5.99 5.65 16.84 18.82 18.03
17 −3.31 −1.55 −3.61 4.50 4.92 4.63 16.25 17.95 17.21
18 −4.84 −1.60 −2.19 3.65 4.28 4.45 15.51 17.48 17.14
19 −10.21 −4.12 −1.27 −0.13 0.52 2.06 8.98 9.99 11.70
20 −7.05 −2.41 −1.24 1.85 2.50 3.32 12.99 14.72 15.22
21 −23.11 −11.16 −2.56 2.98 5.75 7.61 3.79 4.57 7.26
22 −19.22 −9.53 −2.42 −1.84 −0.57 2.01 1.81 1.53 5.51
23 −13.86 −5.92 −1.01 −0.01 1.15 2.98 7.65 8.67 10.95
24 −10.01 −3.43 −0.70 2.75 4.07 5.02 12.84 14.95 15.65
25 −23.48 −11.44 −2.54 2.65 5.38 7.33 3.40 4.09 6.95
26 −15.87 −7.59 −2.30 −2.01 −1.14 1.23 3.19 3.02 6.50
27 −14.09 −5.40 −1.52 4.56 6.78 7.70 11.17 13.24 14.08
28 −7.55 −2.27 −1.39 4.18 5.45 5.85 15.10 17.44 17.40
29 −12.40 −4.67 −0.61 2.38 3.92 5.17 11.21 13.14 14.33
30 −8.85 −2.87 −0.88 3.17 4.41 5.17 13.77 15.97 16.37
31 −5.97 −2.17 −1.72 1.58 1.97 2.70 12.78 14.26 14.67
32 −9.40 −2.97 −1.81 5.33 7.11 7.46 14.55 16.95 16.93
33 −8.84 −3.01 −0.80 2.19 3.21 4.16 12.82 14.77 15.45
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Figure: Comparing QDA, LDA and LDA2 predictions
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Figure: QDA, LDA and LDA2 decision regions
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We note xi = (xi,1, . . . , xi,K ) the K × 1 vector of exogenous variables
X for the i th observation

The mean vector and the variance (or scatter) matrix of Class Cj is
equal to µ̂j = 1

nj

∑
i∈Cj xi and

Sj = nΣ̂j =
∑

i∈Cj (xi − µ̂j) (xi − µ̂j)
>where nj is the number of

observations in the jth class

If consider the total population, we also have µ̂ = 1
n

∑n
i=1 xi and

S = nΣ̂ =
∑n

i=1 (xi − µ̂) (xi − µ̂)>
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We notice that:

µ̂ =
1

n

J∑
j=1

nj µ̂j

We define the between-class variance matrix as:

SB =
J∑

j=1

nj (µ̂j − µ̂) (µ̂j − µ̂)>

and the within-class variance matrix as:

SW =
J∑

j=1

Sj

We can show that the total variance matrix can be decomposed into
the sum of the within-class and between-class variance matrices:

S = SW + SB
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The discriminant analysis consists in finding the discriminant linear
combination β>X that has the maximum between-class variance
relative to the within-class variance:

β? = arg max J (β)

where J (β) is the Fisher criterion:

J (β) =
β>SBβ

β>SWβ

Since the objective function is invariant if we rescale the vector β –
J (β′) = J (β) if β′ = cβ, we can impose that β>SWβ = 1. It follows
that:

β̂ = arg maxβ>SBβ

s.t. β>SWβ = 1
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The Lagrange function is:

L (β;λ) = β>SBβ − λ
(
β>SWβ − 1

)
We deduce that the first-order condition is equal to:

∂ L (β;λ)

∂ β>
= 2SBβ − 2λSWβ = 0

It is remarkable that we obtain a generalized eigenvalue SBβ = λSWβ
or equivalently:

S−1
W SBβ = λβ

Even if SW and SB are two symmetric matrices, it is not necessarily
the case for the product S−1

W SB

Using the eigendecomposition SB = VΛV>, we have

S
1/2
B = VΛ1/2V>
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With the parametrization α = S
1/2
B β, the first-order condition

becomes:
S

1/2
B S−1

W S
1/2
B α = λα

because β = S
−1/2
B α

We have a right regular eigenvalue problem

Let λk and vk be the kth eigenvalue and eigenvector of the symmetric

matrix S
1/2
B S−1

W S
1/2
B

It is obvious that the optimal solution α? is the first eigenvector v1

corresponding to the largest eigenvalue λ1

We conclude that the estimator is β̂ = S
−1/2
B v1 and the discriminant

linear relationship is Y c = v>1 S
−1/2
B X

Moreover, we have:

λ1 = J
(
β̂
)

=
β̂>SB β̂

β̂>SW β̂
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Example #3

We consider a problem with two classes C1 and C2, and two explanatory
variables (X1,X2). Class C1 is composed of 7 observations: (1, 2), (1, 4),
(3, 6), (3, 3), (4, 2), (5, 6), (5, 5), whereas class C2 is composed of 6
observations: (1, 0), (2, 1), (4, 1), (3, 2), (6, 4) and (6, 5).
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Figure: Linear projection and the Fisher solution
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Concerning the assignment decision, we can consider the midpoint rule:{
si < µ̄⇒ i ∈ C1

si > µ̄⇒ i ∈ C2

where µ̄ = (µ̄1 + µ̄2) /2, µ̄1 = β>µ̂1 and µ̄2 = β>µ̂2

This rule is not optimal because it does not depend
on the variance s̄2

1 and s̄2
2 of each class
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Figure: Class separation and the cut-off criterion
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We assume that Y can take two values 0 and 1

We consider models that link the outcome to a set of factors X :

Pr {Y = 1 | X = x} = F
(
x>β

)
F must be a cumulative distribution function in order to ensure that
F (z) ∈ [0, 1]

We also assume that the model is symmetric, implying that
F (z) + F (−z) = 1

Given a sample {(xi , yi ) , i = 1, . . . , n}, the log-likelihood function is
equal to:

` (θ) =
n∑

i=1

ln Pr {Yi = yi}

where yi takes the values 0 or 1
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We have:
Pr {Yi = yi} = pyii · (1− pi )

1−yi

where pi = Pr {Yi = 1 | Xi = xi}
We deduce that:

` (θ) =
n∑

i=1

yi ln pi + (1− yi ) ln (1− pi )

=
n∑

i=1

yi ln F
(
x>i β

)
+ (1− yi ) ln

(
1− F

(
x>i β

))
We notice that the vector θ includes only the parameters β
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By noting f (z) the probability density function, it follows that the
associated score vector of the log-likelihood function is:

S (β) =
∂ ` (β)

∂ β

=
n∑

i=1

f
(
x>i β

)
F
(
x>i β

)
F
(
−x>i β

) (yi − F
(
x>i β

))
xi
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The Hessian matrix is:

H (β) =
∂2 ` (β)

∂ β ∂ β>
= −

n∑
i=1

Hi ·
(
xix
>
i

)
where:

Hi =
f
(
x>i β

)2

F
(
x>i β

)
F
(
−x>i β

) − (yi − F
(
x>i β

))
·(

f ′
(
x>i β

)
F
(
x>i β

)
F
(
−x>i β

) − f
(
x>i β

)2 (
1− 2F

(
x>i β

))
F
(
x>i β

)2
F
(
−x>i β

)2

)
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Once β̂ is estimated by the method of maximum likelihood, we can
calculated the predicted probability for the i th observation:

p̂i = F
(
x>i β̂

)
Like a linear regression model, we can define the residual as the
difference between the observation yi and the predicted value p̂i
We can also exploit the property that the conditional distribution of
Yi is a Bernoulli distribution B (pi )

It is better to use the standardized (or Pearson) residuals:

ûi =
yi − p̂i√
p̂i (1− p̂i )

These residuals are related to the Pearson’s chi-squared statistic:

χ2
Pearson =

n∑
i=1

û2
i =

n∑
i=1

(yi − p̂i )
2

p̂i (1− p̂i )
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This statistic may used to measure the goodness-of-fit of the model

Under the assumption H0 that there is no lack-of-fit, we have
χ2
Pearson ∼ χ2

n−K where K is the number of exogenous variables

Another goodness-of-fit statistic is the likelihood ratio. For the
‘saturated ’ model, the estimated probability p̂i is exactly equal to yi

We deduce that the likelihood ratio is equal to:

−2 ln Λ = 2
n∑

i=1

yi ln

(
yi
p̂i

)
+ (1− yi ) ln

(
1− yi
1− p̂i

)
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In binomial choice models, D = −2 ln Λ is also called the deviance
and we have D ∼ χ2

n−K

In a perfect fit p̂i = yi , the likelihood ratio is exactly equal to zero

The forecasting procedure consists of estimating the probability

p̂ = F
(
x>β̂

)
for a given set of variables x and to use the following

decision criterion:

Y = 1⇔ p̂ ≥ 1

2

Thierry Roncalli Course 2023-2024 in Financial Risk Management 57 / 100



The method of scoring
Statistical methods

Performance evaluation criteria and score consistency

Unsupervised learning
Parametric supervised methods
Non-parametric supervised methods

Binary choice models
Logistic regression

The logit model uses the following cumulative distribution function:

F (z) =
1

1 + e−z
=

ez

ez + 1

The probability density function is then equal to:

f (z) =
e−z

(1 + e−z)2

The log-likelihood function is equal to:

` (β) =
n∑

i=1

(1− yi ) ln
(
1− F

(
x>i β

))
+ yi ln F

(
x>i β

)
=

n∑
i=1

(1− yi ) ln

(
e−x

>
i β

1 + e−x
>
i β

)
− yi ln

(
1 + e−x

>
i β
)

= −
n∑

i=1

ln
(

1 + e−x
>
i β
)

+ (1− yi )
(
x>i β

)
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We also have:

S (β) =
n∑

i=1

(
yi − F

(
x>i β

))
xi

and:

H (β) = −
n∑

i=1

f
(
x>i β

)
·
(
xix
>
i

)

Thierry Roncalli Course 2023-2024 in Financial Risk Management 59 / 100



The method of scoring
Statistical methods

Performance evaluation criteria and score consistency

Unsupervised learning
Parametric supervised methods
Non-parametric supervised methods

Binary choice models
Probit analysis

The probit model assumes that F (z) is the Gaussian distribution

The log-likelihood function is then:

` (β) =
n∑

i=1

(1− yi ) ln
(
1− Φ

(
x>i β

))
+ yi ln Φ

(
x>i β

)
The probit model can be seen as a latent variable model

Let us consider the linear model Y ? = β>X +U where U ∼ N
(
0, σ2

)
We assume that we do not observe Y ? but Y = g (Y ?)

For example, if g (z) = 1 {z > 0}, we obtain:

Pr {Y = 1 | X = x} = Pr
{
β>X + U > 0 | X = x

}
= Φ

(
β>x

σ

)
We notice that only the ratio β/σ is identifiable

Since we can set σ = 1, we obtain the probit model
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Regularization

The regularized log-likelihood function is equal to:

` (θ;λ) = ` (θ)− λ

p
‖θ‖pp

The case p = 1 is equivalent to consider a lasso penalization

The case p = 2 corresponds to the ridge regularization
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We assume that Y can take J labels (L1, . . . ,LJ) or belongs to J
disjoint classes (C1, . . . , CJ)
We define the conditional probability as follows:

pj (x) = Pr {Y = Lj | X = x} = Pr {Y ∈ Cj | X = x} =
eβ

>
j x

1 +
∑J−1

j=1 eβ
>
j x

The probability of the last label is then equal to:

pJ (x) = 1−
J−1∑
j=1

pj (x) =
1

1 +
∑J−1

j=1 eβ
>
j x

The log-likelihood function becomes:

` (θ) =
n∑

i=1

ln

 J∏
j=1

pj (xi )
i∈Cj


where θ is the vector of parameters (β1, . . . , βJ−1)
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Non-parametric supervised methods

k-nearest neighbor classifier (k-NN)

Neural networks (NN)

Support vector machines (SVM)

Model averaging (bagging or bootstrap aggregation, random forests,
boosting)
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Definition and properties

The entropy is a measure of unpredictability or uncertainty of a
random variable

Let (X ,Y ) be a random vector where pi,j = Pr {X = xi ,Y = yj},
pi = Pr {X = xi} and pj = Pr {Y = yj}
The Shannon entropy of the discrete random variable X is given by:

H (X ) = −
∑n

i=1
pi ln pi

We have the property 0 ≤ H (X ) ≤ ln n.

The Shannon entropy is a measure of the average information of the
system

The lower the Shannon entropy, the more informative the system
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Definition and properties

For a random vector (X ,Y ), we have:

H (X ,Y ) = −
∑n

i=1

∑n

j=1
pi,j ln pi,j

We deduce that the conditional information of Y given X is equal to:

H (Y | X ) = EX [H (Y | X = x)]

= −
∑n

i=1

∑n

j=1
pi,j ln

pi,j
pi

= H (X ,Y )− H (X )
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Definition and properties

We have the following properties:

if X and Y are independent, we have H (Y | X ) = H (Y ) and
H (X ,Y ) = H (Y ) + H (X );

if X and Y are perfectly dependent, we have H (Y | X ) = 0 and
H (X ,Y ) = H (X ).

The amount of information obtained about one random variable, through
the other random variable is measured by the mutual information:

I (X ,Y ) = H (Y ) + H (X )− H (X ,Y )

=
∑n

i=1

∑n

j=1
pi,j ln

pi,j
pipj
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Definition and properties

1/36 1/36 1/36 1/36 1/36 1/36

1/36 1/36 1/36 1/36 1/36 1/36

1/36 1/36 1/36 1/36 1/36 1/36

1/36 1/36 1/36 1/36 1/36 1/36

1/36 1/36 1/36 1/36 1/36 1/36

1/36 1/36 1/36 1/36 1/36 1/36

H (X ) = H (Y ) = 1.792
H (X ,Y ) = 3.584

I (X ,Y ) = 0

1/6

1/6

1/6

1/6

1/6

1/6

H (X ) = H (Y ) = 1.792
H (X ,Y ) = 1.792
I (X ,Y ) = 1.792

Figure: Examples of Shannon entropy calculation
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1/24 1/24

1/24 1/24 1/24

1/24 1/24

1/24 1/24

1/24 1/24 1/24

1/24 1/24

1/48

1/48

1/48

1/48

1/6

1/6

H (X ) = H (Y ) = 1.683
H (X ,Y ) = 2.774
I (X ,Y ) = 0.593

3/24 1/24 1/24

3/24 1/24

5/24 1/24

1/24

1/8 1/8

1/12

H (X ) = 1.658
H (Y ) = 1.328
I (X ,Y ) = 0.750

Figure: Examples of Shannon entropy calculation
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Application to scoring

Let S and Y be the score and the control variable

For instance, Y is a binary random variable that may indicate a bad
credit (Y = 0) or a good credit (Y = 1)

We consider the following decision rule:{
S ≤ 0⇒ S? = 0
S > 0⇒ S? = 1
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Application to scoring

We note ni,j the number of observations such that S? = i and Y = j .
We obtain the following system (S?,Y ):

Y = 0 Y = 1
S? = 0 n0,0 n0,1

S? = 1 n1,0 n1,1

where n = n0,0 + n0,1 + n1,0 + n1,1 is the total number of observations

The hit rate is the ratio of good bets:

H =
n0,0 + n1,1

n

This statistic can be viewed as an information measure of the system
(S ,Y )

When there are more states, we can consider the Shannon entropy
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s1

s2

s3

s4

s5

s6

y1 y2 y3 y4 y5

10 9

7 9

3 7 2

2 10 4 5

10 2

3 4 13

H (S1) = 1.767
H (Y ) = 1.609
H (S1,Y ) = 2.614
I (S1,Y ) = 0.763

s1

s2

s3

s4

s5

s6

y1 y2 y3 y4 y5

7 10

10 8

5 4 3

3 10 6 4

2 5 8

5 5 5

H (S1) = 1.771
H (Y ) = 1.609
H (S1,Y ) = 2.745
I (S1,Y ) = 0.636

Figure: Scorecards S1 and S2
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Graphical methods

We assume that the control variable Y can takes two values

Y = 0 corresponds to a bad risk (or bad signal)
Y = 1 corresponds to a good risk (or good signal)
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Graphical methods

We assume that the probability Pr {Y = 1 | S ≥ s} is increasing with
respect to the level s ∈ [0, 1], which corresponds to the rate of
acceptance.

We deduce that the decision rule is the following:

if the score of the observation is above the threshold s, the
observation is selected;
if the score of the observation is below the threshold s, the
observation is not selected.

If s is equal to one, we select no observation

If s is equal to zero, we select all the observations
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Performance curve

The performance curve is the parametric function y = P (x) defined
by:  x (s) = Pr {S ≥ s}

y (s) =
Pr {Y = 0 | S ≥ s}

Pr {Y = 0}

where x (s) corresponds to the proportion of selected observations
and y (s) corresponds to the ratio between the proportion of selected
bad risks and the proportion of bad risks in the population

The score is efficient if the ratio is below one

If y (s) > 1, the score selects more bad risks than those we can find in
the population

If y (s) = 1, the score is random and the performance is equal to zero.
In this case, the selected population is representative of the total
population
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Selection curve

The selection curve is the parametric curve y = S (x) defined by:{
x (s) = Pr {S ≥ s}
y (s) = Pr {S ≥ s | Y = 0}

where y (s) corresponds to the ratio of observations that are wrongly
selected

By construction, we would like that the curve y = S (x) is located
below the bisecting line y = x in order to verify that
Pr {S ≥ s | Y = 0} < Pr {S ≥ s}
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Performance and selection curves

We have:

Pr {S ≥ s | Y = 0} =
Pr {S ≥ s,Y = 0}

Pr {Y = 0}

= Pr {S ≥ s} · Pr {S ≥ s,Y = 0}
Pr {S ≥ s}Pr {Y = 0}

= Pr {S ≥ s} · Pr {Y = 0 | S ≥ s}
Pr {Y = 0}

The performance and selection curves are related as follows:

S (x) = xP (x)
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Discriminant curve

The discriminant curve is the parametric curve y = D (x) defined by:

D (x) = g1

(
g−1

0 (x)
)

where:
gy (s) = Pr {S ≥ s | Y = y}

It represents the proportion of good risks in the selected population
with respect to the proportion of bad risks in the selected population

The score is said to be discriminant if the curve y = D (x) is located
above the bisecting line y = x
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Some properties

1 the performance curve (respectively, the selection curve) is located
below the line y = 1 (respectively, the bisecting line y = x) if and
only if cov (f (Y ) , g (S)) ≥ 0 for any increasing functions f and g

2 the performance curve is increasing if and only if:

cov (f (Y ) , g (S) | S ≥ s) ≥ 0

for any increasing functions f and g , and any threshold level s

3 the selection curve is convex if and only if E [f (Y ) | S = s] is
increasing with respect to the threshold level s for any increasing
function f

4 We can show that (3)⇒ (2)⇒ (1)
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Some properties

A score is perfect or optimal if there is a threshold level s? such that
Pr {Y = 1 | S ≥ s?} = 1 and Pr {Y = 0 | S < s?} = 1

It separates the population between good and bad risks

Graphically, the selection curve of a perfect score is equal to:

y = 1 {x > Pr {Y = 1}} ·
(

1 +
x − 1

Pr {Y = 0}

)
Using the relationship S (x) = xP (x), we deduce that the
performance curve of a perfect score is given by:

y = 1 {x > Pr {Y = 1}} ·
(
x − Pr {Y = 1}
x · Pr {Y = 0}

)
For the discriminant curve, a perfect score satisfies D (x) = 1

When the score is random, we have S (x) = D (x) = x and P (x) = 1
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Figure: Performance, selection and discriminant curves
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Some properties

The score S1 is more performing on the population P1 than the score
S2 on the population P2 if and only if the performance (or selection)
curve of (S1,P1) is below the performance (or selection) curve of
(S2,P2)

The score S1 is more discriminatory on the population P1 than the
score S2 on the population P2 if and only if the discriminant curve of
(S1,P1) is above the discriminant curve of (S2,P2)

Thierry Roncalli Course 2023-2024 in Financial Risk Management 81 / 100



The method of scoring
Statistical methods

Performance evaluation criteria and score consistency

Shannon entropy
Graphical methods
Statistical measures

Some properties

Figure: The score S1 is better than the score S2
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Figure: Illustration of the partial ordering between two scores
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Kolmogorov-Smirnov test

We consider the cumulative distribution functions:

F0 (s) = Pr {S ≤ s | Y = 0}

and:
F1 (s) = Pr {S ≤ s | Y = 1}

The score S is relevant if we have the stochastic dominance order
F0 � F1

In this case, the score quality is measured by the Kolmogorov-Smirnov
statistic:

KS = max
s
|F0 (s)− F1 (s)|

It takes the value 1 if the score is perfect

The KS statistic may be used to verify that the score is not random
(H0 : KS = 0)
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Kolmogorov-Smirnov test

Figure: Comparison of the distributions F0 (s) and F1 (s)
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Gini coefficient
The Lorenz curve

Let X and Y be two random variables

The Lorenz curve y = L (x) is the parametric curve defined by:{
x = Pr {X ≤ x}
y = Pr {Y ≤ y | X ≤ x}

In economics, x represents the proportion of individuals that are
ranked by income while y represents the proportion of income

In this case, the Lorenz curve is a graphical representation of the
distribution of income and is used for illustrating inequality of the
wealth distribution between individuals
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Gini coefficient
The Lorenz curve

Figure: An example of Lorenz curve
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Gini coefficient
Definition

We define the Gini coefficient by:

Gini (L) =
A

A + B

where A is the area between the Lorenz curve and the curve of perfect
equality, and B is the area between the curve of perfect concentration
and the Lorenz curve

By construction, we have 0 ≤ Gini (L) ≤ 1

The Gini coefficient is equal to zero in the case of perfect equality and
one in the case of perfect concentration

We have:

Gini (L) = 1− 2

∫ 1

0

L (x) dx
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Gini coefficient
Application to credit scoring

We can interpret the selection curve as a Lorenz curve

We recall that F (s) = Pr {S ≤ s}, F0 (s) = Pr {S ≤ s | Y = 0} and
F1 (s) = Pr {S ≤ s | Y = 1}
The selection curve is defined by the following parametric coordinates:{

x (s) = 1− F (s)
y (s) = 1− F0 (s)

The selection curve measures the capacity of the score for not
selecting bad risks

We could also build the Lorenz curve that measures the capacity of
the score for selecting good risks:{

x (s) = Pr {S ≥ s} = 1− F (s)
y (s) = Pr {S ≥ s | Y = 1} = 1− F1 (s)

It is called the precision curve
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Application to credit scoring

Another popular graphical tool is the receiver operating characteristic
(or ROC curve), which is defined by:{

x (s) = Pr {S ≥ s | Y = 0} = 1− F0 (s)
y (s) = Pr {S ≥ s | Y = 1} = 1− F1 (s)

The Gini coefficient associated to the Lorenz curve L becomes:

Gini (L) = 2

∫ 1

0

L (x) dx − 1

The Gini coefficient of the score S is then computed as follows:

Gini? (S) =
Gini (L)

Gini (L?)

where L? is the Lorenz curve associated to the perfect score
An alternative to the Gini coefficient is the AUC measure, which
corresponds to the area under the ROC curve:

Gini (ROC) = 2×AUC (ROC)− 1
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Application to credit scoring

Figure: Selection, precision and ROC curves
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Confusion matrix

A confusion matrix is a special case of contingency matrix

Each row of the matrix represents the frequency in a predicted class
while each column represents the frequency in an actual class

Using the test set, it takes the following form:

Y = 0 Y = 1
S < s n0,0 n0,1

S ≥ s n1,0 n1,1

n0 = n0,0 + n1,0 n1 = n0,1 + n1,1

where ni,j represents the number of observations of the cell (i , j)
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Confusion matrix

We notice that each cell of this table can be interpreted as follows:

Y = 0 Y = 1
It is rejected It is rejected,

S < s and it is a bad risk but it is a good risk
(true negative) (false negative)
It is accepted, It is accepted

S ≥ s but it is a bad risk and it is a good risk
(false positive) (true positive)

(negative) (positive)

The cells (S < s,Y = 0) and (S ≥ s,Y = 1) correspond to
observations that are well-classified: true negative (TN) and true
positive (TP)

The cells (S ≥ s,Y = 0) and (S < s,Y = 1) correspond to two types
of errors:

1 a false positive (FP) can induce a future loss, because it may default:
this is a type I error

2 a false negative (FN) potentially corresponds to a loss of a future
P&L: this is a type II error
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Classification ratios

We have

True Positive Rate TPR =
TP

TP + FN

False Negative Rate FNR =
FN

FN + TP
= 1− TPR

True Negative Rate TNR =
TN

TN + FP

False Positive Rate FPR =
FP

FP + TN
= 1− TNR

The true positive rate (TPR) is also known as the sensitivity or the
recall

It measures the proportion of real good risks that are correctly
predicted good risk
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Choice of the optimal cut-off
Classification ratios

The precision or the positive predictive value (PPV) is

PPV =
TP

TP + FP

It measures the proportion of predicted good risks that are correctly
real good risk

The accuracy considers the classification of both negatives and
positives:

ACC =
TP + TN

P + N
=

TP + TN

TP + FN + TN + FP

The F1 score is the harmonic mean of precision and sensitivity:

F1 =
2

1/precision + 1/sensitivity
=

2 · PPV · TPR
PPV + TPR
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Choice of the optimal cut-off
Classification ratios

Table: Confusion matrix of three scoring systems and three cut-off values s

Score s = 100 s = 200 s = 500

S1
386 616 698 1 304 1 330 3 672

1 614 7 384 1 302 6 696 670 4 328

S2
372 632 700 1 304 1 386 3 616

1 628 7 368 1 300 6 696 614 4 384

S3
382 616 656 1 344 1 378 3 624

1 618 7 384 1 344 6 656 622 4 376

Perfect
1 000 0 2 000 0 2 000 3 000
1 000 8 000 0 8 000 0 5 000
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Choice of the optimal cut-off
Classification ratios

Table: Binary classification ratios (in %) of the three scoring systems

Score s TPR FNR TNR FPR PPV ACC F1

S1

100 92.3 7.7 19.3 80.7 82.1 77.7 86.9
200 83.7 16.3 34.9 65.1 83.7 73.9 83.7
500 54.1 45.9 66.5 33.5 86.6 56.6 66.6

S2

100 92.1 7.9 18.6 81.4 81.9 77.4 86.7
200 83.7 16.3 35.0 65.0 83.7 74.0 83.7
500 54.8 45.2 69.3 30.7 87.7 57.7 67.5

S3

100 92.3 7.7 19.1 80.9 82.0 77.7 86.9
200 83.2 16.8 32.8 67.2 83.2 73.1 83.2
500 54.7 45.3 68.9 31.1 87.6 57.5 67.3

Perfect
100 100.0 0.0 50.0 50.0 88.9 90.0 94.1
200 100.0 0.0 100.0 0.0 100.0 100.0 100.0
500 62.5 37.5 100.0 0.0 100.0 70.0 76.9
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Choice of the optimal cut-off
Classification ratios

Table: Best scoring system

Cut-off TPR FNR TNR FPR PPV ACC F1

100 S1/S3 S1/S3 S1 S1 S1 S1 S1

200 S1/S2 S1/S2 S2 S2 S2 S2 S2

500 S2 S2 S2 S2 S2 S2 S2

Thierry Roncalli Course 2023-2024 in Financial Risk Management 98 / 100



The method of scoring
Statistical methods

Performance evaluation criteria and score consistency

Exercises

Exercise 15.4.5 – Two-class separation maximization

Exercise 15.4.6 – Maximum likelihood estimation of the probit model
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