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General information

Thierry Roncalli
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Overview
The objective of this course is to understand the theoretical and
practical aspects of risk management

Prerequisites
M1 Finance or equivalent

ECTS

4

Keywords

Finance, Risk Management, Applied Mathematics, Statistics
Hours

Lectures: 36h, Training sessions: 15h, HomeWork: 30h
Evaluation

There will be a final three-hour exam, which is made up of questions
and exercises

Course website
http://www.thierry-roncalli.com/RiskManagement.html
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Objective of the course

The objective of the course is twofold:

@ knowing and understanding the financial regulation (banking and
others) and the international standards (especially the Basel Accords)

@ being proficient in risk measurement, including the mathematical
tools and risk models
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Class schedule

Course sessions Tutorial sessions

o September 15 (6 hours, AM+PM) @ October 20 (3 hours, AM)
@ September 22 (6 hours, AM+PM) @ October 20 (3 hours, PM)
@ September 19 (6 hours, AM+PM) @ November 10 (3 hours, AM)
@ October 6 (6 hours, AM+PM) @ November 10 (3 hours, PM)
o o
o

October 13 (6 hours, AM+PM) November 17 (3 hours, PM)
October 27 (6 hours, AM+PM)

4

Class times: Fridays 9:00am-12:00pm, 1:00pm—4:00pm, University of Evry, Room 209 IDF
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Lecture 1: Introduction to Financial Risk Management
Lecture 2: Market Risk
Lecture 3: Credit Risk
Lecture 4: Counterparty Credit Risk and Collateral Risk

Lecture 5: Operational Risk

Lecture 6: Liquidity Risk

Lecture 7: Asset Liability Management Risk
Lecture 8: Model Risk

Lecture 9: Copulas and Extreme Value Theory
Lecture 10: Monte Carlo Simulation Methods
Lecture 11: Stress Testing and Scenario Analysis
Lecture 12: Credit Scoring Models
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Tutorial Session 1:

Tutorial Session 2:
Tutorial Session 3:
Tutorial Session 4:
Risk

Tutorial Session b:

Market Risk

Credit Risk

Counterparty Credit Risk and Collateral Risk
Operational Risk & Asset Liability Management

Copulas, EVT & Stress Testing
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Textbook

@ Roncalli, T. (2020), Handbook of Financial Risk Management,
Chapman & Hall/CRC Financial Mathematics Series.

Thierry Roncalli

Handbook of
Financial Risk
Management

(hapman & Hall/CRC FINANCIAL MATHEMATICS SERIES
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Additional materials

@ Slides, tutorial exercises and past exams can be downloaded at the
following address:

http://www.thierry-roncalli.com/RiskManagement.html

@ Solutions of exercises can be found in the companion book, which can
be downloaded at the following address:

http://www.thierry-roncalli.com/RiskManagementBook.html
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Lecture 1: Introduction to Financial Risk Management
Lecture 2: Market Risk
Lecture 3: Credit Risk
Lecture 4: Counterparty Credit Risk and Collateral Risk

Lecture 5: Operational Risk

Lecture 6: Liquidity Risk

Lecture 7: Asset Liability Management Risk
Lecture 8: Model Risk

Lecture 9: Copulas and Extreme Value Theory
Lecture 10: Monte Carlo Simulation Methods
Lecture 11: Stress Testing and Scenario Analysis
Lecture 12: Credit Scoring Models

Course 2023-2024 in Financial Risk Management

9 / 100



Credit scoring

Thierry Roncalli

Credit scoring refers to statistical models to measure the
creditworthiness of a person or a company

Mortgage, credit card, personal loan, etc.
Credit scoring first emerged in the United States
The FICO score was introduced in 1989 by Fair Isaac Corporation
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The method of scoring The emergence of credit scoring
Variable selection
Score modeling, validation and follow-up

Judgmental credit systems versus credit scoring systems

@ In 1941, Durand presented a statistical analysis of credit valuation

@ He showed that credit analysts uses similar factors, and proposed a
credit rating formula based on nine factors: (1) age, (2) sex, (3)
stability of residence, (4) occupation, (5) industry, (6) stability of
employment, (7) bank account, (8) real estate and (9) life insurance

@ The score is additive and can take values between 0 and 3.46

@ From an industrial point of view, a credit scoring system has two
main advantages compared to a judgmental credit system:

Q it is cost efficient, and can treat a huge number of applicants;
@ decision-making process is rapid and consistent across customers.
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The method of scoring The emergence of credit scoring
Variable selection
Score modeling, validation and follow-up

Scoring models for corporate bankruptcy

Altman Z score model (1968)

@ The score was equal to:

Z=12-X1+14-X+33-X34+06-X;4+1.0-X5
@ The variables X; represent the following financial ratios:

X; | Ratio

X1 | Working capital / Total assets

X, | Retained earnings / Total assets

Xz | Earnings before interest and tax / Total assets
X4 | Market value of equity / Total liabilities

Xs | Sales / Total assets

@ If we note Z; the score of the firm i, we can calculate the normalized score:
Zi = (Zi —m;) /o,

where m, and o, are the mean and standard deviation of the observed scores

@ A low value of Z* (for instance Z* < 2.5) indicates that the firm has a high probability of
default
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The method of scoring The emergence of credit scoring
Variable selection
Score modeling, validation and follow-up

New developments

@ Default of corporate firms

@ Consumer credit and retail debt management (credit cards,
mortgages, etc.)

@ Statistical methods: discriminant analysis, logistic regression, survival
model, machine learning techniques
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The method of scoring The emergence of credit scoring
Variable selection
Score modeling, validation and follow-up

Choice of the risk factors

The five Cs:

©Q Capacity measures the applicant’s ability to meet the loan payments
(e.g., debt-to-income, job stability, cash flow dynamics)

@ Capital is the size of assets that are held by the borrower (e.g. net
wealth of the borrower)

© Character measures the willingness to repay the loan (e.g. payment
history of the applicant)

@ Collateral concerns additional forms of security that the borrower can
provide to the lender

© Conditions refer to the characteristics of the loan and the economic
conditions that might affect the borrower (e.g. maturity, interests

paid)
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The method of scoring The emergence of credit scoring
Variable selection
Score modeling, validation and follow-up

Choice of the risk factors

Table: An example of risk factors for consumer credit

Character Age of applicant
Marital status
Number of children
Educational background
Time with bank
Time at present address
Capacity  Annual income
Current living expenses
Current debts
Time with employer
Capital Purpose of the loan
Home status
Saving account
Condition  Maturity of the loan
Paid interests
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The method of scoring The emergence of credit scoring
Variable selection
Score modeling, validation and follow-up

Choice of the risk factors

@ Scores are developed by banks and financial institutions, but they can
also be developed by consultancy companies

@ This is the case of the FICO® scores, which are the most widely used
credit scoring systems in the world

@ Payment history (35%) Generally from 300 to 850 (average
@ Amount of debt (30%) score of US consumers is 695)
@ Length of credit history (15%) o Exceptional (800+)
© New credit (10%) e Very good (740-799)
@ Credit mix (10%) o Good (670-739)
‘ o Fair (580-669)
@ Poor (5680—)
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The method of scoring The emergence of credit scoring
Variable selection
Score modeling, validation and follow-up

Choice of the risk factors

Corporate credit scoring systems use financial ratios:
Q Profitability: gross profit margin, operating profit margin,
return-on-equity (ROE), etc.

Q Solvency: debt-to-assets ratio, debt-to-equity ratio, interest coverage
ratio, etc.

© Leverage: liabilities-to-assets ratio (financial leverage ratio),
long-term debt/assets, etc.

@ Liquidity: current assets/current liabilities (current ratio), quick
assets/current liabilities (quick or cash ratio), total net working
capital, assets with maturities of less than one year, etc.
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The method of scoring The emergence of credit scoring
Variable selection
Score modeling, validation and follow-up

Data preparation

@ Check the data and remove outliers or fill missing values
@ Variable transformation
@ Slicing-and-dicing segmentation

@ Potential interaction
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The method of scoring The emergence of credit scoring
Variable selection
Score modeling, validation and follow-up

Variable selection

@ Many candidate variables X = (X1, ..., X)) for explaining the
variable Y

@ The variable selection problem consists in finding the best set of
optimal variables

@ We assume the following statistical model:
Y=Ff(X)+u

where u ~ N (0, o)
o We denote the prediction by Y = f (X). We have:

s|(v-9)] = E|(reo+u-Fo)]

= (E [f(X)}—f(X))2+IE[(f(X)_E{f(X)Dj+02

— Bias? + Variance + Error
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The method of scoring The emergence of credit scoring
Variable selection
Score modeling, validation and follow-up

Variable selection

@ Best subset selection:

AIC (a) = —2£(4) (0) + -

@ Stepwise approach:

RSS (Ouy ) — RSS (D))

F = g (é(k+1)> /df(residual)

(k+1)

@ Lasso approach:

K K
yi = Z BixXik + Ui s.t. Z Bk <71
k=1 k=1
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The method of scoring The emergence of credit scoring
Variable selection
Score modeling, validation and follow-up

Score modeling, validation and follow-up

o Cross-validation approach (leave-p-out cross-validation or LpOCV,
leave-one-out cross-validation or LOOCV, Press statistic)

@ Score modeling

o S=1f (X;é) is the score

e Decision rule:
{ S<s=— Y =0—=— reject

S>s— Y =1— accept
@ Score follow-up

e Stability
o Rejected applicants (reject inference)
o Backtesting
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Unsupervised learning
Statistical methods Parametric supervised methods
Non-parametric supervised methods

Statistical methods

@ Unsupervised learning is a branch of statistical learning, where test
data does not include a response variable

@ It is opposed to supervised learning, whose goal is to predict the value
of the response variable Y given a set of explanatory variables X

@ In the case of unsupervised learning, we only know the X-values,
because the Y-values do not exist or are not observed

@ Supervised and unsupervised learning are also called ‘learning
with /without a teacher' (Hastie et al., 2009)
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Unsupervised learning
Statistical methods Parametric supervised methods
Non-parametric supervised methods

Clustering

@ K-means clustering

@ Hierarchical clustering
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Clustering
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Figure: An example of dendrogram
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Unsupervised learning
Statistical methods Parametric supervised methods
Non-parametric supervised methods

Dimension reduction

@ Principal component analysis

@ Non-negative matrix factorization
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Unsupervised learning
Statistical methods Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis

Figure: Classification statistical problem
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Unsupervised learning
Statistical methods Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis

The two-dimensional case

@ Using the Bayes theorem, we have:
Pr{ANB} =Pr{A|B}-Pr{B} =Pr{B | A} - Pr{A}

o |t follows that:

Pr{A}
Pr{B}

Pr{A|B} =Pr{B| A}

@ If we apply this result to the conditional probability
Pr{i € C; | X = x}, we obtain:

. PriieC
Pr{ieCi | X=x}=Pr{X=x]ie(}- Prri;(:ji
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Unsupervised learning
Statistical methods Parametric supervised methods

Non-parametric supervised methods

Discriminant analysis

The two-dimensional case

@ The log-probability ratio is then equal to:

n Pr{iceC | X=x} n Pr{iX=x]ieC} Pr{iel}
Pr{icC | X=x} Pr{X:X|i€C2} Pr{i e C,}
fi (x)

In +In

f2 (x)
where 7; = Pr{i € C;} is the probability of the jth class and
fi(x) = Pr{X = x| i &€ C;} is the conditional pdf of X
@ By construction, the decision boundary is defined such that we are
indifferent to an assignment rule (i € C; and i € C,), implying that:

1
Pr{iECl|X:X}:Pr{i€C2|X:X}:§

@ Finally, we deduce that the decision boundary satisfies the following
equation:

fi (%)
fa (x)

1

In +|n :O
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Unsupervised learning
Statistical methods Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis
Quadratic discriminant analysis (QDA)

@ If we model each class density as a multivariate normal distribution:
X |iel~N(ux))
we have:

1 1 Tetg
ﬁ(x)(2W)K/2|zjl”2exp(_2()(_’”) =i “J))

@ We deduce that:

| | T . - - - - -
n—— f2 (X) n ‘Zl‘ 5 (X ,ul) Zl (X ,ul)—|—2 (X ,LLQ) 22 (X ,ug)

@ The decision boundary is then given by:

> 1 _ T
S22 ) TR (e ) O )55 (- ) in T = 0
|Zl| U]
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Unsupervised learning
Statistical methods Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis

Linear discriminant analysis (LDA)

@ If we assume that 2; = >, = ¥, we obtain:

1
(x — )" =7 (x — ) +In 22 =0

T (x — )N _ _ =
> (x — p2) (x — p2) > o

@ We deduce that:

_ 1 _ _ T
(42 = 1) Ex = (g T 2 — pf T71 ) + I W—i

@ The decision boundary is then linear in x (and not quadratic)
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Unsupervised learning
Statistical methods Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis

Example #1

We consider two classes and two explanatory variables X = (X1, X5) where
m1 = 50%, m =1 —m =50%, p1 = (1,3), 2 = (4,1), X1 =k and
22 = ")//2 where o= 1.5.
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Unsupervised learning
Statistical methods Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis
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Figure: Boundary decision of discriminant analysis
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Unsupervised learning
Statistical methods Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis

Figure: Impact of the parameters on LDA/QDA boundary decisions
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Unsupervised learning
Statistical methods Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis

The general case

@ We can generalize the previous analysis to J classes

@ The Bayes formula gives:

Pr{i c CJ}
Pr{X = x}

Pr{ieC | X=x} = Pr{X=x|ie(}-

c-fi(x) m;

where ¢ = 1/ Pr{X = x} is a normalization constant that does not
depend on §

o We note 5j(x) =InPr{i € C; | X = x} the discriminant score
function for the j class

o We have:
Si(x)=Inc+Inf(x)+InT7;
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Unsupervised learning
Statistical methods Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis

The general case

o If we again assume that X | i € C; ~ N (uj, X;), the QDA score

function is:
/ 1 1 T -1
Si(x) = Inc —|—In7rj—§|n|Zj|—§(x—,uj) 2 (x — )
1 1 T
x Inwj—iln\2j|—§(x—,uj) Zjl(x—,uj)
K
where Inc’ =Inc — Eln27r

@ Given an input x, we calculate the scores S; (x) for j =1,...,J and
we choose the label j* with the highest score value
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Unsupervised learning
Statistical methods Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis

The general case

o If we assume an homoscedastic model (X; = X), the LDA score
function becomes:

1

T ——
Si(x) = Inc”+|n7rj—§(x—,uj) Zjl(x—,uj)
_ 1 _
X |n7rj—|—,u-TZ 1X—§,LLJTZ 1,uj
1 / 1 1 Ty —1
where Inc” =Inc —iln\Z|—§x Y X

In practice, the parameters 7;, 11; and X ; are unknown. We replace them
by the corresponding estimates 7, ji; and X2 ;. For the linear discriminant
analysis, 2 is estimated by pooling all the classes.
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Unsupervised learning
Statistical methods Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis

The general case

Example #2

We consider the classification problem of 33 observations with two

explanatory variables X; and X5, and three classes Cy, C> and Cj:
P C X X i G X X, i G X X,
I 1 103 28512 2 370 508123 3 355 0.58
2 1 020 330,13 2 28 199,24 3 38  1.83
3 1 169 373'14 2 366 261'25 3 539 047
4 1 098 352,15 2 563 419,26 3 315 —0.18
5 1 098 515'16 2 335 364127 3 493 1091
6 1 347 656,17 2 297 355,28 3 387 261
7 1 394 468'18 2 316 292129 3 409  1.43
8 1 155 599,19 3 300 098,30 3 380 211
9 1 115 360'20 3 3.09 199131 3 279 210
10 2 120 227,21 3 545 060,32 3 449 271
11 2 366 549'22 3 359 —046'33 3 351 182
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Unsupervised learning
Statistical methods Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis

The general case

Table: Parameter estimation of the discriminant analysis

Class Cl | CQ | C3
7 0273 1+ 0273 0.455 J
_fy_ | 1666 4376 3349 3.527 | 3904 1367
& 1.6256 0.929 , 1.326 0.752 , 0.694 —0.031
/10929 1.663 ' 0.752 1.484 ' —0.031  0.960

For the LDA method, we have:

o _ ( 191355 —0.71720
—\ —0.71720  3.01577
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Unsupervised learning
Statistical methods Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis

The general case

Table: Computation of the discriminant scores S; (x)

. QDA ; LDA ; LDAZ

Si(x)  S(x) S(x) ! Si(x) S(x) S(X)!'Si(x) S(x) S(x)
1| —228 —369 —7.49, 021 -096 -0.79, 693 560 5.76
2| —228 —636 -1210' -026 -2.17 -234' 138 -213 —1.89
3| —-176 -313 —679, 284 216 171, 1213 12.01 11.38
4| -180 —443 -888! 135 009 —022' 773 620 593
5| —236 -775 —1370, 432 293 145, 812 554 476
6| —316 —563 -1468 ' 10.75 11.36 895 | 14.82 13.99 12.96
7| —379 -192 -632, 806 922 815, 17.36 19.03 17.89
8| —285 —843 -15231 673 576 3.70 1 1047 809  7.15
9| -174 —412 837, 176 064 027, 894 777 7.39
10| -314 -321 —6171 -058 -156 —0981 659 555 6.15
11| —287 —301 —945, 910 9.96 831 16.80 17.65 16.42
12| —3.04 -238 —7.771 842 934 7981 1728 1850 17.28
13| —632 —220 162! 141 182 264 | 1248 13.94 1446
14| —691 —207 —1421 386 494 5341 1515 17.41 17.34
15| —979 362 712! 979 1243 11.75| 1258 14.01 13.50
16 | —3.90 —147 —344: 525 5900 565 16.84 18.82 18.03
17| -331 -155 361! 450 492 463! 1625 17.95 17.21
18| —48t 160 -2190 3.65 428 445, 1551 17.48 17.14
19 | 1021 -412 127! -013 052 206 898 9.99 1170
20| —-705 —241 —124, 185 250 332, 1299 1472 1522
21| -2311 -1116 -256 ' 298 575 761! 379 457 726
22| -1922 -953 -—242,-184 -—057 201, 1.81 153 551
23| -1386 -592 -101'-001 115 298 7.65 867 1095
24 | 1001 —343 —070, 275 407 502, 12.84 1495 1565
25 | —2348 1144 254! 265 538 733! 340 409 695
26 | —1587 —759 —230, —201 -1.14 123, 319 3.02 650
27 | ~1409 540 -152' 456 678 770 | 1117 1324 14.08
28| —755 —227 —139, 418 545 585, 1510 17.44 17.40
29 | —1240 467 —0.61' 238 392 517! 1121 1314 1433
30| -885 —287 —088, 317 441 517, 13.77 1597 16.37
31| 597 —217 172 158 197 270! 1278 1426 14.67
32| -940 —297 -—181, 533 711 746, 1455 16.95 16.93
33| -884 301 080! 219 321 416 12.82 1477 15.45
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Unsupervised learning
Statistical methods Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis

The general case

Observation QDA prediction
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Figure: Comparing QDA, LDA and LDA? predictions
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Discriminant analysis

The general case
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Figure: QDA, LDA and LDA? decision regions
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Unsupervised learning
Statistical methods Parametric supervised methods

Non-parametric supervised methods

Discriminant analysis

Class separation maximization

o We note x; = (xj1,-..,Xi k) the K x 1 vector of exogenous variables
X for the i*" observation

@ The mean vector and the variance (or scatter) matrix of Class C; is
N . 1 .
equal to fij = ;- > jcc, Xi and
N A A T .
S;=n%; = Ziecj (xi — iij) (xi — fij) where n; is the number of
observations in the j*™ class

@ If consider the total population, we also have [i = %27:1 x; and
= N N —l_
S=nr=3%",(x—7)(—4)
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Unsupervised learning
Statistical methods Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis

Class separation maximization

@ We notice that:

1
ﬁ:;Z”jﬁj

Jj=1
@ We define the between-class variance matrix as:
J

Se=>_ni(fy—f)(p—p)

Jj=1

and the within-class variance matrix as:

J
Sw=)_§;
j=1

@ We can show that the total variance matrix can be decomposed into
the sum of the within-class and between-class variance matrices:

S=Sw +Ss
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Unsupervised learning
Statistical methods Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis

Class separation maximization

@ The discriminant analysis consists in finding the discriminant linear
combination 5 X that has the maximum between-class variance
relative to the within-class variance:

B* = argmax J (6)
where J(3) is the Fisher criterion:
_ B'Sgp
B'Swp

@ Since the objective function is invariant if we rescale the vector 3 —
J(B') = J(B) if B/ = cB, we can impose that 3"Sy/ 3 = 1. It follows
that:

J(B)

B = argmaxB'Sgs
st. B'SwB=1
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Unsupervised learning
Statistical methods Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis

Class separation maximization

@ The Lagrange function is:

L(B;N)=BTSeB—A(BTSwB—1)
@ We deduce that the first-order condition is equal to:

OL(B;N)
0BT

— 2858 —2ASyw3 =10

@ It is remarkable that we obtain a generalized eigenvalue Sg3 = ASw [
or equivalently:

Sﬁ/lsgﬁ = \j
@ Even if Sy and S are two symmetric matrices, it is not necessarily
the case for the product s;vlsB
o Using the eigendecomposition Sg = VAV ", we have
52/2 — VA2
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Unsupervised learning
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Discriminant analysis

Class separation maximization

@ With the parametrization o = Sé/zﬁ, the first-order condition
becomes:

S/°S: 18?0 = \a
because 5 = Sgl/za
@ We have a right regular eigenvalue problem
o Let \¢ and vk be the k™" eigenvalue and eigenvector of the symmetric
matrix SE/ZS;VISE/2
@ It is obvious that the optimal solution a* is the first eigenvector v;
corresponding to the largest eigenvalue \;

@ We conclude that the estimator is BA = Sgl/2v1 and the discriminant
linear relationship is Y¢ = vlTS;pX
@ Moreover, we have:

A 3T 3
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Discriminant analysis

Class separation maximization

Example #3

We consider a problem with two classes C; and C5, and two explanatory
variables (X1, X2). Class C; is composed of 7 observations: (1,2), (1,4),
(3,6), (3,3), (4,2), (5,6), (5,5), whereas class C; is composed of 6
observations: (1,0), (2,1), (4,1), (3,2), (6,4) and (6, 5).
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Discriminant analysis

Class separation maximization

14

Figure: Linear projection and the Fisher solution
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Discriminant analysis

Class separation maximization

Concerning the assignment decision, we can consider the midpoint rule:

S;<ﬁ:>i661
S;>/1:>I'€CQ

where [i = (fi1 + fi2) /2, in = B 1 and fio = 8" fi

This rule is not optimal because it does not depend
on the variance 57 and 55 of each class
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Discriminant analysis

Class separation maximization

0.6

— Class Cy
===: Class C,

-0.11

Figure: Class separation and the cut-off criterion
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Binary choice models

General framework

@ We assume that Y can take two values 0 and 1

@ We consider models that link the outcome to a set of factors X:
Pr{Y=1|X=x}=F(x'pB)

@ F must be a cumulative distribution function in order to ensure that
F(z) €]0,1]

@ We also assume that the model is symmetric, implying that
F(z)+F(—z)=1

o Given a sample {(x;,y;),i =1,...,n}, the log-likelihood function is
equal to:

£(0) =) InPr{Y;=y;}
i=1
where y; takes the values 0 or 1
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Binary choice models

General framework

@ We have:
PriYi=y}=p/-(1—p)
where p; = Pr{Y;=1| X; = x;}
@ We deduce that:

£(0) = > yilnpi+(1—y)In(l-p)

=1

= > yilF (5" 8) +(1—y)In(1—F (' B))

=1

@ We notice that the vector 6 includes only the parameters 3
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Binary choice models

General framework

@ By noting f (z) the probability density function, it follows that the
associated score vector of the log-likelihood function is:

s = 2EV)

.MB Q
N
>
p
=
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Binary choice models

General framework

@ The Hessian matrix is:

0% L -
=1

where:

f(XiTﬁ)2 _ T
ForB)F (s R

( (7 5) _f<xm>2<1—2F<x7ﬁ>>>
FOTBF(xTB)  F(x78)°F (—x 8)

H;
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Binary choice models

General framework

o Once [ is estimated by the method of maximum likelihood, we can
calculated the predicted probability for the i*" observation:

A TA
pi=F (Xi 5)
@ Like a linear regression model, we can define the residual as the
difference between the observation y; and the predicted value p;
@ We can also exploit the property that the conditional distribution of
Y; is a Bernoulli distribution B (p;)
@ It is better to use the standardized (or Pearson) residuals:
N Yi— i

u, = — —
\/pi (1 — Pi

@ These residuals are related to the Pearson’s chi—squared statistic:

n
e =302 =3 P
i=1 :
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Binary choice models

General framework

@ This statistic may used to measure the goodness-of-fit of the model

@ Under the assumption Hg that there is no lack-of-fit, we have

Xbonrson ™ x%_K where K is the number of exogenous variables

@ Another goodness-of-fit statistic is the likelihood ratio. For the
‘saturated’ model, the estimated probability p; is exactly equal to y;

@ We deduce that the likelihood ratio is equal to:

. Yi 1—vy;
—2|n/\:2E y,-In(T)—i—(l—)/i)ln( A)
— pi 1 —pi
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Binary choice models

General framework

@ In binomial choice models, D = —2In A is also called the deviance
and we have D ~ x2_

@ In a perfect fit p; = y;, the likelihood ratio is exactly equal to zero
@ The forecasting procedure consists of estimating the probability
p=F (XTB> for a given set of variables x and to use the following

decision criterion:

1
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Binary choice models

Logistic regression

@ The logit model uses the following cumulative distribution function:

1 4
F(z)= = —
l1+e ez +1

@ The probability density function is then equal to:

e Z
f p—
(2) (1+ e_z)z
@ The log-likelihood function is equal to:
£B) = Y (L—y)In(1-F(x'8)) +yinF(x 5)
i=1
n e—x,-Tﬁ XT3
— ;(1—y;)|n g — yiln <1+e ' )

() a9
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Binary choice models

Logistic regression

@ We also have:
n

S(B)=_ (vi—F (¢ 8))x

=1

and:

H(B) = =2 f (' 8) - (ax')
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Binary choice models

Probit analysis

Thierry Roncalli

@ The probit model assumes that F (z) is the Gaussian distribution

@ The log-likelihood function is then:

n

£(B)=) (L—y)In(1-d(x'B)) +yiIn® (x5)

=1

The probit model can be seen as a latent variable model

Let us consider the linear model Y* = 3" X + U where U ~ N/ (O, 02)
We assume that we do not observe Y* but Y = g (Y™)
For example, if g(z) =1 {z > 0}, we obtain:

. 5 x
Pr{Y=1|X=x}=Pr{p X+U>O|X:X}:¢(—)

o

@ We notice that only the ratio 5/o is identifiable

@ Since we can set ¢ = 1, we obtain the probit model
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Binary choice models

Regularization

@ The regularized log-likelihood function is equal to:
A oiip
£(0;7) = £(0) — ; 161,

@ The case p =1 is equivalent to consider a lasso penalization

@ The case p = 2 corresponds to the ridge regularization
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Binary choice models

Extension to multinomial logistic regression

@ We assume that Y can take J labels (£4,...,£,) or belongs to J
disjoint classes (Cy,...,Cy)
@ We define the conditional probability as follows:

oB;
1_|_ZJ 1 ﬁT

pi(x) =Pr{Y =&, | X=x}=Pr{Y el | X =x} =

@ The probability of the last label is then equal to:

1
1_1_2./1 BT

J—1
pi(x)=1-) p(x)=
j=1
@ The log-likelihood function becomes:
n J
e0)=> In|J]p ()
i=1 j=1

where 6 is the vector of parameters (51,...,58,-1)
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Non-parametric supervised methods

@ k-nearest neighbor classifier (k-NN)
@ Neural networks (NN)

@ Support vector machines (SVM)

o

Model averaging (bagging or bootstrap aggregation, random forests,
boosting)
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Definition and properties

Thierry Roncalli

The entropy is a measure of unpredictability or uncertainty of a
random variable

Let (X, Y) be a random vector where p; ; = Pr{X = x;, Y = y;},
pi =Pr{X =x;} and pj = Pr{Y = y;}

The Shannon entropy of the discrete random variable X is given by:

H(X)=—) _ pilnp;

We have the property 0 < H(X) < Inn.

The Shannon entropy is a measure of the average information of the
system

The lower the Shannon entropy, the more informative the system
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Definition and properties

@ For a random vector (X, Y), we have:

H(X,Y) Z 12 pijInp;

@ We deduce that the conditional information of Y given X is equal to:
H(Y | X) = Ex[H(Y|X=x)]

n " Pi.j
= — Zi:l ijl Pi.j In piJ

= H(X,Y)-H(X)
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Definition and properties

We have the following properties:

o if X and Y are independent, we have H(Y | X) = H(Y') and
H(X,Y)=H(Y)+ H(X):

o if X and Y are perfectly dependent, we have H(Y | X) = 0 and
H(X,Y)=H(X).

The amount of information obtained about one random variable, through
the other random variable is measured by the mutual information:

[(X,Y) = H(Y)+H(X)=H(X,Y)
i=le—j=1""" pipj
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Definition and properties

1/36| 1/36| 1/36| 1/36| 1/36| 1/36 1/6

1/36| 1/36| 1/36| 1/36| 1/36| 1/36 1/

1/36| 1/36| 1/36| 1/36| 1/36| 1/36 /6

1/36| 1/36| 1/36| 1/36| 1/36| 1/36 1/

1/36| 1/36| 1/36| 1/36| 1/36| 1/36 /6

1/36| 1/36| 1/36| 1/36| 1/36| 1/36 1/

H(X)=H(Y)=1.792 H(X) =
H(X,Y)=3.584 H (X,
I1(X,Y)=0 /

Figure: Examples of Shannon entropy calculation
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Definition and properties

1/24| 1/24 1/12
1/24| /24| 1/24| 1/ag 1/g 1/8
1/24| /6 | 1/24| 1/a8 1/24

1/48| 1/24| 1/6 | 1/24 5/24 1/24
1/ag| /24| 1/24| 1/24 3/24 1/24
1/24| 1/24 3/24| 1/24| 1/24
H(X)=H(Y)=1.683 H(X) = 1.658
H(X,Y)=2T774 H(Y)=1.328
[(X,Y)=0.593 [(X,Y)=0.750

Figure: Examples of Shannon entropy calculation

Thierry Roncalli Course 2023-2024 in Financial Risk Management 68 / 100



Shannon entropy
Graphical methods

Performance evaluation criteria and score consistency Statistical measures

Application to scoring

@ Let S and Y be the score and the control variable
@ For instance, Y is a binary random variable that may indicate a bad
credit (Y = 0) or a good credit (Y = 1)

@ We consider the following decision rule:

5<0=5"=0
5>0=5"=1
Course 2023-2024 in Financial Risk Management 69 / 100
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Application to scoring

@ We note n;; the number of observations such that $* =/ and Y = .
We obtain the following system (S*,Y):

Y=0 Y=1
5*=0 no,o no,1
S5*=1| nmyp ni1

where n = ng o + ng1 + n1,0 + n1,1 is the total number of observations
@ The hit rate is the ratio of good bets:

Noo + N1.1
n

H —

@ This statistic can be viewed as an information measure of the system

(5,Y)

@ When there are more states, we can consider the Shannon entropy
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Application to scoring

yi Y2 Yz Ya Y5 Yy Y2 Yz Ya Y5
51 10 0 51 4 10
CY) 7 9 52 10 8
53 3 / 2 53 5 4 3
Sa4 2 |10 4 | 5 S4 3 10| 6 | 4
St 10 | 2 St 2 51| 8
S6 314 |13 Se6 51515
H(S1) = 1.767 H(S1) = 1.771
H(Y) = 1.609 H(Y) = 1.609
H(S.,Y) =2.614 H(Si,Y) = 2.745
I(51,Y)=0.763 I(51,Y)=0.636

Figure: Scorecards S; and S,
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Graphical methods

@ We assume that the control variable Y can takes two values

o Y = 0 corresponds to a bad risk (or bad signal)
o Y =1 corresponds to a good risk (or good signal)
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Graphical methods

@ We assume that the probability Pr{Y = 1| S > s} is increasing with
respect to the level s € [0, 1], which corresponds to the rate of
acceptance.

@ We deduce that the decision rule is the following:

o if the score of the observation is above the threshold s, the
observation is selected;

o if the score of the observation is below the threshold s, the
observation is not selected.

@ If s is equal to one, we select no observation

o If s is equal to zero, we select all the observations
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Performance curve

@ The performance curve is the parametric function y = P (x) defined
by:
x(s)=Pr{S > s}
Pr{Y =0|S5 > s}
Pr{Y =0}
where x (s) corresponds to the proportion of selected observations

and y (s) corresponds to the ratio between the proportion of selected
bad risks and the proportion of bad risks in the population

y(s)=

@ [he score is efficient if the ratio is below one

o If y(s) > 1, the score selects more bad risks than those we can find in
the population

o If y(s) =1, the score is random and the performance is equal to zero.
In this case, the selected population is representative of the total
population
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Selection curve

@ The selection curve is the parametric curve y = & (x) defined by:

{ x(s) =Pr{S > s}
y(s)=Pr{S>s|Y =0}

where y (s) corresponds to the ratio of observations that are wrongly
selected

@ By construction, we would like that the curve y = S (x) is located

below the bisecting line y = x in order to verify that
Pr{S>s|Y =0} <Pr{S§>s}
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Performance and selection curves

@ We have:

Pr{S >sY =0}
Pr{Y =0}

Pr{S>s| Y =0}

Pr{S >s,Y =0}
Pr{S > s} Pr{Y =0}
Pr{Y =0|5>s}

Pr{Y =0}

= Pr{S>s}-

= Pr{S§S>s}-

@ The performance and selection curves are related as follows:
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Discriminant curve

@ The discriminant curve is the parametric curve y = D (x) defined by:

D(x) =g (g ' ()
where:
g (s)=Pr{S>s|Y =y}

@ It represents the proportion of good risks in the selected population
with respect to the proportion of bad risks in the selected population

@ The score is said to be discriminant if the curve y = D (x) is located
above the bisecting line y = x
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Some properties

Q the performance curve (respectively, the selection curve) is located
below the line y = 1 (respectively, the bisecting line y = x) if and
only if cov (f(Y),g(S)) > 0 for any increasing functions f and g

@ the performance curve is increasing if and only if:
cov(f(Y),g(5)[S5=5)=0

for any increasing functions f and g, and any threshold level s

© the selection curve is convex if and only if E[f (Y) | S = 5] is
increasing with respect to the threshold level s for any increasing
function f

@ We can show that (3) = (2) = (1)
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Some properties

Thierry Roncalli

(%)

o

A score is perfect or optimal if there is a threshold level s* such that
Pr{Y=1|5>s*}=1and Pr{Y=0|S<s*}=1

It separates the population between good and bad risks

Graphically, the selection curve of a perfect score is equal to:

y=1{x>Pr{Y =1}}- <1+ Pr?\/_:1 0})

Using the relationship S (x) = xP (x), we deduce that the
performance curve of a perfect score is given by:

y=1{x>Pr{Y =1}}- ();_Ifrr{{\r:ol}})

For the discriminant curve, a perfect score satisfies D (x) =1
When the score is random, we have S (x) =D (x) = x and P(x) =1
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Some properties

Performance curve Selection curve

= Score S
===- Optimal score
== Random score

Figure: Performance, selection and discriminant curves
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Some properties

@ The score S; is more performing on the population P; than the score
S, on the population P, if and only if the performance (or selection)
curve of (51, P1) is below the performance (or selection) curve of

(52, P2)

@ The score S; is more discriminatory on the population P; than the
score S, on the population P, if and only if the discriminant curve of
(51, Py) is above the discriminant curve of (S;, Ps)
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Some properties

Performance curve Selection curve

— Score Sy
===+ Score Sy

X

Figure: The score S is better than the score S;
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Some properties

y = S(x)

X

Figure: lllustration of the partial ordering between two scores
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Kolmogorov-Smirnov test

@ We consider the cumulative distribution functions:
Fo(s) =Pr{S§<s|Y =0}

and:
Fi(s)=Pr{S§<s|Y =1}

@ The score S is relevant if we have the stochastic dominance order
Fo — F1

@ In this case, the score quality is measured by the Kolmogorov-Smirnov
statistic:

KS = max |Fg (s) — F1 (s)|
It takes the value 1 if the score is perfect

@ The KS statistic may be used to verify that the score is not random
(7‘[0 - KS = O)
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Kolmogorov-Smirnov test

Performance curve Selection curve

Figure: Comparison of the distributions Fg (s) and F; (s)

Thierry Roncalli Course 2023-2024 in Financial Risk Management 85 / 100



Shannon entropy
Graphical methods
Performance evaluation criteria and score consistency Statistical measures

Gini coefficient

The Lorenz curve

@ Let X and Y be two random variables

@ The Lorenz curve y = L (x) is the parametric curve defined by:

x =Pr{X < x}
y=Pr{Y <y|X<x)

@ In economics, x represents the proportion of individuals that are
ranked by income while y represents the proportion of income

@ In this case, the Lorenz curve is a graphical representation of the
distribution of income and is used for illustrating inequality of the
wealth distribution between individuals
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Gini coefficient

The Lorenz curve
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Figure: An example of Lorenz curve
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Gini coefficient

Definition

@ We define the Gini coefficient by:

A

where A is the area between the Lorenz curve and the curve of perfect
equality, and B is the area between the curve of perfect concentration
and the Lorenz curve

@ By construction, we have 0 < Gini (L) <1

@ The Gini coefficient is equal to zero in the case of perfect equality and
one in the case of perfect concentration

@ We have:

Gini (L) = 1—2/O L (x) dx
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Gini coefficient

Application to credit scoring

@ We can interpret the selection curve as a Lorenz curve

o We recall that F(s) =Pr{S <s}, Fo(s) =Pr{S <s| Y =0} and
Fi(s)=Pr{S<s|Y =1}

@ The selection curve is defined by the following parametric coordinates:

{ x(s)=1-F(s)
y(s)=1—Fq(s)

@ The selection curve measures the capacity of the score for not
selecting bad risks

@ We could also build the Lorenz curve that measures the capacity of
the score for selecting good risks:

{x(s):Pr{SZS}zl—F(s)
y(s)=Pr{S§>s|Y=1}=1—-F;(s)

It is called the precision curve

Thierry Roncalli Course 2023-2024 in Financial Risk Management 89 / 100



Shannon entropy
Graphical methods
Performance evaluation criteria and score consistency Statistical measures

Gini coefficient

Application to credit scoring

@ Another popular graphical tool is the receiver operating characteristic
(or ROC curve), which is defined by:

{x(s):Pr{SZS\Y:O}:l—FO(s)
y(s)=Pr{S§>s|Y =1} =1—-F;(s)

@ T he Gini coefficient associated to the Lorenz curve £ becomes:
1
Gini (L) = 2/ L(x)dx—1
0

@ The Gini coefficient of the score S is then computed as follows:
~ Gini (L)

Gini (L*)
where L£* is the Lorenz curve associated to the perfect score

@ An alternative to the Gini coefficient is the AUC measure, which
corresponds to the area under the ROC curve:

Gini (ROC) = 2 x AUC (ROC) — 1

Gini* (S)
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Gini coefficient

Application to credit scoring

Selection curve Precision curve
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Figure: Selection, precision and ROC curves
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Choice of the optimal cut-off

Confusion matrix

@ A confusion matrix is a special case of contingency matrix

@ Each row of the matrix represents the frequency in a predicted class
while each column represents the frequency in an actual class

@ Using the test set, it takes the following form:

Y =0 Y =1
S<s No.o no.1
S>s ni.o n 1
Nng = Ngo+nNio N1 =nNo1-+ N1

where n; ; represents the number of observations of the cell (i, )
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Choice of the optimal cut-off

Confusion matrix

@ We notice that each cell of this table can be interpreted as follows:

Y=0 Y=1

It is rejected It is rejected,
S <s | anditisabadrisk butitisa good risk

(true negative) (false negative)

It is accepted, It is accepted
S>s | butitisabadrisk anditisa good risk

(false positive) (true positive)

(negative) (positive)

@ Thecells (S<s,Y=0)and (S >s,Y = 1) correspond to
observations that are well-classified: true negative (TN) and true
positive (TP)

@ Thecells (§>s,Y=0)and (S <s,Y =1) correspond to two types
of errors:

O a false positive (FP) can induce a future loss, because it may default:
this is a type | error

©Q a false negative (FN) potentially corresponds to a loss of a future
P&L: this is a type Il error
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@ We have
TP
T Positive Rat TPR =
rue Positive Rate R TPFJ&FN
False Negative Rate FNR = FNfLNTP =1—-TPR
T Negative Rat TNR =
rue Negative Rate TNF15 P
False Positive Rat FPR = =1—TN
alse Positive Rate R TP+ TN R

@ The true positive rate (TPR) is also known as the sensitivity or the
recall

@ It measures the proportion of real good risks that are correctly
predicted good risk
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@ The precision or the positive predictive value (PPV) is

TP

PPV =
v TP + FP

It measures the proportion of predicted good risks that are correctly
real good risk

@ The accuracy considers the classification of both negatives and
positives:

TP + TN TP + TN

ACC = =
P+ N TP +FN + TN + FP

@ The F; score is the harmonic mean of precision and sensitivity:

B 2 ~ 2.PPV.TPR
~ 1/precision + 1/sensitivity ~ PPV + TPR

F1
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Table: Confusion matrix of three scoring systems and three cut-off values s

Score s = 100 s =200 s = 500

s, 386 616 698 1304 | 1330 3672
1614 7384 | 1302 6696 670 4328

S, 372 632 700 1304 | 1386 3616
1628 7368 | 1300 6696 614 4384

> 382 616 656 1344 | 1378 3624
1618 7384 | 1344 6656 622 4376

Perfect 1000 0 | 2000 0| 2000 3000
1000 8000 0 8000 0 5000
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Table: Binary classification ratios (in %) of the three scoring systems

Score s TPR FNR TNR FPR PPV ACC Fyq
100 | 92.3 7.7 19.3 80.7 821 77.7 86.9
51 200 | 83.7 16.3 349 651 837 739 837
500 | 54.1 459 665 335 86.6 56.6 66.6
100 | 92.1 7.9 186 814 819 774 86.7
S 200 | 83.7 16.3 35.0 650 837 740 837
500 54.8 45.2 69.3 30.7 87.7 57.7 67.5
100 | 92.3 7.7 19.1 809 820 77.7 86.9
S3 200 | 83.2 16.8 328 672 832 731 832
500 | 54.7 453 689 31.1 876 575 673
100 | 100.0 0.0 50.0 500 839 90.0 941
Perfect 200 | 100.0 0.0 100.0 0.0 100.0 100.0 100.0
500 | 62.5 37.5 100.0 0.0 100.0 70.0 76.9
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Table: Best scoring system

Cutoff | TPR FNR TNR FPR PPV _ACC T,
100 | Si/S5 /S5 S1 S S S S
200 | S$1/S S/ S 0SS S S
500 S, S S S S S S
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Exercises

@ Exercise 15.4.5 — Two-class separation maximization

@ Exercise 15.4.6 — Maximum likelihood estimation of the probit model
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