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1 Introduction

The problem of modelling asset returns is one of the most important issue in Finance. People generally use
gaussian processes because of their tractable properties for computation. However, it is well known that asset
returns are fat-tailed. Gaussian assumption is also the key point to understand the modern portfolio theory.
Usually, efficient portfolios are given by the traditional mean-variance optimisation program (Markowitz
[1987]):

sup
α

α>µ u.c.





α>Σα ≤ s
α>1 = 1
α ≥ 0

(1)

with µ the expected return vector of the N asset returns and Σ the corresponding covariance matrix. The
problem of the investor is also to maximize the expected return for a given variance. In the portfolio analysis
framework, the variance corresponds to the risk measure, but it implies that the world is gaussian
(Schmock and Straumann [1999], Tasche [1999]). The research on value-at-risk (and capital allocation) has
then considerably modified the concept of risk measure (Artzner, Delbaen, Eber and Heath [1997,1999]).

Capital allocation within a bank is getting more and more important as the regulatory requirements are
moving towards economic-based measures of risk (see the reports [1] and [3]). Banks are urged to build sound
internal measures of credit and market risks for all their activities (and certainly for operational risk in a near
future). Internal models for credit, market and operational risks are fundamental for bank capital allocation
in a bottom-up approach. Internal models generally face an important problem which is the modelling of joint
distributions of different risks.

These two difficulties (gaussian assumption and joint distribution modelling) can be treated as a problem of
copulas. A copula is a function that links univariate marginals to their multivariate distribution. Before 1999,
copulas have not been used in finance. There have been recently some interesting papers on this subject (see
for example the article of Embrechts, McNeil and Straumann [1999]). Moreover, copulas are more often
cited in the financial litterature. Li [1999] studies the problem of default correlation in credit risk models, and
shows that “the current CreditMetrics approach to default correlation through asset correlation is equivalent to
using a normal copula function”. In the Risk special report of November 1999 on Operational Risk, Ceske and
Hernández [1999] explain that copulas may be used in conjunction with Monte Carlo methods to aggregate
correlated losses.

The aim of the paper is to show that copulas could be extensively used in finance. The paper is organized
as follows. In section two, we present copula functions and some related fields, in particular the concept of
dependence. We then consider the problem of statistical inference of copulas in section three. We focus on the
estimation problem. In section four, we provide applications of copulas to finance. Section five concludes and
suggests directions for further research.

2 Copulas, multivariate distributions and dependence

2.1 Some definitions and properties

Definition 1 (Nelsen (1998), page 39) 1A N -dimensional copula is a function C with the following prop-
erties2:

1The original definition given by Sklar [1959] is (in french)

Nous appelerons copule (à n dimensions) tout fonction C continue et non-décroissante — au sens employé pour une
fonction de répartition à n dimensions — définie sur le produit Cartésien de n intervalles fermés [0, 1] et satisfaisant
aux conditions C (0, . . . , 0) = 0 et C (1, . . . , 1, u, 1, . . . , 1) = u.

2We will note C the set of copulas.
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1. DomC = IN = [0, 1]N ;

2. C is grounded and N -increasing3;

3. C has margins Cn which satisfy Cn (u) = C (1, . . . , 1, u, 1, . . . , 1) = u for all u in I.

A copula corresponds also to a function with particular properties. In particular, because of the second and third
properties, it follows that ImC = I, and so C is a multivariate uniform distribution. Moreover, it is obvious
that if F1, . . . ,FN are univariate distribution functions, C (F1 (x1) , . . . ,Fn (xn) , . . . ,FN (xN )) is a multivariate
distribution function with margins F1, . . . ,FN because un = Fn (xn) is a uniform random variable. Copula
functions are then an adapted tool to construct multivariate distributions.

Theorem 2 (Sklar’s theorem) Let F be an N -dimensional distribution function with continuous margins
F1, . . . ,FN . Then F has a unique copula representation:

F (x1, . . . , xn, . . . , xN ) = C (F1 (x1) , . . . ,Fn (xn) , . . . ,FN (xN )) (3)

The theorem of Sklar [1959] is very important, because it provides a way to analyse the dependence structure
of multivariate distributions without studying marginal distributions. For example, if we consider the Gumbel’s
bivariate logistic distribution F (x1, x2) = (1 + e−x1 + e−x2)−1 defined on R2. We could show that the marginal
distributions are F1 (x1) ≡

∫
RF (x1, x2) dx2 = (1 + e−x1)−1 and F2 (x2) = (1 + e−x2)−1. The copula function

corresponds to

C (u1, u2) = F
(
F−1

1 (u1) ,F−1
2 (u2)

)

=
u1u2

u1 + u2 − u1u2
(4)

However, as Frees and Valdez [1997] note, it is not always obvious to identify the copula. Indeed, for many
financial applications, the problem is not to use a given multivariate distribution but consists in finding a conve-
nient distribution to describe some stylized facts, for example the relationships between different asset returns.
In most applications, the distribution is assumed to be a multivariate gaussian or a log-normal distribution for
tractable calculus, even if the gaussian assumption may not be appropriate. Copulas are also a powerful tool
for finance, because the modelling problem can be splitted into two steps:

• the first step deals with the identification of the marginal distributions;

• and the second step consists in defining the appropriate copula in order to represent the dependence
structure in a good manner.

In order to illustrate this point, we consider the example of assets returns. We use the database of the London
Metal Exchange4 and we consider the spot prices of the commodities Aluminium Alloy (AL), Copper (CU),
Nickel (NI), Lead (PB) and the 15 months forward prices of Aluminium Alloy (AL-15), dating back to January
1988. We assume that the distribution of these asset returns is gaussian. In this case, the corresponding ML
estimate of the correlation matrix is given by the table 1.

Figure 1 represents the scatterplot of the returns AL and CU, the corresponding gaussian 2-dimensional
covariance ellipse for confidence levels 95% and 99%, and the implied probability density function. Figure 2
contains the projection of the hyper-ellipse of dimension 5 for the asset returns. The gaussian assumption is

3C in N -increasing if the C-volume of all N -boxes whose vertices lie in IN are positive, or equivalently if we have

2X

i1=1

· · ·
2X

iN =1

(−1)i1+···+iN C
�
u1,i1 , . . . , uN,iN

� ≥ 0 (2)

for all
�
u1,1, . . . , uN,1

�
and

�
u1,2, . . . , uN,2

�
in IN with un,1 ≤ un,2.

4In order to help the reader to reproduce the results, we use the public database available on the web site of the LME:
http://www.lme.co.uk.
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AL AL-15 CU NI PB
AL 1.00 0.82 0.44 0.36 0.33

AL-15 1.00 0.39 0.34 0.30
CU 1.00 0.37 0.31
NI 1.00 0.31
PB 1.00

Table 1: Correlation matrix ρ of the LME data

generally hard to verify because rare events occur more often than planned (see the outliers of the covariance
ellipse for a 99.99% confidence level on the density function in figure 1). Figure 3 is a QQ-plot of the theoret-
ical confidence level versus the empirical confidence level of the error ellipse. It is obvious that the gaussian
hypothesis fails.

Figure 1: Gaussian assumption (I)

In the next paragraph, we will present the concept of dependence and how it is linked to copulas. Now, we
present several properties that are necessary to understand how copulas work and why they are an attractive
tool. One of the main property concerns concordance ordering, defined as follows:

Definition 3 (Nelsen (1998), page 34) We say that the copula C1 is smaller than the copula C2 (or C2 is
larger than C1), and write C1 ≺ C2 (or C1 Â C2) if

∀ (u1, . . . , un, . . . , uN ) ∈ IN , C1 (u1, . . . , un, . . . , uN ) ≤ C2 (u1, . . . , un, . . . , uN ) (5)
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Figure 2: Gaussian assumption (II)

Figure 3: QQ-plot of the covariance ellipse
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Two specific copulas play an important role5, the lower and upper Fréchet bounds C− and C+:

C− (u1, . . . , un, . . . , uN ) = max

(
N∑

n=1

un −N + 1, 0

)

C+ (u1, . . . , un, . . . , uN ) = min (u1, . . . , un, . . . , uN ) (6)

We could show that the following order holds for any copula C:

C− ≺ C ≺ C+ (7)

The concept of concordance ordering can be easily illustrated with the example of the bivariate gaussian copula
C (u1, u2; ρ) = Φρ

(
Φ−1 (u1) , Φ−1 (u2)

)
(Joe [1997], page 140). For this family, we have

C− = Cρ=−1 ≺ Cρ<0 ≺ Cρ=0 = C⊥ ≺ Cρ>0 ≺ Cρ=1 = C+ (8)

with C⊥ the product copula6. We have represented this copula and the Fréchet copulas in the figure 4. Level
curves

{
(u1, u2) ∈ I2|C (u1, u2) = C

}
can be used to understand the concordance ordering concept. Considering

formula (7), the level curves lie in the area delimited by the lower and upper Fréchet bounds. In figure 5, we
consider the Frank copula7. We clearly see that the Frank copula is positively ordered by the parameter α.
Moreover, we remark that the lower Fréchet, product and upper Fréchet copulas are special cases of the Frank
copula when α tends respectively to −∞, 0 and +∞. This property is interesting because a parametric family
could cover the entire range of dependence in this case.

Remark 4 The density c associated to the copula is given by

c (u1, . . . , un, . . . , uN ) =
∂ C (u1, . . . , un, . . . , uN )

∂ u1 · · · ∂ un · · · ∂ uN
(11)

To obtain the density f of the N -dimensional distribution F, we use the following relationship:

f (x1, . . . , xn, . . . , xN ) = c (F1 (x1) , . . . ,Fn (xn) , . . . ,FN (xN ))
N∏

n=1

fn (xn) (12)

where fn is the density of the margin Fn.

2.2 Dependence

2.2.1 Measure of concordance

Definition 5 (Nelsen (1998), page 136) A numeric measure κ of association between two continuous ran-
dom variables X1 and X2 whose copula is C is a measure of concordance if it satifies the following properties:

1. κ is defined for every pair X1, X2 of continuous random variables;

2. −1 = κX,−X ≤ κC ≤ κX,X = 1;

5C− is not a copula if N > 2, but we use this notation for convenience.
6The product copula is defined as follows:

C⊥ =
NY

n=1

un (9)

7The copula is defined by

C (u1, u2) =
1

α
ln

�
1 +

(exp (αu1)− 1) (exp (αu2)− 1)

(exp (α)− 1)

�
(10)

with α ∈ R? (Frees and Valdez [1997]).
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Figure 4: Lower Fréchet, product and upper Fréchet copulas

Figure 5: Level curves of the Frank Copula

8



Copulas for Finance

3. κX1,X2 = κX2,X1 ;

4. if X1 and X2 are independent, then κX1,X2 = κC⊥ = 0;

5. κ−X1,X2 = κX1,−X2 = −κX1,X2 ;

6. if C1 ≺ C2, then κC1 ≤ κC2 ;

7. if {(X1,n, X2,n)} is a sequence of continuous random variables with copulas Cn, and if {Cn} converges
pointwise to C, then limn→∞ κCn

= κC.

Remark 6 Another important property of κ comes from the fact the copula function of random variables
(X1, . . . , Xn, . . . , XN ) is invariant under strictly increasing transformations:

CX1,...,Xn,...,XN
= Ch1(X1),...,hn(Xn),...,hN (XN ) if ∂xhn (x) > 0 (13)

Among all the measures of concordance, three famous measures play an important role in non-parametric
statistics: the Kendall’s tau, the Spearman’s rho and the Gini indice. They could all be written with copulas,
and we have (Schweitzer and Wolff [1981])

τ = 4
∫∫

I2
C (u1, u2) dC (u1, u2)− 1 (14)

% = 12
∫∫

I2
u1u2 dC (u1, u2)− 3 (15)

γ = 2
∫∫

I2
(|u1 + u2 − 1| − |u1 − u2|) dC (u1, u2) (16)

Nelsen [1998] presents some relationships between the measures τ and %, that can be summarised by a bounding
region (see figure 6). In Figure 7 and 8, we have plotted the links between τ , % and γ for different copulas8.
We note that the relationships are similar. However, some copulas do not cover the entire range [−1, 1] of the
possible values for concordance measures. For example, Kimeldorf-Sampson, Gumbel, Galambos and Hüsler-
Reiss copulas do not allow negative dependence.

2.2.2 Measure of dependence

Definition 7 (Nelsen (1998), page 170) A numeric measure δ of association between two continuous ran-
dom variables X1 and X2 whose copula is C is a measure of dependence if it satifies the following properties:

1. δ is defined for every pair X1, X2 of continuous random variables;

2. 0 = δC⊥ ≤ δC ≤ δC+ = 1;

3. δX1,X2 = δX2,X1 ;

4. δX1,X2 = δC⊥ = 0 if and only if X1 and X2 are independent;

5. δX1,X2 = δC+ = 1 if and only if each of X1 and X2 is almost surely a strictly monotone function of the
other;

8If analytical expressions are not available, they are computed with the following equivalent formulas

τ = 1− 4

ZZ

I2
∂u1C (u1, u2) ∂u2C (u1, u2) du1 du2 (17)

% = 12

ZZ

I2
C (u1, u2) du1 du2 − 3 (18)

γ = 4

Z

I
(C (u, u) + C (u, 1− u)− u) du (19)

and a Gauss-Lengendre quadrature with 128 knots (Abramowitz and Stegun [1970]).
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Figure 6: Bounding region for τ and %

Figure 7: Relationships between τ , % and γ for some copula functions (I)
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Figure 8: Relationships between τ , % and γ for some copula functions (II)

6. if h1 and h2 are almost surely strictly monotone functions on ImX1 and Im X2 respectively, then

δh1(X1),h2(X2) = δX1,X2

7. if {(X1,n, X2,n)} is a sequence of continuous random variables with copulas Cn, and if {Cn} converges
pointwise to C, then limn→∞ δCn = δC.

Schweitzer and Wolff [1981] provide different measures which satisfy these properties:

σ = 12
∫∫

I2

∣∣C (u1, u2)−C⊥ (u1, u2)
∣∣ du1 du2 (20)

Φ2 = 90
∫∫

I2

∣∣C (u1, u2)−C⊥ (u1, u2)
∣∣2 du1 du2 (21)

where σ is known as the Schweitzer or Wolff’s σ measure of dependence, while Φ2 is the dependence index
introduced by Hoeffding.

2.2.3 Other dependence concepts

There are many other dependence concepts, that are useful for financial applications. For example, X1 and X2

are said to be positive quadrant dependent (PQD) if

Pr {X1 > x1, X2 > x2} ≥ Pr {X1 > x1}Pr {X2 > x2} (22)

Suppose that X1 and X2 are random variables standing for two financial losses.The probability of simultaneous
large losses is greater for dependent variables than for independent ones. In term of copulas, relation (22) is
equivalent to

C Â C⊥ (23)
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Figure 9: Dependence measures for the Gaussian copula

The notion of tail dependence is more interesting. Joe [1997] gives the following definition:

Definition 8 If a bivariate copula C is such that9

lim
u→1

C̄ (u, u)
1− u

= λ (27)

exists, then C has upper tail dependence for λ ∈ (0, 1] and no upper tail dependence for λ = 0.

The measure λ is extensively used in extreme value theory. It is the probability that one variable is extreme
given that the other is extreme. Let λ (u) = Pr {U1 > u|U2 > u} = C̄(u,u)

1−u . λ (u) can be viewed as a “quantile-
dependent measure of dependence” (Coles, Currie and Tawn [1999]). Figure 10 represents the values of λ (u)
for the gaussian copula. We see that extremes are asymptotically independent for ρ 6= 1, i.e λ = 0 for ρ < 1.
Embrechts, McNeil and Straumann [1999] remarked that the Student’s copula provides an interesting
contrast with the gaussian copula. We have reported the values of λ (u) for the Student’s copula with one and

9C̄ is the joint survival function, that is

C̄ (u1, u2) = 1− u1 − u2 + C (u1, u2) (24)

Note that it is related to the survival copula Č

Č (u1, u2) = u1 + u2 − 1 + C (1− u1, 1− u2) (25)

in the following way
C̄ (u1, u2) = Č (1− u1, 1− u2) (26)

12
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five degrees of freedom10 respectively. In this case, extremes are asymptotically dependent for ρ 6= 1. Of course,
the strength of this dependence decreases as the degrees of freedom increase, and the limit behaviour as ν tends
to infinity corresponds to the case of the gaussian copula.

Figure 10: Quantile-dependent measure λ (u) for the gaussian copula

2.3 A summary of different copula functions

2.3.1 Copulas related to elliptical distributions

Elliptical distributions have density of the form f
(
x>x

)
, and so density contours are ellipsoids. They play

an important role in finance. In figure 13, we have plotted the contours of bivariate density for the gaussian
copula and differents marginal distributions. We verify that the gaussian copula with two gaussian marginals
correspond to the bivariate gaussian distribution, and that the contours are ellipsoids. Building multivariate
distributions with copulas becomes very easy. For example, figure 13 contains two other bivariate densities with
different margins. In figure 14, margins are the same, but we use a copula of the Frank family. For each figure,
we have choosen the copula parameter in order to have the same Kendall’s tau (τ = 0.5). The dependence
structure of the four bivariate distributions can be compared.

Definition 9 (multivariate gaussian copula — MVN) Let ρ be a symmetric, positive definite matrix with
diag ρ = 1 and Φρ the standardized multivariate normal distribution with correlation matrix ρ. The multivariate
gaussian copula is then defined as follows:

C (u1, . . . , un, . . . , uN ; ρ) = Φρ

(
Φ−1 (u1) , . . . ,Φ−1 (un) , . . . ,Φ−1 (uN )

)
(28)

10The short solid line corresponds to the values of λ.
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Figure 11: Quantile-dependent measure λ (u) for the Student’s copula (ν = 1

Figure 12: Quantile-dependent measure λ (u) for the Student’s copula (ν = 5

14
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Figure 13: Contours of density for Gaussian copula

Figure 14: Contours of density for Frank copula
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The corresponding density is11

c (u1, . . . , un, . . . , uN ; ρ) =
1

|ρ| 12
exp

(
−1

2
ς>

(
ρ−1 − I) ς

)
(31)

with ςn = Φ−1 (un).

Even if the MVN copula has not been extensively used in papers related to this topic, it permits tractable calculus
like the MVN distribution. Let us consider the computation of conditional density. Let U =

[
U>

1 ,U>
2

]> denote
a vector of uniform variates. In partitioned form, we have

ρ =
[

ρ11 ρ12

ρ22

]
(32)

We could also show that the conditional density of U2 given values of U1 is

(33)

c (U2|U1; ρ) =
1

∣∣ρ22 − ρ>12ρ
−1
11 ρ12

∣∣ 1
2

exp
(
−1

2
ς
([

ρ22 − ρ>12ρ
−1
11 ρ12

]−1 − I
)

ς

)
(34)

with ς = Φ−1 (U2) − ρ>12ρ
−1
11 Φ−1 (U1). Using this formula and if the margins are specified, we could perform

quantile regressions or calculate other interesting values like expected values.

Definition 10 (multivariate Student’s copula — MVT) Let ρ be a symmetric, positive definite matrix
with diag ρ = 1 and Tρ,ν the standardized multivariate Student’s distribution12 with ν degrees of freedom and
correlation matrix ρ. The multivariate Student’s copula is then defined as follows:

C (u1, . . . , un, . . . , uN ; ρ, ν) = Tρ,ν

(
t−1
ν (u1) , . . . , t−1

ν (un) , . . . , t−1
ν (uN )

)
(36)

with t−1
ν the inverse of the univariate Student’s distribution. The corresponding density is13

c (u1, . . . , un, . . . , uN ; ρ) = |ρ|− 1
2

Γ
(

ν+N
2

) [
Γ

(
ν
2

)]N

[
Γ

(
ν+1
2

)]N Γ
(

ν
2

)
(
1 + 1

ν ς>ρ−1ς
)− ν+N

2

N∏
n=1

(
1 + ς2

n

ν

)− ν+1
2

(37)

with ςn = t−1
ν (un).

Remark 11 Probability density function of MVN and MVT copulas are easy to compute. For cumulative density
functions, the problem becomes harder. In this paper, we use the GAUSS procedure cdfmvn based on the algorithm
developed by Ford and the FORTRAN subroutine mvtdst written by Genz and Bretz [1999a,1999b].

11We have for the Multinormal distribution

1

(2π)
N
2 |ρ| 12

exp

�
−1

2
x>ρ−1x

�
= c (Φ (x1) , . . . ,Φn (xn) , . . . ,ΦN (xN ))

 
NY

n=1

1√
2π

exp

�
−1

2
x2

n

�!
(29)

We deduce also

c (u1, . . . , un, . . . , uN ) =

1

(2π)
N
2 |ρ|

1
2

exp
�− 1

2
ς>ρ−1ς

�

1

(2π)
N
2

exp
�− 1

2
ς>ς

� (30)

12We have

Tρ,ν (x1, . . . , xN ) =

Z x1

−∞
· · ·
Z xN

−∞

Γ
�

ν+N
2

�
|ρ|− 1

2

Γ
�

ν
2

�
(νπ)

N
2

�
1 +

1

ν
x>ρ−1x

�− ν+N
2

dx (35)

13We obtain this result by using the technique described in footnote 11.
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There are few works that focus on elliptical copulas. However, they could be very attractive. Song [2000]
gives a multivariate extension of dispersion models with the Gaussian copula. Jorgensen [1997] defines a
dispersion model Y ∼ DM (

µ, σ2
)

with the following probability density form

f
(
y; µ, σ2

)
= a

(
y;σ2

)
exp

(
− 1

2σ2
d (y;µ)

)
(38)

µ and σ2 are called the position and dispersion parameters. d is the unit deviance with d (y; µ) ≥ 0 satisfying
d (y; y) = 0. If a

(
y; σ2

)
takes the form a1 (y) a2

(
σ2

)
, the model is a proper dispersion model PDM (e.g.

Simplex, Leipnik or von Mises distribution). With d (y;µ) = yd1 (µ) + d2 (y) + d3 (µ), we obtain an exponential
dispersion model EDM (e.g. Gaussian, exponential, Gamma, Poisson, negative binomial, binomial or inverse
Gaussian distributions). Jorgensen and Lauritzen [1998] propose a multivariate extension of the dispersion
model defined by the following probability density form

f (y;µ, Σ) = a (y; Σ) exp
(
−1

2
tr

{
Σ−1t (y; µ) t (y;µ)>

})
(39)

As noted by Song, this construction is not natural, because their models are not marginally closed in the sense
that the marginal distributions may not be in the given distribution class. Song [2000] proposes to define the
multivariate dispersion model Y ∼MDM (

µ, σ2, ρ
)

as

f
(
y; µ, σ2, ρ

)
=

1

|ρ| 12
exp

(
−1

2
ς>

(
ρ−1 − I) ς

) N∏
n=1

fn

(
yn;µn, σ2

n

)
(40)

with ς =(ς1, . . . , ςN )>, µ = (µ1, . . . , µN )>, σ2=
(
σ2

1 , . . . , σ2
N

)> and ςn = Φ−1
(
Fn

(
yn;µn, σ2

n

))
. In this case, the

univariate margins are effectively the dispersion model DM (
µn, σ2

n

)
. Moreover, these MDM distributions

have many properties similar to the multivariate normal distribution.

We consider the example of the Weibull distribution. Let (b, c) two positive scalars. We have

f (y) =
cyc−1

bc
exp

(
−

(y

b

)c)
(41)

In the dispersion model framework, we have d (y; µ) = 1
2yc, a

(
y;σ2

)
= cyc−1

σ2 , σ2 = bc and µ = 0. It is also both
a proper and exponential distribution. A multivariate generalization is then given by

f (y) =
1

|ρ| 12
exp

(
−1

2
ς>

(
ρ−1 − I) ς

) N∏
n=1

cnycn−1

bcn
n

exp
(
−

(
yn

bn

)cn
)

(42)

with ςn = Φ−1
(
1− exp

(
−

(
yn

bn

)cn
))

.

2.3.2 Archimedean copulas

Genest and MacKay [1996] define Archimedean copulas as the following:

C (u1, . . . , un, . . . , uN ) =





ϕ−1 (ϕ (u1) + . . . + ϕ (un) + . . . + ϕ (uN )) if
N∑

n=1

ϕ (un) ≤ ϕ (0)

0 otherwise

(43)

with ϕ (u) a C2 function with ϕ (1) = 0, ϕ′ (u) < 0 and ϕ′′ (u) > 0 for all 0 ≤ u ≤ 1. ϕ (u) is called the generator
of the copula. Archimedean copulas play an important role because they present several desired properties (C
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is symmetric, associative14, etc.). Moreover, Archimedean copulas simplify calculus. For example, the Kendall’s
tau is given by

τ = 1 + 4
∫ 1

0

ϕ (u)
ϕ′ (u)

du (44)

We have reported in the following table some classical bivariate Archimedean copulas15:

Copula ϕ (u) C (u1, u2)
C⊥ − ln u u1u2

Gumbel (− ln u)α exp
(
− (ũα

1 + ũα
2 )

1
α

)

Joe (− ln 1− (1− u)α) 1− (ũα
1 + ũα

2 − ũα
1 ũα

2 )
1
α

Kimeldorf-Sampson u−α − 1
(
ũ−α

1 + ũ−α
2 − 1

)− 1
α

Let $ (u) = exp (−ϕ (u)). We note that the equation (43) could be written as

$ (C (u1, . . . , un, . . . , uN )) =
N∏

n=1

$ (un) (45)

By applying ϕ both to the joint distribution and the margins, the distributions “become” independent. We
note also that Archimedean copulas are related to multivariate distributions generated by mixtures. Let γ be
a vector of parameters generated by a joint distribution function Γ with margins Γn and H a multivariate
distribution. We denote F1, . . . ,FN N univariate distributions. Marshall and Olkin [1988] showed that

F (x1, . . . , xn, . . . , xN ) =
∫
· · ·

∫
H (Hγ1

1 (x1) , . . . ,Hγn
n (xn) , . . . , HγN

N (xN )) dΓ (γ1, . . . , γn, . . . , γN ) (46)

is a multivariate distribution with marginals F1, . . . ,FN . We have

Hn (xn) = exp
(−ψ−1

n (Fn (xn))
)

(47)

with ψn the Laplace transform of the marginal distribution Γn. Let ψ be the Laplace transform of the joint
distribution Γ. Another expression of (46) is

F (x1, . . . , xn, . . . , xN ) = ψ
(
ψ−1

1 (F1 (x1)) , . . . , ψ−1
n (Fn (xn)) , . . . , ψ−1

n (Fn (xn))
)

(48)

If the margins Γn are the same, Γ is the upper Fréchet bound and H the product copula, Marshall and Olkin
[1988] remarked that

F (x1, . . . , xn, . . . , xN ) = ψ
(
ψ−1 (F1 (x1)) + . . . + ψ−1 (Fn (xn)) + . . . + ψ−1 (Fn (xn))

)
(49)

The inverse of the Laplace transform ψ−1 is then a generator for Archimedean copulas.

2.3.3 Extreme value copulas

Following Joe [1997], an extreme value copula C satisfies the following relationship16:

C
(
ut

1, . . . , u
t
n, . . . , ut

N

)
= Ct (u1, . . . , un, . . . , uN ) ∀ t > 0 (50)

14C (u1,C (u2, u3)) = C (C (u1, u2) , u3).
15We use the notation of Joe [1997] to be more concise: ū = 1− u and ũ = − ln u.
16This relationship will be explained in paragraph 4.3.2 page 45.
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For example, the Gumbel copula is an extreme value copula:

C
(
ut

1, u
t
2

)
= exp

(
− [(− ln ut

1

)α +
(− ln ut

2

)α] 1
α

)

= exp
(
− (tα [(− ln u1)

α + (− ln u1)
α])

1
α

)

=
[
exp

(
− [(− ln u1)

α + (− ln u1)
α]

1
α

)]t

= Ct (u1, u2)

Let us consider the previous example of density contours with the Gumbel copula. We then obtain figure 15.

Figure 15: Contours of density for Gumbel copula

What is the link between extreme value copulas and the multivariate extreme value theory? The answer
is straightforward. Let us denote χ+

n,m = max (Xn,1, . . . , Xn,k, . . . , Xn,m) with {Xn,k} k iid random variables
with the same distribution. Let Gn be the marginal distribution of the univariate extreme χ+

n,m. Then, the

joint limit distribution G of
(
χ+

1,m, . . . , χ+
n,m, . . . , χ+

N,m

)
is such that

G
(
χ+

1 , . . . , χ+
n , . . . , χ+

N

)
= C

(
G1

(
χ+

1

)
, . . . ,Gn

(
χ+

n

)
, . . . ,GN

(
χ+

N

))
(51)

where C is an extreme value copula and Gn a non-degenerate univariate extreme value distribu-
tion. The relation (51) gives us also a ‘simple’ way to construct multivariate extreme value distributions. In
figure 16, we have plotted the contours of the density of bivariate extreme value distributions using a Gumbel
copula and two GEV distributions17.

17The parameters of the two margins are respectively µ = 0, σ = 1, ξ = 1 and .µ = 0, σ = 1, ξ = 1.2 (these parameters are
defined in the formula 178 page 51).
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Figure 16: Example of bivariate extreme value distributions

3 Statistical inference of copulas

3.1 Simulation techniques

Simulations have an important role in statistical inference. They especially help to investigate properties of
estimator. Moreover, they are necessary to understand the underlying multivariate distribution. For example,
suppose that we generate a 5-dimensional distribution with a MVT copula, 2 generalized-pareto margins and
three generalized-beta margins. You have to perform simulations to get an idea of the shape of the distribution.

The simulation of uniform variates for a given copula C can be accomplished with this following general
algorithm:

1. Generate N independent uniform variates (v1, . . . , vn, . . . , vN );

2. Generate recursively the N variates as follows

un = C−1
(u1,...,un−1)

(vn) (52)

with

C(u1,...,un−1) (un) = Pr {Un ≤ un | (U1, . . . , Un−1) = (u1, . . . , un−1)}

=
∂n−1
(u1,...,un−1)

C (u1, . . . , un, 1, . . . , 1)

∂n−1
(u1,...,un−1)

C (u1, . . . , un−1, 1, . . . , 1)
(53)

The main idea of this algorithm is to simulate each un by using its conditional distribution. In the case of
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dimension 2, relation (52) becomes

u1 = v1

∂u1C (u1, u2) = v2

because ∂u1C (u1, 1) = 1. However, we have to note that random generation requires a root finding procedure.
For classical copulas, there exist specific powerfull algorithms (Devroye [1986]). This is the case of Kimeldorf-
Sampson, Gumbel, Marshall-Olkin, etc. and more generally the case of Archimedean copulas18. For MVN or
MVT copulas, random uniforms are obtained by generating random numbers of the corresponding MVN or
MVT distribution, and by applying the cdf of the corresponding univariate distribution.

Remark 12 To obtain random numbers if the margins are not uniforms, we use the classical inversion method.

3.2 Non-parametric estimation

3.2.1 Empirical copulas

Empirical copulas have been introduced by Deheuvels [1979]. Let X = {(xt
1, . . . , x

t
N )}T

t=1 denote a sample.
The empirical copula distribution is given by

Ĉ
(

t1
T

, . . . ,
tn
T

, . . . ,
tN
T

)
=

1
T

T∑
t=1

1�
xt
1≤x

(t1)
1 ,...,xt

n≤x
(tn)
n ,...,xt

N≤x
(tN )
N

� (56)

where x
(t)
n are the order statistics and 1 ≤ t1, . . . , tN ≤ T . The empirical copula frequency corresponds to

ĉ
(

t1
T , . . . , tn

T , . . . , tN

T

)
= 1

T if
(
x

(t1)
1 , . . . , x

(tN )
N

)
belongs to X or 0 otherwise. The relationships between empirical

copula distribution and frequency are

Ĉ
(

t1
T

, . . . ,
tn
T

, . . . ,
tN
T

)
=

t1∑

i1=1

· · ·
tN∑

iN=1

ĉ
(

i1
T

, . . . ,
in
T

, . . . ,
iN
T

)
(57)

and19

ĉ
(

t1
T

, . . . ,
tn
T

, . . . ,
tN
T

)
=

2∑

i1=1

· · ·
2∑

iN=1

(−1)i1+···+iN Ĉ
(

t1 − i1 + 1
T

, . . . ,
tn − in + 1

T
, . . . ,

tN − iN + 1
T

)
(58)

In figure 17, we have plotted the contours of the empirical copula for the assets AL and CU. We compare
them with these computed with the gaussian distribution, i.e a gaussian copula with gaussian margins, and a
gaussian copula (without assumptions on margins20). We remark that the gaussian copula fits better
the empirical copula than the gaussian distribution!

Empirical copulas could be used to estimate dependence measures. For example, an estimation of the
Spearman’s % is

%̂ =
12

T 2 − 1

T∑
t1=1

T∑
t2=1

(
Ĉ

(
t1
T

,
t2
T

)
− t1t2

T 2

)
(59)

18We have also

C(u1,...,un−1)
(un) =

ϕ(n−1) (ϕ (u1) + . . . + ϕ (un))

ϕ(n−1) (ϕ (u1) + . . . + ϕ (un−1))
(54)

with

ϕ(n) =
∂n

∂ un
ϕ−1 (55)

19Definition (1) of the copula requires that C is a N -increasing function (see footnote 3 page 4). This property means that there
is a density associated to C.

20The estimation methods of the parameters are described in the next chapter.
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Figure 17: Comparison of empirical copula, Gaussian distribution and Gaussian copula

Using the relationship ρ = 2 sin
(

π
6 %

)
between the parameter of gaussian copula and Spearman’s correlation, we

deduce an estimate of the correlation matrix of the assets for the gaussian copula (Table 2). If we compare it
with the correlation given in table 1 page 5, we show that they are close but different.

AL AL-15 CU NI PB
AL 1.00 0.87 0.52 0.41 0.36
AL-15 1.00 0.45 0.36 0.32
CU 1.00 0.43 0.39
NI 1.00 0.34
PB 1.00

Table 2: Correlation matrix ρ of the LME data

3.2.2 Identification of an Archimedean copula

Genest and Rivest [1993] have developed an empirical method to identify the copula in the Archimedean
case. Let X be a vector of N random variables, C the associated copula with generator ϕ and K the function
defined by

K (u) = Pr {C (U1, . . . , UN ) ≤ u} (60)

Barbe, Genest, Ghoudi and Rémillard [1996] showed that

K (u) = u +
N∑

n=1

(−1)n ϕn (u)
n!

κn−1 (u) (61)
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with κn (u) = ∂u κn−1(u)
∂u ϕ(u) and κ0 (u) = 1

∂u ϕ(u) . In the bivariate case, this formula simplifies to

K (u) = u− ϕ (u)
ϕ′ (u)

A non parametric estimate of K is given by

K̂ (u) =
1
T

T∑
t=1

1[ϑi≤u] (62)

with

ϑi =
1

T − 1

T∑
t=1

1[xt
1<xi

1,...,xt
N <xi

N ] (63)

The idea is to fit K̂ by choosing a parametric copula in the family of Archimedean copulas (see Figure 18 for
assets AL and CU previously defined).

Figure 18: QQ-plot of the function K (u) (Gumbel copula)

3.3 Parametric estimation

In “Multivariate Models and Dependence Concepts”, Joe [1997] writes

Statistical modelling usually means that one comes up with a simple (or mathematically tractable)
model without knowledge of the physical aspects of the situation. The statistical model needs to be
‘real’ and is not an end but a means of providing statistical inferences... My view of multivariate
modelling, based on experience with multivariate data, is that models should try to capture im-
portant characteristics, such as the appropriate density shapes for the univariate margins and the
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appropriate dependence structure, and otherwise be as simple as possible. The parameters of the
model should be in a form most suitable for easy interpretation (e.g., a parameter is interpreted
as either a dependence parameter or a univariate parameter but not some mixture)...

In many applications, parametric models are useful in order to study the properties of the underlying statis-
tical model. The idea to decompose the complex problems of multivariate modelling into two more simplified
statistical problem is justified.

3.3.1 Maximum likelihood estimation

Let θ be the K × 1 vector of parameters to be estimated and Θ the parameter space. The likelihood for
observation t, that is the probability density of the observation t, considered as a function of θ, is denoted
Lt (θ). Let `t (θ) be the log-likelihood of Lt (θ). Given T observations, we get

` (θ) =
T∑

t=1

`t (θ) (64)

the log-likelihood function. θ̂ML is the Maximum Likelihood estimator if

`
(
θ̂ML

)
≥ ` (θ) ∀ θ ∈ Θ (65)

We may show that θ̂ML has the property of asymptotic normality (Davidson and MacKinnon [1993]) and
we have √

T
(
θ̂ML − θ0

)
−→ N (

0,J−1 (θ0)
)

(66)

with J (θ0) the information matrix of Fisher21.

Applied to distribution (3), the expression of the log-likelihood becomes

` (θ) =
T∑

t=1

ln c
(
F1

(
xt

1

)
, . . . ,Fn

(
xt

n

)
, . . . ,FN

(
xt

N

))
+

T∑
t=1

N∑
n=1

ln fn

(
xt

n

)
(70)

If we assume uniform margins, we have

` (θ) =
T∑

t=1

ln c
(
ut

1, . . . , u
t
n, . . . , ut

N

)
(71)

In the case of gaussian copula, we have

` (θ) = −T

2
ln |ρ| − 1

2

T∑
t=1

ς>t
(
ρ−1 − I) ςt (72)

21Let Jθ̂ML
be the T×K Jacobian matrix of `t (θ) and Hθ̂ML

the K×K Hessian matrix of the likelihood function. The covariance

matrix of θ̂ML in finite sample can be estimated by the inverse of the negative Hessian

var
�
θ̂ML

�
=
�
−Hθ̂ML

�−1
(67)

or by the inverse of the OPG estimator

var
�
θ̂ML

�
=
�
J>

θ̂ML
Jθ̂ML

�−1
(68)

Another estimator called the White (or “sandwich”) estimator is defined by

var
�
θ̂ML

�
=
�
−Hθ̂ML

�−1 �
J>

θ̂ML
Jθ̂ML

��
−Hθ̂ML

�−1
(69)

which takes into account of heteroskedasticity.
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with ςt =
(
Φ−1 (ut

1) , . . . ,Φ−1 (ut
n) , . . . ,Φ−1 (ut

N )
)

and the ML estimate of ρ is also (Magnus and Neudecker
[1988])

ρ̂ML =
1
T

T∑
t=1

ς>t ςt (73)

Unlike for gaussian copula, the estimation of the parameters for other copulas may require numerical optimisa-
tion of the log-likelihood function. This is the case of Student’s copula

` (θ) ∝ −T

2
ln |ρ| −

(
ν + N

2

) T∑
t=1

ln
(

1 +
1
ν

ς>t ρ−1ςt

)
+

(
ν + 1

2

) T∑
t=1

N∑
n=1

ln
(

1 +
ς2
n

ν

)
(74)

The previous method, which we call the exact maximum likelihood method or EML, could be computational
intensive in the case of high dimensional distribution, because it requires to jointly estimate the parameters
of the margins and the parameters of the dependence structure. However, the copula representation splits
the parameters into specific parameters for marginal distributions and common parameters for the dependence
structure (or the parameters of the copula). The log-likelihood (70) could then be written as

` (θ) =
T∑

t=1

ln c
(
F1

(
xt

1; θ1

)
, . . . ,Fn

(
xt

n; θn

)
, . . . ,FN

(
xt

N ; θN

)
; α

)
+

T∑
t=1

N∑
n=1

ln fn

(
xt

n; θn

)
(75)

with θ = (θ1, . . . , θN , α). We could also perform the estimation of the univariate marginal distributions in a
first step

θ̂n = arg max
T∑

t=1

ln fn

(
xt

n; θn

)
(76)

and then estimate α given the previous estimates

α̂ = arg max
T∑

t=1

ln c
(
F1

(
xt

1; θ̂1

)
, . . . ,Fn

(
xt

n; θ̂n

)
, . . . ,FN

(
xt

N ; θ̂N

)
;α

)
(77)

This two-step method is called the method of inference functions for margins or IFM method. In general, we
have

θ̂FML 6= θ̂IFM (78)

In an unpublished thesis, Xu suggests “that the IFM method is highly efficient compared with ML method”
(Joe [1997]). Using a close idea of the IFM method, we remark that the parameter vector α of the copula could
be estimated without specifying the marginals. The method consists in transforming the data (xt

1, . . . , x
t
N ) into

uniform variates (ût
1, . . . , û

t
N ), and in estimating the parameters in the following way:

α̂ = arg max
T∑

t=1

ln c
(
ût

1, . . . , û
t
n, . . . , ût

N ;α
)

(79)

In this case, α̂ could be viewed as the ML estimator given the observed margins (without assumptions on
the parametric form of the marginal distributions). Because it is based on the empirical distributions,
we call it the canonical maximum likelihood method or CML.

Example 13 Let us consider two random variables X1 and X2 generated by a bivariate gaussian copula with
exponential and standard gamma distributions. We have

c (x1, x2) =
1√

1− ρ2
exp

(
−1

2

(
ς2
1 + 2ς1ς2 + ς2

2

1− ρ2

)
+

1
2

(
ς2
1 + ς2

2

))
(80)
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with

ς1 = Φ−1 (1− exp (−λx1))

ς2 = Φ−1

(∫ x2

0

xγ−1e−x

Γ (γ)
dx

)
(81)

The vector of the parameters is also

θ =




λ
γ
ρ


 (82)

We perform a Monte Carlo study22 to investigate the properties of the three methods. In figure 19, we have
reported the distributions of the estimators ρ̂EML, ρ̂IFM and ρ̂FML for different sample sizes T = 100, T = 500,
T = 1000 and T = 2500. We remark that the densities of the three estimators are very close.

Figure 19: Density of the estimators

Remark 14 To estimate the parameter ρ of the gaussian copula with the CML method23, we proceed as follows:

1. Transform the original data into gaussian data:

(a) Estimate the empirical distribution functions (uniform transformation) using order statistics;

22The number of replications is set to 1000. The value of the parameters are λ = 2, γ = 1.5 and ρ = 0.5.
23Note that this is asymptotically equivalent to compute Spearman’s correlation and to deduce the correlation parameter using

the relationship:

ρ = 2 sin
�π

6
%
�

(83)
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Figure 20: Empirical uniforms (or empirical distribution functions)

(b) Then generate gaussian values by applying the inverse of the normal distribution to the empirical
distribution functions.

2. Compute the correlation of the transformed data.

Let us now use the LME example again. The correlation matrix estimated with the CML method is given by
table (3).

AL AL-15 CU NI PB
AL 1.00 0.85 0.49 0.39 0.35
AL-15 1.00 0.43 0.35 0.32
CU 1.00 0.41 0.36
NI 1.00 0.33
PB 1.00

Table 3: Correlation matrix ρ̂CML of the gaussian copula for the LME data

3.3.2 Method of moments

We consider that the empirical moments ht,i (θ) depend on the K × 1 vector θ of parameters. T is the number
of observations and m is the number of conditions or moments. Consider ht (θ) the row vector of the elements
ht,1 (θ) , . . . , ht,m (θ) and H (θ) the T ×m matrix with elements ht,i (θ). Let g (θ) be a m× 1 vector given by

gi (θ) =
1
T

T∑
t=1

ht,i (θ) (84)
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The GMM24 criterion function Q (θ) is defined by:

Q (θ) = g (θ)>W−1g (θ) (85)

with W a symmetric positive definite m×m matrix. The GMM estimator θ̂GMM corresponds to

θ̂GMM = arg min
θ∈Θ

Q (θ) (86)

Like the ML estimators, we may show that θ̂GMM has the property of asymptotic normality and we have
√

T
(
θ̂GMM − θ0

)
−→ N (0, Σ) (87)

In the case of optimal weights (W is the covariance matrix Φ of H (θ) – Hansen [1982]), we have

var
(
θ̂GMM

)
=

1
T

[
D>Φ̂−1D

]−1

(88)

with D the m×K Jacobian matrix of g (θ) computed for the estimate θ̂GMM.

“The ML estimator can be treated as a GMM estimator in which empirical moments are the components
of the score vector” (Davidson and MacKinnon [1993]). ML method is also a special case of GMM with
g (θ) = ∂θ` (θ) and W = IK . That is why var

(
θ̂GMM

)
is interpreted as an OPG estimator.

We may estimate the parameters of copulas with the method of moments. However, it requires in general
to compute the moments. That could be done thanks to a symbolic software like Mathematica or Maple. When
there does not exist analytical formulas, we could use numerical integration or simulation methods. Like the
maximum likelihood method, we could use the method of moments in different ways in order to simplify the
computational complexity of estimation.

4 Financial Applications

4.1 Credit scoring

Main idea

We use the theoretical background on scoring functions developed by Gouriéroux [1992]. We
give a copula interpretation. Moreover, we discuss the dependence between scoring functions
and show how to exploit it.

4.1.1 Theoretical background on scoring functions: a copula interpretation

4.1.2 Statistical methods with copulas

4.2 Asset returns modelling

Main idea

We consider some portfolio optimisation problems. In a first time, we fix the margins and analyze
the impact of the copula. In a second time, we work with a given copula. Finally, we present
some illustrations with different risk measures.
We then analyze the serial dependence with discrete stationary Markov chains constructed from
a copula function (Fang, Hu and Joe [1994] and Joe [1996,1997]).
The third paragraph concerns continuous stochastic processes and their links with copulas (Dar-
sow, Nguyen and Olsen [1992]).

24Generalized Method of Moments.
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4.2.1 Portfolio aggregation

4.2.2 Time series modelling

4.2.3 Markov processes

This paragraph is based on the seminal work of Darsow, Nguyen and Olsen [1992]. These authors define a
product of copulas, which is noted the ∗ operation. They remark that “the ∗ operation on copulas corresponds
in a natural way to the operation on transition probabilities contained in the Chapman-Kolmogorov equations”.

4.2.3.1 The ∗ product and Markov processes

Let C1 and C2 be two copulas of dimension 2. Darsow, Nguyen and Olsen [1992] define the product of
C1 and C2 by the following function

C1 ∗C2 : I2 −→ I

(u1, u2) 7−→ (C1 ∗C2) (u1, u2) =
∫ 1

0

∂2C1 (u1, u) ∂1C2 (u, u2) du
(89)

where ∂1C and ∂2C represent the first-order partial derivatives with respect to the first and second variable.
This product has many properties (Darsow, Nguyen and Olsen [1992], Olsen, Darsow and Nguyen
[1996]):

1. C1 ∗C2 is in C (C1 ∗C2 is a copula);

2. the ∗ product is right and left distributive over convex combinations;

3. the ∗ product is continuous in each place;

4. the ∗ product is associative;

5. C⊥ is the null element
C⊥ ∗C = C ∗C⊥ = C⊥ (90)

6. C+ is the identity
C+ ∗C = C ∗C+ = C (91)

7. the ∗ product is not commutative.

Using the fact that conditional probabilities of joint random variables (X1, X2) correspond to partial
derivatives of the underlying copula C(X1,X2), Darsow, Nguyen and Olsen [1992] investigate the inter-
pretation of the ∗ product in the context of Markov processes. Karatzas and Shreve [1991] remind that
X = {Xt,Ft; t ≥ 0} is said to be a Markov process with initial distribution µ if

(i) ∀A a σ-field of Borel sets in R
Pr {X0 ∈ A} = µ (A) (92)

(ii) and for t ≥ s
Pr {Xt ∈ A | Fs} = Pr {Xt ∈ A | Xs} (93)

Darsow, Nguyen and Olsen [1992] prove also the following theorem:

Theorem 15 Let X = {Xt,Ft; t ≥ 0} be a stochastic process and let Cs,t denote the copula of the random
variables Xs and Xt. Then the following are equivalent
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(i) The transition probabilities Ps,t (x,A) = Pr {Xt ∈ A | Xs = x} satisfy the Chapman-Kolmogorov equations

Ps,t (x,A) =
∫ ∞

−∞
Ps,θ (x, dy)Pθ,t (y,A) (94)

for all s < θ < t and almost all x ∈ R.

(ii) For all s < θ < t,
Cs,t = Cs,θ ∗Cθ,t (95)

As Darsow, Nguyen and Olsen [1992] remark, this theorem is a new approach to consider Markov
processes:

In the conventional approach, one specifies a Markov process by giving the initial distribution µ
and a family of transition probabilities Ps,t (x,A) satisfying the Chapman-Kolmogorov equations.
In our approach, one specifies a Markov process by giving all of the marginal distributions and a
family of 2-copulas satisfying (95). Ours is accordingly an alternative approach to the study of
Markov processes which is different in principle from the conventional one. Holding the transition
probabilities of a Markov process fixed and varying the initial distribution necessarily varies all
of the marginal distributions, but holding the copulas of the process fixed and varying the initial
distribution does not affect any other marginal distribution.

Darsow, Nguyen and Olsen [1992] recall that satisfaction of the Chapman-Kolmogorov equations
is a necessary but not sufficient condition for a Markov process. They consider then the generalization
of the ∗ product, which is denoted C1 ? C2

IN1+N2−1 −→ I

(u1, . . . , uN1+N2−1) 7−→ (C1 ? C2) (u) =
∫ uN1

0

∂N1C1 (u1, . . . , uN1−1, u) ∂1C2 (u, uN1+1, . . . , uN1+N2−1) du

(96)
with C1 and C2 two copulas of dimension N1 and N2. They also prove this second theorem:

Theorem 16 Let X = {Xt,Ft; t ≥ 0} be a stochastic process. Let Cs,t and Ct1,...,tN
denote the copulas of the

random variables (Xs, Xt) and (Xt1 , . . . , XtN
). X is a Markov process if and only if for all positive integers N

and for all (t1, . . . , tN ) satisfying tn < tn+1

Ct1,...,tN = Ct1,t2 ? · · · ? Ctn,tn+1 ? · · · ? CtN−1,tN (97)

4.2.3.2 An investigation of the Brownian copula

Revuz and Yor [1999] define the brownian motion as follows:

Definition 17 There exists an almost-surely continuous process W with independent increments such that for
each t, the random variable W (t) is centered, Gaussian and has variance t. Such a process is called a standard
linear Brownian motion.

It comes from this definition that

Ps,t (x, (−∞, y]) = Φ
(

y − x√
t− s

)
(98)

Moreover, we have by definition of the conditional distribution

Ps,t (x, (−∞, y]) = ∂1Cs,t (Fs (x) ,Ft (y)) (99)
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with Ft the distribution of W (t), i.e. Ft (y) = Φ
(
y/
√

t
)
. We have also

Cs,t (Fs (x) ,Ft (y)) =
∫ x

−∞
Φ

(
y − z√
t− s

)
dFs (z) (100)

With the change of variables u1 = Fs (x), u2 = Ft (y) and u = Fs (z), we obtain

Cs,t (u1, u2) =
∫ u1

0

Φ
(√

tΦ−1 (u2)−
√

sΦ−1 (u)√
t− s

)
du (101)

This copula has been first found by Darsow, Nguyen and Olsen [1992], but nobody has studied it. However,
Brownian motion plays an important role in diffusion process. That is why we try to understand the implied
dependence structure in this paragraph.

We call the copula defined by (101) the Brownian copula. We have the following properties:

1. The conditional distribution Pr {U2 ≤ u2 | U1 = u1} is given by

∂1Cs,t (u1, u2) = Φ
(√

tΦ−1 (u2)−
√

sΦ−1 (u1)√
t− s

)
(102)

In the figure 22, we have reported the conditional probabilities for different s and t.

2. The conditional distribution Pr {U1 ≤ u1 | U2 = u2} is given by

∂2Cs,t (u1, u2) =
√

t

t− s

1
φ (Φ−1 (u2))

∫ u1

0

φ

(√
tΦ−1 (u2)−

√
sΦ−1 (u)√

t− s

)
du (103)

3. The density of the Brownian copula is

cs,t (u1, u2) =
√

t

t− s
φ

(√
tΦ−1 (u2)−

√
sΦ−1 (u)√

t− s

)
1

φ (Φ−1 (u2))
(104)

In the figure 23, we have represented the density for different s and t.

4. The Brownian copula is symmetric.

5. We have C0,t = C⊥, Cs,∞ = C⊥ and limt→s Cs,t = C+.

6. The Brownian copula is not invariant by time translation

Cs,t 6= Cs+δ,t+δ (105)

7. Let U1 and U2 be two independent uniform variables. Then, the copula of the random variables(
U1,Φ

(√
t−1sΦ−1 (U1) +

√
t−1 (t− s)Φ−1 (U2)

))
is the Brownian copula Cs,t.

Let us now consider the relation between the marginal distributions in the context of stochastic processes.
We have

Ft (Xt) = Φ
(√

t−1sΦ−1 (Fs (Xs)) +
√

t−1 (t− s)εt

)
(106)

with εt a white noise process. It comes that

Xt = F−1
t

(
Φ

(√
t−1sΦ−1 (Fs (Xs)) +

√
t−1 (t− s)εt

))
(107)
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Figure 21: Probability density function of the Brownian copula

Figure 22: Plot of the conditional probabilities Pr {U2 ≤ u2 | U1 = u1}
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In the case of the brownian motion, we retrieve the classical relation

Xt =
√

tΦ−1

(
Φ

(√
t−1sΦ−1

(
Φ

(
Xs√

s

))
+

√
t−1 (t− s)εt

))

= Xs +
√

t− sεt (108)

Let us now consider the following marginal distributions Ft (y) = tν

(
y/

√
vt

v−2

)
with ν > 2. By construction,

we have this definition:

Definition 18 There exists an almost-surely continuous process W ν with independent increments with the
same temporal dependence structure as the Brownian motion such that for each t, the random variable
W ν (t) is centered, Student with variance t. Such a process is called a Student Brownian motion. W ν (t) is then

characterized by the marginals
(
tν

(
W ν/

√
vt

v−2

))
t≥0

and the copula
(∫ u1

0

Φ
(√

tΦ−1 (u2)−
√

sΦ−1 (u)√
t− s

)
du

)

t>s≥0

.

Figure 23 presents some simulations of these process. We remark of course that when ν tends to infinity, W ν

tends to the Gaussian brownian motion. We now consider now a very simple illustration. Let X (t) be defined
by the following SDE: {

dX (t) = µX (t) dt + µX (t) dW (t)
X (t0) = x0

(109)

The solution is the Geometric Brownian motion and the diffusion process representation is

X (t) = x0 exp
((

µ− 1
2
σ2

)
(t− t0) + σ (W (t)−W (t0))

)
(110)

We consider now a new stochastic process Y (t) defined by

Y (t) = x0 exp
((

µ− 1
2
σ2

)
(t− t0) + σ (W ν (t)−W ν (t0))

)
(111)

What is the impact of introducing these fat tailed distributions in the payoff of a KOC option ? The answer is
not obvious, because there are two phenomenons:

1. First, we may suppose that the probability to be out of the barriers L and H is greater for the Student
brownian motion than for the brownian motion

Pr {Y (t) ∈ [L,H]} ≤ Pr {X (t) ∈ [L, H]} (112)

2. But we have certainly an opposite influence on the terminal payoff (K is the strike)

Pr
{

(Y (T )−K)+ ≥ g
}
≥ Pr

{
(X (T )−K)+ ≥ g

}
(113)

In figure 24, we have reported the probability density function of the KOC option with the following parameter
values : x0 = 100, µ = 0, σ = 0.20, L = 80, H = 120 and K = 100. The maturity of the option is one year. For
the student parameter, we use ν = 10. In figure 25, we use ν = 4.

4.2.3.3 Understanding the temporal dependence structure of diffusion processes

The Darsow-Nguyen-Olsen approach is very interesting to understand the temporal dependence structure
of diffusion processes. In this paragraph, we review different diffusion processes and compare their copulas.

Theorem 19 The copula of a Geometric Brownian motion is the Brownian copula.
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Figure 23: Simulations of a Brownian motion (BM) and of a Student Brownian motion (SBM

Figure 24: Density of the payoff of the KOC option (ν = 10
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Figure 25: Density of the payoff of the KOC option (ν = 4)

Proof. We have

Ps,t (x, (0, y]) = Φ

(
ln y − ln x− (

µ− 1
2σ2

)
(t− s)

σ
√

t− s

)
(114)

Then, it comes that

Cs,t (Fs (x) ,Ft (y)) =
∫ x

0

Φ

(
ln y − ln z − (

µ− 1
2σ2

)
(t− s)

σ
√

t− s

)
dFs (z)

with Ft (y) = Φ
(

ln y−ln x0−(µ− 1
2 σ2)t

σ
√

t

)
. With the change of variables u1 = Fs (x), u2 = Ft (y) and u = Fs (z),

we have

ln z − ln x0 −
(

µ− 1
2
σ2

)
s = σ

√
sΦ−1 (u)

ln y − ln x0 −
(

µ− 1
2
σ2

)
t = σ

√
tΦ−1 (u2)

ln y − ln z −
(

µ− 1
2
σ2

)
(t− s) = σ

[√
tΦ−1 (u2)−

√
sΦ−1 (u)

]
(115)

The corresponding copula is then

Cs,t (u1, u2) =
∫ u1

0

Φ
(√

tΦ−1 (u2)−
√

sΦ−1 (u)√
t− s

)
du (116)
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Note that we could prove the previous theorem in another way. Let Cs,t be the copula of the random variables
W (s) and W (t). Let us consider two functions α (x) and β (x) defined as follows:

α (x) = x0 exp
((

µ− 1
2
σ2

)
(s− t0) + σx

)

β (x) = x0 exp
((

µ− 1
2
σ2

)
(t− t0) + σx

)
(117)

Because these two functions are strictly increasing, the copula of the random variables α (W (s)) and β (W (t))
is the same as the copula of the random variables W (s) and W (t).

Definition 20 An Ornstein-Uhlenbeck process corresponds to the following SDE representation
{

dX (t) = a (b−X (t)) dt + σ dW (t)
X (t0) = x0

(118)

Using Ito calculus, we could show that the diffusion process representation is

X (t) = x0e
−a(t−t0) + b

(
1− e−a(t−t0)

)
+ σ

∫ t

t0

ea(θ−t) dW (θ) (119)

By definition of the stochastic integral, it comes that the distribution Ft (x) is

Φ

(
x− x0e

−a(t−t0) + b
(
1− e−a(t−t0)

)
σ√
2a

√
1− e−2a(t−t0)

)
(120)

Theorem 21 The Ornstein-Uhlenbeck copula is

Cs,t (u1, u2) =
∫ u1

0

Φ
(
~ (t0, s, t)Φ−1 (u2)− ~ (t0, s, s)Φ−1 (u)

~ (s, s, t)

)
du (121)

with
~ (t0, s, t) =

√
e2a(t−s) − e−2a(s−t0) (122)

Proof. We have

Ps,t (x, (−∞, y]) = Φ

(
y − xe−a(t−s) + b

(
1− e−a(t−s)

)
σ√
2a

√
1− e−2a(t−s)

)
(123)

Then, it comes that

Cs,t (Fs (x) ,Ft (y)) =
∫ x

−∞
Φ

(
y − ze−a(t−s) + b

(
1− e−a(t−s)

)
σ√
2a

√
1− e−2a(t−s)

)
dFs (z) (124)

Using the change of variables u1 = Fs (x), u2 = Ft (y) and u = Fs (z), it comes that

y − ze−a(t−s) = x0e
−a(t−t0) − b

(
1− e−a(t−t0)

)
+

σ√
2a

√
1− e−2a(t−t0)Φ−1 (u2)−

e−a(t−s)

[
x0e

−a(s−t0) − b
(
1− e−a(s−t0)

)
+

σ√
2a

√
1− e−2a(s−t0)Φ−1 (u)

]

= −b
(
1− e−a(t−s)

)
+

σ√
2a

[√
1− e−2a(t−t0)Φ−1 (u2)− e−a(t−s)

√
1− e−2a(s−t0)Φ−1 (u)

]
(125)
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Then, we obtain a new expression of the copula

Cs,t (u1, u2) =
∫ u1

0

Φ

(√
1− e−2a(t−t0)Φ−1 (u2)− e−a(t−s)

√
1− e−2a(s−t0)Φ−1 (u)√

1− e−2a(t−s)

)
du (126)

The Ornstein-Uhlenbeck copula presents the following properties:

1. The Brownian copula is a special case of the Ornstein-Uhlenbeck copula with the limit function

lim
a−→0

~ (t0, s, t) =
√

t− t0 (127)

2. The conditional distribution Pr {U2 ≤ u2 | U1 = u1} is given by

∂1Cs,t (u1, u2) = Φ
(
~ (t0, s, t)Φ−1 (u2)− ~ (t0, s, s)Φ−1 (u1)

~ (s, s, t)

)
(128)

3. The conditional distribution Pr {U1 ≤ u1 | U2 = u2} is given by

∂2Cs,t (u1, u2) =
~ (t0, s, t)
~ (s, s, t)

1
φ (Φ−1 (u2))

∫ u1

0

φ

(
~ (t0, s, t)Φ−1 (u2)− ~ (t0, s, s)Φ−1 (u)

~ (s, s, t)

)
du (129)

4. The density of the Ornstein-Uhlenbeck copula is

cs,t (u1, u2) =
~ (t0, s, t)
~ (s, s, t)

φ

(
~ (t0, s, t)Φ−1 (u2)− ~ (t0, s, s)Φ−1 (u1)

~ (s, s, t)

)
1

φ (Φ−1 (u2))
(130)

We have represented the density of the Ornstein-Uhlenbeck copula for different values of s and t (t0 is equal
to 0). We could compare them with the previous ones obtained for the Brownian copula. We verify that

lim
a−→∞

Cs,t (u1, u2) = C⊥ (131)

but we have
lim

a−→−∞
Cs,t (u1, u2) = C+ (132)

In order to understand the temporal dependence of diffusion processes, we could investigate the properties of
the associated copula in a deeper way. We have reported in figures 28 and 29 Spearman’s rhos for Brownian
and Ornstein-Uhlenbeck copulas.

Remark 22 A new interpretation of the parameter a follows. For physicists, a is the mean-reverting coefficient.
From a copula point of view, this parameter measures the dependence between the random variables of the
diffusion process. The bigger this parameter, the less dependent the random variables.

4.3 Risk measurement

Main idea

One of the most powerful application of copulas concerns the Risk Management. We consider
four problems: loss aggregation, stress testing programs, default modelling and operational risk
measurement.
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Figure 26: Probability density function of the Ornstein-Uhlenbeck copula (a = 1
4 )

Figure 27: Probability density function of the Ornstein-Uhlenbeck copula (a = 1)
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Figure 28: Spearman’s rho (s = 1)

Figure 29: Spearman’s rho (s = 5
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4.3.1 Loss aggregation and Value-at-Risk analysis

In this paragraph, we are going to show how copulas could be used to aggregate loss distributions and to
compute Value-at-Risk.

4.3.1.1 The discrete case

The individual risk model, which is intensively used in insurance, has been considered in further details by
Wang [1999] and Marceau, Cossette, Gaillardetz and Rioux [1999]. Let Xn and X be the nth risk and
the aggregate loss. Xn is defined as follows

Xn =
{

An if Bn = 1
0 if Bn = 0 (133)

where Bn is a Bernoulli random variable with parameter pn. Marceau, Cossette, Gaillardetz and Ri-
oux [1999] introduce the dependence for the joint distribution of the random variables Bn. Let F be the
corresponding cumulative distribution function. We have

F (e1, . . . , eN ) = C (Bp1 (e1) , . . . ,BpN (eN )) (134)

As shown by Marceau, Cossette, Gaillardetz and Rioux [1999], the moment generating function (mgf )
of (X1, . . . , XN ) is

MX1,...,XN
(t1, . . . , tN ) =

∑

e1,...,eN∈{0,1}
c (e1, . . . , eN )

N∏
n=1

[MAn (tn)]en (135)

where MAn (t) = E
[
etAn

]
represents the mgf of the random variable An. The distribution G of X =

∑
Xn

is then obtained by inverting MX1,...,XN
(t, . . . , t) (because MX1,...,XN

(t, . . . , t) is the mgf of the sum — see
Wang [1999]).

4.3.1.2 The continuous case

α) Tractable copulas for high dimensions.

Computational aspects is one of the main topic from an industrial point of view. It concerns the copula
parameters estimation problem and the simulation issue. If the two problems can not be easily solved for high
dimensions for a given copula, the copula is not tractable to compute the Value-at-Risk. Klugman
and Parsa [2000] use for example the Frank copula to fit bivariate loss distributions. One of the reason is that
they perform median regression which is very simple with this copula. However, the Frank copula is not a
good candidate for our problem, because the estimation for higher dimensions is computationally difficult.

We have previously seen that the estimation of the ρ parameter of the gaussian copula is very easy with the
IFM or CML algorithm (see remark 14 of the page 26). Moreover, simulations based on the gaussian copula are
straighforward. The gaussian copula is also a good candidate for our problem.

For the Student copula, it is not possible to obtain an analytic expression of ρ̂ML. However, we could derive
an efficient algorithm which does not require optimization. Moreover, like the gaussian copula, simulations are
straightforward. The Student copula is then another good candidate for our problem.

Proposition 23 In the case of the Student copula, the ρ matrix may be estimated using the following algorithm:

1. Let ρ̂0 be the ML estimate of the ρ matrix for the gaussian copula;
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2. ρ̂m+1 is obtained using the following equation25

ρ̂m+1 =
1
T

(
ν + N

ν

) T∑
t=1

ς>t ςt

1 + 1
ν ς>t ρ̂−1

m ςt
(139)

3. Repeat the second step until convergence26 — ρ̂m+1 = ρ̂m (:= ρ̂∞).

4. The CML (or IFM) estimate of the ρ matrix for the Student copula is ρ̂CML = ρ̂∞.

Remark 24 We have now two copula functions which are tractable. Moreover, these copulas could be used in
conjunction with any marginal distributions. Many multivariate distributions could then be used to compute
the value-at-risk of a portfolio.

Remark 25 Let P (t) be the price vector of the assets at time t and a the portfolio. The one period value-
at-risk with α confidence level is defined by V aR = F−1 (1− α) with F the distribution of the random variate
a> (P (t + 1)−P (t)). Generally, analytical value-at-risk is computed using the assumption of multivariate
gaussian distribution. Using fat-tailed marginal distributions could then be done with the gaussian or the Student
copula. Moreover, in some financial markets, there are some restrictions (for example arbitrage conditions in
the forward market of the petroleum products). The one period value-at-risk must satisfy these restrictions.
One possibility is to write these constraints in the form h (P (t + 1) ,P (t)) ≥ 0. Taking into account of these
restrictions could then be done by constraining some random variates to be positive. Because of the copula
representation, this could be done without difficulties (we have just to choose some margin distributions with
positive real numbers support).

25Recall that the density of the Student copula is given by the expression (37), it comes that the log-likelihood is
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We then concentrate the log-likelihood

∂ ` (θ)

∂ ρ−1
= −T

2
ρ−
�

ν + N

2

� TX

t=1

1
ν

ς>t ςt

1 + 1
ν

ς>t ρ−1ςt
(137)

It comes also that the ML estimate must satisfy the following non-linear matrix equation

ρ̂ML =
1

T

�
ν + N

ν

� TX

t=1

ς>t ςt

1 + 1
ν

ς>t ρ̂−1
MLςt

(138)

26For high dimension N , we may obtain a solution which is not a positive definite matrix because of computer roundoff errors.
In this case, we suggest to use at each iteration a ‘square root matrix decomposition’ (Horn and Johnson [1991]) to adjust the
correlation matrix

ρ̂m+1 = z2 (140)

with
z = z1 + iz2 (141)

where z1 and z2 are two definite positive matrices. Then, we obtain a new estimate ρ̂m+1 of the correlation matrix with

ρ̂m+1 = z2
1 (142)

The ‘square root matrix decomposition’ could be easily performed with a complex Schur decomposition approach (Golub and Van
Loan [1989]). Note also that if the elements of the diagonal are note equal to one, we may rescale the matrix in the following way

(ρ̂m+1)i,j ←−
(ρ̂m+1)i,jq

(ρ̂m+1)
2
i,i ×

q
(ρ̂m+1)

2
j,j

(143)
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β) A first illustration with gaussian margins.

We remind that the correlation matrix estimated with the CML method for the gaussian copula is given by
table 4. In the case of the Student copula, the estimates are different — see table 5. We now compute the
economic capital measure for different portfolios. In the following table, we indicate the composition of the
portfolios — a negative number corresponds to a short position.

AL AL-15 CU NI PB
P1 1 1 1 1 1
P2 -1 -1 -1 -1 -1
P3 2 1 -3 4 5

AL AL-15 CU NI PB
AL 1.000 0.850 0.492 0.386 0.354
AL-15 1.000 0.429 0.346 0.316
CU 1.000 0.409 0.359
NI 1.000 0.333
PB 1.000

Table 4: Correlation matrix ρ̂CML of the gaussian copula for the LME data

ν = 1 AL AL-15 CU NI PB
AL 1.000 0.820 0.326 0.254 0.189
AL-15 1.000 0.271 0.223 0.164
CU 1.000 0.267 0.219
NI 1.000 0.195
PB 1.000

ν = 2 AL AL-15 CU NI PB
AL 1.000 0.875 0.429 0.351 0.282
AL-15 1.000 0.371 0.314 0.253
CU 1.000 0.364 0.302
NI 1.000 0.278
PB 1.000

ν = 3 AL AL-15 CU NI PB
AL 1.000 0.888 0.466 0.387 0.321
AL-15 1.000 0.410 0.349 0.291
CU 1.000 0.399 0.336
NI 1.000 0.312
PB 1.000

ν = 5 AL AL-15 CU NI PB
AL 1.000 0.893 0.493 0.410 0.350
AL-15 1.000 0.437 0.373 0.320
CU 1.000 0.423 0.362
NI 1.000 0.337
PB 1.000

ν = 25 AL AL-15 CU NI PB
AL 1.000 0.878 0.503 0.408 0.364
AL-15 1.000 0.446 0.370 0.331
CU 1.000 0.425 0.371
NI 1.000 0.345
PB 1.000

ν = 100 AL AL-15 CU NI PB
AL 1.000 0.861 0.496 0.394 0.358
AL-15 1.000 0.436 0.354 0.322
CU 1.000 0.415 0.363
NI 1.000 0.337
PB 1.000

Table 5: Correlation matrix ρ̂CML of the Student copula for the LME data

We assume that the economic capital measure is given by the one day value-at-risk of the portfolio27. In practice,
the VaR with a 99% confidence level is estimated using an historical approach, because the analytical approach
based on the multinormal distribution leads to many exceptions in the backtesting procedure. Nevertheless,
the actual databases are too small to compute the historical VaR with higher confidence level. This is a key
point because the economic capital allocation projects are based on higher confidence level. To get an idea, the
classical confidence levels by ratings are reported below:

rating BBB A AA AAA
α confidence level 99.75% 99.9% 99.95% 99.97%

27The actual prices are set to 100.
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We have computed the VaR by assuming that the margins are gaussian but with different copula functions.
The results are sumarized by tables 6 and 7. We remark that the economic capital with a 99.9% confidence
level is lower with the gaussian copula than with the student copula28. It indicates that the dependence
structure — or the copula function — has a great influence on the value-at-risk computation.

90% 95% 99% 99.5% 99.9%
P1 7.265 9.297 13.15 14.59 17.54
P2 7.263 9.309 13.17 14.59 17.65
P3 13.92 17.92 25.24 27.98 33.40

Table 6: Economic capital measure with gaussian copula

ν = 1 90% 95% 99% 99.5% 99.9%
P1 5.696 7.977 13.22 15.46 20.16
P2 5.709 7.980 13.19 15.46 20.15
P3 13.43 19.34 34.32 40.65 55.12

ν = 2 90% 95% 99% 99.5% 99.9%
P1 6.476 8.751 13.79 15.90 20.26
P2 6.470 8.753 13.70 15.77 20.12
P3 13.20 18.27 30.53 36.00 49.47

ν = 3 90% 95% 99% 99.5% 99.9%
P1 6.834 9.077 13.85 15.73 20.31
P2 6.812 9.082 13.84 15.83 20.15
P3 13.18 17.86 28.69 33.56 45.01

ν = 5 90% 95% 99% 99.5% 99.9%
P1 7.081 9.283 13.88 15.68 19.58
P2 7.109 9.351 13.94 15.72 19.57
P3 13.31 17.63 27.18 31.18 40.78

ν = 25 90% 95% 99% 99.5% 99.9%
P1 7.318 9.453 13.56 15.10 18.18
P2 7.308 9.401 13.37 14.94 18.41
P3 13.64 17.60 25.38 28.36 34.90

ν = 100 90% 95% 99% 99.5% 99.9%
P1 7.293 9.387 13.27 14.79 17.56
P2 7.297 9.427 13.42 14.78 17.56
P3 13.85 17.81 25.32 28.11 34.07

Table 7: Economic capital measure with Student copula

γ) A second illustration with fat-tailed margins.

We consider the case of fat-tailed margins, which is a more realistic assumption in finance. We assume that
the dependence structure is given by a Student copula with 2 degrees of freedom. In the previous paragraph,
the margins of the standardized asset returns were gaussians. We could now suppose that the distribution of
the standardized returns for one asset is a Student with ν degrees of freedom — the other distributions remains
gaussians. For the AL asset, we then obtain the left quadrants of figure 30. The middle and right quadrants
correspond respectively to the CU and PB assets. We remark also the great influence of the fat tails on the
value-at-risk for high values of the confidence level.

More realistic margins could of course be used to describe the asset returns (see paragraph 4.2). We consider
for example the generalized hyperbolic distribution (Eberlein and Keller [1995], Eberlein [1999], Prause
[1999]). The corresponding density function is given by

f (x) = a (λ, α, β, δ)
(
δ2 + (x− µ)2

) 1
4 (2λ−1)

×Kλ− 1
2

(
α

√
δ2 + (x− µ)2

)
exp (β (x− µ)) (144)

where K denotes the modified Bessel function of the third kind and

a (λ, α, β, δ) =

(
α2 − β2

) 1
2 λ

√
2παλ− 1

2 δλKλ

(
δ
√

α2 − β2
) (145)

28To understand this result, remember that ‘the extremes are correlated’ in the case of the Student copula.
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Figure 30: Value-at-risk with Student margins

In a recent paper, Eberlein [2000] applies the hyperbolic model to market risk management. Nevertheless, he
considers only the univariate case. The multivariate case is treated in Prause [1999]. The distribution of the
multivariate generalized hyperbolic distribution has the following form

f (x) = A (λ, α, β, δ, ρ)
(
δ2 + (x− µ)> ρ−1 (x− µ)

) 1
4 (2λ−N)

×Kλ−N
2

(
α

√
δ2 + (x− µ)> ρ−1 (x− µ)

)
exp

(
β> (x− µ)

)
(146)

where

A (λ, α, β, δ, ρ) =

(
α2 − β>ρβ

) 1
2 λ

(2π)
N
2 αλ−N

2 δλKλ

(
δ
√

α2 − β>ρβ
) (147)

However, this distribution leads to big computational problems for estimation and simulation steps. This is
avoided if we build a multivariate distribution with univariate hyperbolic distributions and a copula. With
gaussian copula, the density of the distribution is

f (x) =
1

|ρ| 12
A (λ, α, β, δ, ρ)

[
N∏

n=1

(
δ2
n + (xn − µn)2

) 1
4 (2λn−1)

]

×
[

N∏
n=1

Kλn− 1
2

(
αn

√
δ2
n + (xn − µn)2

)]
exp

(
β> (x− µ)− 1

2
ς>

(
ρ−1 − I) ς

)
(148)

where

A (λ, α, β, δ, ρ) =
1

(2π)
N
2

N∏
n=1

(
α2

n − β2
n

) 1
2 λn

α
λn− 1

2
n δλn

n Kλn

(
δn

√
α2

n − β2
n

) (149)
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and ς =(ς1, . . . , ςN )>, ςn = Φ−1 (Fn (xn)) and Fn the univariate GH distribution. Note that this distribution
has 3 (N − 1) more parameters by comparison with the multivariate generalized hyperbolic distribution.

4.3.2 Multivariate extreme values and market risk

4.3.2.1 Topics on extreme value theory

α) The univariate case.

Let us first consider m independent random variables X1, . . . , Xk, . . . , Xm with the same probability function

F. The distribution of the extremes χ+
m =

(
m∧

k=1

Xk

)
is also given by Fisher-Tippet theorem (Embrechts,

Klüppelberg and Mikosch (1997)):

Theorem 26 If there exist some constants am and bm and a non-degenerate limit distribution G such that

lim
m→∞

Pr
{

χ+
m − bm

am
≤ x

}
= G (x) ∀x ∈ R (150)

then G is one of the following distribution:

(Fréchet) G (x) = Υα (x) =
{

0
exp (−x−α)

x ≤ 0
x > 0 g (x) =

{
0
αx−(1+α) exp (−x−α)

(Weibull) G (x) = Ψα (x) =
{

exp (− (−x)α)
1

x ≤ 0
x > 0 g (x) =

{
α (−x)α−1 exp (− (−x)α)
0

(Gumbel) G (x) = Λ (x) = exp (−e−x) x ∈ R g (x) = exp (−x− e−x)

In this case, we say that F belongs to the maximum domain of attraction29 of G — F ∈ MDA(G).

The relation (150) can be written as follows:

Fm (amx + bm) −→ G (x) (151)

We remark that if we could specify {am} and {bm} such that

lim
m→∞

m [1− F (amx + bm)] = − lnG (x) (152)

then F ∈ MDA(G).

β) The multivariate case.

The theory of multivariate extremes is presented in Galambos [1987] and Resnick [1987]. In the multidi-
mensional case, we are interested in characterizing the distribution of the extremes χ+

m:

χ+
m =

(
χ+

1,m, . . . , χ+
n,m, . . . , χ+

N,m

)
=

(
m∧

k=1

X1,k, . . . ,

m∧

k=1

Xn,k, . . . ,

m∧

k=1

XN,k

)
(153)

Like the univarariate case, we study the limit distribution of the normalized extremes:

lim
m→∞

Pr

{
χ+

1,m − b1,m

a1,m
≤ x1, . . . ,

χ+
n,m − bn,m

an,m
≤ xn, . . . ,

χ+
N,m − bN,m

aN,m
≤ xN

}
= G (x)

∀ (x1, . . . , xn, . . . , xN ) ∈ RN (154)
29This concept is equivalent to the concept of domain of attraction of sums, but applied to maxima.
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Proposition 27 (Resnick (1987), page 264) The class of multivariate extreme value distributions is the
class of max-stable distribution functions with nondegenerate marginals.

Resnick [1987] does not use the copula concept to specify MEV distributions. However, he transforms the
distribution G into another distribution G∗ such that G∗ has marginals Υ:

To characterize max-stable distributions with nondegenerate marginals, it is an enormous help to
standardize the problem so that G has specified marginals.

In fact, the distribution G∗ of Resnick is a copula. We prefer to adopt the point of view presented in the chapter
6 of Joe [1997], which is easier to understand.

Theorem 28 The class of multivariate extreme value distribution is the class of extreme copulas with nonde-
generate marginals.

We have previously noted that an extreme copula satisfy

C
(
ut

1, . . . , u
t
n, . . . , ut

N

)
= Ct (u1, . . . , un, . . . , uN ) ∀ t > 0 (155)

This relation is explained in details in Joe [1997]. The idea is the following. Suppose that C is an extreme
copula and that the marginals are univariate extreme distributions. In this case, F (x1, . . . , xn, . . . , xN ) =
C (F1 (x1) , . . . ,Fn (xn) , . . . ,FN (xN )) is a MEV distribution. From univariate extreme value theory,
Ck (F1 (x1) , . . . ,Fn (xn) , . . . ,FN (xN )) and C

(
Fk

1 (x1) , . . . ,Fk
n (xn) , . . . ,Fk

N (xN )
)

must have the same limit
distribution for each integer k. We have

C
(
uk

1 , . . . , uk
n, . . . , uk

N

)
= Ck (u1, . . . , un, . . . , uN ) ∀ k ∈ N

This can be extended to the real case. In this case, extreme copulas generate max-infinitely divisible distribu-
tions.

We now follow Joe [1987] pages 174-175 in order to obtain the Pickands representation of MEV distributions.
Let D be a multivariate distribution with unit exponential survival margins and C an extreme copula. Using
the relation

C (u1, . . . , un, . . . , uN ) = C
(
e−ũ1 , . . . , e−ũn , . . . , e−ũN

)

= D (ũ1, . . . , ũn, . . . , ũN ) (156)

we have
Dt (ũ) = D (tũ) (157)

and then D is a min-stable multivariate exponential (MSMVE) distribution.

Theorem 29 (Pickands (1981) representation of MSMVE distributions) Let D (ũ) be a survival func-
tion with exponential margins. D satisfies

− lnD (tũ) = −t lnD (ũ) ∀ t > 0 (158)

iff the representation of D is

− lnD (ũ) =
∫
· · ·

∫

SN

max
1≤n≤N

(qnũn) dS (q) ũ ≥ 0 (159)

where SN is the N -dimensional unit simplex and S a finite measure on SN .
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This is the formulation given by Joe [1997]. Note that it is similar to the proposition 5.11 of Resnick
[1987], although the author does not use copulas. Sometimes, the Pickands representation is presented using a
dependence function B (w) defined by

D (ũ) = exp

[
−

(
N∑

n=1

ũn

)
B (w1, . . . , wn, . . . , wN )

]
(160)

B (w) =
∫
· · ·

∫

SN

max
1≤n≤N

(qnwn) dS (q) (161)

with wn = ũn/
∑N

1 ũn. B is a convex function and

max (w1, . . . , wn, . . . , wN ) ≤ B (w1, . . . , wn, . . . , wN ) ≤ 1 (162)

This is the formulation of Tawn [1990]. It comes necessarily that an extreme copula verifies

C⊥ ≺ C ≺ C+ (163)

Let F be a N -variate distribution with margins F1, . . . ,FN and an associated copula C. We assume that the
limit distribution exists and so F belongs to the maximum domain of attraction of a distribution G. Copulas
will then help us to solve the problem of the characterization of G. Let us denote G1, . . . ,GN the margins of
G and C? its corresponding copula.

Theorem 30 F ∈ MDA(G) iff

1. Fn ∈ MDA(Gn) for all n = 1, . . . , N ;

2. C ∈ MDA(C?).

Remark 31 Gn is necessary one of the three univariate extreme distributions and C? is an extreme copula.
Fn ∈ MDA(Gn) could be checked with condition (152). The normalized coefficients {an,m} and {bn,m} only
depend on the marginals. C ∈ MDA(C?) if C satisfies

lim
m→∞

Cm
(
u

1/m
1 , . . . , u1/m

n , . . . , u
1/m
N

)
= C? (u1, . . . , un, . . . , uN ) (164)

The following theorem is due to Abdous, Ghoudi and Khoudraji [1999]:

Theorem 32 C ∈ MDA(C?) iff

lim
u→0

1−C ((1− u)w1 , . . . , (1− u)wn , . . . , (1− u)wN )
u

= B (w1, . . . , wn, . . . , wN ) (165)

This theorem is important because MEV distributions are generally specified via the dependence function.

γ) The bivariate case.

In the bivariate case, the theory of extremes is easier because convexity and property (162) become necessary
and sufficient conditions for (159) — Tawn [1988]. We have

C (u1, u2) = D (ũ1, ũ2)

= exp
[
− (ũ1 + ũ2)B

(
ũ1

ũ1 + ũ2
,

ũ2

ũ1 + ũ2

)]

= exp
[
ln (u1u2)B

(
ln u1

ln (u1u2)
,

ln u2

ln (u1u2)

)]

= exp
[
ln (u1u2)A

(
ln u1

ln (u1u2)

)]
(166)
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with A (w) = B (w, 1− w). Of course, A is convex with A (0) = A (1) = 1 and verifies max (w, 1− w) ≤ A (w) ≤
1.

We consider the Gumbel copula defined page 18. We have also − lnD (ũ) = (ũα
1 + ũα

2 )
1
α , B (w1, w2) =

(ũα
1 + ũα

2 )
1
α / (ũ1 + ũ2) = (wα

1 + wα
2 )

1
α and A (w) = [wα + (1− w)α]

1
α . The specification of the extreme copula

using the dependence measure A (w) simplifies calculus. For example, we have (Capéraà, Fougères and
Genest [1997]):

τ = 4
∫

I

w (1− w) d ln A (w)

% = 12
∫

I

1
[A (w) + 1]2

dw − 3 (167)

When the extremes are independent, we have A (w) = 1 (α = 1 for the Gumbel copula), and so τ = % = 0.
The perfect dependent case corresponds to A (w) = max (w, 1− w) that leads to the upper Fréchet copula
— C (u1, u2) = exp

[
ln (u1u2)max

(
ln u1

ln(u1u2)
, ln u2

ln(u1u2)

)]
= min (u1, u2). Equation (165) can be used to ver-

ify the independence of extremes. For example, if we consider the Kimeldorf-Sampson copula C (u1, u2) =(
u−α

1 + u−α
2 − 1

)− 1
α with α ≥ 0, we have limu→0

1−C((1−u)w,(1−u)1−w)
u =

limu→0
1−((1−u)−αw+(1−u)−α(1−w)−1)−

1
α

u = limu→0
1−(1+αu+o(u))−

1
α

u = limu→0
u+o(u)

u = 1. A (w) then equals
to 1, and so Kimeldorf-Sampson copulas belong to the domain of attraction of C⊥.

δ) Parametric family of extreme copulas.

In the next paragraph, we will discuss about non-parametric extreme copulas. However, parametric copulas
play a central role, because of Monte Carlo issues for finance. The following table contains the most known
extreme copulas and their dependence function (Ghoudi, Khoudraji and Rivest [1998]):

Family α C (u1, u2) A (w)
C⊥ u1u2 1
Gumbel [1,∞) exp

[
− (ũα

1 + ũα
2 )

1
α

]
[wα + (1− w)α]

1
α

Gumbel II [0, 1] u1u2 exp
[
α ũ1ũ2

ũ1+ũ2

]
αw2 − αw + 1

Galambos [0,∞) u1u2 exp
[(

ũ−α
1 + ũ−α

2

)− 1
α

]
1−

[
w−α + (1− w)−α

]− 1
α

Hüsler-Reiss [0,∞) exp [−ũ1ϑ (u1, u2;α)− ũ2ϑ (u2, u1; α)] wξ (w; α) + (1− w) ξ (1− w; α)
Marshall-Olkin [0, 1]2 u1−α1

1 u1−α2
2 min (uα1

1 , uα2
2 ) max (1− α1w, 1− α2 (1− w))

C+ min (u1, u2) max (w, 1− w)

with ϑ (u1, u2;α) = Φ
(

1
α + 1

2α ln ln u1
ln u2

)
and ξ (w; α) = Φ

(
1
α + 1

2α ln ln w
ln(1−w)

)
. These dependence functions are

plotted in figure 31.
The Gumbel copulas have been studied by Tawn [1988]. We note that these copulas are symmetric30. It

implies that the random variables are exchangeable, which could be a discutable assumption. To obtain more
flexible parametric copulas, we could use the asymmetrization technique (Genest, Ghoudi and Rivest [1998]).
Let A1 and A2 be two dependence functions and (p1, p2) ∈ [0, 1]2. Then, the following formula defines a new
dependence function A:

A (w) = (p1w + p2 (1− w)) A1

(
p1w

p1w + p2 (1− w)

)
+

((1− p1)w + (1− p2) (1− w)) A2

(
(1− p1)w

(1− p1)w + (1− p2) (1− w)

)
(168)

30that is C (u1, u2) = C (u2, u1).
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Figure 31: Dependence functions A (w)

Note that for p1 = p2 = p, we obtain A (w) = pA1 (w) + (1− p)A2 (w) (Tawn [1988]). In this case, the copula
defined by A (w) remains symmetric. With A1 and A2 the dependence functions of the Gumbel and product
copulas, we obtain

A (w) = (p1w + p2 (1− w))
[pα

1 wα + pα
2 (1− w)α]

1
α

(p1w + p2 (1− w))
+

((1− p1) w + (1− p2) (1− w))

= [pα
1 wα + pα

2 (1− w)α]
1
α + (p2 − p1)w + (1− p2) (169)

It comes that the corresponding copula is such that

C (u1, u2) = exp
[
− (pα

1 ũα
1 + pα

2 ũα
2 )

1
α − (1− p1) ũ1 − (1− p2) ũ2

]

= CG (up1
1 , up2

2 )C⊥
(
u1−p1

1 , u1−p2
2

)
(170)

In the extreme value litterature, it corresponds to the asymmetric logistic model. Relation (170) can be gener-
alized and it appears that the copula associated with (168) is

C (u1, u2) = C1 (up1
1 , up2

2 )C2

(
u1−p1

1 , u1−p2
2

)
(171)

For example, the Marshall-Olkin copula is a combination of the product copula and the upper Fréchet copula:

C (u1, u2) = C⊥ (
u1−α1

1 , u1−α2
2

)
C+ (uα1

1 , uα2
2 ) (172)
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We then verify that the dependence function is

A (w) = (α1w + α2 (1− w))max
(

α1w

(α1w + α2 (1− w))
,

α2 (1− w)
(α1w + α2 (1− w))

)

+((1− α1)w + (1− α2) (1− w))
= max (1− α1w, 1− α2 (1− w)) (173)

and we remark that it is the limit of the asymmetric logistic copula as α tends to ∞.

We now consider the multivariate case. We start with the Gumbel copula. A natural generalization for
N ≥ 3 is given by

C (u1, . . . , un, . . . , uN ) = exp
[
− (ũα

1 + . . . + ũα
n + . . . + ũα

N )
1
α

]
(174)

The corresponding dependence function is also B (w) =
[∑N

1 wα
n

] 1
α

. This first generalization comes from the
definition of multivariate archimedean copulas. However, it is not very interesting because this multivariate ex-
tension has a single parameter. It follows that the tail index is the same for all the N(N−1)

2 bivariate margins. One

possible extension is to use compound methods. For example, C (u1, u2, u3) = exp
[
−

(
(ũα2

1 + ũα2
2 )

α1
α2 + ũα1

3

) 1
α1

]

is an extreme copula if α2 > α1 ≥ 1. The dependence function is B (w) =
(
(wα2

1 + wα2
2 )

α1
α2 + wα1

3

) 1
α1 , that is

mentioned in Tawn [1990]. Nevertheless, the parameters are difficult to understand in this second generaliza-
tion. A more interpretable copula is the family MM1 of Joe [1997]

B (w) =




N∑

i=1

N∑

j=i+1

[
(piw

η
i )αi,j +

(
pjw

η
j

)αi,j
] 1

αi,j +
N∑

i=1

νipiw
η
i




1
η

(175)

where pi = (νi + N − 1)−1. This copula comes from mixtures of max-id distributions (Joe and Hu [1996]). The
parameters νi control the bivariate and multivariate asymmetries, αi,j are the pairwise coefficients and η is the
common parameter. The bivariate margins are

C (u1, u2) = exp

(
−

[[
(piũ

η
i )αi,j +

(
pj ũ

η
j

)αi,j
] 1

αi,j +
(νi + N − 2)
(νi + N − 1)

ũη
i +

(νj + N − 2)
(νj + N − 1)

ũη
i

] 1
η

)
(176)

and the associated tail dependence is λ = 2 −
[(

p
αi,j

i + p
αi,j

j

) 1
αi,j + (νi+N−2)

(νi+N−1) + (νj+N−2)
(νj+N−1)

] 1
η

. However, the

parametric form of both bivariate and multivariate copulas is not well tractable, and the same problem arises
with the generalization of other bivariate copulas. As pointed by Embrechts, de Haan and Huang [2000],
it is important to stress at this point the fact that current multivariate extreme value theory, from an applied
point of view, only allows for a treatment of fairly low-dimensional problems.

4.3.2.2 Estimation methods

α) The non-parametric approach.

The two-dimensional non-parametric approach is considered into several papers (Pickands [1981], De-
heuvels [1991], Capéraà, Fougères and Genest [1997], Abdous, Ghoudi and Khoudraji [2000]). These
papers are generally based on the fact that the distribution of Z = ln U1

ln U1+ln U2
satisfies F (z) = z+(1− z)A−1 (z) ∂z A (z)

where the joint distribution of U1 and U2 is given by the extreme copula C? (u1, u2) = exp
[
ln (u1u2)A

(
ln u1

ln(u1u2)

)]

(Ghoudi, Khoudraji and Rivest [1998]). Because A (0) = A (1) = 1, it comes that A (w) = exp
∫ w

0

F (z)− z

1− z
dz
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or A (w) = exp−
∫ 1

w

F (z)− z

1− z
dz. We obtain also two non-parametric estimators of A (w) by using the empir-

ical distribution F̂ in place of the theoretical distribution F. Using relationship (165), Abdous, Ghoudi and
Khoudraji [1999] consider another estimator directly based on the sample of the original variables (X1, X2),
not on the sample of the maximum variables

(
χ+

1 , χ+
2

)
.

β) The parametric approch.

In the form of componentwise maxima, inference with ML method is applied to the distribution G

G
(
χ+

1 , . . . , χ+
n , . . . , χ+

N

)
= C?

(
G1

(
χ+

1

)
, . . . ,Gn

(
χ+

n

)
, . . . ,GN

(
χ+

N

))
(177)

where C? is an extreme copula and Gn a GEV distribution GEV (µ, σ, ξ) defined by

G (x) = exp

{
−

[
1 + ξ

(
x− µ

σ

)]− 1
ξ

}
(178)

defined on the support ∆ =
{
x : 1 + ξ

(
x−µ

σ

)
> 0

}
. The three types of non-degenerate univariate distributions

are then combined into a generalized extreme value family and we have the correspondances ξ = α−1 > 0,
ξ = −α−1 < 0 and ξ −→ 0 for the Fréchet, Weibull and Gumbel distributions respectively. We note that the IFM
or CML methods could be used to estimate the parameters of (177) in order to reduce computational time31. A
very important point concerns the starting values for the estimation of the copula. They could be obtained by
‘inverting’ the upper tail dependence32 (see Currie [1999]) or other concordance measures like Kendall’s tau
(Ghoudi, Khoudraji and Rivest [1998]).

Family τ
C⊥ 0
Gumbel 1− α−1

Gumbel II 8α−
1
2 (4− α)−

1
2 arctan

√
α (4− α)−1 − 2

Galambos complicated form
Hüsler-Reiss no analytical form
Marshall-Olkin α1α2 (α1 − α1α2 + α2)

−1

C+ 1

γ) The point processes approch.

31In this case, the individual log-likelihood of the univariate margins is as follows

`
�
χ+

n ; θ
�

= − ln σ −
�

1 + ξ

ξ

�
ln

 
1 + ξ

 
χ+

n − µ

σ

!!
−
"
1 + ξ

 
χ+

n − µ

σ

!#− 1
ξ

(179)

and the score vector is

∇θ `
�
χ+

n ; θ
�

=

2
66666664

1+ξ−ω
− 1

ξ
n,m

σωn,m 
(1+ξ)−ω

− 1
ξ

n,m

!
(χ+

n−µ)−σωn,m

σ2ωn,m�
1− ω

− 1
ξ

n,m

��
1
ξ2 ln ωn,m − (χ+

n−µ)
ξσωn,m

�
− (χ+

n−µ)
σωn,m

3
77777775

(180)

with ωn,m = 1 + ξ

�
χ+

n−µ

σ

�
.

32λ could be estimated using the sample of componentwise maxima or directly using the entire sample, because the extreme value
limit has the same upper tail dependence under some assumptions (theorem 6.8 of Joe [1997]).
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Instead of using componentwise maxima, it is sometimes more efficient to work with higher frequency data.
Point process characterization is also a natural way to perform the estimation (Coles and Tawn [1991],
Joe [1997]). Let {(X1,t, . . . , Xn,t, . . . , XN,t) , t = 1, . . . , T} be a sample of length T with margins Fn, Yn,t the
Fréchet transform of the variate Xn,t and Yt the corresponding vector (Yn,t)

N
1 . We consider the point process

NT = (Y1, . . . ,YT ) on RN
+ . Under some hypothesis, it comes that NT converges to a non-homogeneous Poisson

process N with intensity measure Λ, which satisfies the homogeneity property Λ ([0,y]c) = tΛ ([0, ty]c) with
[0,y]c = RN

+ \ [0,y]. We have also Pr
{

1
T Yt /∈ [0,y]c

} → exp (−Λ ([0,y]c)). The log-likelihood is then

` (θ) = −Λ ([0,y]c) +
T∑

t=1

1[ 1
T yt∈[0,y]c]λ

(
1
T

yt

)
(181)

with λ the associated intensity function33 and {yt, t = 1, . . . , T} a sample of observed data of the process Yt.
By assuming that the upper tails of Xn are Generalized Pareto GP (σn, ξn), the Fréchet transformed data take
the form

yn,t =





t−n (xn,t) = − ln (Fn (xn,t))
−1 if xn,t ≤ x̄n

t+n (xn,t) = − ln
(

1− (1− Fn (x̄n))
(
1 + ξn

(
xn,t−x̄n

σn

))− 1
ξ

+

)−1

if xn,t > x̄n

(182)

Thus, the log-likelihood becomes (Coles and Tawn [1991])

` (θ) = −Λ ([0,y]c) +
T∑

t=1

1[ 1
T yt∈[0,y]c]

[
λ

(
1
T

yt

)
ζt

]
(183)

with [0,y]c =
([

0, t−1 (x̄1)
]× . . .× [

0, t−N (x̄N )
])c

and

ζt =
1
T

N∏
n=1

1
σn

(1− Fn (xn,t))
−ξn y2

n,t

(
1− exp

(
− 1

yn,t

))1+ξn

exp
(

1
yn,t

)
(184)

The choice of Λ can be done in the class of extreme copulas with

Λ ([0,y]c) = − lnC
(

exp
(
− 1

y(1)

)
, . . . , exp

(
− 1

y(n)

)
, . . . , exp

(
− 1

y(N)

))
(185)

For example, the intensity measure associated with the Gumbel copula is

Λ ([0,y]c) = − ln

(
exp

[
−

((
− ln

(
exp

(
− 1

y(1)

)))α

+
(
− ln

(
exp

(
− 1

y(2)

)))α) 1
α

])

=
(
y−α
(1) + y−α

(2)

) 1
α

(186)

With C (u1, u2, u3) = exp
[
−

(
(ũα2

1 + ũα2
2 )

α1
α2 + ũα1

3

) 1
α1

]
, Λ ([0,y]c) is equal to

((
y−α2
(1) + y−α2

(2)

)α1
α2 + y−α1

(3)

) 1
α1

and the intensity measure associated with the dependence function (175) is

Λ ([0,y]c) =




N∑

i=1

N∑

j=i+1

[(
pi

yη
(i)

)αi,j

+

(
pj

yη
(j)

)αi,j
] 1

αi,j

+
N∑

i=1

νi
pi

yη
(i)




1
η

(187)

Other parametric intensity measures could be found in Coles and Tawn [1991].

33λ (y) = (−1)N ∂N
y(1),...,y(N)

Λ ([0,y]c) with y =
�
y(1), . . . , y(N)

�
.
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4.3.2.3 Applications

α) The LME data.

We have estimated the GEV distributions both for the maxima and minima34. For the opposite of the
minima −χ−, we obtain the following estimated parameters35:

Parameters AL AL-15 CU NI PB
µ 0.022 0.018 0.028 0.031 0.033
σ 0.007 0.006 0.013 0.012 0.012
ξ 0.344 0.275(?) 0.095(???) 0.363 0.424

The corresponding distributions are plotted in figure 32. Using the estimated values, one can then build
univariate stress-testing programs by choosing the worst case scenario for a given return period (Legras
[1999]).

Risk scales (daily variation) for long positions (in %)
Waiting time (in years) AL AL-15 CU NI PB

5 -6.74 -4.82 -8.03 -11.01 -12.25
10 -8.57 -5.90 -9.35 -14.27 -16.35
25 -11.75 -7.68 -11.23 -20.02 -23.96
50 -14.91 -9.36 -12.76 -25.83 -32.03
75 -17.14 -10.49 -13.70 -29.97 -37.97
100 -18.92 -11.38 -14.39 -33.29 -42.85

In the case of maxima χ+, we obtain the following results:

Parameters AL AL-15 CU NI PB
µ 0.024 0.018 0.029 0.034 0.032
σ 0.010 0.008 0.011 0.015 0.011
ξ 0.188(???) 0.239(?) 0.142(??) 0.026(???) 0.405

Risk scales (daily variation) for short positions (in %)
Waiting time (in years) AL AL-15 CU NI PB

5 6.96 5.79 7.53 8.46 11.13
10 8.35 7.10 8.82 9.59 14.65
25 10.46 9.20 10.73 11.10 21.07
50 12.32 11.12 12.34 12.26 27.76
75 13.52 12.39 13.36 12.95 32.64
100 14.43 13.38 14.12 13.45 36.63

We now consider the bivariate case. We assume that the dependence is given by the Gumbel copula. Using
the IFM method36, the estimated values of the α parameter and the corresponding Kendall’s tau are given

34The estimation is performed with ML method on componentwise data with m equal to 44 trading days that corresponds to a
2 months period.

35(?), (??) and (???) mean that the significance test is rejected respectively at 1%, 5% and 10%.
36Data are transformed into uniforms with the GEV cdf. The corresponding individual log-likelihood is then

` (u1, u2; α) = − (ũα
1 + ũα

2 )
1
α + ũ1 + ũ2 + (α− 1) ln (ũ1ũ2) +

�
α−1 − 2

�
ln (ũα

1 + ũα
2 )

+ ln
h
(ũα

1 + ũα
2 )

1
α + α− 1

i
(188)
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Figure 32: GEV densities of the minima

Figure 33: GEV densities of the maxima
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results for
�
−χ−1 ,−χ−2

�

α̂ML AL-15 CU NI PB
AL 2.397 1.159 1.462 1.425

AL-15 1.092 1.356 1.191
CU 1.212 1.004
NI 1.500

LR AL-15 CU NI PB
AL 62.09 3.003 18.583 15.19

AL-15 1.011 13.080 4.432
CU 4.290 0.002
NI 19.49

τ AL-15 CU NI PB
AL 0.583 0.137 0.316 0.298

AL-15 0.084 0.263 0.160
CU 0.175 0.004
NI 0.333

results for
�

χ+
1 , χ+

2

�

α̂ML AL-15 CU NI PB
AL 3.015 1.065 1.291 1.116

AL-15 1.040 1.175 1.033
CU 1.107 1.116
NI 1.194

LR AL-15 CU NI PB
AL 86.39 0.485 7.755 1.893

AL-15 0.160 3.105 0.163
CU 1.260 1.423
NI 5.126

τ AL-15 CU NI PB
AL 0.668 0.061 0.226 0.104

AL-15 0.039 0.149 0.032
CU 0.097 0.104
NI 0.162

Table 8: Bivariate estimation

in table 8. Moreover, we have reported the likelihood ratio where the null hypothesis is the product copula.
With 99% confidence level, we do not reject independence between the maxima couples (AL,CU), (AL,PB), (AL-
15,CU), (AL-15,NI), (AL-15,PB), (CU,NI), (CU,PB) and (NI,PB). For the minima, the dependence is not rejected
for (AL,AL-15), (AL,NI), (AL,PB), (AL-15,NI) and (NI,PB).

Remark 33 We observe that there is a contrast between the minima and the maxima cases. The minima
appear more dependent than the maxima. From an economic point of view, it means that bear markets are
‘more correlated’ than bull markets.

Stress scenario in the bivariate case could be viewed as “a failure area” (see de Haan, Peng, Sinha and
Draisma [1997] for more details on this topic and on exceedence probability). We have

Pr
{
χ+

1 > χ1, χ
+
2 > χ2

}
= 1− Pr

{
χ+

1 ≤ χ1

}− Pr
{
χ+

2 ≤ χ2

}
+ Pr

{
χ+

1 ≤ χ1, χ
+
2 ≤ χ2

}

= 1− F1 (χ1)− F2 (χ2) + C (F1 (χ1) ,F2 (χ2))
= C̄ (F1 (χ1) ,F2 (χ2)) (189)

with C̄ the joint survival function. Let t be the waiting time (measured in term of the componentwise period).
The failure area is the set defined by

{
(χ1, χ2) ∈ R2 | u1 = F1 (χ1) , u2 = F2 (χ2) , C̄ (F1 (χ1) ,F2 (χ2)) < 1

t

}
.

We have represented in figures 34 and 35 the failure area of the (AL,AL-15) and (AL,CU) maxima, that is the
set of the bivariate scenarios for a portfolio short in the two assets37. We remark that the two figures give
different results because of the value of the α parameter. Note that the same methodology can be applied to
others portfolios, for example a portfolio short in the first asset and long in the second asset. By computing
the failure area for the four quadrants, we obtain figure 36 for the pair (AL,AL-15). A 5 years return period is
assumed. The obtained failure area is compared with the independent case (product copula)38.

We finish this paragraph with some remarks on multivariate extreme value modelling. First, the Gumbel
copula is not always the best choice. Sometimes, asymmetric copulas appear more appropriate. For example,
the asymmetric logistic copula39 gives a better fit for the minima pair (AL,AL-15) (see figure 37). Second,

37The solid lines represent the univariate risk scales.
38The solid line corresponds to the failure area with the Gumbel copula, whereas the dotted line corresponds to the independence.
39The corresponding individual log-likelihood is then

` (u1, u2; α) = − (úα
1 + úα

2 )
1
α + ú1 + ú2 +

�
α−1 − 1

�
ln (úα

1 + úα
2 ) + lnκ (u1, u2; α) (190)

with úi = piũi, ũi = − ln ui and

κ (u1, u2; α) = (p1p2) (ú1ú2)α−1 (úα
1 + úα

2 )−1
�
(úα

1 + úα
2 )α−1

+ α− 1
�

+

(1− p1) p2úα−1
2 +

p1 (1− p2) úα−1
1 +

(1− p1) (1− p2) (úα
1 + úα

2 )1−α−1
(191)
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Figure 34: Failure area for the (AL,AL-15) maxima

Figure 35: Failure area for the (AL,CU) maxima
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Figure 36: Failure area for the pair (AL,AL-15) and a 5 years waiting time

the extension to multivariate copulas is generally done with the ‘clustering’ method (Joe [1997]). It implies
some restrictions on the dependence structure. Let us consider the modelling of the 5 maxima pairs. Because
of the bivariate results, we could assume that the multivariate copula has the form Cℵ (u1, u2, u3, u4, u5) =

exp
[
−

(
(ũα2

1 + ũα2
2 )

α1
α2 + ũα1

4

) 1
α1 − ũ3 − ũ5

]
. The ML estimates40 are α̂1 = 1.049 and α̂2 = 3.043, and the

LR test of the product copula hypothesis is rejected. Nevertheless, this copula implies that the bivariate
margins of (AL,NI) and (AL-15,NI) are Cℵ (u1, 1, 1, u4, 1) = exp

[
− (ũα1

1 + ũα1
4 )

1
α1

]
and Cℵ (1, u2, 1, u4, 1) =

exp
[
− (ũα1

2 + ũα1
4 )

1
α1

]
, and so the dependence structure of (AL,NI) and (AL-15,NI) must be the same. This is

a direct implication of the compound copula methodology.

40The individual log-likelihood is

` (u1, u2, u3, u4, u5; α1, α2) = −
��

ũα2
1 + ũα2

2

�α1
α2 + ũα1

4

� 1
α1

+ ũ1 + ũ2 + ũ4 + (α2 − 1) ln (ũ1ũ2)

+ (α1 − 1) ln (ũ4) +
�
α1α−1

2 − 2
�

ln A +
�
α−1

1 − 2
�

ln B + lnκ (u1, u2, u3, u4, u5; α1, α2)

(192)

with

κ (u1, u2, u3, u4, u5; α1, α2) = A
α1
α2 B

2
α1
−1

+ (α2 − α1) B
1

α1 + (α1 − 1) A
α1
α2 B

1
α1
−1

+(α1 − 1) (2α1 − 1) A
α1
α2 B−1 + (α1 − 1) (α2 − α1)

A = ũα2
1 + ũα2

2

B = A
α1
α2 + ũα1

4 (193)
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Figure 37: ML estimation of the asymmetric logistic copula for the minima pair (AL,AL-15)

β) Estimating the severity of crisis and multivariate stress tests.

In the previous paragraph, we have introduced the notion of failure area. In the multivariate case, it is
defined as the following set
{

(χ1, . . . , χn, . . . , χN ) ∈ RN | u1 = F1 (χ1) , . . . , un = Fn (χn) , . . . , uN = FN (χN ) , C̄ (u1, . . . , un, . . . , uN ) <
1
t

}

(194)
with

C̄ (u1, . . . , un, . . . , uN ) =
N∑

n=0


(−1)n

∑

u∈Z(N−n,N)

C (u)


 (195)

where Z (M, N) denotes the set
{
u ∈ [0, 1]N | ∑N

n=1 X{1} (un) = M
}

. It is possible to compute the implicit
return period t for a given vector (χ1, . . . , χn, . . . , χN ). We have then

t (χ1, . . . , χn, . . . , χN ) = C̄−1 (F1 (χ1) , . . . ,Fn (χn) , . . . ,FN (χN )) (196)

Remark 34 The strength of a crisis (χ1, . . . , χn, . . . , χN ) is generally a subjective notion. However, the implied
return period t (χ1, . . . , χn, . . . , χN ) = C̄−1 (F1 (χ1) , . . . ,Fn (χn) , . . . ,FN (χN )) could be viewed as a measure
of the severity. Moreover, we could compare the strength of two crisis by directly comparing the waiting times.

Remark 35 The implied return period measure can be used to quantify the stress tests provided by the economists
for the stress testing program of a bank. Univariate stress tests could be done with statistical tools like the extreme
value theory (Legras [1999], Costinot, Riboulet and Roncalli [2000a]). The extension to bivariate case
is not obvious (Legras and Soupé [2000], Costinot, Riboulet and Roncalli [2000b]). Building multi-
variate stress tests with copulas could be done using the failure area concept. However, it produces a set and it
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is difficult to choose one scenario in particular. Nevertheless, the implied return period is a useful measure
to quantify a given stress test and to verify its consistency. Some examples will be given further.

Before considering some illustrations, we give more explicit representations of the joint survivor copula
C̄. In the case N = 2, we have C̄ (u1, u2) =

∑2
n=0

[
(−1)n ∑

u∈Z(2−n,2) C (u)
]

= C (1, 1) − C (u1, 1) −
C (1, u2) + C (u1, u2) = 1 − u1 − u2 + C (u1, u2). We obtain the previous expression In the case, N = 3, we
have C̄ (u1, u2, u3) =

∑3
n=0

[
(−1)n ∑

u∈Z(3−n,3) C (u)
]

= C (1, 1, 1)−C (u1, 1, 1)−C (1, u2, 1)−C (1, 1, u3) +
C (u1, u2, 1)+C (u1, 1, u3)+C (1, u2, u3)−C (u1, u2, u3) = 1−u1−u2−u3+C (u1, u2)+C (u1, u3)+C (u2, u3)−
C (u1, u2, u3). The extension to higher dimensions is straightforward.

For the LME dataset, the dimension is N = 5. We assume that the portfolio is short in each asset. Let
consider a first stress test

χ(1) =




0.05
0.05
0.05
0.05
0.05




The associated return period using the previous estimated copula Cℵ is equal to 209 years41. If we suppose
that the copula is C⊥ or C+, the return period becomes 2317 and 3 years respectively. Let us consider a second
stress program

χ(2) =




0.02
0.03
0.03
0.01
0.10




Is this second test harder than the first one ? If we compute the waiting times, we obtain tℵ(2) = 27, t⊥(2) = 34,
and t+(2) = 4. This example is very interesting, because we have tℵ(2) < tℵ(1), t⊥(2) < t⊥(1) but t+(2) > t+(1). For

χ
(1)
n < χ

(2)
n and for all n = 1, . . . , N , we could check that t(2) > t(1) for every copula. If the inequalities are not

verified for all the components, the comparison is less obvious. The concept of the return period then becomes
a very useful tool. We note that we have necessarily t+ < t < t⊥ because of the properties induced by the order
≺.

A question arises: what is the link between the univariate and the multivariate stress scenarios ? To answer
this question, we consider an univariate stress test with a 5 years waiting time :

χ(3) =




0.0696
0.0579
0.0753
0.0846
0.1113




We then obtain tℵ(3) = 49939, t⊥(3) = 3247832 and t+(3) = 5! This very simple example shows that we have to be
careful to build multivariate tests from univariate tests. There is no problem if we assume a perfect dependence.
Otherwise, we could obtain meaningless stress tests for the Risk Management of the bank.

41In order to help the reader to reproduce this result, we indicate some intermediary calculus. Using the estimated parameters
of the univariate margins GEV, we have u1 = 0.889, u2 = 0.943, u3 = 0.836, u4 = 0.713, and u5 = 0.744. The value of
C̄ (u1, u2, u3, u4, u5) is then 8.434× 10−4. We assume that the number of trading days in one year is 250. Because we have set the
componentwise period to 44 days, the return period (expressed in years) is given by the formula

t (u1, u2, u3, u4, u5) =
1

8.434× 10−4
× 44

250
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The previous example gives an idea of about how the dependence structure contributes on the
stress test. One possible measure could be

π =
t⊥ (χ1, . . . , χn, . . . , χN )− t (χ1, . . . , χn, . . . , χN )
t⊥ (χ1, . . . , χn, . . . , χN )− t+ (χ1, . . . , χn, . . . , χN )

(197)

We have π ∈ [0, 1]. π is equal to 0 if the estimated copula is the product copula, whereas it is 1 in the case of
the upper Fréchet copula. With the above examples, we have πℵ(1) = 91%, πℵ(2) = 24% and πℵ(3) = 98%. The
impact of the dependence structure is smaller for the second test than for the other tests.

Figure 38: Univariate stress scenario contribution with the copula Cℵ

Let us now consider the consistency problem of a multivariate stress test. The underlying idea is the
following. Suppose that the dependence structure is given by the upper Fréchet copula. Then, the return
period is defined by the maximum return period of the univariate stress tests

t (χ1, . . . , χn, . . . , χN ) = max
n

t (χn) (198)

The return period of the multivariate scenario is only determined by one of the univariate scenario. The
contribution of this univariate scenario is also maximal. For a general dependence structure, there is a univariate
scenario that will have the bigger contribution. However, one may think that this contribution might not be
justified. Indeed, univariate stress scenarios with small waiting times could produce a higher return period for
the multivariate stress scenario, because of the dependence structure. In fact, if we are able to understand
the computed value of the waiting time, we can understand the consistency of the multivariate stress scenario.
Nevertheless, this exercise is difficult from a pratical point of view. Costinot, Riboulet and Roncalli
[2000c] have done this analysis on a stress testing program with eight factors (two indices, two exchange rates
and four factors of interest rates). We illustrate this point with LME data and stress scenario χ(1). Remind that
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Figure 39: Univariate stress scenario contribution with the copula C⊥

Figure 40: Univariate stress scenario contribution with the copula C+
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tℵ (5%, 5%, 5%, 5%, 5%) is 209 years. In figure 38, we have plotted tℵ (χ1, . . . , χn + ∆χn, . . . , χN ), the waiting
time with a change in one component, caeteris paribus42. We remark that CU is the univariate stress scenario
with the higher contribution. If we would have a more plausible scenario, we could set χ

(1)
3 equal to 4%. In this

case, the return period tℵ (5%, 5%, 4%, 5%, 5%) is 108 years that is a more realistic waiting time. We note that
the contribution of the nth univariate stress test can be measured by computing the return period without it,
that is t (χ1, . . . , χn = −∞, . . . , χN ). We obtain the following results

AL AL-15 CU NI PB
t (χ1, . . . , χn = −∞, . . . , χN ) 196 106 34 80 53

A deeper analysis could show that the high value of 209 years is explained by the dependence structure of CU
and PB — tℵ (0.05, 0.05,−∞, 0.05,−∞) is equal to 9 years!

4.3.3 Survival copulas and credit risk

4.3.4 Correlated frequencies and operational risk

The standard measurement methodology for operational risk with internal data is the following (Georges and
Roncalli [1999]):

• Let ζ be the random variable that describes the severity of loss. We define also ζk (t) as the random
process of ζ for each operational risk k (k = 1, . . . , K).

• For each risk, we assume that the number of events at time t is a random variable Nk (t).

• The loss process % (t) is also defined as

% (t) =
K∑

k=1

%k (t)

=
K∑

k=1

Nk(t)∑

j=1

ζk
j (t) (199)

• The Economic Capital with an α confidence level is usually defined as

EC = F−1 (α) (200)

Even if the methodology is simple, many problems arise in practice43, but they are out of concern in this
paper. We focus on another issue of operational risk : the correlation between frequencies of different types of
risk

E [Nk1 (t)Nk2 (t)] 6= E [Nk1 (t)]× E [Nk2 (t)] (201)

Nk (t) is generally assumed to be a Poisson variable P with mean λk. The idea is also to use a multivariate
extension of the Poisson distribution. However, multivariate poisson distributions are relatively complicated
for dimensions higher than two (Johnson, Kotz and Balakrishnan [1997]). Let N11, N12 and N22 be three
independent Poisson variates with means λ11, λ12 and λ22. In the bivariate case, the joint distribution is

42Figures 39 and 40 correspond respectively to the copulas C⊥ and C+.
43For example, the estimation of the distributions of ζk (t) and Nk (t), the availability of exhaustive data, the modelling of the

right tail and the adequacy of the data for the extreme events, the fact that the database of severity losses could contain both
events and aggregated events.
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based on the variables N1 = N11 + N12 and N2 = N22 + N12. We have of course N1 ∼ P (λ1 = λ11 + λ12) and
N2 ∼ P (λ2 = λ22 + λ12). Moreover, the joint probability function is

Pr {N1 = n1, N2 = n2} =
min(n1,n2)∑

n=0

λn1−n
11 λn2−n

12 λn
12e

−(λ11+λ22+λ12)

(n1 − n)! (n2 − n)!n!
(202)

The Pearson correlation between N1 and N2 is ρ = λ12 [(λ11 + λ12) (λ22 + λ12)]
− 1

2 and it comes that

ρ ∈
[
0,min

(√
λ11 + λ12

λ22 + λ12
,

√
λ22 + λ12

λ11 + λ12

)]
(203)

With this construction, we have only positive dependence. In an operational risk context, it is equivalent to say
that the two risks are affected by specific and systemic risks. Nevertheless, people in charge of operational risk
in a bank have little experience with this approach and are more familiar with correlation concepts. To use this
approach, it is also necessary to invert the previous relationships. In this case, we have

λ12 = ρ
√

λ1λ2

λ11 = λ1 − ρ
√

λ1λ2

λ22 = λ2 − ρ
√

λ1λ2 (204)

In dimension K, there is a generalisation of the bivariate case by considering more than K independent Poisson
variates. However, the corresponding multivariate Poisson distribution is not tractable because the correlation
coefficients have not an easy expression.

A possible alternative is to use a copula C. In this case, the probability mass function is given by the
Radon-Nikodym density of the distribution function:

Pr {N1 = n1, . . . , Nk = nk, . . . , NK = nK} =
2∑

i1=1

· · ·
2∑

iK=1

(−1)i1+···+iK C

(
n1∑

n=0

λn+1−i1
1 e−λ1

n!
, . . . ,

nk∑
n=0

λn+1−ik

k e−λk

n!
, . . . ,

nK∑
n=0

λn+1−iK

K e−λK

n!

)
(205)

Assuming a gaussian copula, we note P (λ, ρ) the multivariate Poisson distribution generated by the gaussian
copula with parameter ρ and univariate Poisson distribution P (λk) (to illustrate this distribution, we give an
example in the following footnote44). We have to remark that the parameter of the gaussian copula ρ is not equal
to the Pearson correlation matrix, but is generally very close (see the figure 41). The Economic Capital with
an α confidence level for operational risk could then be calculated by assuming that N = {N1, . . . , Nk, . . . , NK}
follows a multivariate Poisson distribution P (λ, ρ). Moreover, there are no computational difficulties, because

44The next table contains the probability mass function pi,j = Pr {N1 = i, N2 = j} of the bivariate Poisson distribution
P (λ1 = 1, λ2 = 1, ρ = 0.5).

pi,,j 0 1 2 3 4 5 · · · pi,·
0 0.0945 0.133 0.0885 0.0376 0.0114 0.00268 0.368
1 0.0336 0.1 0.113 0.0739 0.0326 0.0107 0.368
2 0.00637 0.0312 0.0523 0.0478 0.0286 0.0123 0.184
3 0.000795 0.00585 0.0137 0.0167 0.013 0.0071 0.0613
4 7.28E-005 0.000767 0.00241 0.00381 0.00373 0.00254 0.0153
5 5.21E-006 7.6E-005 0.000312 0.000625 0.000759 0.000629 0.00307
..
.

p·,j 0.135 0.271 0.271 0.18 0.0902 0.0361 1

If ρ = −0.5, we obtain the following values for pi,j .
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the estimation of the parameters λ and ρ is straightforward, and the distribution can be easily obtained with
Monte Carlo methods45.

Figure 41: Relationship between the copula parameter and the Pearson correlation

5 Conclusion

The aim of this paper was to present the concept of copula and how it could be used in finance. The copula
is in fact the dependence structure of the model. Copulas reveal to be a very powerful tool in the finance
profession, more especially in the modelling of assets and in the risk management. Nevertheless, the finance
industry needs more works on copula and their applications. Even if it is an old notion, there are many research
directions to explore. Moreover, many pedagogical works have to be done in order to familiarize the finance
industry with copulas.

pi,,j 0 1 2 3 4 5 · · · pi,·
0 0.0136 0.0617 0.101 0.0929 0.058 0.027 0.368
1 0.0439 0.112 0.111 0.0649 0.026 0.00775 0.368
2 0.0441 0.0683 0.0458 0.0188 0.00548 0.00121 0.184
3 0.0234 0.0229 0.0109 0.00331 0.000733 0.000126 0.0613
4 0.00804 0.00505 0.00175 0.000407 7.06E-005 9.71E-006 0.0153
5 0.002 0.00081 0.000209 3.79E-005 5.26E-006 5.89E-007 0.00307
.
..

p·,j 0.135 0.271 0.271 0.18 0.0902 0.0361 1

45The simulation of 20 millions draw of the loss distribution F with 5 types of risk takes less than one hour with a Pentium III
750 Mhz and the GAUSS programming langage.
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Figure 42: Random generation of bivariate Poisson variates P (30) and P (60)
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[33] Fang, Z., T. Hu and H. Joe [1994], On the decrease in dependence with lag for stationary Markov chains,
Probability in the Engineering and Informational Sciences, 8, 385-401
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