# Some Pratical Issues on Credit Risk 

# Séminaire CREST / LFA <br> Paris, 6 Février 2003 

Thierry Roncalli

Groupe de Recherche Opérationnelle Crédit Lyonnais
http://gro.creditlyonnais.fr

Joint work with P. Demey, J-F. Jouanin and G. Riboulet.

## Agenda

1. New Trends on the Market of Credit Risk
2. Credit Risk Modelling in the New Basle Capital Accord
3. Extending the Basle II model
4. The Measurement of Credit Risk
5. Credit Portfolio Management
6. The Time-inconsistency of the Copula Model

## 1 New Trends on the Market of Credit Risk

### 1.1 15th Annual Report of Moody's (2001)

This report is Moody's fifteenth annual study of corporate debt defaults. It comes a critical juncture for the capital markets worldwide. Record defaults - unreached in a number and dollar volume since the Great Depression - have culminated in the bankruptcies of well-known firms whose rapid collapse caught investors by surprise. In the wake of these failures, concern for credit quality has grown to a level not seen in seventy years.

- The default rate for all Moody's-rated corporate bond issuers ended 2001 at $3.7 \%$. For speculative-grade rated issuers, the default rate reached $10.2 \%$.
- Rating downgrades exceed rating upgrades 1.9 to 1 in 2001.
- The average recovery rate of defaulted bonds fell to a record low of $21 \%$ of par.


### 1.2 Credit Derivatives



Source: GS Research Estimates

## CDO in Europe

| Year | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Number | 1 | 3 | 3 | 24 | 50 | 133 | 144 |
| Volume (\$ bn) | 5 | 5.7 | 4.5 | 29.2 | 63.2 | 106 | 143.4 |
| Source: |  |  |  |  | Moody's Investor Service |  |  |

## 2 Credit Risk Modelling in the New Basle Capital Accord

### 2.1 The New Basel Capital Accord

The 1988 Capital Accord concerns only credit risk (and market risk

- Amendment of January 1996) $\Rightarrow$ the Cooke Ratio requires capital to be at least 8 percent of the "risk" of the bank.
- January 2001: proposal for a New Basel Capital Accord (credit risk measurement will be more risk sensitive + explicit capital calculations for operational risk)
- November 2002: QIS 3 (Quantitative Impact Study)
$\Rightarrow$ The objectives of the New Accord are the following:

1. Capital calculations will be more risk sensitive.
2. Convergence between economic capital (internal measure) and regulatory capital.

## The McDonough ratio

It is defined as follows:

$$
\frac{\text { Capital (Tier I }+ \text { Tier II) }}{\text { credit risk }+ \text { market risk }+ \text { operational risk }} \geq 8 \%
$$

The aim of allocation for the industry is

| Risk | January 2001 | Now |
| :---: | :---: | :---: |
| Credit | $75 \%$ | $83 \%$ |
| Market | $5 \%$ | $5 \%$ |
| Operational | $20 \%$ | $12 \%$ |

## The measurement methods

Risk weighted assets are calculated as follows :

$$
\mathrm{RWA}=\mathrm{EaD} \times \mathrm{RW}
$$

1. Standardized Approach (SA)

The risk weights are based on external ratings:

| Rating |  | $A A A / A A-$ | $A+/ A-$ | $B B B+/ B B B-$ | $B B+/ B-$ | $B-/ C$ | non rated |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sovereign |  | $0 \%$ | $20 \%$ | $50 \%$ | $100 \%$ | $150 \%$ | $100 \%$ |
| Bank | 1 | $20 \%$ | $50 \%$ | $100 \%$ | $100 \%$ | $150 \%$ | $100 \%$ |
|  | $2(-3 M)$ | $20 \%$ | $50 \%$ | $50 \%$ | $100 \%$ | $150 \%$ | $50 \%$ |
|  | $20 \%$ | $20 \%$ | $20 \%$ | $50 \%$ | $150 \%$ | $20 \%$ |  |
| Corporate |  |  | $20 \%$ | $50 \%$ | $B B B+/ B B-$ | $B+/ C$ |  |
|  |  |  |  | $100 \%$ | $150 \%$ | $100 \%$ |  |

2. Internal Rating Based Approach (IRB)

$$
\mathrm{RW}=c \cdot \mathrm{LGD} \cdot \mathrm{RC}(\mathrm{PD})
$$

1. foundation approach
2. advanced approach

## Percentage Changes in Capital Requirements for G10 Banks

(a) Standardised Approach

(b) IRB Foundation Approach


### 2.2 The IRB Approach

The (original) IRB risk weights are

$$
\mathrm{RW}=\min \left(\frac{\mathrm{LGD}}{50} \times \mathrm{BRW}(\mathrm{PD}), 12.5 \times \mathrm{LGD}\right)
$$

where BRW is a benchmark function calibrated on a $50 \%$ LGD
$B R W(P D)=976.5 \times \Phi\left(1.118 \times \Phi^{-1}(P D)+1.288\right) \times\left(1+0.470 \times \frac{1-\mathrm{PD}}{\mathrm{PD}^{0.44}}\right)$

Infinitely fine-grained portfolio and risk contribution Let us consider a portfolio $\Pi$ with $I$ loans. The loss is

$$
\mathbf{L}=\sum_{i=1}^{I} \mathrm{EaD}_{i} \cdot \mathrm{LGD}_{i} \cdot \mathbf{1}\left\{\tau_{i} \leq t_{i}\right\}
$$

We assume that the defaut probability $P_{i}=\operatorname{Pr}\left\{\tau_{i} \leq t_{i}\right\}$ is $P_{i}(X)$ where $X$ is the systematic factor with distribution $\mathbf{H}$. For the Infinitely fine-grained portfolio $\Pi_{\infty}$ 'equivalent' to the original portfolio $\Pi$, we have

$$
\operatorname{Pr}\left\{\mathbf{L}_{\infty}=\mathbb{E}[\mathbf{L}] \mid X\right\}=1
$$

If $P_{i}$ are increasing functions with respect to $X$, the percentile $\alpha$ of the loss distribution is

$$
\mathbf{F}_{\infty}^{-1}(\alpha):=\sum_{i=1}^{I} \underbrace{\mathrm{EaD}_{i} \cdot \mathbb{E}\left[\mathrm{LGD}_{i}\right] \cdot P_{i}\left(\mathbf{H}^{-1}(\alpha)\right)}_{\text {risk contribution of the loan } i}
$$

IRB approach explained (from Wilde [2001])

## Merton/Vasicek model

$$
\begin{gathered}
Z_{i}=\sqrt{\rho} X+\sqrt{1-\rho} \varepsilon_{i} \\
D_{i}=1\left\{\tau_{i} \leq t_{i}\right\} \Leftrightarrow Z_{i}<B_{i}
\end{gathered}
$$

$P_{i}$ is the unconditional default probability

$$
\begin{gathered}
P_{i}(X)=\operatorname{Pr}\left\{D_{i}=1 \mid X\right\}=\Phi\left(\frac{\Phi^{-1}\left(P_{i}\right)-\sqrt{\rho} X}{\sqrt{1-\rho}}\right) \\
\mathrm{RC}_{i}=\mathrm{EaD}_{i} \cdot \mathbb{E}\left[\mathrm{LGD}_{i}\right] \cdot \Phi\left(\frac{\Phi^{-1}\left(P_{i}\right)-\sqrt{\rho} \Phi^{-1}(1-\alpha)}{\sqrt{1-\rho}}\right)
\end{gathered}
$$

With $\alpha=99.5 \%$ and $\rho=20 \%$, we have

$$
\mathrm{RC}_{i}=\mathrm{EaD}_{i} \cdot \mathbb{E}\left[\mathrm{LGD}_{i}\right] \cdot \Phi\left(1.118 \Phi^{-1}\left(P_{i}\right)+1.288\right)
$$

$$
\begin{aligned}
& \text { If } \mathrm{RW}(\mathrm{PD}=0.7 \%, \mathrm{LGD}=50 \%)=100 \% \text {, we have } \\
& \mathrm{BRW}(\mathrm{PD})=\underbrace{619.59}_{3 Y \text { scaling factor }} \times \underbrace{\Phi\left(1.118 \times \Phi^{-1}\left(1-(1-\mathrm{PD})^{3}\right)+1.288\right)}_{3 Y \text { conditional default probability }}
\end{aligned}
$$

## Basel's approximation formula:

$$
\begin{aligned}
\mathrm{BRW}(\mathrm{PD})= & \underbrace{976.5}_{1 \mathrm{Y} \text { scaling factor }} \times \underbrace{\Phi\left(1.118 \times \Phi^{-1}(\mathrm{PD})+1.288\right)}_{1 \mathrm{Y} \text { conditional default probability }} \\
& \times \underbrace{\left(1+0.470 \times \frac{1-\mathrm{PD}}{\mathrm{PD}^{0.44}}\right)}_{3 \mathrm{Y} \text { maturity adjustement }}
\end{aligned}
$$

## Infinitely fine-grained portfolio by the example

> Vasicek model - Rating CCC
> $\mathrm{EAD}=1-\mathrm{LGD} \sim \mathcal{B}(3,3)-\mathrm{PD}=17.5 \%-\rho=20 \%$

| $\alpha$ | $\mathbb{E}\left[\mathbf{L}_{n} \mid X\right]$ | VaR $\left[\mathbf{L}_{n}\right]$ | rel. diff. | $\mathbb{E}\left[\mathbf{L}_{n} \mid X\right]$ | VaR $\left[\mathbf{L}_{n}\right]$ | rel. diff. |
| ---: | ---: | :---: | ---: | ---: | ---: | ---: |
|  |  | $n=5$ |  | $n=100$ |  |  |
| $50 \%$ | 0.370 | 0.286 | 29.502 | 7.402 | 7.361 | 0.553 |
| $75 \%$ | 0.599 | 0.720 | -16.853 | 11.979 | 12.146 | -1.374 |
| $90 \%$ | 0.858 | 1.213 | -29.304 | 17.153 | 17.566 | -2.349 |
| $95 \%$ | 1.030 | 1.510 | -31.788 | 20.599 | 21.175 | -2.721 |
| $99 \%$ | 1.368 | 2.114 | -35.314 | 27.354 | 28.280 | -3.275 |
| $99.5 \%$ | 1.490 | 2.333 | -36.121 | 29.800 | 30.820 | -3.310 |
| $99.9 \%$ | 1.729 | 2.763 | -37.431 | 34.577 | 35.642 | -2.989 |
|  |  | $n=500$ |  | $n=5000$ |  |  |
| $50 \%$ | 37.008 | 37.101 | -0.249 | 370.085 | 369.291 | 0.215 |
| $75 \%$ | 59.895 | 60.112 | -0.362 | 598.947 | 597.975 | 0.163 |
| $90 \%$ | 85.765 | 86.164 | -0.463 | 857.649 | 857.280 | 0.043 |
| $95 \%$ | 102.993 | 103.579 | -0.566 | 1029.929 | 1030.332 | -0.039 |
| $99 \%$ | 136.768 | 137.854 | -0.788 | 1367.684 | 1367.906 | -0.016 |
| $99.5 \%$ | 149.000 | 150.168 | -0.777 | 1490.005 | 1489.127 | 0.059 |
| $99.9 \%$ | 172.884 | 174.333 | -0.831 | 1728.844 | 1716.432 | 0.723 |

> Vasicek model - Rating BBB
> $\mathrm{EAD}=1-\mathrm{LGD} \sim \mathcal{B}(3,3)-\mathrm{PD}=0.20 \%-\rho=20 \%$

| $\alpha$ | $\mathbb{E}\left[\mathbf{L}_{n} \mid X\right]$ | VaR $\left[\mathbf{L}_{n}\right]$ | rel. diff. | $\mathbb{E}\left[\mathbf{L}_{n} \mid X\right]$ | VaR $\left[\mathbf{L}_{n}\right]$ | rel. diff. |
| ---: | ---: | :---: | :---: | ---: | ---: | ---: |
|  |  | $n=5$ |  | $n=100$ |  |  |
| $50 \%$ | 0.002 | 0.000 |  | 0.032 | 0.000 |  |
| $75 \%$ | 0.005 | 0.000 |  | 0.099 | 0.000 |  |
| $90 \%$ | 0.012 | 0.000 |  | 0.249 | 0.434 | -42.604 |
| $95 \%$ | 0.021 | 0.000 |  | 0.415 | 0.702 | -40.856 |
| $99 \%$ | 0.050 | 0.000 |  | 1.998 | 1.489 | -32.992 |
| $99.5 \%$ | 0.067 | 0.513 | -86.924 | 1.340 | 1.912 | -29.912 |
| $99.9 \%$ | 0.118 | 0.782 | -84.918 | 2.359 | 3.135 | -24.733 |
|  |  | $n=500$ |  | $n=5000$ |  |  |
| $50 \%$ | 0.161 | 0.000 |  | 1.614 | 1.574 | 2.583 |
| $75 \%$ | 0.496 | 0.585 | -15.185 | 4.961 | 5.036 | -1.485 |
| $90 \%$ | 1.245 | 1.442 | -13.653 | 12.454 | 12.658 | -1.616 |
| $95 \%$ | 2.075 | 2.353 | -11.827 | 20.750 | 20.913 | -0.783 |
| $99 \%$ | 4.988 | 5.447 | -8.421 | 49.884 | 50.372 | -0.969 |
| $99.5 \%$ | 6.701 | 7.170 | -6.530 | 67.014 | 67.108 | -0.141 |
| $99.9 \%$ | 11.797 | 12.491 | -5.559 | 117.967 | 116.891 | 0.920 |

> Vasicek model - Rating AA
> $\mathrm{EAD}=1-\mathrm{LGD} \sim \mathcal{B}(3,3)-\mathrm{PD}=0.03 \%-\rho=20 \%$

| $\alpha$ | $\mathbb{E}\left[\mathbf{L}_{n} \mid X\right]$ | VaR $\left[\mathbf{L}_{n}\right]$ | rel. diff. | $\mathbb{E}\left[\mathbf{L}_{n} \mid X\right]$ | VaR $\left[\mathbf{L}_{n}\right]$ | rel. diff. |
| ---: | ---: | :---: | :---: | ---: | ---: | ---: |
|  |  | $n=5$ |  | $n=100$ |  |  |
| $50 \%$ | 0.000 | 0.000 |  | 0.003 | 0.000 |  |
| $75 \%$ | 0.001 | 0.000 |  | 0.012 | 0.000 |  |
| $90 \%$ | 0.002 | 0.000 |  | 0.035 | 0.000 |  |
| $95 \%$ | 0.003 | 0.000 |  | 0.064 | 0.000 |  |
| $99 \%$ | 0.009 | 0.000 |  | 0.188 | 0.591 | -68.253 |
| $99.5 \%$ | 0.014 | 0.000 |  | 0.732 | -63.097 |  |
| $99.9 \%$ | 0.027 | 0.459 | -94.030 | 0.548 | 1.180 | -53.538 |
|  |  | $n=500$ |  | $n=5000$ |  |  |
| $50 \%$ | 0.016 | 0.000 |  | 0.156 | 0.000 |  |
| $75 \%$ | 0.058 | 0.000 |  | 0.583 | 0.658 | -11.471 |
| $90 \%$ | 0.174 | 0.132 | 31.750 | 1.743 | 1.922 | -9.330 |
| $95 \%$ | 0.322 | 0.591 | -45.531 | 3.220 | 3.504 | -8.102 |
| $99 \%$ | 0.938 | 1.349 | -30.465 | 9.383 | 9.776 | -4.018 |
| $99.5 \%$ | 1.351 | 1.814 | -25.487 | 13.514 | 13.781 | -1.937 |
| $99.9 \%$ | 2.741 | 3.373 | -18.718 | 27.415 | 26.581 | 3.138 |

## Vasicek model - Rating BBB

$E A D=1-\operatorname{LGD} \sim \mathcal{B}(3,3)-P D=0.20 \%-\rho=80 \%$

| $\alpha$ | $\mathbb{E}\left[\mathbf{L}_{n} \mid X\right]$ | $\operatorname{VaR}\left[\mathbf{L}_{n}\right]$ | rel. diff. | $\mathbb{E}\left[\mathbf{L}_{n} \mid X\right]$ | $\operatorname{VaR}\left[\mathbf{L}_{n}\right]$ | rel. diff. |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | $n=5$ |  |  |  | $n=100$ |  |
| $50 \%$ | 0.000 | 0.000 |  | 0.000 | 0.000 |  |
| $75 \%$ | 0.000 | 0.000 |  | 0.000 | 0.000 |  |
| $90 \%$ | 0.000 | 0.000 |  | 0.003 | 0.000 |  |
| $95 \%$ | 0.002 | 0.000 |  | 0.041 | 0.000 |  |
| $99 \%$ | 0.093 | 0.000 |  | 1.864 | 2.015 | -7.457 |
| $99.5 \%$ | 0.249 | 0.372 | -33.079 | 4.978 | 4.979 | -0.021 |
| $99.9 \%$ | 0.998 | 1.241 | -19.548 | 19.962 | 19.540 | 2.159 |
|  |  | $n=500$ |  | $n=5000$ |  |  |
| $50 \%$ | 0.000 | 0.000 |  | 0.000 | 0.000 |  |
| $75 \%$ | 0.000 | 0.000 |  | 0.000 | 0.000 |  |
| $90 \%$ | 0.013 | 0.000 |  | 0.135 | 0.000 |  |
| $95 \%$ | 0.207 | 0.000 |  | 2.069 | 2.047 | 1.060 |
| $99 \%$ | 9.322 | 9.356 | -0.362 | 93.219 | 92.604 | 0.664 |
| $99.5 \%$ | 24.888 | 25.179 | -1.155 | 248.881 | 242.187 | 2.764 |
| $99.9 \%$ | 99.811 | 92.704 | 7.667 | 998.114 | 1028.333 | -2.939 |

Vasicek Model -- Rating CCC


## 3 Extending Basel II model

### 3.1 A new formulation of the Basle II model

$$
\begin{gathered}
Z_{i}=\sqrt{\rho} X+\sqrt{1-\rho} \varepsilon_{i} \\
P_{i}(t, X)=\Phi\left(\frac{\Phi^{-1}\left(1-\mathrm{S}_{i}(t)\right)-\sqrt{\rho} X}{\sqrt{1-\rho}}\right)
\end{gathered}
$$

$Z=\left(Z_{1}, \ldots, Z_{I}\right)$ is a Gaussian vector with a covariance matrix $\Sigma=C_{I}(\rho)$ which is equal to

$$
\Sigma=\left(\begin{array}{cccc}
1 & \rho & \cdots & \rho \\
\rho & 1 & & \vdots \\
\vdots & & \cdots & \rho \\
\rho & \cdots & \rho & 1
\end{array}\right)
$$

The joint default probability is

$$
\begin{aligned}
P_{1, \ldots, I} & =\operatorname{Pr}\left\{D_{1}=1, \ldots, D_{I}=1\right\} \\
& =\operatorname{Pr}\left\{Z_{1} \leq B_{1}, \ldots, Z_{I} \leq B_{I}\right\} \\
& =\Phi\left(B_{1}, \ldots, B_{I} ; \Sigma\right) \\
& =\Phi\left(\Phi^{-1}\left(P_{1}\right), \ldots, \Phi^{-1}\left(P_{I}\right) ; \Sigma\right) \\
& =\mathrm{C}\left(P_{1}, \ldots, P_{I} ; \Sigma\right)
\end{aligned}
$$

with C the Normal copula with the matrix of canonical correlations $C_{I}(\rho)$.

If we now consider the joint survival function of default times, we have

$$
\begin{aligned}
\mathbf{S}\left(t_{1}, \ldots, t_{I}\right) & =\operatorname{Pr}\left\{\tau_{1}>t_{1}, \ldots, \tau_{I}>t_{I}\right\} \\
& =\operatorname{Pr}\left\{Z_{1}>\Phi^{-1}\left(P_{1}\left(t_{1}\right)\right), \ldots, Z_{I}>\Phi^{-1}\left(P_{I}\left(t_{I}\right)\right)\right\} \\
& =\mathrm{C}\left(1-P_{1}\left(t_{1}\right), \ldots, 1-P_{I}\left(t_{I}\right) ; \Sigma\right) \\
& =\mathrm{C}\left(\mathbf{S}_{1}\left(t_{1}\right), \ldots, \mathbf{S}_{I}\left(t_{I}\right) ; \Sigma\right)
\end{aligned}
$$

### 3.2 The Ioss distribution

If we consider 'zero coupon' loans, we have

$$
\mathbf{L}=\sum_{i=1}^{I} x_{i} \cdot\left(1-R_{i}\right) \cdot \mathbf{1}\left\{\tau_{i} \leq t_{i}\right\}
$$

where $x_{i}$ is the notional of the Ioan and $R_{i}$ and $\tau_{i}$ are the recovery rate and the default time of the firm. The random variables are $R_{1}, \ldots, R_{I}$ and $\tau_{1}, \ldots, \tau_{I}$.

Assumptions:

1. The distributions of these random variables are given (because of internal credit rating system).
2. $R_{i} \perp \tau_{i}$
3. We have informations about default correlations between 'sectors'.

Introducing stochastic recovery rate

The standard of the industry is the Beta distribution:

$$
f(x)=\frac{x^{a-1}(1-x)^{b-1}}{\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x}
$$

Given the first two moments $\mu(R)$ and $\sigma(R)$ of the recovery rate, we may estimate the parameters by the method of moments:

$$
\begin{aligned}
a & =\frac{\mu^{2}(R)(1-\mu(R))}{\sigma^{2}(R)}-\mu(R) \\
b & =\frac{\mu^{2}(R)(1-\mu(R))^{2}}{\mu(R) \sigma^{2}(R)}-(1-\mu(R))
\end{aligned}
$$



Proposition 1 Given a random variable $U$ in $[0,1]$, there exists (almost) always a random variable $B$ with a Beta distribution such that $\mathbb{E}[B]=\mathbb{E}[U]$ and $\sigma[B]=\sigma[U]$.

The idea of the proof is the following. Because $\mathbb{E}\left[U^{2}\right] \leq \mathbb{E}[U]$, we have $\sigma[U] \leq \sigma^{+}(\mathbb{E}[U])=\sqrt{\mathbb{E}[U](1-\mathbb{E}[U])}$. For the Beta distribution, because $a>0$ and $b>0$, we have

$$
\sigma(B)<\sqrt{\mathbb{E}[B](1-\mathbb{E}[B])}
$$

$$
\mu=50 \%--\sigma=40 \%
$$



$$
\mu=70 \%--\sigma=40 \%
$$



$$
\mu=60 \%--\sigma=40 \%
$$



$$
\mu=70 \%--\sigma=10 \%
$$



Influence of the LGD Distribution on
a Portfolio of 10 Loans with 5 Y Maturity

LGD \#1. \#2 \& \#3


LGD \#2 --- LGD $=$ Mean


LGD \#1 --- Discrete Distribution


LGD \#3 --- Beta Distribution


Influence of the LGD distribution The Non Granularity Case

## Modelling dependence of default times

We assume that $Z_{i}$ depends on one factor :

$$
Z_{i}=\sum_{j=1}^{J} \beta_{i, j} X_{j}+\varepsilon_{i} \quad \text { with } \quad \sum_{j=1}^{J} 1\left\{\beta_{i, j}=0\right\}=J-1
$$

with $X_{j} \perp \varepsilon_{i}$, but $X_{j_{1}}$ and $X_{j_{2}}$ are not necessarily independent.
Let $j=m(i)$ be the mapping function between the loan $i$ and its sector $j$.

The survival time copula $\left(\tau_{1}, \ldots, \tau_{I}\right)$ is the Normal copula with the following matrix of canonical correlations :

$$
\Sigma=\left(\begin{array}{cccc}
1 & \rho(m(1), m(2)) & \cdots & \rho(m(1), m(I)) \\
& 1 & & \vdots \\
& & & \rho(m(I-1), m(I)) \\
& & & 1
\end{array}\right)
$$

Consider the example with 4 sectors

| Sector | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathbf{3 0 \%}$ | $20 \%$ | $10 \%$ | $0 \%$ |
| 2 |  | $\mathbf{4 0 \%}$ | $30 \%$ | $20 \%$ |
| 3 |  |  | $\mathbf{5 0 \%}$ | $10 \%$ |
| 4 |  |  |  | $\mathbf{6 0 \%}$ |

and 7 loans

$$
\begin{array}{l|lllllll}
i & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline j=m(i) & 1 & 1 & 2 & 3 & 3 & 3 & 4
\end{array}
$$

The matrix of canonical correlations is then

$$
\Sigma=\left(\begin{array}{lllllll}
1.00 & 0.30 & 0.20 & 0.10 & 0.10 & 0.10 & 0.00 \\
& 1.00 & 0.20 & 0.10 & 0.10 & 0.10 & 0.00 \\
& & 1.00 & 0.30 & 0.30 & 0.30 & 0.20 \\
& & & 1.00 & 0.50 & 0.50 & 0.10 \\
& & & & 1.00 & 0.50 & 0.10 \\
& & & & & 1.00 & 0.10 \\
& & & & & & 1.00
\end{array}\right)
$$

The fast [Sloane] algorithm (from Riboulet and Roncalli [2002])
We want to simulate r.v. $\left(u_{1}, \ldots, u_{I}\right)$ from the Normal copula.

The [CHOL] algorithm is

$$
\begin{aligned}
P & =\operatorname{chol}(\Sigma) \\
\mathbf{z} & =P \varepsilon \text { with } \varepsilon_{i_{1}} \perp \varepsilon_{i_{2}} \\
u_{i} & =\Phi\left(z_{i}\right)
\end{aligned}
$$

This algorithm is time-consuming and memory-consuming :

$$
\begin{array}{c|ccc}
I & 100 & 1000 & 10000 \\
\hline \text { Memory size } & 78.125 \mathrm{~Kb} & 7.629 \mathrm{Mb} & 762.94 \mathrm{Mb}
\end{array}
$$

If $\Sigma$ is $C_{I}(\rho)$, the $[\sqrt{\rho}]$ algorithm is more efficient:

$$
\begin{aligned}
z_{i} & =\sqrt{\rho} x+\sqrt{1-\rho} \varepsilon_{i} \text { with } x \perp \varepsilon_{i_{1}} \perp \varepsilon_{i_{2}} \\
u_{i} & =\Phi\left(z_{i}\right)
\end{aligned}
$$

Let $\rho^{\star}$ be the symmetric matrix with $\rho_{j, j}^{\star}$ the intra-sector canonical correlations and $\rho_{j_{1}, j_{2}}^{\star}$ the inter-sector canonical correlations. $\rho^{\star}$ is not a correlation matrix.

The [Sloane] algorithm is the following:

$$
\begin{aligned}
\rho^{\star} & =V^{\star} \Lambda^{\star} V^{\star \top} \quad \text { (eigensystem) } \\
A^{\star} & =V_{\bullet}^{\star}\left(\wedge^{\star}\right)^{\frac{1}{2}}\left(V_{\bullet}^{\star} \text { is the } L_{2} \text {-normalized matrix of } V^{\star}\right) \\
z_{i} & =\sum_{j=1}^{J} A_{m(i), j}^{\star} x_{j}+\sqrt{1-\rho^{\star}(m(i), m(i))} \varepsilon_{i} \text { with } x_{j_{1}} \perp x_{j_{2}} \perp \varepsilon_{i_{1}} \perp \varepsilon_{i_{2}} \\
u_{i} & =\Phi\left(z_{i}\right) \\
\text { If } J=1, & {[\text { Sloane }]=[\sqrt{\rho}] . }
\end{aligned}
$$

Proposition 2 If the eigenvalues $\lambda_{j}^{*}$ are positive, then $\Sigma$ is a correlation matrix.

The algorithm order of [CHOL] is $I^{2}$.

The algorithm order of [Sloane] is $I$ (because $J$ is fixed).

|  | Dimension <br> of the matrix | Number of <br> random variates | Number of <br> + operations | Number of <br> $\times$ operations |
| :--- | :---: | :---: | :---: | :---: |
| [CHOL] | $I \times I$ | $I$ | $I \times(I-1)$ | $I \times I$ |
| [Sloane] | $J \times J$ | $I+J$ | $I \times J$ | $I \times J$ |
|  |  |  |  |  |
| [CHOL] | $10^{8}$ | 10000 loans +20 sectors |  |  |
| [Sloane] | 400 | 10000 | $\simeq 10^{8}$ | $10^{8}$ |
|  |  | 10020 | $2 \times 10^{5}$ | $2 \times 10^{5}$ |

### 3.3 An example

500 loans, 5 Y maturity, $\mathrm{EaD}=1000, \mu(R)=50 \%, \sigma(R)=20 \%$.
The $\rho^{\star}$ matrix is

| Sector | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathbf{3 0 \%}$ | $20 \%$ | $10 \%$ | $0 \%$ |
| 2 |  | $\mathbf{4 0 \%}$ | $30 \%$ | $20 \%$ |
| 3 |  |  | $\mathbf{5 0 \%}$ | $10 \%$ |
| 4 |  |  |  | $\mathbf{6 0 \%}$ |

The repartition by ratings is

| Rating | AAA | AA | A | BBB | BB | B | CCC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of loans | $5 \%$ | $15 \%$ | $20 \%$ | $30 \%$ | $15 \%$ | $10 \%$ | $5 \%$ |

The repartition by sectors is

| Sector | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| Number of loans | $20 \%$ | $30 \%$ | $10 \%$ | $40 \%$ |



Frequency of the Loss Distribution (Normal Copula/Sector Correlations)


Density of the Loss Distribution


Density of the Loss Distribution

### 4.1 The Credit Risk Measure

1. Value-at-Risk

$$
\text { CreditVaR }(\alpha)=\inf \{L: \operatorname{Pr}\{L(t) \leq L\} \geq \alpha\}
$$

2. Expected Regret

$$
\operatorname{ER}(\bar{L})=\mathbb{E}[L(t) \mid L(t) \geq \bar{L}]
$$

3. Expected Shortfall

$$
\operatorname{ES}(\alpha)=\mathbb{E}[L(t) \mid L(t) \geq \operatorname{CreditVaR}(\alpha)]
$$

4. Unexpected Loss

$$
\operatorname{UL}(\alpha)=\operatorname{CreditVaR}(\alpha)-\mathbb{E}[L(t)]
$$



Portfolio Credit VaR


Ratio Expected Shortfall / Credit VaR

Credit VaR


Expected Shortfall


Expected Regret


Unexpected Loss


Influence of the LGD distribution The Granularity Case

### 4.2 The Risk Contribution

The discrete marginal contribution is defined as follows:
$\operatorname{RC}(i)=\operatorname{Risk}\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{I}\right)-\operatorname{Risk}\left(x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{I}\right)$

We have

$$
\text { Risk } \neq \sum_{i=1}^{I} \mathrm{RC}(i)
$$

In the following table, we report the values of $\sum_{i=1}^{I} \mathrm{RC}(i) /$ Risk:

|  | CreditVaR | ES | CreditVaR |
| :---: | :---: | :---: | :---: |
| $\alpha$ | Normal copula | Normal copula | $\mathbf{t}_{6}$ copula |

For a set $\mathcal{A}$ of loans, we have

$$
\operatorname{RC}(\mathcal{A})=\operatorname{Risk}-\operatorname{Risk}\left(x_{i} \notin \mathcal{A}\right)
$$

For example, with the CreditVaR measure, we have

| $\alpha$ | $95 \%$ |  | $99 \%$ |  | $99.9 \%$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sector | $\sum_{i \in \mathcal{A}} \mathrm{RC}(i)$ | $\mathrm{RC}(\mathcal{A})$ | $\sum_{i \in \mathcal{A}} \mathrm{RC}(i)$ | $\mathrm{RC}(\mathcal{A})$ | $\sum_{i \in \mathcal{A}} \mathrm{RC}(i)$ | $\mathrm{RC}(\mathcal{A})$ |
| 1 | 5075 | 5208 | 5295 | 5721 | 5829 | 4836 |
| 2 | 12317 | 12908 | 16158 | 16168 | 28797 | 20356 |
| 3 | 4440 | 4495 | 4484 | 5046 | 8086 | 6153 |
| 4 | 18118 | 17195 | 26448 | 24683 | 31600 | 36756 |
| $\sum_{\mathcal{A}}$ | 39950 | 39806 | 52384 | 51619 | 74314 | 68100 |
| Risk | 45063 |  | 64592 |  | 93581 |  |




Risk Contribution (CreditVaR 99\%)

### 4.3 The Risk Sensitivity

We have

$$
\operatorname{DR}(i)=\frac{\partial \operatorname{Risk}\left(x_{1}, \ldots, x_{I}\right)}{\partial x_{i}}
$$

For example, with the ER measure, we have

$$
\operatorname{DR}(i)=\frac{\mathbb{E}\left[\left(1-R_{i}\right) \cdot \mathbf{1}\left\{\tau_{i} \leq t_{i}\right\} \cdot \mathbf{1}\{L(t) \geq \bar{L}\}\right]}{\operatorname{Pr}\{L(t) \geq \bar{L}\}}
$$

and

$$
\sum_{i=1}^{I} \mathrm{cRC}(i)=\sum_{i=1}^{I} x_{i} \cdot \mathrm{DR}(i)=\operatorname{ER}(\bar{L})
$$

cRC ( $i$ ) is the continuous marginal contribution.

## The CreditVaR sensitivity

Theoretical result of Gouriéroux, Laurent and Scaillet [2000]

Theorem 1 Let $\left(\varepsilon_{1}, \ldots, \varepsilon_{I}\right)$ be a random vector and $\left(x_{1}, \ldots, x_{I}\right)$ a vector in $\mathbb{R}^{I}$. We consider the loss $L$ defined by

$$
L=\sum_{i=1}^{I} x_{i} \cdot \varepsilon_{i}
$$

Let $Q(L ; \alpha)$ the percentile $\alpha$ of $L$. We have

$$
\frac{\partial Q(L ; \alpha)}{\partial x_{i}}=\mathbb{E}\left[\varepsilon_{i} \mid L=Q(L ; \alpha)\right]
$$

The Gaussian case $\quad L=\sum_{i=1}^{I} x_{i} \cdot \varepsilon_{i}$ with $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{I}\right) \sim \mathcal{N}(\mu, \Sigma)$. We have $L \sim \mathcal{N}\left(\mathbf{x}^{\top} \mu, \mathbf{x}^{\top} \Sigma \mathbf{x}\right)$ and $Q(L ; \alpha)=\mathbf{x}^{\top} \mu+\Phi^{-1}(\alpha) \sqrt{\mathbf{x}^{\top} \Sigma \mathbf{x}}$. The derivatives are

$$
\frac{\partial Q(L ; \alpha)}{\partial \mathbf{x}}=\mu+\Phi^{-1}(\alpha) \frac{\Sigma \mathbf{x}}{\sqrt{\mathbf{x}^{\top} \Sigma \mathbf{x}}}
$$

We remark that

$$
\binom{\varepsilon}{L} \sim \mathcal{N}\left(\binom{\mu}{\mathbf{x}^{\top} \mu},\left(\begin{array}{ll}
\Sigma & \sum \mathrm{x} \\
\mathrm{x}^{\top} \Sigma & \mathrm{x}^{\top} \Sigma \mathrm{x}
\end{array}\right)\right)
$$

It comes that $\varepsilon \mid L=\ell \sim \mathcal{N}\left(\mu_{\varepsilon \mid L}, \Sigma_{\varepsilon \mid L}\right)$ with $\mu_{\varepsilon \mid L}=\mu+\Sigma \mathbf{x}\left(\mathbf{x}^{\top} \Sigma \mathbf{x}\right)^{-1}\left(\ell-\mathbf{x}^{\top} \mu\right)$ and $\Sigma_{\varepsilon \mid L}=\Sigma-\Sigma \mathrm{x}\left(\mathrm{x}^{\top} \Sigma \mathrm{x}\right)^{-1} \mathrm{x}^{\top} \Sigma$. We deduce that

$$
\begin{aligned}
\mathbb{E}[\varepsilon \mid L=Q(L ; \alpha)] & =\mathbb{E}\left[\varepsilon \mid L=\mathbf{x}^{\top} \mu+\Phi^{-1}(\alpha) \sqrt{\mathbf{x}^{\top} \Sigma \mathbf{x}}\right] \\
& =\mu+\Sigma \mathbf{x}\left(\mathbf{x}^{\top} \Sigma \mathbf{x}\right)^{-1}\left(\mathbf{x}^{\top} \mu+\Phi^{-1}(\alpha) \sqrt{\mathbf{x}^{\top} \Sigma \mathbf{x}}-\mathbf{x}^{\top} \mu\right) \\
& =\mu+\Phi^{-1}(\alpha) \Sigma \mathbf{x} \frac{\sqrt{\mathbf{x}^{\top} \Sigma \mathbf{x}}}{\left(\mathbf{x}^{\top} \Sigma \mathbf{x}\right)^{-1}} \\
& =\frac{\partial Q(L ; \alpha)}{\partial \mathbf{x}}
\end{aligned}
$$

## Application to the credit loss

We have

$$
\begin{gathered}
\frac{\partial \text { CreditVaR }(\alpha)}{\partial x_{k}} \\
= \\
\mathbb{E}\left[\left(1-R_{k}\right) \cdot \mathbf{1}\left\{\tau_{k} \leq t_{k}\right\} \mid \sum_{i=1}^{I} x_{i} \cdot\left(1-R_{i}\right) \cdot 1\left\{\tau_{i} \leq t_{i}\right\}=\text { CreditVaR }(\alpha)\right]
\end{gathered}
$$

## Numerical computation

$$
\text { CreditVaR }(\alpha)=L_{n \alpha: n}
$$

If $n \alpha=\lfloor n \alpha\rfloor$, we have CreditVaR $(\alpha)=L_{\kappa_{n \alpha}}$ and

$$
\frac{\partial \text { CreditVaR }(\alpha)}{\partial x_{i}}=\left(1-R_{i, \kappa_{n \alpha}}\right) \cdot \mathbf{1}\left\{\tau_{i, \kappa_{n \alpha}} \leq t_{i}\right\}
$$

If $n \alpha>\lfloor n \alpha\rfloor$, we use the linear interpolation

$$
\begin{aligned}
\text { CreditVaR }(\alpha) & =(1-n \alpha+\lfloor n \alpha\rfloor) L_{\kappa_{\lfloor n \alpha\rfloor}}+(n \alpha-\lfloor n \alpha\rfloor) L_{\kappa_{\lfloor n \alpha\rfloor+1}} \\
& =L_{\kappa_{\lfloor n \alpha\rfloor}}+(n \alpha-\lfloor n \alpha\rfloor)\left(L_{\kappa_{\lfloor n \alpha\rfloor+1}}-L_{\kappa_{\lfloor n \alpha\rfloor}}\right)
\end{aligned}
$$

We have

$$
\begin{aligned}
\frac{\partial \operatorname{CreditVaR}(\alpha)}{\partial x_{i}}= & (1-n \alpha+\lfloor n \alpha\rfloor)\left(\left(1-R_{i, \kappa_{\lfloor n \alpha\rfloor}}\right) \cdot \mathbf{1}\left\{\tau_{i, \kappa_{\lfloor n \alpha\rfloor}} \leq t_{i}\right\}\right)+ \\
& (n \alpha-\lfloor n \alpha\rfloor)\left(\left(1-R_{i, \kappa_{\lfloor n \alpha\rfloor+1}}\right) \cdot \mathbf{1}\left\{\tau_{i, \kappa_{\lfloor n \alpha\rfloor+1}} \leq t_{i}\right\}\right)
\end{aligned}
$$

$\Rightarrow$ large variance of estimates.

The localization method We suppose that

$$
\operatorname{CreditVaR}(\alpha)=\sum_{m \in \mathcal{M}} p_{m} L_{m}
$$

where $\sum_{m \in \mathcal{M}} p_{m}=1$. Under the measure of probability $\left\{p_{m}, m \in \mathcal{M}\right\}$, we have

$$
\frac{\partial \text { CreditVaR }(\alpha)}{\partial x_{i}}=\sum_{m \in \mathcal{M}} p_{m} \frac{L_{i, m}(t)}{x_{i}}
$$

We pose $\mathcal{M}=\left\{\kappa_{\lfloor n \alpha\rfloor-h}, \ldots, \kappa_{\lfloor n \alpha\rfloor}, \kappa_{\lfloor n \alpha\rfloor+1}, \ldots, \kappa_{\lfloor n \alpha\rfloor+h}\right\}$ with a triangular kernel:

$$
p_{\lfloor\lfloor n \alpha\rfloor+k}=\left\{\begin{array}{cc}
\frac{h+1-k}{h+1-(n \alpha-\lfloor n \alpha\rfloor)} & \text { if } k>0 \\
\frac{h+k}{h+(n \alpha-\lfloor n \alpha\rfloor)} & \text { if } k \leq 0
\end{array}\right.
$$

or a uniform kernel:

$$
p_{\kappa\lfloor n \alpha\rfloor+k}=\frac{1}{2 h}
$$



Triangular and Uniform Kernels

## Numerical experiments

$$
L=\sum_{i=1}^{2} x_{i} \cdot \varepsilon_{i}
$$

with

$$
\binom{\varepsilon_{1}}{\varepsilon_{2}} \sim \mathcal{N}\left(\binom{0}{0},\left(\begin{array}{ll}
1 & 0.5 \\
0.5 & 1
\end{array}\right)\right)
$$

and $x_{1}=100$ and $x_{2}=50$.
Analytical calculus gives CreditVaR (99\%) $=307.7469$, $\operatorname{DR}(1)=2.1981921$ and $\operatorname{DR}(2)=1.7585537$.

We remark that

$$
307.7469=x_{1} \times 2.1981921+x_{2} \times 1.7585537
$$


$99 \%$ VaR Estimation (Gaussian Case)


Risk Sensitivity (Gaussian Case -- CreditVaR 99\%)

## Main result

Proposition 3 Because the CreditVaR is expressed in terms of order statistics, we have

$$
\operatorname{CreditVaR}(\alpha)=\sum_{i=1}^{I} x_{i} \frac{\partial \operatorname{CreditVaR}(\alpha)}{\partial x_{i}}
$$

| rating/sector | 1 | 2 | 3 | 4 | Total by rating |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AAA | 0 | 81 | 13 | 170 | 264 |
| AA | 40 | 725 | 137 | 2752 | 3654 |
| A | 328 | 1849 | 199 | 7061 | 9437 |
| BBB | 1308 | 6718 | 1430 | 16661 | 26117 |
| BB | 1362 | 6988 | 1592 | 13488 | 23430 |
| B | 2275 | 4211 | 3019 | 10323 | 19827 |
| CCC | 1502 | 4983 | 902 | 4561 | 11948 |
| Total by sector | 6816 | 25554 | 7291 | 55015 | $94676=$ CreditVaR |



## 5 Credit Portfolio Management

### 5.1 The pair Risk/return

We define the Risk Adjusted Performance measure by

$$
\text { RAPM }=\frac{(\text { Euribor }+ \text { Sp })}{\text { Risk }}
$$

For a Ioan, we have

$$
\operatorname{RAPM}(i)=\frac{x_{i} \cdot(\text { Euribor }+\operatorname{Sp}(i))}{\operatorname{Risk}(i)}
$$

For a portfolio, we have

$$
\operatorname{RAPM}\left(x_{1}, \ldots, x_{I}\right)=\frac{\sum_{i=1}^{I} x_{i} \cdot(\text { Euribor }+\mathrm{Sp}(i))}{\operatorname{Risk}\left(x_{1}, \ldots, x_{I}\right)}
$$

For a Ioan in a portfolio, we have

$$
\operatorname{RAPM}\left(i ; x_{1}, \ldots, x_{I}\right)=\frac{x_{i} \cdot(\text { Euribor }+\operatorname{Sp}(i))}{\operatorname{RC}(i)}
$$



Annual Spread of the Loans


RAPM of Individual Loans


### 5.2 The Efficient Frontier

The problem is ( $C \in \mathbb{R}_{+}$and $\mathbf{x} \in \Omega$ )

$$
\begin{array}{ll}
\text { max } & \text { ExReturn }\left(x_{1}, \ldots, x_{I}\right) \\
\text { u.c. } & \text { Risk }\left(x_{1}, \ldots, x_{I}\right) \leq C
\end{array}
$$

The simulation method Naive algorithm / Frontier-based algorithm
The optimisation method The ES problem

$$
\begin{array}{ll}
\min & \text { ES }\left(x_{1}, \ldots, x_{I}\right) \\
\text { u.c. } & \text { ExReturn }\left(x_{1}, \ldots, x_{I}\right) \geq C
\end{array}
$$

may be solved by LP technique:

$$
\begin{array}{ll}
\min & \Psi+(1-\alpha)^{-1} \frac{1}{S} \sum_{s=1}^{S} z_{s} \\
\text { u.c. } & \text { ExReturn }\left(x_{1}, \ldots, x_{I}\right) \geq C \\
& \mathrm{x} \in \Omega \\
& z_{s} \geq \sum_{i=1}^{I} x_{i} R_{i}^{s} D_{i}^{s}-\Psi \\
& z_{s} \geq 0
\end{array}
$$

Buiding the CreditVaR frontier with the ES/ER optimisation problem
Some Pratical Issues on Credit Risk


The Frontier-Based Simulation Algorithm


The Naive Simulation Algorithm

### 5.3 Other Techniques

The method of contributions

The method of Lagrange multipliers

## 6 The Time-inconsistency of the Copula Model

The Stationarity of the Default Probability Let $\tau_{1}$ and $\tau_{2}$ be two default times with the joint survival function :

$$
\mathbf{S}\left(t_{1}, t_{2}\right)=\breve{\mathbf{C}}\left(\mathbf{S}_{1}\left(t_{1}\right), \mathbf{S}_{2}\left(t_{2}\right)\right)
$$

We have

$$
\mathbf{S}_{1}\left(t \mid \tau_{2}=t^{\star}\right)=\partial_{2} \breve{\mathbf{C}}\left(\mathbf{S}_{1}(t), \mathbf{S}_{2}\left(t^{\star}\right)\right)
$$

If $\mathbf{C} \neq \mathbf{C}^{\perp}$, the probability of default of one firm changes when another firm defaults (Schmidt and Ward [2002]).
Remark 1 Next computations are performed with the generator $\wedge$ of the Markov chain associated with the annual S\&P TM. Let $K$ be the state of default and $i$ the initial rating of the firm. We have

$$
\mathbf{S}_{i}(t)=1-\mathbf{e}_{i}^{\top} \exp (t \wedge) \mathbf{e}_{K}
$$

The hasard rate is defined by

$$
\begin{aligned}
\lambda(t) & =\lim _{\Delta \rightarrow 0^{+}} \frac{1}{\Delta} \operatorname{Pr}\{t \leq \tau \leq t+\Delta \mid \tau \geq t\} \\
& =\frac{f(t)}{\mathbf{S}(t)}
\end{aligned}
$$

Using a Normal copula, we have

$$
\mathbf{S}_{i_{1}}\left(t \mid \tau_{i_{2}}=t^{\star}\right)=\Phi\left(\frac{\Phi^{-1}\left(\mathbf{S}_{i_{1}}(t)\right)-\rho \Phi^{-1}\left(\mathbf{S}_{i_{2}}\left(t^{\star}\right)\right)}{\sqrt{1-\rho^{2}}}\right)
$$



Hazard rate of the ratings


A firm rated AAA defaults $-\rho=5 \%$


A firm rated AAA defaults $-\rho=50 \%$


A firm rated BB defaults $-\rho=50 \%$


A firm rated CCC defaults $-\rho=50 \%$

## The Stationarity of the Survival Copula (from Jouanin [2002])

If the survival copula at time $t_{0}$ is $\breve{\mathbf{C}}$, and if no defaults occur between $t_{0}$ and $t$, the conditional survival copula at time $t$ is not necessarily $\breve{\mathrm{C}}$ (Giesecke [2000]).

We have

$$
\mathbf{S}\left(t_{1}, t_{2} \mid \tau_{1}, \tau_{2}>t\right)=\frac{\breve{\mathbf{C}}\left(\mathbf{S}_{1}\left(t_{1}\right), \mathbf{S}_{2}\left(t_{2}\right)\right)}{\breve{\mathbf{C}}\left(\mathbf{S}_{1}(t), \mathbf{S}_{2}(t)\right)}
$$

and we would like to have

$$
\mathbf{S}\left(t_{1}, t_{2} \mid \tau_{1}, \tau_{2}>t\right)=\breve{\mathbf{C}}\left(\mathbf{S}_{1}\left(t_{1} \mid \tau_{1}, \tau_{2}>t\right), \mathbf{S}_{2}\left(t_{2} \mid \tau_{1}, \tau_{2}>t\right)\right)
$$

If $\breve{\mathrm{C}}=\mathrm{C}^{\perp}$, this property is verified.
To overcome the lack of Markov property, we may look for a copula family such that the conditional survival copula belongs to the same family. With exponential survival times, one solution is the Gumbel-Barnett copula. Let $\theta$ be the copula parameter at time $t_{0}$. The copula parameter at time $t$ is

$$
\theta(t)=\frac{\theta}{\left(1+\theta \lambda_{1} t\right)\left(1+\theta \lambda_{2} t\right)}
$$



Kendall's tau of the conditional 'Markov' copula

## 7 References

[1] Default \& Recovery Rates of Corporate Bond Issuers 1970-2001, Moody's Investors Service, February 2002
[2] Arvanitis, A., C. Browne, J. Gregory et R. Martin [1998], A credit risk toolbox, Risk, 11(12), 50-55, December
[3] Baud, N., A. Frachot, P. Igigabel, P. Martineu et T. Roncalli [1999], An anlysis framework for bank capital allocation, Groupe de Recherche Opérationnelle, Crédit Lyonnais, Working Paper
[4] Finkelstein, V., J-P. Lardy, G. Pan, T. Ta et J. Tierney [2002], CreditGrades - Technical Document, RiskMetrics Group, Inc.
[5] Giesecke, K. [2000], Correlated default with incomplete information, Humboldt-Universität zu Berlin, Working Paper
[6] Gouriéroux, C., J-P. Laurent et O. Scaillet [2000], Sensitivity analysis of values at risk, Journal of Empirical Finance, 7, 225-245
[7] Jouanin, J.F. [2002], Condition de stationarité temporelle pour la copule des défauts, Groupe de Recherche Opérationnelle, Crédit Lyonnais, Internal Document
[8] Mausser, H. et D. Rosen [1999] Efficient risk/return frontiers for credit risk, Algo Research Quarterly, 2(4), 35-47
[9] Riboulet, G. et T. Roncalli [2002], A fast algorithm to simule elliptical copulas with sector correlations, Groupe de Recherche Opérationnelle, Crédit Lyonnais, Internal Document
[10] Rockafellar, R.T. et S. Uryasev [2000], Optimization of conditional value-at-risk, Journal of Risk, 2, 21-41
[11] Schmidt, W. et I. Ward [2002], Pricing default baskets, Risk, 111-114, Janvier
[12] Wilde, T. [2001], IRB approach explained, Risk Magazine, 14, May, 87-90

