# Course 2023-2024 in Financial Risk Management Lecture 10. Monte Carlo Simulation Methods

### Thierry Roncalli\*

\*Amundi Asset Management<sup>1</sup>

\*University of Paris-Saclay

September 2023

<sup>1</sup>The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

## General information

### Overview

The objective of this course is to understand the theoretical and practical aspects of risk management

### Prerequisites

M1 Finance or equivalent

ECTS

4

### Keywords

Finance, Risk Management, Applied Mathematics, Statistics

### 6 Hours

Lectures: 36h, Training sessions: 15h, HomeWork: 30h

### Evaluation

There will be a final three-hour exam, which is made up of questions and exercises

### Course website

http://www.thierry-roncalli.com/RiskManagement.html

### Objective of the course

The objective of the course is twofold:

- In the international standards (especially the Basel Accords)
- eing proficient in risk measurement, including the mathematical tools and risk models

### Class schedule

#### Course sessions

- September 15 (6 hours, AM+PM)
- September 22 (6 hours, AM+PM)
- September 19 (6 hours, AM+PM)
- October 6 (6 hours, AM+PM)
- October 13 (6 hours, AM+PM)
- October 27 (6 hours, AM+PM)

#### Tutorial sessions

- October 20 (3 hours, AM)
- October 20 (3 hours, PM)
- November 10 (3 hours, AM)
- November 10 (3 hours, PM)
- November 17 (3 hours, PM)

Class times: Fridays 9:00am-12:00pm, 1:00pm-4:00pm, University of Evry, Room 209 IDF

# Agenda

- Lecture 1: Introduction to Financial Risk Management
- Lecture 2: Market Risk
- Lecture 3: Credit Risk
- Lecture 4: Counterparty Credit Risk and Collateral Risk
- Lecture 5: Operational Risk
- Lecture 6: Liquidity Risk
- Lecture 7: Asset Liability Management Risk
- Lecture 8: Model Risk
- Lecture 9: Copulas and Extreme Value Theory
- Lecture 10: Monte Carlo Simulation Methods
- Lecture 11: Stress Testing and Scenario Analysis
- Lecture 12: Credit Scoring Models

# Agenda

- Tutorial Session 1: Market Risk
- Tutorial Session 2: Credit Risk
- Tutorial Session 3: Counterparty Credit Risk and Collateral Risk
- Tutorial Session 4: Operational Risk & Asset Liability Management Risk
- Tutorial Session 5: Copulas, EVT & Stress Testing

## Textbook

 Roncalli, T. (2020), Handbook of Financial Risk Management, Chapman & Hall/CRC Financial Mathematics Series.



### Additional materials

 Slides, tutorial exercises and past exams can be downloaded at the following address:

http://www.thierry-roncalli.com/RiskManagement.html

 Solutions of exercises can be found in the companion book, which can be downloaded at the following address:

http://www.thierry-roncalli.com/RiskManagementBook.html

# Agenda

- Lecture 1: Introduction to Financial Risk Management
- Lecture 2: Market Risk
- Lecture 3: Credit Risk
- Lecture 4: Counterparty Credit Risk and Collateral Risk
- Lecture 5: Operational Risk
- Lecture 6: Liquidity Risk
- Lecture 7: Asset Liability Management Risk
- Lecture 8: Model Risk
- Lecture 9: Copulas and Extreme Value Theory
- Lecture 10: Monte Carlo Simulation Methods
- Lecture 11: Stress Testing and Scenario Analysis
- Lecture 12: Credit Scoring Models

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

### Uniform random numbers

The idea is to build a pseudorandom sequence  ${\mathcal S}$  and repeat this sequence as often as necessary

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## Linear congruential generator

• The most famous and used algorithm is the linear congruential generator (LCG):

$$x_n = (a \cdot x_{n-1} + c) \mod m$$
$$u_n = x_n/m$$

where:

- *a* is the multiplicative constant
- *c* is the additive constant
- *m* is the modulus (or the order of the congruence)
- The initial number  $x_0$  is called the seed
- {x<sub>1</sub>, x<sub>2</sub>,..., x<sub>n</sub>} is a sequence of pseudorandom integer numbers (0 ≤ x<sub>n</sub> < m)</li>
- $\{u_1, u_2, \ldots, u_n\}$  is a sequence of uniform random variates
- The maximum period is *m*

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## Linear congruential generator

#### Example #1

If we consider that a = 3, c = 0, m = 11 and  $x_0 = 1$ , we obtain the following sequence:

$$\{1, 3, 9, 5, 4, 1, 3, 9, 5, 4, 1, 3, 9, 5, 4, \ldots\}$$

The period length is only five, meaning that only five uniform random variates can be generated: 0.09091, 0.27273, 0.81818, 0.45455 and 0.36364

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# Linear congruential generator

The minimal standard LCG proposed by Lewis *et al.* (1969) is defined by  $a = 7^5$ , c = 0 and  $m = 2^{31} - 1$ Its period length is equal to  $m - 1 = 2^{31} - 2 \approx 2.15 \times 10^9$ 

| Та | b | le: | Simul | ation | of | 10 | uniform | pseudo | orandom | numbers |
|----|---|-----|-------|-------|----|----|---------|--------|---------|---------|
|----|---|-----|-------|-------|----|----|---------|--------|---------|---------|

| п  | Xn            | <i>U</i> <sub>n</sub> | Xn            | U <sub>n</sub> |
|----|---------------|-----------------------|---------------|----------------|
| 0  | 1             | 0.000000              | 123 456       | 0.000057       |
| 1  | 16 807        | 0.000008              | 2 074 924 992 | 0.966212       |
| 2  | 282 475 249   | 0.131538              | 277 396 911   | 0.129173       |
| 3  | 1622650073    | 0.755605              | 22 885 540    | 0.010657       |
| 4  | 984 943 658   | 0.458650              | 237 697 967   | 0.110687       |
| 5  | 1144108930    | 0.532767              | 670 147 949   | 0.312062       |
| 6  | 470 211 272   | 0.218959              | 1772333975    | 0.825307       |
| 7  | 101 027 544   | 0.047045              | 2018933935    | 0.940139       |
| 8  | 1457850878    | 0.678865              | 1981022945    | 0.922486       |
| 9  | 1458777923    | 0.679296              | 466 173 527   | 0.217079       |
| 10 | 2 007 237 709 | 0.934693              | 958 124 033   | 0.446161       |

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# Linear congruential generator



Figure: Lattice structure of the linear congruential generator

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## Multiple recursive generator

### • We have

$$x_n = \left(\sum_{i=1}^k a_i \cdot x_{n-i} + c\right) \mod m$$

• The famous MRG32k3a generator of L'Ecuyer (1999) uses two 32-bit multiple recursive generators:

$$\begin{cases} x_n = (1403580 \cdot x_{n-2} - 810728 \cdot x_{n-3}) \mod m_1 \\ y_n = (527612 \cdot y_{n-1} - 1370589 \cdot y_{n-3}) \mod m_2 \end{cases}$$

where  $m_1 = 2^{32} - 209$  and  $m_2 = 2^{32} - 22853$ . The uniform random variate is then equal to:

$$u_n = \frac{x_n - y_n + \mathbb{1} \{x_n \le y_n\} \cdot m_1}{m_1 + 1}$$

• The period length of this generator is equal to  $2^{191}\approx 3\times 10^{57}$ 

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

We now consider X a random variable whose distribution function is noted **F**. There are many ways to simulate X, but all of them are based on uniform random variates

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# Method of inversion

Continuous random variables

- We assume that **F** is continuous
- Let  $Y = \mathbf{F}(X)$  be the integral transform of X
- Its cumulative distribution function  ${f G}$  is equal to:

$$G(y) = \Pr \{Y \le y\}$$
  
=  $\Pr \{F(X) \le y\}$   
=  $\Pr \{X \le F^{-1}(y)\}$   
=  $F(F^{-1}(y))$   
=  $y$ 

where  $\mathbf{G}\left(0
ight)=0$  and  $\mathbf{G}\left(1
ight)=1$ 

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

### Method of inversion Continuous random variables

• We deduce that  $\mathbf{F}(X)$  has a uniform distribution  $\mathcal{U}_{[0,1]}$ :

 $\mathsf{F}\left(X
ight)\sim\mathcal{U}_{\left[0,1
ight]}$ 

Ilf U is a uniform random variable, then  $\mathbf{F}^{-1}(U)$  is a random variable whose distribution function is  $\mathbf{F}$ :

$$U\sim\mathcal{U}_{\left[ 0,1
ight] }\Rightarrow\mathsf{F}^{-1}\left( U
ight) \sim\mathsf{F}$$

To simulate a sequence of random variates {x<sub>1</sub>,...,x<sub>n</sub>}, we can simulate a sequence of uniform random variates {u<sub>1</sub>,..., u<sub>n</sub>} and apply the transform x<sub>i</sub> ← F<sup>-1</sup> (u<sub>i</sub>)

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# Method of inversion

Continuous random variables

#### Example #2

If we consider the generalized uniform distribution  $\mathcal{U}_{[a,b]}$ , we have  $\mathbf{F}(x) = (x - a) / (b - a)$  and  $\mathbf{F}^{-1}(u) = a + (b - a) u$ . The simulation of random variates  $x_i$  is deduced from the uniform random variates  $u_i$  by using the following transform:

$$x_i \leftarrow a + (b-a) u_i$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# Method of inversion

Continuous random variables

#### Example #3

In the case of the exponential distribution  $\mathcal{E}(\lambda)$ , we have  $\mathbf{F}(x) = 1 - \exp(-\lambda x)$ . We deduce that:

$$\mathbf{x}_i \leftarrow -rac{\ln\left(1-u_i
ight)}{\lambda}$$

Since 1 - U is also a uniform distributed random variable, we have:

$$x_i \leftarrow -rac{\ln(u_i)}{\lambda}$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# Method of inversion

Continuous random variables

#### Example #4

In the case of the Pareto distribution  $\mathcal{P}(\alpha, x_{-})$ , we have  $\mathbf{F}(x) = 1 - (x/x_{-})^{-\alpha}$  and  $\mathbf{F}^{-1}(u) = x_{-}(1-u)^{-1/\alpha}$ . We deduce that:  $x_{i} \leftarrow \frac{x_{-}}{(1-u_{i})^{1/\alpha}}$ 

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

### Method of inversion Continuous random variables

• The method of inversion is easy to implement when we know the analytical expression of  $\mathbf{F}^{-1}$ 

• When it is not the case, we use the Newton-Raphson algorithm:

$$x_i^{m+1} = x_i^m + \frac{u_i - \mathbf{F}(x_i^m)}{f(x_i^m)}$$

where  $x_i^m$  is the solution of the equation  $\mathbf{F}(x) = u$  at the iteration m

• If we apply this algorithm to the Gaussian distribution  $\mathcal{N}(0,1)$ , we have:

$$x_i^{m+1} = x_i^m + \frac{u_i - \Phi\left(x_i^m\right)}{\phi\left(x_i^m\right)}$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

### Method of inversion Discrete random variables

In the case of a discrete probability distribution  $\{(x_1, p_1), (x_2, p_2), \dots, (x_n, p_n)\}$  where  $x_1 < x_2 < \dots < x_n$ , we have:

$$\mathbf{F}^{-1}(u) = \begin{cases} x_1 & \text{if } 0 \le u \le p_1 \\ x_2 & \text{if } p_1 < u \le p_1 + p_2 \\ \vdots \\ x_n & \text{if } \sum_{k=1}^{n-1} p_k < u \le 1 \end{cases}$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# Method of inversion

Discrete random variables

• We assume that:

| Xi                | 1   | 2   | 4   | 6   | 7   | 9   | 10   |
|-------------------|-----|-----|-----|-----|-----|-----|------|
| p_i               | 10% | 20% | 10% | 5%  | 20% | 30% | 5%   |
| $\mathbf{F}(x_i)$ | 10% | 30% | 40% | 45% | 65% | 95% | 100% |

- The inverse function is a step function
- If u = 0.5517, Then  $X = \mathbf{F}^{-1}(u) = \mathbf{F}^{-1}(0.5517) = 7$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# Method of inversion

Discrete random variables



Figure: Inversion method when X is a discrete random variable

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# Method of inversion

Discrete random variables

### Example #5

If we apply the method of inversion to the Bernoulli distribution  $\mathcal{B}(p)$ , we have:

$$x \leftarrow \left\{ egin{array}{ccc} 0 & ext{if} & 0 \leq u \leq 1-p \ 1 & ext{if} & 1-p < u \leq 1 \end{array} 
ight.$$

or:

$$x \leftarrow \begin{cases} 1 & \text{if } u \le p \\ 0 & \text{if } u > p \end{cases}$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

### Method of inversion Piecewise distribution functions

• A piecewise distribution function is defined as follows:

$$\mathbf{F}(x) = \mathbf{F}_m(x) \quad \text{if } x \in \left[x_{m-1}^\star, x_m^\star\right]$$

where  $x_m^*$  are the knots of the piecewise function and:

$$\mathbf{F}_{m+1}\left(x_{m}^{\star}\right)=\mathbf{F}_{m}\left(x_{m}^{\star}\right)$$

 In this case, the simulated value x<sub>i</sub> is obtained using a search algorithm:

$$x_i \leftarrow \mathbf{F}_m^{-1}(u_i) \quad \text{if } \mathbf{F}(x_{m-1}^{\star}) < u_i \leq \mathbf{F}(x_m^{\star})$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# Method of inversion

Piecewise distribution functions

- We consider the piecewise exponential model
- The survival function has the following expression:

$$\mathbf{S}(t) = \mathbf{S}\left(t_{m-1}^{\star}\right) e^{-\lambda_m \left(t - t_{m-1}^{\star}\right)} \quad \text{if } t \in \left]t_{m-1}^{\star}, t_m^{\star}\right]$$

- We know that  $\mathbf{S}\left( \mathbf{ au}
  ight) \sim U$
- It follows that:

$$t_i \leftarrow t_{m-1}^{\star} + \frac{1}{\lambda_m} \ln \frac{\mathbf{S}\left(t_{m-1}^{\star}\right)}{u_i} \quad \text{if } \mathbf{S}\left(t_m^{\star}\right) < u_i \le \mathbf{S}\left(t_{m-1}^{\star}\right)$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# Method of inversion

Piecewise distribution functions

### Example #6

We model the default time au with the piecewise exponential model and the following parameters:

$$\lambda = \begin{cases} 5\% & \text{if } t \text{ is less or equal than one year} \\ 8\% & \text{if } t \text{ is between one and five years} \\ 12\% & \text{if } t \text{ is larger than five years} \end{cases}$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

### Method of inversion Piecewise distribution functions

We have S(0) = 1, S(1) = 0.9512 and S(5) = 0.6907. We deduce that:

$$t_i \leftarrow \begin{cases} 0 + (1/0.05) \cdot \ln(1/u_i) & \text{if } u_i \in [0.9512, 1] \\ 1 + (1/0.08) \cdot \ln(0.9512/u_i) & \text{if } u_i \in [0.6907, 0.9512[ \\ 5 + (1/0.12) \cdot \ln(0.6907/u_i) & \text{if } u_i \in [0, 0.6907[ \end{cases}$$

Table: Simulation of the piecewise exponential model

| Ui     | $t_{m-1}^{\star}$ | $S\left(t_{m-1}^{\star}\right)$ | $\lambda_m$ | ti      |
|--------|-------------------|---------------------------------|-------------|---------|
| 0.9950 | 0                 | 1.0000                          | 0.05        | 0.1003  |
| 0.3035 | 5                 | 0.6907                          | 0.12        | 11.8531 |
| 0.5429 | 5                 | 0.6907                          | 0.12        | 7.0069  |
| 0.9140 | 1                 | 0.9512                          | 0.08        | 1.4991  |
| 0.7127 | 1                 | 0.9512                          | 0.08        | 4.6087  |

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

### Method of transformation

Let  $\{Y_1, Y_2, \ldots\}$  be a vector of independent random variables. The simulation of the random variable  $X = g(Y_1, Y_2, \ldots)$  is straightforward if we know how to easily simulate the random variables  $Y_i$ . We notice that the inversion method is a particular case of the transform method, because we have:

$$X = g\left(U\right) = \mathbf{F}^{-1}\left(U\right)$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

### Method of transformation

• The Binomial random variable is the sum of *n iid* Bernoulli random variables:

$$\mathcal{B}(n,p) = \sum_{i=1}^{n} \mathcal{B}_{i}(p)$$

 We simulate the Binomial random variate x using n uniform random numbers:

$$x = \sum_{i=1}^{n} \mathbb{1} \{ u_i \leq p \}$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

### Method of transformation

To simulate the chi-squared random variable  $\chi^2(\nu)$ , we can use the following relationship:

$$\chi^{2}(\nu) = \sum_{i=1}^{\nu} \chi^{2}_{i}(1) = \sum_{i=1}^{\nu} (\mathcal{N}_{i}(0,1))^{2}$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

### Method of transformation

#### Box-Muller algorithm

if  $U_1$  and  $U_2$  are two independent uniform random variables, then  $X_1$  and  $X_2$  defined by:

$$X_1 = \sqrt{-2 \ln U_1} \cdot \cos (2\pi U_2)$$
$$X_2 = \sqrt{-2 \ln U_1} \cdot \sin (2\pi U_2)$$

are independent and follow the Gaussian distribution distribution  $\mathcal{N}(0,1)$ 

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## Method of transformation

• If  $N_t$  is a Poisson process with intensity  $\lambda$ , the duration T between two consecutive events is an exponential:

$$\Pr(T \leq t) = 1 - e^{-\lambda t}$$

• Since the durations are independent, we have:

$$T_1+T_2+\ldots+T_n=\sum_{i=1}^n E_i$$

where  $E_i \sim \mathcal{E}(\lambda)$ 

• Because the Poisson random variable is the number of events that occur in the unit interval of time, we also have:

$$X = \max\{n: T_1 + T_2 + \ldots + T_n \le 1\} = \max\{n: \sum_{i=1}^n E_i \le 1\}$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## Method of transformation

• We notice that:

$$\sum_{i=1}^{n} E_i = -\frac{1}{\lambda} \sum_{i=1}^{n} \ln U_i = -\frac{1}{\lambda} \ln \prod_{i=1}^{n} U_i$$

where  $U_i$  are *iid* uniform random variables

• We deduce that:

$$X = \max\left\{n : -\frac{1}{\lambda}\ln\prod_{i=1}^{n}U_{i} \le 1\right\} = \max\left\{n : \prod_{i=1}^{n}U_{i} \ge e^{-\lambda}\right\}$$
Uniform random numbers Non-uniform random numbers Random vectors Random matrices

#### Method of transformation

We can then simulate the Poisson random variable with the following algorithm:

- set n = 0 and p = 1;
- 2 calculate n = n + 1 and  $p = p \cdot u_i$  where  $u_i$  is a uniform random variate;
- () if  $p \ge e^{-\lambda}$ , go back to step 2; otherwise, return X = n 1

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# **Rejection sampling**

#### Theorem

- F(x) and G(x) are two distribution functions such that  $f(x) \le cg(x)$  for all x with c > 1
- We note  $X \sim \mathbf{G}$  and consider an independent uniform random variable  $U \sim \mathcal{U}_{[0,1]}$
- Then, the conditional distribution function of X given that  $U \leq f(X) / (cg(X))$  is  $\mathbf{F}(x)$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# **Rejection** sampling

#### Proof

Let us introduce the random variables B and Z:

$$B = \mathbb{1}\left\{U \leq \frac{f(X)}{cg(X)}\right\} \quad \text{and} \quad Z = X \left|U \leq \frac{f(X)}{cg(X)}\right\}$$

We have:

$$\Pr \{B = 1\} = \Pr \left\{ U \le \frac{f(X)}{cg(X)} \right\}$$
$$= \mathbb{E} \left[ \frac{f(X)}{cg(X)} \right] = \int_{-\infty}^{+\infty} \frac{f(x)}{cg(x)} g(x) \, dx$$
$$= \frac{1}{c} \int_{-\infty}^{+\infty} f(x) \, dx$$
$$= \frac{1}{c}$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## **Rejection** sampling

#### Proof

The distribution function of Z is defined by:

$$\Pr\left\{Z \le x\right\} = \Pr\left\{X \le x \left| U \le \frac{f(X)}{cg(X)}\right.\right\}$$

We deduce that:

$$\Pr\{Z \le x\} = \frac{\Pr\left\{X \le x, U \le \frac{f(X)}{cg(X)}\right\}}{\Pr\left\{U \le \frac{f(X)}{cg(X)}\right\}} = c \int_{-\infty}^{x} \int_{0}^{f(x)/(cg(x))} g(x) \, \mathrm{d}u \, \mathrm{d}x$$
$$= c \int_{-\infty}^{x} \frac{f(x)}{cg(x)} g(x) \, \mathrm{d}x = \int_{-\infty}^{x} f(x) \, \mathrm{d}x$$
$$= \mathbf{F}(x)$$

This proves that  $Z \sim \mathbf{F}$ 

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# **Rejection** sampling

#### Acceptance-rejection algorithm

- **Q** generate two independent random variates x and u from **G** and  $\mathcal{U}_{[0,1]}$ ;
- 2 calculate v as follows:

$$v = \frac{f(x)}{cg(x)}$$

• if  $u \leq v$ , return x ('accept'); otherwise, go back to step 1 ('reject')

#### Remark

The underlying idea of this algorithm is then to simulate the distribution function **F** by assuming that it is easier to generate random numbers from **G**, which is called the proposal distribution. However, some of these random numbers must be '*rejected*', because the function  $c \cdot g(x)$  '*dominates*' the density function f(x)

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# **Rejection** sampling

- The number of iterations N needed to successfully generate Z has a geometric distribution G (p), where p = Pr {B = 1} = c<sup>-1</sup> is the acceptance ratio
- The average number of iterations is equal to:

$$\mathbb{E}[N] = 1/p = c$$

• To maximize the efficiency (or the acceptance ratio) of the algorithm, we have to choose the constant *c* such that:

$$c = \sup_{x} \frac{f(x)}{g(x)}$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# **Rejection** sampling

- We consider the normal distribution  $\mathcal{N}\left(0,1
  ight)$
- We use the Cauchy distribution function as the proposal distribution:

$$g(x) = \frac{1}{\pi \left(1 + x^2\right)}$$

• We can show that:

$$\phi(x) \leq \frac{\sqrt{2\pi}}{e^{0.5}}g(x)$$

meaning that  $c \approx 1.52$ 

• We have:

$$\mathbf{G}(x) = rac{1}{2} + rac{1}{\pi} \arctan x$$

and:

$$\mathbf{G}^{-1}\left(u\right) = \tan\left(\pi\left(u - \frac{1}{2}\right)\right)$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## **Rejection** sampling



Figure: Rejection sampling applied to the normal distribution

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# **Rejection** sampling

Acceptance-rejection algorithm for simulating  $\mathcal{N}(0,1)$ 

**(**) generate two independent uniform random variates  $u_1$  and  $u_2$  and set:

$$x \leftarrow an\left(\pi\left(u_1 - \frac{1}{2}
ight)
ight)$$

 $\bigcirc$  calculate *v* as follows:

$$v = \frac{e^{0.5}\phi(x)}{\sqrt{2\pi}g(x)} = \frac{(1+x^2)}{2e^{(x^2-1)/2}}$$

If  $u_2 \leq v$ , accept x; otherwise, go back to step 1

The acceptance ratio is  $1/1.52 \approx 65.8\%$ 

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## **Rejection** sampling

Table: Simulation of the standard Gaussian distribution using the acceptance-rejection algorithm

| <br>//1 | Up     | X        | V        | test   | 7       |
|---------|--------|----------|----------|--------|---------|
|         |        | 0.2000   | <u> </u> | · .    |         |
| 0.9662  | 0.1291 | 9.3820   | 0.0000   | reject |         |
| 0.0106  | 0.1106 | -30.0181 | 0.0000   | reject |         |
| 0.3120  | 0.8253 | -0.6705  | 0.9544   | accept | -0.6705 |
| 0.9401  | 0.9224 | 5.2511   | 0.0000   | reject |         |
| 0.2170  | 0.4461 | -1.2323  | 0.9717   | accept | -1.2323 |
| 0.6324  | 0.0676 | 0.4417   | 0.8936   | accept | 0.4417  |
| 0.6577  | 0.1344 | 0.5404   | 0.9204   | accept | 0.5404  |
| 0.1596  | 0.6670 | -1.8244  | 0.6756   | accept | -1.8244 |
| 0.4183  | 0.3872 | -0.2625  | 0.8513   | accept | -0.2625 |
| 0.9625  | 0.0752 | 8.4490   | 0.0000   | reject |         |

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## **Rejection** sampling



Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## Method of mixtures

• A finite mixture can be decomposed as a weighted sum of distribution functions:

$$\mathbf{F}(x) = \sum_{k=1}^{n} \pi_k \cdot \mathbf{G}_k(x)$$

where  $\pi_k \ge 0$  and  $\sum_{k=1}^n \pi_k = 1$ 

• The probability density function is:

$$f(x) = \sum_{k=1}^{n} \pi_k \cdot g_k(x)$$

• To simulate the probability distribution **F**, we introduce the random variable *B*, whose probability mass function is defined by:

$$p(k) = \Pr\{B = k\} = \pi_k$$

It follows that:

$$\mathbf{F}(x) = \sum_{k=1}^{n} \Pr \left\{ B = k \right\} \cdot \mathbf{G}_{k}(x)$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

### Method of mixtures

We deduce the following algorithm:

- **9** generate the random variate *b* from the probability mass function p(k)
- **2** generate the random variate x from the probability distribution  $\mathbf{G}_{b}(x)$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

### Method of mixtures

The previous approach can be easily extended to continuous mixtures:

$$f(x) = \int_{\Omega} \pi(\omega) g(x; \omega) \, \mathrm{d}\omega$$

where  $\omega \in \Omega$  is a parameter of the distribution **G** 

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

#### Method of mixtures

The negative binomial distribution is a gamma-Poisson mixture distribution:

 $\left\{ egin{array}{l} \mathcal{NB}\left(r,p
ight)\sim\mathcal{P}\left(\Lambda
ight)\ \Lambda\sim\mathcal{G}\left(r,\left(1-p
ight)/p
ight) \end{array} 
ight.$ 

To simulate the negative binomial distribution, we simulate

- the gamma random variate  $g \sim \mathcal{G}\left(r, \left(1-p\right)/p
  ight)$
- 2 and then the Poisson random variable p, whose parameter  $\lambda$  is equal to g

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## Random vectors

The random vector  $X = (X_1, ..., X_n)$  has a given distribution function  $\mathbf{F}(x) = \mathbf{F}(x_1, ..., x_n)$ 

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

### Method of conditional distributions

• If  $X_1, \ldots, X_n$  are independent, we have:

$$\mathbf{F}(x_1,\ldots,x_n)=\prod_{i=1}^n\mathbf{F}_i(x_i)$$

To simulate X, we can then generate each component  $X_i \sim \mathbf{F}_i$ individually, for example by applying the method of inversion

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## Method of conditional distributions

• If  $X_1, \ldots, X_n$  are dependent, we have:

$$\begin{aligned} \mathsf{F}(x_1, \dots, x_n) &= & \mathsf{F}_1(x_1) \, \mathsf{F}_{2|1}(x_2 \mid x_1) \, \mathsf{F}_{3|1,2}(x_3 \mid x_1, x_2) \times \dots \times \\ & & \mathsf{F}_{n|1,\dots,n-1}(x_n \mid x_1,\dots, x_{n-1}) \\ &= & \prod_{i=1}^n \mathsf{F}_{i|1,\dots,i-1}(x_i \mid x_1,\dots, x_{i-1}) \end{aligned}$$

where  $\mathbf{F}_{i|1,...,i-1}(x_i \mid x_1,...,x_{i-1})$  is the conditional distribution of  $X_i$  given  $X_1 = x_1,...,X_{i-1} = x_{i-1}$ 

- This 'conditional' random variable is denoted by  $Y_i = X_i \mid X_1 = x_1, \dots, X_{i-1} = x_{i-1}$
- The random variables  $(Y_1, \ldots, Y_n)$  are independent

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

### Method of conditional distributions

We obtain the following algorithm:

- generate  $x_1$  from  $\mathbf{F}_1(x)$  and set i = 2
- 2 generate  $x_i$  from  $F_{i|1,...,i-1}(x | x_1,...,x_{i-1})$  given  $X_1 = x_1,...,X_{i-1} = x_{i-1}$  and set i = i + 1
- repeat step 2 until i = n

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

### Method of conditional distributions

 $\mathbf{F}_{i|1,...,i-1}$   $(x \mid x_1, ..., x_{i-1})$  is a univariate distribution function, which depends on the argument x and parameters  $x_1, ..., x_{i-1}$ . To simulate it, we can therefore use the method of inversion:

$$x_i \leftarrow \mathbf{F}_{i|1,\ldots,i-1}^{-1} \left( u_i \mid x_1,\ldots,x_{i-1} \right)$$

where  $\mathbf{F}_{i|1,...,i-1}^{-1}$  is the inverse of the conditional distribution function and  $u_i$  is a uniform random variate

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## Method of conditional distributions

#### Example #7

We consider the bivariate logistic distribution defined as:

$$\mathbf{F}(x_1, x_2) = (1 + e^{-x_1} + e^{-x_2})^{-1}$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## Method of conditional distributions

We have  $\mathbf{F}_1(x_1) = \mathbf{F}(x_1, +\infty) = (1 + e^{-x_1})^{-1}$ . We deduce that the conditional distribution of  $X_2$  given  $X_1 = x_1$  is:

$$\begin{aligned} \mathbf{F}_{2|1} \left( x_2 \mid x_1 \right) &= \quad \frac{\mathbf{F} \left( x_1, x_2 \right)}{\mathbf{F}_1 \left( x_1 \right)} \\ &= \quad \frac{1 + e^{-x_1}}{1 + e^{-x_1} + e^{-x_2}} \end{aligned}$$

We obtain:

$$\mathbf{F}_{1}^{-1}(u) = \ln u - \ln (1-u)$$

and:

$$\mathbf{F}_{2|1}^{-1}(u \mid x_1) = \ln u - \ln (1 - u) - \ln (1 + e^{-x_1})$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## Method of conditional distributions

We deduce the following algorithm:

- **9** generate two independent uniform random variates  $u_1$  and  $u_2$ ;
- 2 generate  $x_1$  from  $u_1$ :

$$x_1 \leftarrow \ln u_1 - \ln \left(1 - u_1\right)$$

**(a)** generate  $x_2$  from  $u_2$  and  $x_1$ :

$$x_2 \leftarrow \ln u_2 - \ln (1 - u_2) - \ln (1 + e^{-x_1})$$

Because we have  $(1 + e^{-x_1})^{-1} = u_1$ , the last step can be replaced by:

**③** generate  $x_2$  from  $u_2$  and  $u_1$ :

$$x_2 \leftarrow \ln\left(\frac{u_1u_2}{1-u_2}\right)$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## Method of conditional distributions

- The method of conditional distributions can be used for simulating uniform random vectors  $(U_1, \ldots, U_n)$  generated by copula functions
- We have

$$\begin{aligned} \mathbf{C} (u_1, \dots, u_n) &= & \mathbf{C}_1 (u_1) \, \mathbf{C}_{2|1} (u_2 \mid u_1) \, \mathbf{C}_{3|1,2} (u_3 \mid u_1, u_2) \times \dots \times \\ & & \mathbf{C}_{n|1,\dots,n-1} (u_n \mid u_1, \dots, u_{n-1}) \\ &= & \prod_{i=1}^n \mathbf{C}_{i|1,\dots,i-1} (u_i \mid u_1, \dots, u_{i-1}) \end{aligned}$$

where  $C_{i|1,...,i-1}(u_i \mid u_1,...,u_{i-1})$  is the conditional distribution of  $U_i$  given  $U_1 = u_1,...,U_{i-1} = u_{i-1}$ 

• By definition, we have 
$$\mathbf{C}_1(u_1) = u_1$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# Method of conditional distributions

We obtain the following algorithm:

- **(**) generate *n* independent uniform random variates  $v_1, \ldots, v_n$ ;
- **2** generate  $u_1 \leftarrow v_1$  and set i = 2;
- **(3)** generate  $u_i$  by finding the root of the equation:

$$C_{i|1,...,i-1}(u_i \mid u_1,...,u_{i-1}) = v_i$$

and set i = i + 1;

• repeat step 3 until 
$$i = n$$
.

For some copula functions, there exists an analytical expression of the inverse of the conditional copula. In this case, the third step is replaced by:

**(3)** generate  $u_i$  by the inversion method:

$$u_i \leftarrow \mathbf{C}_{i|1,\ldots,i-1}^{-1} (v_i \mid u_1,\ldots,u_{i-1})$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## Method of conditional distributions

For any probability distribution, the conditional distribution can be calculated as follows:

$$\mathbf{F}_{i|1,...,i-1}(x_i \mid x_1,...,x_{i-1}) = \frac{\mathbf{F}(x_1,...,x_{i-1},x_i)}{\mathbf{F}(x_1,...,x_{i-1})}$$

In particular, we have:

$$\partial_1 \mathbf{F}(x_1, x_2) = \partial_1 \left( \mathbf{F}_1(x_1) \cdot \mathbf{F}_{2|1}(x_2 | x_1) \right) = f_1(x_1) \cdot \mathbf{F}_{2|1}(x_2 | x_1)$$

For copula functions, the density  $f_1(x_1)$  is equal to 1, meaning that:

$$\mathbf{C}_{2|1}\left(u_{2} \mid u_{1}\right) = \partial_{1} \, \mathbf{C}\left(u_{1}, u_{2}\right)$$

We can generalize this result and show that the conditional copula given some random variables  $U_i$  for  $i \in \Omega$  is equal to the cross-derivative of the copula function **C** with respect to the arguments  $u_i$  for  $i \in \Omega$ 

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# Method of conditional distributions

• Archimedean copulas are defined as:

$$\mathsf{C}\left(u_{1}, u_{2}\right) = \varphi^{-1}\left(\varphi\left(u_{1}\right) + \varphi\left(u_{2}\right)\right)$$

where  $\varphi(u)$  is the generator function

• We have:

$$\varphi\left(\mathsf{C}\left(u_{1}, u_{2}\right)\right) = \varphi\left(u_{1}\right) + \varphi\left(u_{2}\right)$$

and:

$$\varphi'\left(\mathbf{C}\left(u_{1}, u_{2}\right)\right) \cdot \frac{\partial \mathbf{C}\left(u_{1}, u_{2}\right)}{\partial u_{1}} = \varphi'\left(u_{1}\right)$$

• We deduce the following expression of the conditional copula:

$$\mathbf{C}_{2|1}\left(u_{2} \mid u_{1}\right) = \frac{\partial \mathbf{C}\left(u_{1}, u_{2}\right)}{\partial u_{1}} = \frac{\varphi'\left(u_{1}\right)}{\varphi'\left(\varphi^{-1}\left(\varphi\left(u_{1}\right) + \varphi\left(u_{2}\right)\right)\right)}$$

• The calculation of the inverse function gives:

$$\mathbf{C}_{2|1}^{-1}\left(v \mid u_{1}\right) = \varphi^{-1}\left(\varphi\left(\varphi^{\prime-1}\left(\frac{\varphi^{\prime}\left(u_{1}\right)}{v}\right)\right) - \varphi\left(u_{1}\right)\right)$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

### Method of conditional distributions

We obtain the following algorithm for simulating Archimedean copulas:

- **Q** generate two independent uniform random variates  $v_1$  and  $v_2$ ;
- 2 generate  $u_1 \leftarrow v_1$ ;
- **(3)** generate  $u_2$  by the inversion method:

$$u_{2} \leftarrow \varphi^{-1}\left(\varphi\left(\varphi'^{-1}\left(\frac{\varphi'\left(u_{1}\right)}{v_{2}}\right)\right) - \varphi\left(u_{1}\right)\right)$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## Method of conditional distributions

#### Example #8

We consider the Clayton copula:

$$C(u_1, u_2) = (u_1^{-\theta} + u_2^{-\theta} - 1)^{-1/\theta}$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## Method of conditional distributions

The Clayton copula is an Archimedean copula, whose generator function is:

$$\varphi(u)=u^{-\theta}-1$$

We deduce that:

$$\begin{aligned} \varphi^{-1}\left(u\right) &= \left(1+u\right)^{-1/\theta} \\ \varphi'\left(u\right) &= -\theta u^{-(\theta+1)} \\ \varphi'^{-1}\left(u\right) &= \left(-u/\theta\right)^{-1/(\theta+1)} \end{aligned}$$

We obtain:

$$\mathbf{C}_{2\mid 1}^{-1}\left(v\mid u_{1}\right) = \left(1 + u_{1}^{-\theta}\left(v^{-\theta/(\theta+1)} - 1\right)\right)^{-1//\theta}$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## Method of conditional distributions

#### Table: Simulation of the Clayton copula

| Random uniform |                       | Clayton copula |                       |          |                       |  |
|----------------|-----------------------|----------------|-----------------------|----------|-----------------------|--|
| variates       |                       | heta=0.01      |                       | heta=1.5 |                       |  |
| $V_1$          | <i>V</i> <sub>2</sub> | $  u_1$        | <i>u</i> <sub>2</sub> | $U_1$    | <i>u</i> <sub>2</sub> |  |
| 0.2837         | 0.4351                | 0.2837         | 0.4342                | 0.2837   | 0.3296                |  |
| 0.0386         | 0.2208                | 0.0386         | 0.2134                | 0.0386   | 0.0297                |  |
| 0.3594         | 0.5902                | 0.3594         | 0.5901                | 0.3594   | 0.5123                |  |
| 0.3612         | 0.3268                | 0.3612         | 0.3267                | 0.3612   | 0.3247                |  |
| 0.0797         | 0.6479                | 0.0797         | 0.6436                | 0.0797   | 0.1704                |  |

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

### Method of transformation

To simulate a Gaussian random vector X ~ N(μ, Σ), we consider the following transformation:

$$X = \mu + A \cdot N$$

where  $AA^{\top} = \Sigma$  and  $N \sim \mathcal{N}(\mathbf{0}, I)$ 

 Since Σ is a positive definite symmetric matrix, it has a unique Cholesky decomposition:

$$\Sigma = PP^{\top}$$

where P is a lower triangular matrix

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## Method of transformation

The decomposition  $AA^{\top} = \Sigma$  is not unique. For instance, if we use the eigendecomposition:

 $\Sigma = U \Lambda U^{ op}$ 

we can set  $A = U \Lambda^{1/2}$ . Indeed, we have:

$$\begin{array}{rcl} AA^{\top} &=& U\Lambda^{1/2}\Lambda^{1/2}U^{\top} \\ &=& U\Lambda U^{\top} \\ &=& \Sigma \end{array}$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

### Method of transformation

To simulate a multivariate Student's *t* distribution  $Y = (Y_1, \ldots, Y_n) \sim \mathbf{T}_n (\Sigma, \nu)$ , we use the relationship:

$$Y_i = \frac{X_i}{\sqrt{Z/\nu}}$$

where the random vector  $X = (X_1, \ldots, X_n) \sim \mathcal{N}(\mathbf{0}, \Sigma)$  and the random variable  $Z \sim \chi^2(\nu)$  are independent

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## Method of transformation

• If  $X = (X_1, \ldots, X_n) \sim \mathbf{F}$ , then the probability distribution of the random vector  $U = (U_1, \ldots, U_n)$  defined by:

$$U_{i}=\mathbf{F}_{i}\left(X\right)$$

is the copula function  ${\bf C}$  associated to  ${\bf F}$ 

• To simulate the Normal copula with the matrix of parameters  $\rho$ , we simulate  $N \sim \mathcal{N}(\mathbf{0}, I)$  and apply the transformation:

$$U = \Phi \left( P \cdot N \right)$$

where P is the Cholesky decomposition of the correlation matrix  $\rho$ 

 To simulate the Student's t copulawith the matrix of parameters ρ and ν degrees of freedom, we simulate T ~ T<sub>n</sub>(ρ, ν) and apply the transformation:

$$U_i = \mathbf{T}_v (T_i)$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## Method of transformation





Figure: Simulation of the Normal copula
Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# Method of transformation





Figure: Simulation of the  $t_1$  copula

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

#### Method of transformation

Frailty copulas are defined as:

$$\mathbf{C}(u_1,\ldots,u_n)=\psi\left(\psi^{-1}(u_1)+\ldots+\psi^{-1}(u_n)\right)$$

where  $\psi(x)$  is the Laplace transform of a random variable X They can be generated using the following algorithm:

- **(1)** simulate *n* independent uniform random variates  $v_1, \ldots, v_n$ ;
- 2 simulate the frailty random variate x with the Laplace transform  $\psi$ ;
- apply the transformation:

$$(u_1,\ldots,u_n) \leftarrow \left(\psi\left(-\frac{\ln u_1}{x}\right),\ldots,\psi\left(-\frac{\ln u_n}{x}\right)\right)$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

#### Method of transformation

- The Clayton copula is a frailty copula where  $\psi(x) = (1+x)^{-1/\theta}$  is the Laplace transform of the gamma random variable  $\mathcal{G}(1/\theta, 1)$
- The algorithm to simulate the Clayton copula is:

$$\begin{cases} x \leftarrow \mathcal{G}(1/\theta, 1) \\ (u_1, \dots, u_n) \leftarrow \left( \left( 1 - \frac{\ln u_1}{x} \right)^{-1/\theta}, \dots, \left( 1 - \frac{\ln u_n}{x} \right)^{-1/\theta} \right) \end{cases}$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# Method of transformation



Figure: Simulation of the Clayton copula

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

#### Method of transformation

• We consider the multivariate distribution  $\mathbf{F}(x_1, \ldots, x_n)$ , whose canonical decomposition is defined as:

$$\mathbf{F}(x_1,\ldots,x_n)=\mathbf{C}(\mathbf{F}_1(x_1),\ldots,\mathbf{F}_n(x_n))$$

- If  $(U_1, \ldots, U_n) \sim \mathbf{C}$ , the random vector  $(X_1, \ldots, X_n) = (\mathbf{F}_1^{-1}(U_1), \ldots, \mathbf{F}_n^{-1}(U_n))$  follows the distribution function  $\mathbf{F}$
- We deduce the following algorithm:

$$\begin{cases} (u_1,\ldots,u_n) \leftarrow \mathbf{C} \\ (x_1,\ldots,x_n) \leftarrow (\mathbf{F}_1^{-1}(u_1),\ldots,\mathbf{F}_n^{-1}(u_n)) \end{cases}$$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

#### Method of transformation

- We assume that  $\boldsymbol{\tau} \sim \mathcal{E}\left(5\%
  ight)$  and  $\mathrm{LGD} \sim \mathcal{B}\left(2,2
  ight)$
- We also assume that the default time and the loss given default are correlated and the dependence function is a Clayton copula

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

#### Method of transformation



Figure: Simulation of the correlated random vector ( $au, ext{LGD}$ )

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

#### Method of transformation

#### Remark

The previous algorithms suppose that we know the analytical expression  $\mathbf{F}_i$  of the univariate probability distributions in order to calculate the quantile  $\mathbf{F}_i^{-1}$ . This is not always the case. For instance, in the operational risk, the loss of the bank is equal to the sum of aggregate losses:

$$L = \sum_{k=1}^{K} S_k$$

where  $S_k$  is also the sum of individual losses for the  $k^{\text{th}}$  cell of the mapping matrix. In practice, the probability distribution of  $S_k$  is estimated by the method of simulations

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

#### Method of transformation

The method of the empirical quantile function is implemented as follows:

- for each random variable  $X_i$ , simulate  $m_1$  random variates  $x_{i,m}^{\star}$  and estimate the empirical distribution  $\hat{\mathbf{F}}_i$ ;
- Simulate a random vector  $(u_1, \ldots, u_n)$  from the copula function  $C(u_1, \ldots, u_n)$ ;

3 simulate the random vector  $(x_1, \ldots, x_n)$  by inverting the empirical distributions  $\hat{\mathbf{F}}_i$ :

$$x_i \leftarrow \mathbf{\hat{F}}_i^{-1}(u_i)$$

we also have:

$$x_i \leftarrow \inf\left\{x \left|\frac{1}{m_1}\sum_{m=1}^{m_1} \mathbf{1}\left\{x \le x_{i,m}^\star\right\} \ge u_i\right.\right\}$$

• repeat steps 2 and 3  $m_2$  times

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

#### Method of transformation

- $X_1 \sim \mathcal{N}(0,1)$
- $X_2 \sim \mathcal{N}(0,1)$
- The dependence function of  $(X_1, X_2)$  is the Clayton copula with parameter  $\theta = 3$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

### Method of transformation



Figure: Convergence of the method of the empirical quantile function

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

#### Method of transformation

- $X_1 \sim \mathcal{N}(-1,2)$ ,  $X_2 \sim \mathcal{N}(0,1)$ ,  $Y_1 \sim \mathcal{G}(0.5)$  and  $Y_2 \sim \mathcal{G}(1,2)$  are four independent random variables
- Let  $(Z_1 = X_1 + Y_1, Z_2 = X_2 \cdot Y_2)$  be the random vector
- The dependence function of Z is the t copula with parameters  $\nu = 2$  and  $\rho = -70\%$
- It is not possible to find an analytical expression of the marginal distributions of  $Z_1$  and  $Z_2$

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

## Method of transformation



Figure: Simulation of the random variables  $Z_1$  and  $Z_2$ 

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

# Method of transformation



Figure: Simulation of the random vector  $(Z_1, Z_2)$ 

Uniform random numbers Non-uniform random numbers Random vectors Random matrices

#### Random matrices

- Orthogonal and covariance matrices
- Correlation matrices
- Wishart matrices
- $\Rightarrow$  HFRM, Chapter 13, Section 13.1.4, pages 807-813

Univariate continuous-time processes Multivariate continuous-time processes

#### Brownian motion

• A Brownian motion (or a Wiener process) is a stochastic process W(t), whose increments are stationary and independent:

$$W\left(t
ight)-W\left(s
ight)\sim\mathcal{N}\left(0,t-s
ight)$$

• We have:

$$\left\{ egin{array}{l} \mathcal{W}\left(0
ight)=0 \ \mathcal{W}\left(t
ight)=\mathcal{W}\left(s
ight)+\epsilon\left(s,t
ight) \end{array} 
ight.$$

where  $\epsilon(s, t) \sim \mathcal{N}(0, t - s)$  are *iid* random variables

• To simulate W(t) at different dates  $t_1, t_2, \ldots$ , we have:

$$W_{m+1} = W_m + \sqrt{t_{m+1} - t_m} \cdot \varepsilon_m$$

where  $W_m$  is the numerical realization of  $W(t_m)$  and  $\varepsilon_m \sim \mathcal{N}(0,1)$  are *iid* random variables

• In the case of fixed-interval times  $t_{m+1} - t_m = h$ , we obtain the recursion:

$$W_{m+1} = W_m + \sqrt{h} \cdot \varepsilon_m$$

Univariate continuous-time processes Multivariate continuous-time processes

### Geometric Brownian motion

• The geometric Brownian motion is described by the following SDE:

$$\begin{cases} dX(t) = \mu X(t) dt + \sigma X(t) dW(t) \\ X(0) = x_0 \end{cases}$$

• Its solution is given by:

$$X(t) = x_0 \cdot \exp\left(\left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma W(t)\right) = g(W(t))$$

Univariate continuous-time processes Multivariate continuous-time processes

### Geometric Brownian motion

- Simulating the geometric Brownian motion X(t) can be done by applying the transform method to the process W(t)
- 2 Another approach to simulate X(t) consists in using the following formula:

$$X(t) = X(s) \cdot \exp\left(\left(\mu - \frac{1}{2}\sigma^{2}\right)(t-s) + \sigma\left(W(t) - W(s)\right)\right)$$

We have:

$$X_{m+1} = X_m \cdot \exp\left(\left(\mu - \frac{1}{2}\sigma^2\right)(t_{m+1} - t_m) + \sigma\sqrt{t_{m+1} - t_m} \cdot \varepsilon_m\right)$$

where  $X_m = X(t_m)$  and  $\varepsilon_m \sim \mathcal{N}(0, 1)$  are *iid* random variables If we consider fixed-interval times, the numerical realization becomes:

$$X_{m+1} = X_m \cdot \exp\left(\left(\mu - \frac{1}{2}\sigma^2\right)h + \sigma\sqrt{h}\cdot\varepsilon_m\right)$$

Univariate continuous-time processes Multivariate continuous-time processes

# Geometric Brownian motion



Figure: Simulation of the geometric Brownian motion

Univariate continuous-time processes Multivariate continuous-time processes

### Ornstein-Uhlenbeck process

• The stochastic differential equation of the Ornstein-Uhlenbeck process is:

$$\begin{cases} dX(t) = a(b - X(t)) dt + \sigma dW(t) \\ X(0) = x_0 \end{cases}$$

• The solution of the SDE is:

$$X(t) = x_0 e^{-at} + b\left(1 - e^{-at}\right) + \sigma \int_0^t e^{a(\theta - t)} dW(\theta)$$

• We also have:

$$X(t) = X(s) e^{-a(t-s)} + b\left(1 - e^{-a(t-s)}\right) + \sigma \int_{s}^{t} e^{a(\theta-t)} dW(\theta)$$

where:

$$\int_{s}^{t} e^{a(\theta-t)} \mathrm{d}W(\theta) \sim \mathcal{N}\left(0, \frac{1-e^{-2a(t-s)}}{2a}\right)$$

Univariate continuous-time processes Multivariate continuous-time processes

#### Ornstein-Uhlenbeck process

If we consider fixed-interval times, we obtain the following simulation scheme:

$$X_{m+1} = X_m e^{-ah} + b\left(1 - e^{-ah}\right) + \sigma \sqrt{\frac{1 - e^{-2ah}}{2a}} \cdot \varepsilon_m$$

where  $\varepsilon_m \sim \mathcal{N}(0, 1)$  are *iid* random variables

Univariate continuous-time processes Multivariate continuous-time processes

### **Ornstein-Uhlenbeck** process



Figure: Simulation of the Ornstein-Uhlenbeck process

# Stochastic differential equations without an explicit solution

• Let X(t) be the solution of the following SDE:

$$\begin{cases} dX(t) = \mu(t, X) dt + \sigma(t, X) dW(t) \\ X(0) = x_0 \end{cases}$$

• The Euler-Maruyama scheme uses the following approximation:

$$X(t) - X(s) pprox \mu(t, X(s)) \cdot (t - s) + \sigma(t, X(s)) \cdot (W(t) - W(s))$$

• If we consider fixed-interval times, the Euler-Maruyama scheme becomes:

$$X_{m+1} = X_m + \mu(t_m, X_m)h + \sigma(t_m, X_m)\sqrt{h} \cdot \varepsilon_m$$

where  $\varepsilon_m \sim \mathcal{N}(0, 1)$  are *iid* random variables

Univariate continuous-time processes Multivariate continuous-time processes

# Stochastic differential equations without an explicit solution

The fixed-interval Milstein scheme is:

$$\begin{array}{ll} X_{m+1} &=& X_m + \mu \left( t_m, X_m \right) h + \sigma \left( t_m, X_m \right) \sqrt{h} \cdot \varepsilon_m + \\ && \frac{1}{2} \sigma \left( t_m, X_m \right) \partial_x \sigma \left( t_m, X_m \right) h \left( \varepsilon_m^2 - 1 \right) \end{array}$$

Univariate continuous-time processes Multivariate continuous-time processes

# Stochastic differential equations without an explicit solution

If we consider the geometric Brownian motion, the Euler-Maruyama scheme is:

$$X_{m+1} = X_m + \mu X_m h + \sigma X_m \sqrt{h} \cdot \varepsilon_m$$

whereas the Milstein scheme is:

$$X_{m+1} = X_m + \mu X_m h + \sigma X_m \sqrt{h} \cdot \varepsilon_m + \frac{1}{2} \sigma^2 X_m h \left(\varepsilon_m^2 - 1\right)$$
$$= X_m + \left(\mu - \frac{1}{2} \sigma^2\right) X_m h + \sigma X_m \sqrt{h} \left(1 + \frac{1}{2} \sigma \sqrt{h} \varepsilon_m\right) \varepsilon_m$$

Univariate continuous-time processes Multivariate continuous-time processes

# Stochastic differential equations without an explicit solution



Figure: Comparison of exact, Euler-Maruyama and Milstein schemes (monthly discretization)

Univariate continuous-time processes Multivariate continuous-time processes

# Stochastic differential equations without an explicit solution

When we don't know the analytical solution of X(t), it is natural to simulate the numerical solution of X(t) using Euler-Maruyama and Milstein schemes. However, it may be sometimes more efficient to find the numerical solution of Y(t) = f(t, X(t)) instead of X(t) itself, in particular when Y(t) is more regular than X(t)

# Stochastic differential equations without an explicit solution

• By It's lemma, we have:

$$\mathrm{d}Y(t) = \left(\partial_t f(t,X) + \mu(t,X)\partial_x f(t,X) + \frac{1}{2}\sigma^2(t,X)\partial_x^2 f(t,X)\right) \,\mathrm{d}t + \sigma(t,X)\partial_x f(t,X) \,\mathrm{d}W(t)$$

• By using the inverse function  $X(t) = f^{-1}(t, Y(t))$ , we obtain:

$$\mathrm{d}Y(t) = \mu'(t, Y) \, \mathrm{d}t + \sigma'(t, Y) \, \mathrm{d}W(t)$$

where  $\mu'(t, Y)$  and  $\sigma'(t, Y)$  are functions of  $\mu(t, X)$ ,  $\sigma(t, X)$  and f(t, X)

 We can then simulate the solution of Y (t) using an approximation scheme and deduce the numerical solution of X (t) by applying the transformation method:

$$X_m = f^{-1}(t_m, Y_m)$$

# Stochastic differential equations without an explicit solution

Let us consider the geometric Brownian motion X(t). The solution of  $Y(t) = \ln X(t)$  is equal to:

$$\mathrm{d}Y(t) = \left(\mu - \frac{1}{2}\sigma^{2}\right)\,\mathrm{d}t + \sigma\,\mathrm{d}W(t)$$

We deduce that the Euler-Maruyama (or Milstein) scheme with fixed-interval times is:

$$Y_{m+1} = Y_m + \left(\mu - \frac{1}{2}\sigma^2\right)h + \sigma\sqrt{h}\cdot\varepsilon_m$$

It follows that:

$$\ln X_{m+1} = \ln X_m + \left(\mu - \frac{1}{2}\sigma^2\right)h + \sigma\sqrt{h}\cdot\varepsilon_m$$

# Stochastic differential equations without an explicit solution

The CIR process is  $dX(t) = (\alpha + \beta X(t)) dt + \sigma \sqrt{X(t)} dW(t)$ . Using the transformation  $Y(t) = \sqrt{X(t)}$ , we obtain the following SDE:

$$dY(t) = \left(\frac{1}{2}\frac{(\alpha + \beta X(t))}{\sqrt{X(t)}} - \frac{1}{8}\frac{\sigma^2 X(t)}{X(t)^{3/2}}\right) dt + \frac{1}{2}\frac{\sigma\sqrt{X(t)}}{\sqrt{X(t)}} dW(t)$$
$$= \frac{1}{2Y(t)}\left(\alpha + \beta Y^2(t) - \frac{1}{4}\sigma^2\right) dt + \frac{1}{2}\sigma dW(t)$$

We deduce that the Euler-Maruyama scheme of Y(t) is:

$$Y_{m+1} = Y_m + \frac{1}{2Y_m} \left( \alpha + \beta Y_m^2 - \frac{1}{4} \sigma^2 \right) h + \frac{1}{2} \sigma \sqrt{h} \cdot \varepsilon_m$$

It follows that:

$$X_{m+1} = \left(\sqrt{X_m} + \frac{1}{2\sqrt{X_m}} \left(\alpha + \beta X_m - \frac{1}{4}\sigma^2\right)h + \frac{1}{2}\sigma\sqrt{h}\cdot\varepsilon_m\right)^2$$

Univariate continuous-time processes Multivariate continuous-time processes

#### Poisson process

Let  $t_m$  be the time when the  $m^{\text{th}}$  event occurs. The numerical algorithm is then:

**1** we set 
$$t_0 = 0$$
 and  $N(t_0) = 0$ 

2 we generate a uniform random variate u and calculate the random variate  $e \sim \mathcal{E}(\lambda)$  with the formula:

$$e = -rac{\ln u}{\lambda}$$

we update the Poisson process with:

$$t_{m+1} \leftarrow t_m + e$$
 and  $N(t_{m+1}) \leftarrow N(t_m) + 1$ 

• we go back to step 2

Univariate continuous-time processes Multivariate continuous-time processes

# Mixed Poisson process (MPP)

The algorithm is initialized with a realization  $\lambda$  of the random intensity  $\Lambda$ 

# Non-homogenous Poisson process (NHPP)

- $\lambda(t)$  varies with time
- The inter-arrival times remain independent and exponentially distributed with:

$$\Pr\left\{T_1 > t\right\} = \exp\left(-\Lambda\left(t\right)\right)$$

where  $T_1$  is the duration of the first event and  $\Lambda(t)$  is the integrated intensity function:

$$\Lambda(t) = \int_0^t \lambda(s) \, \mathrm{d}s$$

• It follows that:

$$\Pr\left\{T_1 > \Lambda^{-1}(t)\right\} = \exp\left(-t\right) \Leftrightarrow \Pr\left\{\Lambda\left(T_1\right) > t\right\} = \exp\left(-t\right)$$

# Non-homogenous Poisson process (NHPP)

We deduce that if  $\{t_1, t_2, \ldots, t_M\}$  are the occurrence times of the NHPP of intensity  $\lambda(t)$ , then  $\{\Lambda(t_1), \Lambda(t_2), \ldots, \Lambda(t_M)\}$  are the occurrence times of the homogeneous Poisson process (HPP) of intensity one. Therefore, the algorithm is:

- we simulate  $t'_m$  the time arrivals of the homogeneous Poisson process with intensity  $\lambda = 1$
- 2 we apply the transform  $t_m = \Lambda^{-1}(t'_m)$

Univariate continuous-time processes Multivariate continuous-time processes

# Non-homogenous Poisson process (NHPP)



Figure: Simulation of a non-homogenous Poisson process with cyclical intensity

Univariate continuous-time processes Multivariate continuous-time processes

# Multidimensional Brownian motion

- Let  $W(t) = (W_1(t), \dots, W_n(t))$ , be a *n*-dimensional Brownian motion
- Each component  $W_i(t)$  is a Brownian motion:

$$W_{i}\left(t
ight)-W_{i}\left(s
ight)\sim\mathcal{N}\left(0,t-s
ight)$$

• We have:

$$\mathbb{E}\left[W_{i}\left(t\right)W_{j}\left(s\right)\right]=\min\left(t,s\right)\cdot\rho_{i,j}$$

where  $\rho_{i,j}$  is the correlation between the two Brownian motions  $W_i$ and  $W_j$ 

• We deduce that:

$$\left\{ egin{array}{l} \mathcal{W}\left(0
ight)=oldsymbol{0} \ \mathcal{W}\left(t
ight)=\mathcal{W}\left(s
ight)+\epsilon\left(s,t
ight) \end{array} 
ight.$$

where  $\epsilon(s, t) \sim \mathcal{N}_n(\mathbf{0}, (t - s) \rho)$  are *iid* random vectors
Univariate continuous-time processes Multivariate continuous-time processes

## Multidimensional Brownian motion

• It follows that the numerical solution is:

$$W_{m+1} = W_m + \sqrt{t_{m+1} - t_m} \cdot P \cdot \varepsilon_m$$

where *P* is the Cholesky decomposition of the correlation matrix  $\rho$ and  $\varepsilon_m \sim \mathcal{N}_n(0, I)$  are *iid* random vectors

• In the case of fixed-interval times, the recursion becomes:

$$W_{m+1} = W_m + \sqrt{h} \cdot P \cdot \varepsilon_m$$

Univariate continuous-time processes Multivariate continuous-time processes

## Multidimensional Brownian motion



Figure: Brownian motion in the plane (independent case)

Univariate continuous-time processes Multivariate continuous-time processes

## Multidimensional Brownian motion



Univariate continuous-time processes Multivariate continuous-time processes

## Multidimensional geometric Brownian motion

• We consider the multidimensional geometric Brownian motion:

$$\begin{cases} dX(t) = \mu \odot X(t) dt + diag(\sigma \odot X(t)) dW(t) \\ X(0) = x_0 \end{cases}$$

where  $X(t) = (X_1(t), \dots, X_n(t)), \mu = (\mu_1, \dots, \mu_n),$   $\sigma = (\sigma_1, \dots, \sigma_n)$  and  $W(t) = (W_1(t), \dots, W_n(t))$  is a *n*-dimensional Brownian motion with  $\mathbb{E}\left[W(t)W(t)^{\top}\right] = \rho t$ 

• If we consider the  $j^{\text{th}}$  component of X(t), we have:

$$\mathrm{d}X_{j}\left(t\right) = \mu_{j}X_{j}\left(t\right)\,\mathrm{d}t + \sigma_{j}X_{j}\left(t\right)\,\mathrm{d}W_{j}\left(t\right)$$

 The solution of the multidimensional SDE is a multivariate log-normal process with:

$$X_{j}(t) = X_{j}(0) \cdot \exp\left(\left(\mu_{j} - \frac{1}{2}\sigma_{j}^{2}\right)t + \sigma_{j}W_{j}(t)
ight)$$

where  $W(t) \sim \mathcal{N}_n(0, \rho t)$ 

# Multidimensional geometric Brownian motion

• We deduce that the exact scheme to simulate the multivariate GBM is:

$$\begin{cases} X_{1,m+1} = X_{1,m} \cdot \exp\left(\left(\mu_1 - \frac{1}{2}\sigma_1^2\right)(t_{m+1} - t_m) + \sigma_1\sqrt{t_{m+1} - t_m} \cdot \varepsilon_{1,m}\right) \\ \vdots \\ X_{j,m+1} = X_{j,m} \cdot \exp\left(\left(\mu_j - \frac{1}{2}\sigma_j^2\right)(t_{m+1} - t_m) + \sigma_j\sqrt{t_{m+1} - t_m} \cdot \varepsilon_{j,m}\right) \\ \vdots \\ X_{n,m+1} = X_{n,m} \cdot \exp\left(\left(\mu_n - \frac{1}{2}\sigma_n^2\right)(t_{m+1} - t_m) + \sigma_n\sqrt{t_{m+1} - t_m} \cdot \varepsilon_{n,m}\right) \\ \end{cases}$$
where  $(\varepsilon_{1,m}, \dots, \varepsilon_{n,m}) \sim \mathcal{N}_n(\mathbf{0}, \rho)$ 

Univariate continuous-time processes Multivariate continuous-time processes

## **Euler-Maruyama and Milstein schemes**

• We consider the general SDE:

$$\begin{cases} dX(t) = \mu(t, X(t)) dt + \sigma(t, X(t)) dW(t) \\ X(0) = x_0 \end{cases}$$

where X(t) and  $\mu(t, X(t))$  are  $n \times 1$  vectors,  $\sigma(t, X(t))$  is a  $n \times p$  matrix and W(t) is a  $p \times 1$  vector

• We assume that  $\mathbb{E}\left[W(t)W(t)^{\top}\right] = \rho t$ , where  $\rho$  is a  $p \times p$  correlation matrix

Univariate continuous-time processes Multivariate continuous-time processes

## **Euler-Maruyama and Milstein schemes**

• The corresponding Euler-Maruyama scheme is:

$$X_{m+1} = X_m + \mu(t_m, X_m) \cdot (t_{m+1} - t_m) + \sigma(t_m, X_m) \sqrt{t_{m+1} - t_m} \cdot \varepsilon_m$$

where  $\varepsilon_{m} \sim \mathcal{N}_{p}(0, \rho)$ 

 In the case of a diagonal system, we retrieve the one-dimensional scheme:

$$X_{j,m+1} = X_{j,m} + \mu_j \left( t_m, X_{j,m} \right) \cdot \left( t_{m+1} - t_m \right) + \sigma_{j,j} \left( t_m, X_{j,m} \right) \cdot \sqrt{t_{m+1} - t_m} \varepsilon_{j,m}$$

However, the random variables  $\varepsilon_{j,m}$  and  $\varepsilon_{j',m}$  may be correlated

Univariate continuous-time processes Multivariate continuous-time processes

## **Euler-Maruyama and Milstein schemes**

We consider the Heston model:

$$\begin{cases} dX(t) = \mu X(t) dt + \sqrt{v(t)} X(t) dW_1(t) \\ dv(t) = a(b - v(t)) dt + \sigma \sqrt{v(t)} dW_2(t) \end{cases}$$

where  $\mathbb{E}[W_1(t) W_2(t)] = \rho t$ . By applying the fixed-interval Euler-Maruyama scheme to  $(\ln X(t), v(t))$ , we obtain:

$$\ln X_{m+1} = \ln X_m + \left(\mu - \frac{1}{2}v_m\right)h + \sqrt{v_m h} \cdot \varepsilon_{1,m}$$

and:

$$v_{m+1} = v_m + a(b - v_m)h + \sigma\sqrt{v_mh} \cdot \varepsilon_{2,m}$$

Here,  $\varepsilon_{1,m}$  and  $\varepsilon_{2,m}$  are two standard Gaussian random variables with correlation  $\rho$ 

Univariate continuous-time processes Multivariate continuous-time processes

### **Euler-Maruyama and Milstein schemes**

The multidimensional version of the Milstein scheme is:

$$\begin{array}{ll} X_{j,m+1} & = & X_{j,m} + \mu_j \left( t_m, X_m \right) \left( t_{m+1} - t_m \right) + \sum_{k=1}^p \sigma_{j,k} \left( t_m, X_m \right) \Delta W_{k,m} + \\ & \sum_{k=1}^p \sum_{j=1}^p \mathcal{L}^{(k)} \sigma_{j,k'} \left( t_m, X_m \right) \mathcal{I}_{(k,k')} \end{array}$$

$$\sum_{k=1}^{m} \sum_{k'=1}^{m} \mathcal{L}^{k'}(\mathcal{L}_m, \mathcal{N}_m)$$

where  $\Delta W_{k,m} = W_k(t_{m+1}) - W_k(t_m)$  and:

$$\mathcal{L}^{(k)}f(t,x) = \sum_{k''=1}^{n} \sigma_{k'',k} \left(t_m, X_m\right) \frac{\partial f(t,x)}{\partial x_{k''}}$$

and:

$$\mathcal{I}_{\left(k,k'\right)} = \int_{t_{m}}^{t_{m+1}} \int_{t_{m}}^{s} \mathrm{d}W_{k}\left(t\right) \, \mathrm{d}W_{k'}\left(s\right)$$

Univariate continuous-time processes Multivariate continuous-time processes

## **Euler-Maruyama and Milstein schemes**

In the case of a diagonal system, the Milstein scheme may be simplified as follows:

where:

$$egin{aligned} \mathcal{I}_{(j,j)} &= & \int_{t_m}^{t_{m+1}} \int_{t_m}^s \mathrm{d} W_j\left(t
ight) \, \mathrm{d} W_j\left(s
ight) \ &= & \int_{t_m}^{t_{m+1}} \left(W_j\left(s
ight) - W_j\left(t_m
ight)
ight) \, \mathrm{d} W_j\left(s
ight) \ &= & rac{1}{2} \left(\left(\Delta W_{j,m}
ight)^2 - \left(t_{m+1} - t_m
ight)
ight) \end{aligned}$$

Univariate continuous-time processes Multivariate continuous-time processes

## **Euler-Maruyama and Milstein schemes**

We deduce that the Milstein scheme is:

$$\begin{array}{lll} X_{j,m+1} & = & X_{j,m} + \mu_{j} \left( t_{m}, X_{j,m} \right) \left( t_{m+1} - t_{m} \right) + \\ & & \sigma_{j,j} \left( t_{m}, X_{j,m} \right) \sqrt{t_{m+1} - t_{m}} \varepsilon_{j,m} + \\ & & \frac{1}{2} \sigma_{j,j} \left( t_{m}, X_{j,m} \right) \partial_{x_{j}} \sigma_{j,j} \left( t_{m}, X_{j,m} \right) \left( t_{m+1} - t_{m} \right) \left( \varepsilon_{j,m}^{2} - 1 \right) \end{array}$$

Univariate continuous-time processes Multivariate continuous-time processes

## **Euler-Maruyama and Milstein schemes**

If we apply the fixed-interval Milstein scheme to the Heston model, we obtain:

$$\ln X_{m+1} = \ln X_m + \left(\mu - \frac{1}{2}v_m\right)h + \sqrt{v_m h} \cdot \varepsilon_{1,m}$$

and:

$$\mathbf{v}_{m+1} = \mathbf{v}_m + \mathbf{a} \left( \mathbf{b} - \mathbf{v}_m \right) \mathbf{h} + \sigma \sqrt{\mathbf{v}_m \mathbf{h}} \cdot \varepsilon_{2,m} + \frac{1}{4} \sigma^2 \mathbf{h} \left( \varepsilon_{2,m}^2 - 1 \right)$$

Here,  $\varepsilon_{1,m}$  and  $\varepsilon_{2,m}$  are two standard Gaussian random variables with correlation  $\rho$ 

Univariate continuous-time processes Multivariate continuous-time processes

#### **Euler-Maruyama and Milstein schemes**

#### Remark

The multidimensional Milstein scheme is generally not used, because the terms  $\mathcal{L}^{(k)}\sigma_{j,k'}(t_m, X_m)\mathcal{I}_{(k,k')}$  are complicated to simulate. For the Heston model, we obtain a very simple scheme, because we only apply the Milstein scheme to the process v(t) and not to the vector process  $(\ln X(t), v(t))$ 

Univariate continuous-time processes Multivariate continuous-time processes

## **Euler-Maruyama and Milstein schemes**

If we also apply the Milstein scheme to  $\ln X(t)$ , we obtain:

$$\ln X_{m+1} = \ln X_m + \left(\mu - \frac{1}{2}v_m\right)h + \sqrt{v_m h} \cdot \varepsilon_{1,m} + A_m$$

where:

$$\begin{aligned} A_m &= \sum_{k=1}^2 \sum_{k'=1}^2 \left( \sum_{k''=1}^2 \sigma_{k'',k} \left( t_m, X_m \right) \frac{\sigma_{1,k'} \left( t_m, X_m \right)}{\partial x_{k''}} \right) \mathcal{I}_{(k,k')} \\ &= \sigma \sqrt{v(t)} \cdot \frac{1}{2\sqrt{v(t)}} \cdot \mathcal{I}_{(2,1)} \\ &= \frac{\sigma}{2} \cdot \mathcal{I}_{(2,1)} \end{aligned}$$

Univariate continuous-time processes Multivariate continuous-time processes

## **Euler-Maruyama and Milstein schemes**

Let  $W_2(t) = \rho W_1(t) + \sqrt{1 - \rho^2} W^*(t)$  where  $W^*(t)$  is a Brownian motion independent from  $W_1(t)$ . It follows that:

$$\begin{split} \mathcal{I}_{(2,1)} &= \int_{t_m}^{t_{m+1}} \int_{t_m}^{s} \mathrm{d}W_2\left(t\right) \,\mathrm{d}W_1\left(s\right) \\ &= \int_{t_m}^{t_{m+1}} \left(\rho W_1\left(s\right) + \sqrt{1 - \rho^2} W^*\left(s\right)\right) \,\mathrm{d}W_1\left(s\right) - \\ &\int_{t_m}^{t_{m+1}} \left(\rho W_1\left(t_m\right) + \sqrt{1 - \rho^2} W^*\left(t_m\right)\right) \,\mathrm{d}W_1\left(s\right) \\ &= \rho \int_{t_m}^{t_{m+1}} \left(W_1\left(s\right) - W_1\left(t_m\right)\right) \,\mathrm{d}W_1\left(s\right) + \\ &\sqrt{1 - \rho^2} \int_{t_m}^{t_{m+1}} \left(W^*\left(s\right) - W^*\left(t_m\right)\right) \,\mathrm{d}W_1\left(s\right) \end{split}$$

and:

$$\mathcal{I}_{(2,1)} = \frac{1}{2} \rho \left( \left( \Delta W_{1,m} \right)^2 - \left( t_{m+1} - t_m \right) \right) + B_m$$

Univariate continuous-time processes Multivariate continuous-time processes

## **Euler-Maruyama and Milstein schemes**

We finally deduce that the multidimensional Milstein scheme of the Heston model is:

$$\ln X_{m+1} = \ln X_m + \left(\mu - \frac{1}{2}v_m\right)h + \sqrt{v_m h} \cdot \varepsilon_{1,m} + \frac{1}{4}\rho\sigma h\left(\varepsilon_{1,m}^2 - 1\right) + B_m$$

and:

$$v_{m+1} = v_m + a(b - v_m)h + \sigma\sqrt{v_mh} \cdot \varepsilon_{2,m} + \frac{1}{4}\sigma^2 h(\varepsilon_{2,m}^2 - 1)$$

where  $B_m$  is a correction term defined by:

$$B_{m} = \sqrt{1 - \rho^{2}} \int_{t_{m}}^{t_{m+1}} \left( W^{\star}\left(s\right) - W^{\star}\left(t_{m}\right) \right) \, \mathrm{d}W_{1}\left(s\right)$$

**Computing integrals** Variance reduction Quasi-Monte Carlo simulation methods

## A basic example

- Suppose we have a circle with radius r and a 2r × 2r square of the same center. Since the area of the circle is equal to πr<sup>2</sup>, the numerical calculation of π is equivalent to compute the area of the circle with r = 1
- In this case, the area of the square is 4, and we have:

$$\pi = 4 \frac{\mathcal{A}(\text{circle})}{\mathcal{A}(\text{square})}$$

• To determine  $\pi$ , we simulate  $n_S$  random vectors  $(u_s, v_s)$  of uniform random variables  $\mathcal{U}_{[-1,1]}$  and we obtain:

$$\pi = \lim_{n_S \to \infty} 4 \frac{n_c}{n}$$

where  $n_c$  is the number of points  $(u_s, v_s)$  in the circle:

$$n_{c} = \sum_{s=1}^{n_{s}} \mathbb{1} \left\{ u_{s}^{2} + v_{s}^{2} \leq r^{2} \right\}$$

**Computing integrals** Variance reduction Quasi-Monte Carlo simulation methods

## A basic example



**Computing integrals** Variance reduction Quasi-Monte Carlo simulation methods

## Theoretical framework

• We consider the multiple integral:

$$I = \int \cdots \int_{\Omega} \varphi(x_1, \ldots, x_n) \, \mathrm{d} x_1 \cdots \mathrm{d} x_n$$

- Let  $X = (X_1, \ldots, X_n)$  be a uniform random vector with probability distribution  $\mathcal{U}_{[\Omega]}$ , such that  $\Omega$  is inscribed within the hypercube  $[\Omega]$
- The pdf is:

$$f(x_1,\ldots,x_n)=1$$

• We deduce that:

$$I = \int \cdots \int_{[\Omega]} \mathbb{1} \{ (x_1, \dots, x_n) \in \Omega \} \cdot \varphi (x_1, \dots, x_n) \, \mathrm{d} x_1 \cdots \mathrm{d} x_n$$
  
=  $\mathbb{E} [\mathbb{1} \{ (X_1, \dots, X_n) \in \Omega \} \cdot \varphi (X_1, \dots, X_n) ]$   
=  $\mathbb{E} [h (X_1, \dots, X_n)]$ 

where:

$$h(x_1,\ldots,x_n) = \mathbb{1} \{(x_1,\ldots,x_n) \in \Omega\} \cdot \varphi(x_1,\ldots,x_n)$$

**Computing integrals** Variance reduction Quasi-Monte Carlo simulation methods

## Theoretical framework

• Let  $\hat{I}_{n_s}$  be the random variable defined by:

$$\hat{I}_{n_{S}} = \frac{1}{n_{S}} \sum_{s=1}^{n_{S}} h(X_{1,s}, \dots, X_{n,s})$$

where  $\{X_{1,s}, \ldots, X_{n,s}\}_{s \ge 1}$  is a sequence of *iid* random vectors with probability distribution  $\overline{\mathcal{U}}_{[\Omega]}$ 

• Using the strong law of large numbers, we obtain:

$$\lim_{n_s \to \infty} \hat{I}_{n_s} = \mathbb{E} \left[ h \left( X_1, \dots, X_n \right) \right]$$
$$= \int \cdots \int_{\Omega} \varphi \left( x_1, \dots, x_n \right) \, \mathrm{d} x_1 \cdots \mathrm{d} x_n$$

• Moreover, the central limit theorem states that:

$$\lim_{n_{s}\to\infty}\sqrt{n_{S}}\left(\frac{\hat{I}_{n_{s}}-I}{\sigma\left(h\left(X_{1},\ldots,X_{n}\right)\right)}\right)=\mathcal{N}\left(0,1\right)$$

**Computing integrals** Variance reduction Quasi-Monte Carlo simulation methods

### Theoretical framework

• When  $n_S$  is large, we can deduce the following confidence interval:

$$\left[\hat{I}_{n_{S}}-c_{\alpha}\cdot\frac{\hat{S}_{n_{S}}}{\sqrt{n_{S}}},\hat{I}_{n_{S}}+c_{\alpha}\cdot\frac{\hat{S}_{n_{S}}}{\sqrt{n_{S}}}\right]$$

where  $\alpha$  is the confidence level,  $c_{\alpha} = \Phi^{-1} \left( \left( 1 + \alpha \right) / 2 \right)$  and  $\hat{S}_{n_s}$  is the usual estimate of the standard deviation:

$$\hat{S}_{n_S} = \sqrt{\frac{1}{n_S - 1} \sum_{s=1}^{n_S} h^2 (X_{1,s}, \dots, X_{n,s}) - \hat{I}_{n_s}}$$

**Computing integrals** Variance reduction Quasi-Monte Carlo simulation methods

## Theoretical framework



**Computing integrals** Variance reduction Quasi-Monte Carlo simulation methods

## Extension to the calculation of mathematical expectations

Let X = (X<sub>1</sub>,..., X<sub>n</sub>) be a random vector with probability distribution
 F. We have:

$$\mathbb{E}\left[\varphi\left(X_{1},\ldots,X_{n}\right)\right] = \int \cdots \int \varphi\left(x_{1},\ldots,x_{n}\right) \, \mathrm{d}\mathbf{F}\left(x_{1},\cdots,x_{n}\right)$$
$$= \int \cdots \int \varphi\left(x_{1},\ldots,x_{n}\right) f\left(x_{1},\cdots,x_{n}\right) \, \mathrm{d}x_{1}\cdots \mathrm{d}x_{n}$$
$$= \int \cdots \int h\left(x_{1},\ldots,x_{n}\right) \, \mathrm{d}x_{1}\cdots \mathrm{d}x_{n}$$

where *f* is the density function

• The Monte Carlo estimator of this integral is:

$$\hat{I}_{n_{S}} = \frac{1}{n_{S}} \sum_{s=1}^{n_{S}} \varphi \left( X_{1,s}, \ldots, X_{n,s} \right)$$

where  $\{X_{1,s}, \ldots, X_{n,s}\}_{s \ge 1}$  is a sequence of *iid* random vectors with probability distribution  $\mathbf{F}$ 

**Computing integrals** Variance reduction Quasi-Monte Carlo simulation methods

#### Extension to the calculation of mathematical expectations

• The price of the look-back option with maturity T is given by:

$$\mathcal{C} = e^{-rT} \mathbb{E}\left[\left(S(T) - \min_{0 \le t \le T} S(t)\right)^{+}\right]$$

• The price S(t) of the underlying asset is given by the following SDE:  $dS(t) = rS(t) dt + \sigma S(t) dW(t)$ 

where r is the interest rate and  $\sigma$  is the volatility of the asset

• For a given simulation *s*, we have:

$$S_{m+1}^{(s)} = S_m^{(s)} \cdot \exp\left(\left(r - \frac{1}{2}\sigma^2\right)\left(t_{m+1} - t_m\right) + \sigma\sqrt{t_{m+1} - t_m} \cdot \varepsilon_m^{(s)}\right)$$

where  $\varepsilon_m^{(s)} \sim \mathcal{N}(0,1)$  and  $T = t_M$ 

• The Monte Carlo estimator of the option price is then equal to:

$$\widehat{\mathcal{C}} = \frac{e^{-rT}}{n_S} \sum_{s=1}^{n_S} \left( S_M^{(s)} - \min_m S_m^{(s)} \right)^+$$

**Computing integrals** Variance reduction Quasi-Monte Carlo simulation methods

## Extension to the calculation of mathematical expectations



Figure: Computing the look-back option price

**Computing integrals** Variance reduction Quasi-Monte Carlo simulation methods

## Extension to the calculation of mathematical expectations

• Let us consider the following integral:

$$I = \int \cdots \int h(x_1, \ldots, x_n) \, \mathrm{d} x_1 \cdots \mathrm{d} x_n$$

• We can write it as follows:

$$I = \int \cdots \int \frac{h(x_1, \ldots, x_n)}{f(x_1, \cdots, x_n)} f(x_1, \cdots, x_n) \, \mathrm{d}x_1 \cdots \mathrm{d}x_n$$

where  $f(x_1, \dots, x_n)$  is a multidimensional density function

• We deduce that:

$$I = \mathbb{E}\left[\frac{h(X_1,\ldots,X_n)}{f(X_1,\ldots,X_n)}\right]$$

• This implies that we can compute an integral with the MC method by using any multidimensional distribution function

**Computing integrals** Variance reduction Quasi-Monte Carlo simulation methods

## Extension to the calculation of mathematical expectations

If we apply this result to the calculation of  $\pi$ , we have:

$$\pi = \iint_{x^2 + y^2 \le 1} dx dy = \iint \mathbb{1} \{x^2 + y^2 \le 1\} dx dy$$
$$= \iint \frac{\mathbb{1} \{x^2 + y^2 \le 1\}}{\phi(x)\phi(y)} \phi(x)\phi(y) dx dy$$

We deduce that:

$$\pi = \mathbb{E}\left[\frac{\mathbbm{1}\left\{X^2 + Y^2 \le 1\right\}}{\phi(X)\phi(Y)}\right]$$

where X and Y are two independent standard Gaussian random variables. We can then estimate  $\pi$  by:

$$\hat{\pi}_{n_{S}} = \frac{1}{n_{S}} \sum_{s=1}^{n_{S}} \frac{\mathbb{1}\left\{x_{s}^{2} + y_{s}^{2} \leq 1\right\}}{\phi(x_{s})\phi(y_{s})}$$

where  $x_s$  and  $y_s$  are two independent random variates from the probability distribution  $\mathcal{N}(0, 1)$ 

**Computing integrals** Variance reduction Quasi-Monte Carlo simulation methods

### Extension to the calculation of mathematical expectations



Figure: Computing *pi* with normal random numbers

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

#### Variance reduction

- We consider two unbiased estimators  $\hat{l}_{n_s}^{(1)}$  and  $\hat{l}_{n_s}^{(2)}$  of the integral I, meaning that  $\mathbb{E}\left[\hat{l}_{n_s}^{(1)}\right] = \mathbb{E}\left[\hat{l}_{n_s}^{(2)}\right] = I$
- We say that  $\hat{l}_{n_S}^{(1)}$  is more efficient than  $\hat{l}_{n_S}^{(2)}$  if the inequality  $\operatorname{var}\left(\hat{l}_{n_S}^{(1)}\right) \leq \operatorname{var}\left(\hat{l}_{n_S}^{(2)}\right)$  holds for all values of  $n_S$  that are larger than  $n_S^{\star}$
- Variance reduction is then the search of more efficient estimators

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

#### Antithetic variates

• We have:

$$I = \mathbb{E}\left[\varphi\left(X_1, \ldots, X_n\right)\right] = \mathbb{E}\left[Y\right]$$

where  $Y = \varphi(X_1, \dots, X_n)$  is a one-dimensional random variable • It follows that:

$$\hat{I}_{n_{S}} = \bar{Y}_{n_{S}} = \frac{1}{n_{S}} \sum_{s=1}^{n_{S}} Y_{s}$$

• We now consider the estimators  $\overline{Y}_{n_s}$  and  $\overline{Y}'_{n_s}$  based on two different samples and define  $\overline{Y}^*$  as follows:

$$\bar{Y}^{\star} = \frac{\bar{Y}_{n_S} + \bar{Y}_{n_S}'}{2}$$

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

## Antithetic variates

• We have:

$$\mathbb{E}\left[\bar{Y}^{\star}\right] = \mathbb{E}\left[\frac{\bar{Y}_{n_{S}} + \bar{Y}_{n_{S}}'}{2}\right] = \mathbb{E}\left[\bar{Y}_{n_{S}}\right] = I$$

and:

$$\operatorname{var}\left(\bar{Y}^{\star}\right) = \operatorname{var}\left(\frac{\bar{Y}_{n_{s}} + \bar{Y}_{n_{s}}'}{2}\right)$$
$$= \frac{1}{4}\operatorname{var}\left(\bar{Y}_{n_{s}}\right) + \frac{1}{4}\operatorname{var}\left(\bar{Y}_{n_{s}}'\right) + \frac{1}{2}\operatorname{cov}\left(\bar{Y}_{n_{s}}, \bar{Y}_{n_{s}}'\right)$$
$$= \frac{1 + \rho\left\langle\bar{Y}_{n_{s}}, \bar{Y}_{n_{s}}'\right\rangle}{2}\operatorname{var}\left(\bar{Y}_{n_{s}}\right)$$
$$= \frac{1 + \rho\left\langle Y_{s}, Y_{s}'\right\rangle}{2}\operatorname{var}\left(\bar{Y}_{n_{s}}\right)$$

where  $\rho \langle Y_s, Y'_s \rangle$  is the correlation between  $Y_s$  and  $Y'_s$ 

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

#### Antithetic variates

• Because we have  $\rho \langle Y_s, Y'_s \rangle \leq 1$ , we deduce that:

$$\operatorname{var}\left(\bar{Y}^{\star}\right) \leq \operatorname{var}\left(\bar{Y}_{n_{S}}\right)$$

- If we simulate the random variates Y<sub>s</sub> and Y'<sub>s</sub> independently, ρ (Y<sub>s</sub>, Y'<sub>s</sub>) is equal to zero and the variance of the estimator is divided by 2
- However, the number of simulations have been multiplied by two. The efficiency of the estimator has then not been improved

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

## Antithetic variates

• The underlying idea of antithetic variables is therefore to use two perfectly dependent random variables  $Y_s$  and  $Y'_s$ :

$$Y_{s}^{\prime}=\psi\left(Y_{s}\right)$$

- where  $\psi$  is a deterministic function
- This implies that:

$$\bar{Y}^{\star}_{n_{\mathcal{S}}} = \frac{1}{n_{\mathcal{S}}} \sum_{s=1}^{n_{\mathcal{S}}} Y^{\star}_{s}$$

where:

$$Y_{s}^{\star} = rac{Y_{s} + Y_{s}'}{2} = rac{Y_{s} + \psi(Y_{s})}{2}$$

• It follows that:

$$\rho\left\langle \bar{Y}_{n_{S}}, \bar{Y}_{n_{S}}^{\prime} \right\rangle = \rho\left\langle Y, Y^{\prime} \right\rangle = \rho\left\langle Y, \psi\left(Y\right) \right\rangle$$

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

#### Antithetic variates

- Minimizing the variance  $var(\bar{Y}^{\star})$  is then equivalent to minimize the correlation  $\rho \langle Y, \psi(Y) \rangle$
- We also know that the correlation reaches its lower bound if the dependence function between Y and ψ(Y) is equal to the lower Frchet copula:

$$\mathbf{C}\left\langle Y,\psi\left(Y
ight)
ight
angle =\mathbf{C}^{-}$$

• However,  $\rho \langle Y, \psi(Y) \rangle$  is not necessarily equal to -1 except in some special cases

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

### Antithetic variates

- We consider the one-dimensional case with  $Y = \varphi(X)$
- If we assume that  $\varphi$  is an increasing function, it follows that:

$$\mathbf{C}\left\langle Y,\psi\left(Y\right)\right\rangle = \mathbf{C}\left\langle \varphi\left(X\right),\psi\left(\varphi\left(X\right)\right)\right\rangle = \mathbf{C}\left\langle X,\psi\left(X\right)\right\rangle$$

 To obtain the lower bound C<sup>-</sup>, X and ψ(X) must be countermonotonic:

$$\psi\left(X\right) = \mathbf{F}^{-1}\left(1 - \mathbf{F}\left(X\right)\right)$$

where **F** is the probability distribution of X

• For instance, if  $X \sim \mathcal{U}_{[0,1]}$ , we have X' = 1 - X. In the case where  $X \sim \mathcal{N}(0,1)$ , we have:

$$X' = \Phi^{-1} (1 - \Phi(X)) = \Phi^{-1} (\Phi(-X)) = -X$$

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

## Antithetic variates

#### Example #9

We consider the following functions:

• 
$$\varphi_1(x) = x^3 + x + 1$$
  
•  $\varphi_2(x) = x^4 + x^2 + 1$   
•  $\varphi_2(x) = x^4 + x^3 + x^2 + 1$ 

3 
$$\varphi_3(x) = x^4 + x^3 + x^2 + x + 1$$
Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Antithetic variates

For each function, we want to estimate  $I = \mathbb{E} \left[ \varphi \left( \mathcal{N} \left( 0, 1 \right) \right) \right]$  using the antithetic estimator:

$$\bar{Y}_{n_{S}}^{\star} = \frac{1}{n_{S}} \sum_{s=1}^{n_{S}} \frac{\varphi\left(X_{s}\right) + \varphi\left(-X_{s}\right)}{2}$$

where  $X_{s} \sim \mathcal{N}\left(0,1
ight)$ 

• Let 
$$X \sim \mathcal{N}(0, 1)$$
. We have  $\mathbb{E}[X^2] = 1$ ,  
 $\mathbb{E}[X^{2m}] = (2m - 1)\mathbb{E}[X^{2m-2}]$  and  $\mathbb{E}[X^{2m+1}] = 0$  for  $m \in \mathbb{N}$ 

• We obtain the following results:

$$\begin{array}{c|ccc} \varphi\left(x\right) & \varphi_{1}\left(x\right) & \varphi_{2}\left(x\right) & \varphi_{3}\left(x\right) \\ \hline \mathbb{E}\left[\varphi\left(X_{s}\right)\right] \text{ or } \mathbb{E}\left[\varphi\left(-X_{s}\right)\right] & 1 & 5 & 5 \\ \operatorname{var}\left(\varphi\left(X_{s}\right)\right) \text{ or } \operatorname{var}\left(\varphi\left(-X_{s}\right)\right) & 22 & 122 & 144 \\ \operatorname{cov}\left(\varphi\left(X_{s}\right), \varphi\left(-X_{s}\right)\right) & -22 & 122 & 100 \\ \rho\left\langle\varphi\left(X_{s}\right), \varphi\left(-X_{s}\right)\right\rangle & -1 & 1 & \frac{25}{36} \end{array}$$

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

#### Antithetic variates

To understand these numerical results, we must study the relationship between  $\mathbf{C} \langle X, X' \rangle$  and  $\mathbf{C} \langle Y, Y' \rangle$ . Indeed, we have:

$$\left\{ \mathbf{C} \left\langle X, X' \right\rangle = \mathbf{C}^{-} \Rightarrow \mathbf{C} \left\langle Y, Y' \right\rangle = \mathbf{C}^{-} \right\} \Leftrightarrow \varphi' \left( x \right) \ge 0$$

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Antithetic variates



Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Application to the geometric Brownian motion

• In the Gaussian case  $X \sim \mathcal{N}(0, 1)$ , the antithetic variable is:

$$X' = -X$$

• As the simulation of  $Y \sim \mathcal{N}(\mu, \sigma^2)$  is obtained using the relationship  $Y = \mu + \sigma X$ , we deduce that the antithetic variable is:

$$Y' = \mu - \sigma X = \mu - \sigma \frac{(Y - \mu)}{\sigma} = 2\mu - Y$$

• If we consider the geometric Brownian motion, the fixed-interval scheme is:

$$X_{m+1} = X_m \cdot \exp\left(\left(\mu - \frac{1}{2}\sigma^2\right)h + \sigma\sqrt{h}\cdot\varepsilon_m\right)$$

whereas the antithetic path is given by:

$$X'_{m+1} = X'_m \cdot \exp\left(\left(\mu - \frac{1}{2}\sigma^2\right)h - \sigma\sqrt{h}\cdot\varepsilon_m\right)$$

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Application to the geometric Brownian motion



Figure: Antithetic simulation of the GBM process

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

## Application to the geometric Brownian motion

• In the multidimensional case, we recall that:

$$X_{j,m+1} = X_{j,m} \cdot \exp\left(\left(\mu_j - \frac{1}{2}\sigma_j^2\right)h + \sigma_j\sqrt{h}\cdot\varepsilon_{j,m}\right)$$

where  $\varepsilon_m = (\varepsilon_{1,m}, \ldots, \varepsilon_{n,m}) \sim \mathcal{N}_n(\mathbf{0}, \rho)$ 

- We simulate  $\varepsilon_m$  by using the relationship  $\varepsilon_m = P \cdot \eta_m$  where  $\eta_m \sim \mathcal{N}_n(\mathbf{0}, I_n)$  and P is the Cholesky matrix satisfying  $PP^{\top} = \rho$
- The antithetic trajectory is then:

$$X'_{j,m+1} = X'_{j,m} \cdot \exp\left(\left(\mu_j - \frac{1}{2}\sigma_j^2\right)h + \sigma_j\sqrt{k}\cdot\varepsilon'_{j,m}\right)$$

where:

$$\varepsilon'_m = -P \cdot \eta_m = -\varepsilon_m$$

• We verify that  $\varepsilon'_{m} = (\varepsilon'_{1,m}, \dots, \varepsilon'_{n,m}) \sim \mathcal{N}_{n}(\mathbf{0}, \rho)$ 

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Application to the geometric Brownian motion

In the Black-Scholes model, the price of the spread option with maturity T and strike K is given by:

$$\mathcal{C}=e^{-r\mathcal{T}}\mathbb{E}\left[\left(S_{1}\left(\mathcal{T}
ight)-S_{2}\left(\mathcal{T}
ight)-\mathcal{K}
ight)^{+}
ight]$$

where the prices  $S_1(t)$  and  $S_2(t)$  of the underlying assets are given by the following SDE:

$$\begin{cases} \mathrm{d}S_{1}(t) = rS_{1}(t) \mathrm{d}t + \sigma_{1}S_{1}(t) \mathrm{d}W_{1}(t) \\ \mathrm{d}S_{2}(t) = rS_{2}(t) \mathrm{d}t + \sigma_{2}S_{2}(t) \mathrm{d}W_{2}(t) \end{cases}$$

and  $\mathbb{E}\left[W_{1}\left(t\right)W_{2}\left(t\right)
ight]=
ho t$ 

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Application to the geometric Brownian motion

• To calculate the option price using Monte Carlo methods, we simulate the bivariate GBM  $S_1(t)$  and  $S_2(t)$  and the MC estimator is:

$$\hat{\mathcal{C}}_{\mathrm{MC}} = \frac{e^{-rT}}{n_{S}} \sum_{s=1}^{n_{S}} \left( S_{1}^{(s)}(T) - S_{2}^{(s)}(T) - K \right)^{+}$$

where  $S_j^{(s)}(T)$  is the  $s^{\text{th}}$  simulation of the terminal value  $S_j(T)$ • For the AV estimator, we obtain:

$$\hat{\mathcal{C}}_{AV} = \frac{e^{-rT}}{n_S} \sum_{s=1}^{n_S} \frac{\left(S_1^{(s)}(T) - S_2^{(s)}(T) - K\right)^+ + \left(S_1^{'(s)}(T) - S_2^{'(s)}(T) - K\right)^+}{2}$$

where  $S_{j}^{\prime(s)}(T)$  is the antithetic variate of  $S_{j}^{(s)}(T)$ 

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Application to the geometric Brownian motion



Figure: Probability density function of  $\widehat{C}_{\mathrm{MC}}$  and  $\widehat{C}_{\mathrm{AV}}$  ( $n_{S} = 1\,000$ )

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

### Control variates

- Let Y = φ (X<sub>1</sub>,..., X<sub>n</sub>) and V be a random variable with known mean 𝔼 [V]
- We define Z as follows:  $Z = Y + c \cdot (V \mathbb{E}[V])$
- We deduce that:

$$\mathbb{E}[Z] = \mathbb{E}[Y + c \cdot (V - \mathbb{E}[V])]$$
  
=  $\mathbb{E}[Y] + c \cdot \mathbb{E}[V - \mathbb{E}[V]]$   
=  $\mathbb{E}[\varphi(X_1, \dots, X_n)]$ 

and:

$$\operatorname{var}(Z) = \operatorname{var}(Y + c \cdot (V - \mathbb{E}[V]))$$
  
= 
$$\operatorname{var}(Y) + 2 \cdot c \cdot \operatorname{cov}(Y, V) + c^{2} \cdot \operatorname{var}(V)$$

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

#### Control variates

• It follows that:

$$\operatorname{var}(Z) \leq \operatorname{var}(Y) \quad \Leftrightarrow \quad 2 \cdot c \cdot \operatorname{cov}(Y, V) + c^2 \cdot \operatorname{var}(V) \leq 0$$
  
 $\Rightarrow \quad c \cdot \operatorname{cov}(Y, V) \leq 0$ 

- In order to obtain a lower variance, a necessary condition is that c and cov (Y, V) have opposite signs
- The minimum is obtained when  $\partial_c \operatorname{var}(Z) = 0$  or equivalently when:

$$c^{\star} = -\frac{\operatorname{cov}(Y, V)}{\operatorname{var}(V)} = -\beta$$

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

#### **Control** variates

• The optimal value  $c^*$  is then equal to the opposite of the beta of Y with respect to the control variate V. In this case, we have:

$$Z = Y - \frac{\operatorname{cov}(Y, V)}{\operatorname{var}(V)} \cdot (V - \mathbb{E}[V])$$

and:

$$\operatorname{var}(Z) = \operatorname{var}(Y) - \frac{\operatorname{cov}^2(Y, V)}{\operatorname{var}(V)} = (1 - \rho^2 \langle Y, V \rangle) \cdot \operatorname{var}(Y)$$

• This implies that we have to choose a control variate V that is highly (positively or negatively) correlated with Y in order to reduce the variance

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

## Control variates

#### Example

We consider that  $X \sim \mathcal{U}_{[0,1]}$  and  $\varphi(x) = e^x$ . We would like to estimate:

$$I = \mathbb{E}\left[\varphi\left(X\right)\right] = \int_0^1 e^x \, \mathrm{d}x$$

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

## **Control** variates

- We set  $Y = e^X$  and V = X
- We know that  $\mathbb{E}\left[V\right] = \frac{1}{2}$  and  $\operatorname{var}\left(V\right) = \frac{1}{12}$
- It follows that:

$$\operatorname{var}(Y) = \mathbb{E}\left[Y^{2}\right] - \mathbb{E}^{2}\left[Y\right]$$
$$= \int_{0}^{1} e^{2x} \, \mathrm{d}x - \left(\int_{0}^{1} e^{x} \, \mathrm{d}x\right)^{2}$$
$$= \left[\frac{e^{2x}}{2}\right]_{0}^{1} - \left(e^{1} - e^{0}\right)^{2}$$
$$= \frac{4e - e^{2} - 3}{2}$$
$$\approx 0.2420$$

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Control variates

• We have:

$$\operatorname{cov}(Y, V) = \mathbb{E}[VY] - \mathbb{E}[V] \mathbb{E}[Y]$$
$$= \int_{0}^{1} x e^{x} dx - \frac{1}{2} (e^{1} - e^{0})$$
$$= \left[ x e^{x} \right]_{0}^{1} - \int_{0}^{1} e^{x} dx - \frac{1}{2} (e^{1} - e^{0})$$
$$= \frac{3 - e}{2}$$
$$\approx 0.1409$$

• If we consider the VC estimator Z defined by:

$$Z = Y - \frac{\operatorname{cov}(Y, V)}{\operatorname{var}(V)} \cdot (V - \mathbb{E}[V])$$
$$= Y - (18 - 6e) \cdot \left(V - \frac{1}{2}\right)$$

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Control variates

- We have  $\beta \approx 1.6903$
- We obtain:

$$\operatorname{var}(Z) = \operatorname{var}(Y) - \frac{\operatorname{cov}^2(Y, V)}{\operatorname{var}(V)}$$
$$= \frac{4e - e^2 - 3}{2} - 3 \cdot (3 - e)^2$$
$$\approx 0.0039$$

• We conclude that we have dramatically reduced the variance of the estimator, because we have:

$$\frac{\operatorname{var}\left(\hat{I}_{\mathrm{CV}}\right)}{\operatorname{var}\left(\hat{I}_{\mathrm{MC}}\right)} = \frac{\operatorname{var}\left(Z\right)}{\operatorname{var}\left(Y\right)} = 1.628\%$$

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Control variates



Figure: Understanding the variance reduction in control variates

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

#### Control variates

•  $\hat{Y}$  is the conditional expectation of Y with respect to V:

$$\mathbb{E}\left[Y \mid V\right] = \mathbb{E}\left[Y\right] + \beta\left(V - \mathsf{E}\left[V\right]\right)$$

- This is the best linear estimator of Y
- The residual U of the linear regression is then equal to:

$$U = Y - \hat{Y} = (Y - \mathbb{E}[Y]) - \beta (V - \mathsf{E}[V])$$

• The CV estimator Z is a translation of the residual in order to satisfy  $\mathbb{E}[Z] = \mathbb{E}[Y]$ :

$$Z = \mathbb{E}[Y] + U = Y - \beta (V - \mathsf{E}[V])$$

• By construction, the variance of the residual *U* is lower than the variance of the random variable *Y*. We conclude that:

$$\operatorname{var}(Z) = \operatorname{var}(U) \leq \operatorname{var}(Y)$$

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

### Control variates

We can therefore obtain a large variance reduction if the following conditions are satisfied:

- the control variate V largely explains the random variable Y
- the relationship between Y and V is almost linear

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

### Control variates

The price of an arithmetic Asian call option is given by:

$$\mathcal{C} = e^{-r\mathcal{T}}\mathbb{E}\left[\left(ar{S} - K
ight)^+
ight]$$

where K is the strike of the option and  $\overline{S}$  denotes the average of S(t) on a given number of fixing dates<sup>2</sup> { $t_1, \ldots, t_{n_F}$ }:

$$ar{S} = rac{1}{n_F}\sum_{m=1}^{n_F}S\left(t_m
ight)$$

We can estimate the option price using the Black-Scholes model

<sup>2</sup>We have 
$$t_{n_F} = T$$
.

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

#### Control variates

We can also reduce the variance of the MC estimator by considering the following control variates:

- the terminal value  $V_1 = S(T)$  of the underlying asset;
- 2 the average value  $V_2 = \bar{S}$ ;
- 3 the discounted payoff of the call option  $V_3 = e^{-rT} (S(T) K)^+$ ;
- the discounted payoff of the geometric Asian call option  $V_4 = e^{-rT} \left( \tilde{S} - K \right)^+$  where:

$$\tilde{S} = \left(\prod_{m=1}^{n_F} S\left(t_m\right)\right)^{1/n_F}$$

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

## Control variates

For these control variates, we know the expected value

• In the first case, we have:

$$\mathbb{E}\left[S\left(T\right)\right]=S_{0}e^{rT}$$

• In the first case, we have:

$$\mathbb{E}\left[\bar{S}\right] = \frac{S_0}{n_F} \sum_{m=1}^{n_F} e^{rt_m}$$

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

## Control variates

• The expected value of the third control variate is the Black-Scholes formula of the European call option:

$$\tilde{S} = \left(\prod_{m=1}^{n_F} S_0 e^{\left(r - \frac{1}{2}\sigma^2\right)t_m + \sigma W(t_m)}\right)^{1/n_F} = S_0 \cdot \exp\left(\left(r - \frac{1}{2}\sigma^2\right)\overline{t} + \sigma \overline{W}\right)$$

where:

$$\overline{t} = \frac{1}{n_F} \sum_{m=1}^{n_F} t_m$$

and:

$$\bar{W} = \frac{1}{n_F} \sum_{m=1}^{n_F} W(t_m)$$

Because S
 has a log-normal distribution, we deduce that the expected value of the fourth control variate is also given by a Black-Scholes formula

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Control variates



Figure: CV estimator of the arithmetic Asian call option

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

#### Control variates

 The previous approach can be extended in the case of several control variates:

$$Z = Y + \sum_{i=1}^{n_{CV}} c_i \cdot (V_i - \mathbb{E}[V_i]) = Y + c^{\top} (V - \mathbb{E}[V])$$

where  $c = (c_1, ..., c_{n_{CV}})$  and  $V = (V_1, ..., V_{n_{CV}})$ 

• We can show that the optimal value of *c* is equal to:

$$c^{\star} = -\operatorname{cov}\left(V,V\right)^{-1} \cdot \operatorname{cov}\left(V,Y\right)$$

Minimizing the variance of Z is equivalent to minimize the variance of U:

$$U = Y - \hat{Y} = Y - (\alpha + \beta^{\top} V)$$

• We deduce that  $c^* = -\beta$ . It follows that

$$\operatorname{var}(Z) = \operatorname{var}(U) = (1 - R^2) \cdot \operatorname{var}(Y)$$

where  $R^2$  is the *R*-squared coefficient of the linear regression  $Y = \alpha + \beta^\top V + U$ 

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Control variates

Table: Linear regression between the Asian call option and the control variates

| $\hat{lpha}$ | $\hat{eta}_1$ | $\hat{eta}_2$ | $\hat{eta}_{3}$ | $\hat{eta}_{	extsf{4}}$ | $R^2$ | $1 - R^{2}$ |
|--------------|---------------|---------------|-----------------|-------------------------|-------|-------------|
| -51.482      | 0.036         | 0.538         |                 |                         | 90.7% | 9.3%        |
| -24.025      | -0.346        | 0.595         | 0.548           |                         | 96.5% | 3.5%        |
| -4.141       | 0.069         |               | 0.410           |                         | 81.1% | 18.9%       |
| -38.727      |               | 0.428         | 0.174           |                         | 92.9% | 7.1%        |
| -1.559       | -0.040        | 0.054         | 0.111           | 0.905                   | 99.8% | 0.2%        |

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

#### Importance sampling

Let X = (X<sub>1</sub>,...,X<sub>n</sub>) be a random vector with distribution function F
We have:

$$I = \mathbb{E} \left[ \varphi \left( X_1, \dots, X_n \right) \mid \mathbf{F} \right] \\ = \int \cdots \int \varphi \left( x_1, \dots, x_n \right) f \left( x_1, \dots, x_n \right) \, \mathrm{d} x_1 \cdots \mathrm{d} x_n$$

where  $f(x_1, \ldots, x_n)$  is the probability density function of X

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

#### Importance sampling

• It follows that:

$$I = \int \cdots \int \left( \varphi \left( x_1, \dots, x_n \right) \frac{f \left( x_1, \dots, x_n \right)}{g \left( x_1, \dots, x_n \right)} \right) g \left( x_1, \dots, x_n \right) \, \mathrm{d} x_1 \cdots \mathrm{d} x_n$$
$$= \mathbb{E} \left[ \varphi \left( X_1, \dots, X_n \right) \frac{f \left( X_1, \dots, X_n \right)}{g \left( X_1, \dots, X_n \right)} \middle| \mathbf{G} \right]$$
$$= \mathbb{E} \left[ \varphi \left( X_1, \dots, X_n \right) \mathcal{L} \left( X_1, \dots, X_n \right) \middle| \mathbf{G} \right]$$

where  $g(x_1, \ldots, x_n)$  is the probability density function of **G** and  $\mathcal{L}$  is the likelihood ratio:

$$\mathcal{L}(x_1,\ldots,x_n)=\frac{f(x_1,\ldots,x_n)}{g(x_1,\ldots,x_n)}$$

• The values taken by  $\mathcal{L}(x_1, \ldots, x_n)$  are also called the importance sampling weights

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Importance sampling

• Using the vector notation, the relationship becomes:

$$\mathbb{E}\left[\varphi\left(X\right)\mid\mathsf{F}\right]=\mathbb{E}\left[\varphi\left(X\right)\mathcal{L}\left(X\right)\mid\mathsf{G}\right]$$

• It follows that:

$$\mathbb{E}\left[\hat{I}_{\mathrm{MC}}\right] = \mathbb{E}\left[\hat{I}_{\mathrm{IS}}\right] = I$$

where  $\hat{I}_{\rm MC}$  and  $\hat{I}_{\rm IS}$  are the Monte Carlo and importance sampling estimators of I

• We also deduce that:

$$\operatorname{var}\left(\hat{h}_{\mathrm{IS}}\right) = \operatorname{var}\left(\varphi\left(X\right)\mathcal{L}\left(X\right) \mid \mathbf{G}\right)$$

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Importance sampling

• It follows that:

$$\operatorname{var}\left(\hat{I}_{\mathrm{IS}}\right) = \mathbb{E}\left[\varphi^{2}\left(X\right)\mathcal{L}^{2}\left(X\right) \mid \mathbf{G}\right] - \mathbb{E}^{2}\left[\varphi\left(X\right)\mathcal{L}\left(X\right) \mid \mathbf{G}\right]$$
$$= \int \varphi^{2}\left(x\right)\mathcal{L}^{2}\left(x\right)g\left(x\right)\,\mathrm{d}x - I^{2}$$
$$= \int \varphi^{2}\left(x\right)\frac{f^{2}\left(x\right)}{g^{2}\left(x\right)}g\left(x\right)\,\mathrm{d}x - I^{2}$$
$$= \int \varphi^{2}\left(x\right)\frac{f^{2}\left(x\right)}{g\left(x\right)}\,\mathrm{d}x - I^{2}$$

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

## Importance sampling

• If we compare the variance of the two estimators  $\hat{\it I}_{\rm MC}$  and  $\hat{\it I}_{\rm IS}$ , we obtain:

$$\operatorname{var}\left(\hat{l}_{\mathrm{IS}}\right) - \operatorname{var}\left(\hat{l}_{\mathrm{MC}}\right) = \int \varphi^{2}\left(x\right) \frac{f^{2}\left(x\right)}{g\left(x\right)} \,\mathrm{d}x - \int \varphi^{2}\left(x\right) f\left(x\right) \,\mathrm{d}x$$
$$= \int \varphi^{2}\left(x\right) \left(\frac{f\left(x\right)}{g\left(x\right)} - 1\right) f\left(x\right) \,\mathrm{d}x$$
$$= \int \varphi^{2}\left(x\right) \left(\mathcal{L}\left(x\right) - 1\right) f\left(x\right) \,\mathrm{d}x$$

- The difference may be negative if the weights  $\mathcal{L}(x)$  are small  $(\mathcal{L}(x) \ll 1)$  because the values of  $\varphi^2(x) f(x)$  are positive
- The importance sampling approach changes then the importance of some values x by transforming the original probability distribution **F** into another probability distribution **G**

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

## Importance sampling

• The first-order condition is:

$$-\varphi^{2}(x)\cdot\frac{f^{2}(x)}{g^{2}(x)}=\lambda$$

where  $\lambda$  is a constant

• We have:

$$g^{\star}(x) = \arg \min \operatorname{var} \left( \hat{l}_{\text{IS}} \right)$$
$$= \arg \min \int \varphi^2(x) \frac{f^2(x)}{g(x)} \, \mathrm{d}x$$
$$= c \cdot |\varphi(x)| \cdot f(x)$$

where c is the normalizing constant such that  $\int g^{\star}(x) dx = 1$ 

• A good choice of the IS density g(x) is then an approximation of  $|\varphi(x)| \cdot f(x)$  such that g(x) can easily be simulated

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

#### Importance sampling

#### Remark

In order to simplify the notation and avoid confusions, we consider that  $X \sim \mathbf{F}$  and  $Z \sim \mathbf{G}$  in the sequel. This means that  $\hat{l}_{MC} = \varphi(X)$  and  $\hat{l}_{IS} = \varphi(Z) \mathcal{L}(Z)$ 

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

#### Importance sampling

- We consider the estimation of the probability  $p = \Pr \{X \ge 3\} \approx 0.1350\%$  when  $X \sim \mathcal{N}(0, 1)$
- We have:

$$\varphi(x) = \mathbb{1}\{x \ge 3\}$$

• Importance sampling with  $Z \sim \mathcal{N}(\mu_z, \sigma_z^2)$ ,  $\mu_z = 3$  and  $\sigma_z = 1 \Rightarrow$  the probability  $\Pr\{Z \ge 3\}$  is equal to 50%

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Importance sampling



Figure: Histogram of the MC and IS estimators ( $n_S = 1000$ )

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Importance sampling



Figure: Standard deviation (in %) of the estimator  $\hat{p}_{IS}$  ( $n_S = 1\,000$ )
Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

#### Importance sampling

• We consider the pricing of the put option:

$$\mathcal{P}=e^{-rT}\mathbb{E}\left[\left(K-S\left(T
ight)
ight)^{+}
ight]$$

• We can estimate the option price by using the Monte Carlo method with:

$$\varphi\left(x\right)=e^{-rT}\left(K-x\right)^{+}$$

- In the case where  $K \ll S(0)$ , the probability of exercise  $Pr \{S(T) \le K\}$  is very small
- Therefore, we have to increase the probability of exercise in order to obtain a more efficient estimator

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

#### Importance sampling

In the case of the Black-Scholes model, the density function of S(T) is equal to:

$$f(x) = \frac{1}{x\sigma_x}\phi\left(\frac{\ln x - \mu_x}{\sigma_x}\right)$$

where  $\mu_x = \ln S_0 + (r - \sigma^2/2) T$  and  $\sigma_x = \sigma \sqrt{T}$ 

• We consider the IS density g(x) defined by:

$$g(x) = \frac{1}{x\sigma_z}\phi\left(\frac{\ln x - \mu_z}{\sigma_z}\right)$$

where  $\mu_z = \theta + \mu_x$  and  $\sigma_z = \sigma_x$ 

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

## Importance sampling

• For instance, we can choose  $\theta$  such that the probability of exercise is equal to 50%. It follows that:

$$\Pr \{ Z \le K \} = \frac{1}{2} \quad \Leftrightarrow \quad \Phi \left( \frac{\ln K - \theta - \mu_X}{\sigma_X} \right) = \frac{1}{2}$$
$$\Leftrightarrow \quad \theta = \ln K - \mu_X$$
$$\Leftrightarrow \quad \theta = \ln \frac{K}{S_0} - \left( r - \frac{1}{2} \sigma^2 \right) T$$

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Importance sampling

• We deduce that:

$$\mathcal{P} = \mathbb{E}\left[arphi\left(S\left(T
ight)
ight)
ight] = \mathbb{E}\left[arphi\left(S'\left(T
ight)
ight)\cdot\mathcal{L}\left(S'\left(T
ight)
ight)
ight]$$

where:

$$\mathcal{L}(x) = \frac{\frac{1}{x\sigma_x}\phi\left(\frac{\ln x - \mu_x}{\sigma_x}\right)}{\frac{1}{x\sigma_z}\phi\left(\frac{\ln x - \mu_z}{\sigma_z}\right)} = \exp\left(\frac{\theta^2}{2\sigma_x^2} - \left(\frac{\ln x - \mu_x}{\sigma_x}\right) \cdot \frac{\theta}{\sigma_x}\right)$$

and S'(T) is the same geometric Brownian motion than S(T), but with another initial value:

$$S'(0) = S(0) e^{\theta} = K e^{-(r - \sigma^2/2)T}$$

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

#### Importance sampling

#### Example #10

We assume that  $S_0 = 100$ , K = 60, r = 5%,  $\sigma = 20\%$  and T = 2. If we consider the previous method, the IS process is simulated using the initial value  $S'(0) = Ke^{-(r-\sigma^2/2)T} = 56.506$ , whereas the value of  $\theta$  is equal to -0.5708

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

## Importance sampling



Figure: Density function of the estimators  $\hat{\mathcal{P}}_{\mathrm{MC}}$  and  $\hat{\mathcal{P}}_{\mathrm{IS}}$  ( $n_{S} = 1\,000$ )

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Quasi-Monte Carlo simulation methods

• We consider the following Monte Carlo problem:

$$I = \int \cdots \int_{[0,1]^n} \varphi(x_1,\ldots,x_n) \, \mathrm{d} x_1 \cdots \mathrm{d} x_n$$

- Let X be the random vector of independent uniform random variables. It follows that  $I = \mathbb{E} [\varphi(X)]$
- The Monte Carlo method consists in generating uniform coordinates in the hypercube  $[0, 1]^n$
- Quasi-Monte Carlo methods use non-random coordinates in order to obtain a more nicely uniform distribution

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

## Quasi-Monte Carlo simulation methods

A low discrepancy sequence  $\mathcal{U} = \{u_1, \ldots, u_{n_s}\}$  is a set of deterministic points distributed in the hypercube  $[0, 1]^n$ 

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Quasi-Monte Carlo simulation methods



Figure: Comparison of different low discrepancy sequences

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Quasi-Monte Carlo simulation methods



Figure: The Sobol generator

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Quasi-Monte Carlo simulation methods



Figure: Quasi-random points on the unit sphere

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Quasi-Monte Carlo simulation methods

#### Example #11

We consider a spread option whose payoff is equal to  $(S_1(T) - S_2(T) - K)^+$ . The price is calculated using the Black-Scholes model, and the following parameters:  $S_1(0) = S_2(0) = 100$ ,  $\sigma_1 = \sigma_2 = 20\%$ ,  $\rho = 50\%$  and r = 5%. The maturity T of the option is set to one year, whereas the strike K is equal to 5. The true price of the spread option is equal to 5.8198.

Computing integrals Variance reduction Quasi-Monte Carlo simulation methods

# Quasi-Monte Carlo simulation methods

Table: Pricing of the spread option using quasi-Monte Carlo methods

| ns               | 10 <sup>2</sup> | 10 <sup>3</sup> | 104     | 10 <sup>5</sup> | 10 <sup>6</sup> | $5	imes 10^{6}$ |
|------------------|-----------------|-----------------|---------|-----------------|-----------------|-----------------|
| LCG (1)          | 4.3988          | 5.9173          | 5.8050  | 5.8326          | 5.8215          | 5.8139          |
| LCG (2)          | 6.1504          | 6.1640          | 5.8370  | 5.8219          | 5.8265          | 5.8198          |
| LCG (3)          | 6.1469          | 5.7811          | 5.8125  | 5.8015          | 5.8142          | 5.8197          |
| Hammersley $(1)$ | 32.7510         | 26.5326         | 21.5500 | 16.1155         | 9.0914          | 5.8199          |
| Hammersley (2)   | 32.9082         | 26.4629         | 21.5465 | 16.1149         | 9.0914          | 5.8199          |
| Halton $(1)$     | 8.6256          | 6.1205          | 5.8493  | 5.8228          | 5.8209          | 5.8208          |
| Halton (2)       | 10.6415         | 6.0526          | 5.8544  | 5.8246          | 5.8208          | 5.8207          |
| Halton (3)       | 8.5292          | 6.0575          | 5.8474  | 5.8235          | 5.8212          | 5.8208          |
| Sobol            | 5.7181          | 5.7598          | 5.8163  | 5.8190          | 5.8198          | 5.8198          |
| Faure            | 5.7256          | 5.7718          | 5.8157  | 5.8192          | 5.8197          | 5.8198          |

#### Exercises

- Exercise 13.4.1 Simulating random numbers using the inversion method
- Exercise 13.4.6 Simulation of the bivariate Normal copula
- Exercise 13.4.7 Computing the capital charge for operational risk

## References

#### **D**EVROYE, L. (1986)

Non-Uniform Random Variate Generation, Springer-Verlag.

#### **R**ONCALLI, **T**. (2020)

Handbook of Financial Risk Management, Chapman and Hall/CRC Financial Mathematics Series, Chapter 13.