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2 Properties of 2-Copulas

Definition 1 (Schweizer and Sklar [1974]) A two-dimensional

copula (or 2-copula) is a function C with the following properties:

1. DomC = [0,1]× [0,1];

2. C (0, u) = C (u,0) = 0 and C (u,1) = C (1, u) = u for all u in

[0,1];

3. C is 2-increasing:

C (v1, v2)−C (v1, u2)−C (u1, v2) + C (u1, u2) ≥ 0

whenever (u1, u2) ∈ [0,1]2, (v1, v2) ∈ [0,1]2 such 0 ≤ u1 ≤ v1 ≤ 1

and 0 ≤ u2 ≤ v2 ≤ 1.

⇒ 2-Copulas are also doubly stochastic measures on the unit square.
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2.1 Sklar’s canonical representation

Theorem 1 Let F1 and F2 be 2 univariate distributions. It comes

that C (F1 (x1) ,F2 (x2)) defines a bivariate probability distribution

with margins F1 and F2 (because the integral transforms are uniform

distributions).

Theorem 2 Let F be a 2-dimensional distribution function with

margins F1 and F2. Then F has a copula representation:

F (x1, x2) = C (F1 (x1) ,F2 (x2))

The copula C is unique if the margins are continuous. Otherwise,

only the subcopula is uniquely determined on RanF1 ×RanF2.
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2.2 Exhaustive statistics of the dependence

The copula function of random variables (X1, X2) is invariant
under strictly increasing transformations (∂xhn (x) > 0):

C 〈X1, X2〉 = C 〈h1 (X1) , h2 (X2)〉
Here are some examples :

C 〈X1, X2〉 = C 〈lnX1, X2〉
= C 〈lnX1, expX2〉
= C

〈
(X1 −K1)

+ , (X2 −K2)
+

〉

... the copula is invariant while the margins may be changed
at will, it follows that is precisely the copula which captures
those properties of the joint distribution which are invariant
under a.s. strickly increasing transformations (Schweizer and
Wolff [1981]).

⇒ Copula = dependence function of random variables.
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2.3 Topological properties of C

Theorem 3 (Deheuvels [1979]) The set C of 2-copulas is compact

with any of the following topologies, equivalent on C: punctual

convergence, uniform convergence on [0,1]2, weak convergence of

the associated probability measure.

Let Ex (C) be the set of the extreme points of C.

⇒ Choquet’s representation of C similar to the Birkhoff’s

theorem :

C is the convex hull of Ex (C)
Problem : What are the equivalent of permutation matrices ?
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3 The most important copulas

Correlation = an important tool in Finance. For example, it is

sometimes called the diversification coefficient in portfolio analysis.

What are the most important correlations ?

ρ = −1 ⇒ “the random variables are completely negatively

correlated”.

ρ = 0 ⇒ “the random variables are uncorrelated”.

ρ = 1 ⇒ “the random variables are completely correlated”.

Problem: Financial people use ⇔ in the place of ⇒.
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3.1 C−, C⊥ and C+

The lower and upper Fréchet bounds C− and C+ are

C− (u1, u2) = max (u1 + u2 − 1,0)

C+ (u1, u2) = min (u1, u2)

The product copula corresponds to

C⊥ (u1, u2) = u1u2

We can show that the following order∗ holds for any copula C:

C− ≺ C ≺ C+

⇒ The minimal and maximal distributions of the Fréchet class

F (F1,F2) are then C− (F1 (x1) ,F2 (x2)) and C+ (F1 (x1) ,F2 (x2)).

∗≺ is called the concordance order (for distributions) or the stochastic order (for
random variables).
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3.1.1 Probabilistic interpretation of the three copulas

Mikusiński, Sherwood and Taylor [1991] give the following

interpretation of the three copulas C−, C⊥ and C+:

• Two random variables X1 and X2 are countermonotonic — or

C = C− — if there exists a r.v. X such that X1 = f1 (X) and

X2 = f2 (X) with f1 non-increasing and f2 non-decreasing;

• Two random variables X1 and X2 are independent if the

dependence structure is the product copula C⊥;

• Two random variables X1 and X2 are comonotonic — or

C = C+ — if there exists a random variable X such that

X1 = f1 (X) and X2 = f2 (X) where the functions f1 and f2 are

non-decreasing;
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3.1.2 Pearson correlation and copulas

Let X1 and X2 two random variables with distributions F1 and F2.

ρ (X1, X2) =
E [X1X2]− E [X1]E [X2]

σ [X1]σ [X2]

ρ is also called the Pearson correlation or the Linear correlation.

Using works of Tchen [1980] on superadditive functions, we can
show the following results:

• If the copula of (X1, X2) is C⊥, ρ (X1, X2) = 0;

• ρ is increasing with respect to the concordance order

C1 Â C2 ⇒ ρ1 (X1, X2) ≥ ρ2 (X1, X2)

• ρ (X1, X2) is bounded

ρ− (X1, X2) ≤ ρ (X1, X2) ≤ ρ+ (X1, X2)

and the bounds are attained for the Fréchet copulas C− and C+.
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ρ− (X1, X2) = ρ+ (X1, X2) =
E [f1 (X) f2 (X)]− E [f1 (X)]E [f2 (X)]

σ [f1 (X)]σ [f2 (X)]

The solution of the equation ρ− (X1, X2) = −1 (or ρ+ (X1, X2) = 1) is
f1 (x) = a1x + b and f2 (x) = a2x + b with a1a2 < 0 (a1a2 > 0 for
ρ+ = 1).

⇒ If X1 and X2 are not gaussians, there exists very few solutions.
For example, if X1 and X2 are two log-normal random variables,
ρ− = −1 can not be reached and ρ+ = 1 if and only if σ1 = σ2.

C−, C⊥ and C+ are the most important diversification function (in
the sense of the correlation). Moreover, we note that

C Â C⊥ ⇒ ρ (X1, X2) ≥ 0

C ≺ C⊥ ⇒ ρ (X1, X2) ≤ 0
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3.2 The Normal copula
The Normal copula is the dependence function of the gaussian

random vector (X1, X2) with correlation parameter ρ:

Cρ (u1, u2) = Φ
(
Φ−1 (u1) ,Φ−1 (u2) ; ρ

)

Because Normal copula is also the copula of log-normal random

vector, it is the most used in finance.

The Normal copula satisfies

C− = C−1 ≺ Cρ<0 ≺ C0 = C⊥ ≺ Cρ>0 ≺ C1 = C+

It is a comprehensive copula (C−, C⊥ and C+ are special cases of the

Normal copula).

Is the set of Normal copulas C 〈N〉 sufficient to characterize

dependence in Finance ?

What are the most important copulas in finance?
The most important copulas 3-6





4 Extreme and singular copulas

Some properties of the Normal copula:

• It is radially symmetric (bear market 6= bull market);

• It is PQD or NQD;

• It is not an extreme value copula;

• It is not an LMP copula;

• It does not have a stochastic process representation mechanism.
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4.1 Singular copulas

Singular copulas do not have a density

∂1,2C (u1, u2) = 0

• Singular copulas with prescribed support

• Ordinal sums of singular copulas

• Shuffles of Min

The mass distribution for a shuffle of Min can be obtained by
(1) placing the mass for C+ on [0,1]2, (2) cutting [0,1]2

vertically into a finite number of strips, (3) shuffling the strips
with perhaps some of them flipped around their vertical axes
of symmetry, and then (4) reassembling them to form the
square again. The resulting mass distribution will correspond
to a copula called a shuffle of Min (Mikusiński, Sherwood and
Taylor [1992]).
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4.2 Extreme copulas

The determination of the extreme points of C is an open problem

(see the survey of Beneš and Štĕpán [1991]).

The multiplication product of copulas has been defined by Darsow,

Nguyen and Olsen [1992] in the following manner

I2 −→ I

(x, y) 7−→ (C1 ∗C2) (x, y) =
∫ 1
0 ∂2C1 (x, s) ∂1C2 (s, y) ds

The transposition of copula corresponds to the mapping function

C> (x, y) = C (y, x).

Theorem 4 (Darsow, Nguyen and Olsen [1992]) The set C is a

symmetric Markov algebra under ∗ and >. The unit and null elements

are C⊥ and C+.
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We say that C(−1] (respectively C[−1)) is a left (right) inverse of C if

C(−1] ∗C = C+ (C ∗C[−1)= C+).

Theorem 5 (Darsow, Nguyen and Olsen [1992]) Any element of

C that possesses a left or right inverse is extreme.

For example, C− ∈ Ex (C) because we have

(
C− ∗C−

)
(x, y) =

∫ 1

0
1[x+s−1≥0]1[s+y−1≥0] ds

=
∫ 1

0
1[s≥1−x]1[s≥1−y] ds

= 1−min (1− x,1− y)

= C+ (x, y)

It is easy to show that C+ ∈ Ex (C) and C⊥ /∈ Ex (C).

⇒ Ordinal sums of C− and C+ are extreme points.
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5 Quantile aggregation

Belief in finance:

most important risks ⇔ ρ = +1

Translation into the language of copulas:

most risky dependence function ⇔ C = C+

This is true only for some financial problems (first-to-default, BestOf

option, etc.).

⇒ there are situations where most important risks do not

correspond to the case ρ = ρ+.
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5.1 Makarov inequalities

Let L denotes a two-place function (for example, the four arithmetic

operators +, −, × and ÷). The supremal convolution τC,L (F1,F2) is

τC,L (F1,F2) (x) = sup
L(x1,x2)=x

C (F1 (x1) ,F2 (x2))

whereas the infimal convolution ρC,L (F1,F2) corresponds to

ρC,L (F1,F2) (x) = inf
L(x1,x2)=x

C̃ (F1 (x1) ,F2 (x2))

with C̃ the dual of the copula C (C̃ (u1, u2) = u1 + u2 −C (u1, u2)).

Frank, Nelsen and Schweizer [1987] and Williamson [1989] show that

the distribution G of X = L (X1, X2) is contained within the bounds

G∨ (x)≤ G (x)≤ G∧ (x) with G∨ (x) = τC−,L (F1,F2) (x) and

G∧ (x) = ρC−,L (F1,F2) (x). These bounds are the pointwise best

possible.
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5.2 Dependency bounds of the VaR

Using the duality theorem of Frank and Schweizer [1979], it comes

that if C− = C− and L is the operation +, we have

G(−1)
∨ (u) = inf

max(u1+u2−1,0)=u
F(−1)

1 (u1) + F(−1)
2 (u2)

and

G(−1)
∧ (u) = sup

min(u1+u2,1)=u
F(−1)

1 (u1) + F(−1)
2 (u2)

We recall that VaRα (X) = F−1 (α). The corresponding dependency

bounds are then

G(−1)
∧ (α) ≤ VaRα (X1 + X2) ≤ G(−1)

∨ (α)

Numerical algorithms to compute the dependency bounds exist (for

example the uniform quantisation method of Williamson [1989]).
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5.3 The diversification effect

If we define the diversification effect as follows

D =
VaRα (X1) + VaRα (X2)−VaRα (X1 + X2)

VaRα (X1) + VaRα (X2)

there are situations where VaRα (X1 + X2) > VaRα (X1) + VaRα (X2).

A more appropriate definition is then

D̄ =
G(−1)
∨ (α)−VaRα (X1 + X2)

G(−1)
∨ (α)

Embrechts, McNeil and Straumann [1999] interpret χ

(
C(α)
∨ ,C+;α

)

χ

(
C(α)
∨ ,C+;α

)
=

G(−1)
∨ (α)−VaRα (X1) + VaRα (X2)

G(−1)
∨ (α)

as “the amount by which VaR fails to be subadditive”.
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5.4 VaR aggregation in practice

LME example of Durrleman, Nickeghbali and Roncalli [2000]:

AL AL-15 CU NI PB
P1 5 3
P2 5 2 −3

Analytical VaR Historical VaR
P1 363.05 445.74
P2 1026.03 1274.64

Here are the values of G(−1)
∨ (α) for α equal to 99%:

P1 P1
Analytical VaR Historical VaR

P2 Analytical VaR 1507.85 1680.77
P2 Historical VaR 1930.70 2103.67
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6 Application to two assets option pricing

What is a conservative correlation ?

⇓

What is a conservative dependence function ?
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6.1 Multivariate RNDs and copulas

Let Qn and Q be the risk-neutral probability distributions of Sn (T )

and S (T ) =
(

S1 (T ) · · · SN (T )
)>

. With arbitrage theory, we can

show that

Q (+∞, . . . ,+∞, Sn (T ) ,+∞, . . . ,+∞) = Qn (Sn (T ))

⇒ The margins of Q are the RNDs Qn of Vanilla options.

Breeden et Litzenberger [1978] remark that European option prices

permit to caracterize the probability distribution of Sn (T )

φ (T, K) := 1 + er(T−t0)
∂C (T, K)

∂K
= Pr {Sn (T ) ≤ K}
= Qn (K)
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Durrleman [2001] extends this result in the bivariate case:

1. for a call max option, φ (T, K) is the diagonal section of the

copula

φ (T, K) = C (Q1 (K) ,Q2 (K))

2. for a spread option, we have

φ (T, K) =
∫ +∞
0

∂1C (Q1 (x) ,Q2 (x + K)) dQ1 (x)

⇒ Other results are derived in Durrleman [2001] (bounds, general

pricing kernel, etc.) — see Coutant, Durrleman, Rapuch and Roncalli

[2001].
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6.2 Computation of the implied parameter ρ̂
• BS model: LN distribution calibrated with ATM options; Pricing

kernel = LN distributions + Normal copula

ρ̂1 = −0.341

• Bahra model: mixture of LN distributions calibrated with eight

European prices; Pricing kernel = MLN distributions + Normal

copula

ρ̂2 = 0.767

Remark 1 ρ̂1 and ρ̂2 are parameters of the Normal Copula. ρ̂1 is a

Pearson correlation, not ρ̂2.

⇒ BS model: negative dependence / Bahra model: positive

dependence.
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6.3 Bounds of a spread option

For some two-assets options, bounds are related to Fréchet copulas

(see Cherubini and Luciano [2000] for binary options and Coutant,

Durrleman, Rapuch and Roncalli [2001] for BestOf/WorstOf

options).

For spread options, bounds are more complicated, but can be related

to Vanilla prices. For example, we obtain when K > 0
∫ K

0
sup
u≥x

(∂KC1(T, u− x)− ∂KC2(T, u))+ dx ≤ Ke−rT −CS(T,0) + CS(T, K)

Ke−rT −CS(T,0) + CS(T, K) ≤ KerT −
∫ K

0
sup
u≥x

(∂KC1(T, u− x)− ∂KC2(T, u))− dx

⇒ What is a conservative dependence function ?
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[2] Bouyé, E., V. Durrleman, A. Nikeghbali, G. Riboulet and T. Roncalli [2000], Copulas for
finance — A reading guide and some applications, Groupe de Recherche Opérationnelle, Crédit
Lyonnais, Working Paper
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