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1 Introduction

Definition 1 A copula function C is a multivariate uniform
distribution.

Theorem 1 Let Fq,... ,Fyn be N univariate distributions. It comes
that

C(F1(x1),...,Fn(zn),... ,Fx(zN))

defines a multivariate distributions with margins ¥1,... ,Fy (because
the integral transforms are uniform distributions).

= Copulas are also a general tool to construct multivariate
distributions, and so multivariate models.
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2 The dependence function

e Canonical representation
e Corcondance order
e Measure of dependence

From 1958 to 1976, virtually all the results concerning
copulas were obtained in connection with the study and
development of the theory of probabilistic metric spaces
(Schweizer [1991]).

= Schweizer and WOolff [1976] = connection with rank statistics.
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2.1 Canonical representation
Theorem 2 (Sklar’s theorem) Let F be a N-dimensional

distribution function with continuous margins ¥1,... ,Fn. Then F has
a unique copula representation
F(z1,...,zny) = C(F1(z1),... , Fn(zN))

= Copulas are also a powerful tool, because the modelling problem
could be decomposed into two steps:

e Identification of the marginal distributions;

e Defining the appropriate copula function.
In terms of the density, we have the following canonical

N
representation f(z1,...,zn) =c(F1(z1),...,.Fn(zn)) X ] fn(zn).
n=1

Financial Applications of Copulas
The dependence function 2-2



The copula function of random variables (Xq,...,X) is invariant
under strictly increasing transformations (9zhn () > 0):

Cxpp X = Chy(X1), hy(X)
. the copula is invariant while the margins may be changed
at will, it follows that is precisely the copula which captures
those properties of the joint distribution which are invariant

under a.s. strickly increasing transformations (Schweizer and
Wolff [1981]).

= Copula = dependence function of random variables.

This property was already etablished by Deheuvels [1978,1979].
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2.2 Examples

For the Normal copula, We have

C(ut,.. ,uy;p) = Pp (D71 (ur), ..., > (up))

and

1 1 _
c(u1,...,un;p) = —7 €xXp (—ECT (p 1 —H) <>
|2

For the Gumbel copula, We have

C (u1,up) = exp (— ((=Inu)® 4+ (= In u2)5)%>

Other copulas: Archimedean, Plackett, Frank, Student, Clayton, etc.
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2.3 Concordance order
The copula Cq is smaller than the copula C, (C1 < C») if

V (u1,...,uy) €IV, Cq(uy,...,uy) < Co(ug,...,un)

— The lower and upper Fréchet bounds C~ and C7 are

N
max(Z un—N—l—l,O)
n=1

Ct(uy,...,uy) = min(ug,...,uyx)

C™ (ug,...,un)

We can show that the following order holds for any copula C:

C-<C<cCt

= T he minimal and maximal distributions of the Fréchet class
F (F1,F3) are then C~ (F1 (z1),F2 (22)) and CT (F1 (21),F> (x2)).
Example of the bivariate Normal copula (Ct (u1,u5) = ujus):

C =C_1<C,0=<Cp=Cr<C,0=<C;=CT
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Mikusinski, Sherwood and Taylor [1991] give the following
interpretation of the three copulas C—, Ct and CT:

e Two random variables X7 and X, are countermonotonic — or
C = C~ — if there exists a r.v. X such that X; = f1 (X) and
Xo = fo(X) with f1 non-increasing and fo non-decreasing;

e Two random variables X1 and X, are independent if the
dependence structure is the product copula Ci;

e Two random variables X7 and X» are comonotonic — or
C = C1T — if there exists a random variable X such that
X1 = f1(X) and X, = fo>(X) where the functions f; and f, are
non-decreasing;
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2.4 Measures of association or dependence

If kK iIs a measure of concordance, it satisfies the properties:

—1 < ke £ 1; Ci<Cr = KOy < KCy etc.

Schweizer and Wolff [1981] show that Kendall's tau and Spearman’s
rho can be (re)formulated in terms of copulas

T

0

= The linear (or Pearson) correlation is not a measure of

dependence.

4[], € (u1,u2) dC (ug,up) — 1
12//I2 uiuo dC (u1,up) — 3
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2.5 Some misinterpretations of the correlation
The following statements are false:

1. X1 and X5 are independent if and only if p (X1, X») = 0;
2. For given margins, the permissible range of p (X4, X5) is [—1,1];

3. p(X1,X5) =0 means that there are no relationship between X3
and Xo.

e \We consider the cubic copula of Durrleman, Nikeghbali and
Roncalli [2000]

C(u1,u2) = uius + afui(uy — 1)(2uy — 1)] [up(uz — 1)(2us — 1)]
with a € [—1,2]. If the margins F1 and F, are continous and

symmetric, the Pearson correlation is zero. Moreover, if a # 0,
the random variables Xq1 and X» are not independent.
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e Wang [1997] shows that the min. and max. correlations of
X1~ LN (p1,01) and Xp ~ LN (up,02) are

e 9192 — 1

P— = 1 10
(ea% — 1)2 (egg — 1)2
e?192 — 1
P+ = 1 r =0

(60% — 1>§ (e"% — 1)5

p— and p are not necessarily equal to —1 and 1. Example with
o1 =1 and oo = 3:

Copula | p(X31,X2) 7(X1,X2) 0(X1,X5)
C~ —0.008 —1 —1
p=—0.7 ~ 0 —0.49 —0.68
Cct 0 0 0
p=0.7 ~ 0.10 0.49 0.68
Ct 0.16 1 1
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=== minimum correlation o_
— maximum correlation o4

Permissible range of p(X4,X5)
when X; and X, are two LN random variables



e Using an idea of Ferguson [1994], Nelsen [1998] defines the
following copula

(ul O§u1§2u2<1
C(uq,up) =4 %uz OS%U2<U1<1—§ (725
luitup—1 3<1-Jup<wug <1

We have cov (U1,Up) =0, but Pr{U, =1—-|2U; — 1|} =1, i.e

“the two random variables can be uncorrelated although one can

be predicted perfectly from the other” .
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3 An open field for risk management

e Economic capital adequacy
e Market risk

e Credit risk

e Operational risk
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3.1 Economic capital adequacy

With copulas, it appears that the risk can be splitted into two parts:
the individual risks and the dependence structure between them.

e Coherent multivariate statistical model = Coherent model
for individual risks + coherent dependence function

e Coherent model for individual risks = taking into account
fat-tailed distributions, etc.

e coherent dependence function = understanding the
aggregation of quantiles of the individual risks.
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(X4,X2) are gaussian random variables (X4,X2) are a—stable random variables
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= T he influence of margins

Rating VaR BBB A AA AAA
o 99% 99.75% 99.9% 99.95% 99.97%
Return time | 100 days | 400 days 4 years 8 years 13 years
P~ 1(a)
Cb—1£0.99) 1 1.20 1.33 1.41 1.48
g (&) 1 1.49 1.91  2.30 2.62
t, 1(0.99)

= The influence of the dependence function: If a bivariate copula C
is such that*

jim ()

u—1 1 —wu
exists, then C has upper tail dependence for A € (0,1] and no upper
tail dependence for A = 0.

A

*C is the joint survival function, that is
C (ui,up) =1 —u1 —upx + C (u1,u2)
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Remark 1 The measure )\ is the probability that one variable is
extreme given that the other is extreme.

= Coles, Currie and Tawn [1999] define the quantile-dependent
measure of dependence as follows

C (u,u)

1 —wu

A(u) =Pr{Uq > ulUp > u} =

1. Normal copula = extremes are asymptotically independent for
p*=1, i.,eA=0 for p<1.
2. Student copula = extremes are asymptotically dependent for

p 7+ —1.
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3.2 Market risk

Copulas = a powerful tool for market risk measurement.

Copulas have been already incorporated in some software solutions:

e SAS Risk Dimensions
e Palisade @Risk
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3.2.1 Value-at-Risk
LME example:

AL AL-15 CU NI PB
P, | 1 1 1 1 1
P| -1 -1 -1 1 1
P3| 2 1 3 4 5

e Gaussian margins and Normal copula

90% 95% 99% 99.5% 99.9%
P1 7.26 9.33 13.14 1455 17.45
P>| 4.04 517 7.32 8.09 9.81
P3| 13.90 17.82 25.14 27.83 33.43

e Student margins (v = 4) and Normal copula

90% 95% 99% 99.5% 99.9%
Py| 9.20 12.48 20.16 23.95 34.07
P- 5.33 7.08 11.16 13.17 19.17
P3| 18.04 24.11 38.90 46.45 69.51
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e Gaussian margins and Student copula (v = 1)

90% 95% 99% 99.5% 99.9%
Pi| 6.49 8.94 14.48 16.67 21.11
P>| 3.45 508 9.17v 11.03 15.77
P3]11.99 17.53 31.88 37.94 51.66

Value-at-risk based on Student margins and a Normal copula (Gauss
software, Pentium III 550 Mhz, 100000 simulations)

Number of assets | Computational time
2 0.1 sc
10 24.5 sc
100 4 mn 7 sC
500 33 mn 22 sc
1000 1 hr 44 mn 45 sc
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3.2.2 Stress testing

Stress testing program = what are the larger risks in the portfolio?

= EXxtreme value theory allows to model the maxima or minima of

a distribution and to apply stress scenarios to a portfolio.

Problem: multivariate stress scenarios.

Multivariate extreme value theory An extreme value copula
satisfy the following condition

C(uﬁ,... ,u’f\;) =Ct(u1,... ,uy) Vt>0

For example, the Gumbel copula is an extreme value copula:

exp (— (=nuf)” + (=1 ug)“ﬁ)

— [exp (— [((—=Inu)®+ (—1In ul)a]é)r = C* (u1,up)

C (uﬁ, ug)
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What is the link between extreme value copulas and the multivariate
extreme value theory? The joint limit distribution G of
multivariate extremes is of the type

G(xIL,--- xf\?) = Cs <G1 (Xil_) oo GN (XF\L;))
where C, is an extreme value copula and G,, a non-degenerate
univariate extreme value distribution.

Univariate theory = Fisher-Tippet theorem.

Multivariate theory = the class of multivariate extreme value
distribution is the class of extreme value copulas with
nondegenerate marginals.
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Let D be a multivariate distribution with unit exponential survival
margins and C an extreme value copula. Using the relation

C(u1,...,uy)=C(e ™, .. e ™) =D(iy,...,iy)
we have D! (1) = D (t1) and then D is a min-stable multivariate
exponential (MSMVE) distribution.

Theorem 3 (Pickands representation of MSMVE distributions)
Let D (u) be a survival function with exponential margins. D satisfies

N
D(ﬁ) — eXp|: (Z fbn)B(’wl,,’wN)]
B(w) = / / Sngnna<xN (gnwn) dS (q)

with wy = tn/ Zjlv un and where Sy is the N-dimensional unit simplex
and S a finite measure on Sy. B is a convex function and
max (wq,... ,wy) < B(w) < 1.
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It comes necessarily that an extreme value copula verifies

ct<c<ct
Maximum domain of attraction: F € MDA (G) iff

1. Fp, € MDA (Gp) forall n=1... 6 N;
2. C e MDA (C,).
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Bivariate stress testing A failure area = set of values (;d',;d’)

such that

Pr {Xir > X1, X4 > Xz} =1-G1(x1) — G2 (x2) + C(G1 (x1),G2 (x2))

equals a given level of probability.

Return time of the CAC40/DowdJones example of Costinot, Roncalli
and Teiletche [2000]:

Date CAC40 DowJones EVT Gaussian hyp.
10/19/1987 | —10.14% —25.63% | 105.79  1.44 x 104
10/21/1987 | +1.80%  +9.67% 18.14 2.88 x 1014
10/26/1987 | —8.45% —8.38% 0.18 1.80 x 1013
11/09/1987 | —11.65% —3.10% 8.12 2.30 x 10°
01/01/1992 | +8.28%  +5.71% 6.85 1.66 x 108
01/02/1992 | —9.18% —5.59% 6.39 2.96 x 10°
01/04/1992 | +9.87%  +4.83% 7.06 2.05 x 10°
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Failure area for a 5 years waiting time



Multivariate stress testing In the multivariate case, the failure
area is defined as the following set

= 1
{(Xl,..- ,XN) ERN | (] :Fl (Xl),... ,uNzFN(XN),C(ul,... ,uN) <I}
with
_ N | '
C(’U,]_,...,’U,n,...,’U,N>: Z (_1)?7, Z C(Ll)
n=0 | ucZ(N—n,N) |

where Z (M, N) denote the set {u € [0,1]" | ©0_; Xpqy (un) = M}. 1t
is also possible to compute the implied return period t for a given
vector (x1,---,Xn,--- ,XN)- We have then

t(X1s e s Xnseo-sXN) =CH(F1(x1) 5, Fn(xn) s+, Fn (X))
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The strength of a crisis (x1,-.-,Xxn) iS generally a subjective notion.
= T he implied return period >~ measure of the severity.

= it can be used to quantify the stress tests provided by the
economists for the stress testing program of a bank and to verify
their coherence.

LME example of Bouye, Durrleman, Nikeghbali, Riboulet and

0.05 0.02 " 0.0696 ]
0.05 0.03 0.0579
Roncalli [2000]: x™ = | 0.05 x(® = 0.03 y® = | 0.0753
0.05 0.01 0.0846
0.05 | 0.10 | 0.1113 |

(1) = 209, t(l) = 2317, arld t(l) = 3.
) = 49939, t(3) = 3247832 and t(3) = 5.
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Sensitivity analysis

\ AL AL-15 CU NI PB
f(Xl,---,Xn:—OO,---,XN)‘196 106 34 80 53
A deeper analysis could show that the higher value of 209 years is
explained by the dependence structure of CU and PB —
1 (0.05,0.05, —00, 0.05, —c0) is equal to 9 years!
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3.2.3 Quantile aggregation

Makarov inequalities Let L denotes a two-place function (for

example, the four arithmetic operators 4+, —, x and <). The
supremal convolution t¢ 1, (F1,F2) is
e, (F1,F2) (z) = sup  C(Fi1(z1),F2(x2))
L(z1,20)=x

whereas the infimal convolution pc 1, (F1,F2) corresponds to

pc, (F1,F2) (z) =  inf  C(F1(z1),F2(22))
L(ajlaxQ)_aj

with C the dual of the copula C.

Frank, Nelsen and Schweizer [1987] and Williamson [1989] show that
the distribution G of X = L (X4, X5) is contained within the bounds
Gv (z) < G (z) < Gp(z) with Gy (z) =7¢_ 1 (F1,F2) () and

Gn(z) = pc_. (F1,F2) (z). These bounds are the pointwise best
possible.
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Dependency bounds of the VaR Using the duality theorem of
Frank and Schweizer [1979], it comes that if C_ = C~ and L is the
operation 4+, we have

SV (w) = inf FUY (ug) + FSY (uo)

max(ui4ur—1,0)=u

and

G\ = sup  F{V(up) +FS (up)

min(uq+up,1)=u

We recall that VaR, (X) = F~1(a). The corresponding dependency
bounds are then

GV (a) < VaRa (X1 + X2) < G5V (@)

Numerical algorithms to compute the dependency bounds exist (for
example the uniform quantisation method of Williamson [1989]).
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The problem of the definition of the diversification effect If
we define the diversification effect as follows

VaRg (Xl) + VaRa (XQ) — VaRy (Xl -+ XQ)

VaRy (X1) + VaRa (X5)
there are situations where VaR, (X1 4+ X5) > VaRy (X1) + VaRa (X5).
A more appropriate definition is then

_ GV () — VaR, (X1 + Xp)
G ()

It comes that D = x (CSO‘), CT; oz) + [1 — X (CS/O‘),C"‘; a)] D with

D =

W)

@ ~+. O\ _ GSY (@) = VaRa (X1) 4 VaRa (X2)
x Gy, Cha) = &)
Grv (04)

Embrechts, McNeil and Straumann [1999] interpret x (C(vo‘),C+;a)
as ‘‘the amount by which VaR fails to be subadditive' .
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VaR aggregation in practice LME example of Durrleman,
Nikeghbali and Roncalli [2000]:

AL AL-15 CU NI PB
P | 5 3
P> 5 2 =3

Analytical VaR Historical VaR
Pq 363.05 445,74
P> 1026.03 1274.64

Here are the values of Gg/_l) (o) for a equal to 99%:

P1 P1
Analytical VaR Historical VaR
P> Analytical VaR 1507.85 1680.77
P> Historical VaRrR 1930.70 2103.67
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3.3 Credit risk

Problem: joint default distribution

A default is generally described by a survival function
S (t) = Pr{T > t}. Let C be a survival copula. A multivariate survival
distributions S can be defined as follows

S(t1,...,tn) =C(S1(t1),...,Sn (EN))

where (Sq,...,Sy) are the marginal survival functions. Nelsen [1998]
notices that “C couples the joint survival function to its univariate
margins in a manner completely analogous to the way in which a
copula connects the joint distribution function to its margins’ .

= Introducing correlation between defaultable securities can then be
done using the copula framework.
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3.3.1 The VaR of a portfolio

= Li [2000] introduces the notion of credit curve (= distribution of
survival time for a given credit).

= The VaR is computed by combining the credit curve and the
payment schedule and the recovery rate of the credit.

Other approach: Independent default risk based on component shock
Poisson model and an extended Marshall-Olkin copula (Lindskog
[2000]) = similar to the Duffie and Singleton [1999] model.

Interpreting CreditMetrics joint default probability (not yet
done)

An illustration (not yet done)
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3.3.2 Pricing of credit derivatives

First-to-default example of Bouyé, Durrleman, Nikeghbali, Riboulet
and Roncalli [2000]: Let us define the first-to-default 7 as follows

r=min(Ty,...,TN)

Nelsen [1998] shows that the survival function of 7 is given by the
diagonal section of the survival copula.

= Theory of competing risks, multiple decrement theory.
= Example: N credit events, default of each credit event given by a

Weibull survival function (the baseline hazard is constant and equal
to 3% per year and the Weibull parameter is 2).
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Hazard function Survival function
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Mean residual time—until—default Density of the survival time
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Influence of the number of securities

Influence of the correlation parameter
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3.4 Operational risk

e [ he standard statistical method
e Bivariate Poisson distribution
e Multivariate Poisson distribution based on copulas

e [ he impact of the “correlated frequencies’ on the diversification
effect
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3.4.1 The standard statistical method

e Let ¢ be the random variable that describes the severity of loss.
We define also ¢* () as the random process of ¢ for each
operational risk k (k=1,... ,K).

e For each risk, we assume that the number of events at time ¢ is a
random variable N (t).

e The loss process o (t) is also defined as

K Np(1)

(t)—Z@ M= > ¢G®

k=1 j=1
e T he Economic Capital with an a confidence level is usually
defined as

EC=F 1 (a)
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3.4.2 Bivariate Poisson distribution

Let Ny = Ni11 + Nio and Np = Nop + Njo be the sum of three
independent Poisson variates. It comes that

N1 ~P (A1 =211+ A12)

No ~ P (A2 = Ao + A12)

The Pearson correlation between Ni and N> is
1
p=A12 [(A11 + A12) (A22 + A12)] 2 and it comes that

A A A A
b e [O,min (\/ 11 + 12,\/ 22 + 12)]
Ao+ A1 YV A11 + A1

= only positive dependence.
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3.4.3 Multivariate Poisson distribution based on copulas
Computational problems with the extension to multivariate case
(Johnson, Kotz and Balakrishnan [1997]).

= Song [2000] proposes then to use the Normal copula. The
cumulative distribution function is given by*

F(ni,... , ng) =CF1(n1),..., Fr(ng))

whereas the probability mass function is given by the
Randon-Nikodym density of the distribution function:

PI’{N]_:TL]_,... ,NKZHK}:

2 2 ny \n+1—i1 —) ng \nt+l—ig )

*In this case, the copula is not uniquely defined and the dependence function is

determined by the subcopula (see Marshall [1996]).
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The next table contains the probability mass function
pi.; = Pr{Ny =1, Np = j} of the bivariate Poisson distribution

P(A1 =1, =1,p=0.5).

3 4 5

Pi,,j 0 1 P,
0 0.0945 0.133 0.0885 0.0376 0.0114 0.00268 0.368
1 0.0336 0.1 0.0739 0.0326 0.0107 0.368
2 0.00637 0.0312 0.0523 0.0478 0.0286 0.0123 0.184
3 0.000795 0.00585 0.0137 0.0167 0.013 0.0071 0.0613
4 | 7.28E-005 0.000767 0.00241 0.00381 0.00373 0.00254 0.0153
5 | 5.21E-006 7.6E-005 0.000312 0.000625 0.000759 0.000629 0.00307

D 0.135 0.271 0.18 0.0902 0.0361 1
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If p= —0.5, we obtain the following values for p; ;.

D 0 1 2 3 4 5 pi.
0 | 0.0136 0.0617  0.101 0.0929 0.058 0.027 0.368
1 | 0.0439  0.112 0.111 0.0649 0.026 0.00775 0.368
2 | 0.0441 0.0683  0.0458 0.0188 0.00548  0.00121 0.184
3 | 0.0234 0.0229  0.0109  0.00331  0.000733 0.000126 0.0613
4 | 0.00804 0.00505 0.00175 0.000407 7.06E-005 9.71E-006 0.0153
5 | 0.002 0.00081 0.000209 3.79E-005 5.26E-006 5.89E-007 0.00307

p; | 0.135  0.271 0.271 0.18 0.0902 0.0361 1
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3.4.4 The impact of the “Correlated frequencies” on

the diversification effect

very big problems

= For high quantiles (and if the o values are high), there are no
impact of the “Correlated frequencies” .

= Computing the Economic Capital seems independent of the
correlation matrix.

The problem comes from the copula function, which is Normal.
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4 Statistical modelling

e Estimation methods

e Simulation methods

e [ he Normal copula

e Extending univariate statistical models

e Scoring functions
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4.1 Estimation methods

1. Maximum likelihood
2. Inference for margins

3. Canonical maximum likelihood (or omnibus method)
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4.1.1 Maximum likelihood method

T
Let X = {(gctl, .. ,:cﬁ\,)}t_l denote a sample, f, the density of the
margin F,, and ¢ the density of the copula

OC (Ug,... ,Uny... ,UN)

C(Ulyeet s Upy... ,UN) = Dur- Ou D n

The expression of the log-likelihood is then

0(0) = §Tj inc(Fy(z4),...,Fn(ah),... ,Fy(zly)) + ET: g: N fo ()

t=1 t=1n=1

Financial Applications of Copulas
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4.1.2 Inference for margins (IFM) method

The log-likelihood could be written as (Joe and Xu [1996])

0(0) = i Inc(Fl (a;g;el),... Fy, (a;;;;en),... Fu (:cj;\,;eN) ;a) +
t;1 N

S In fn (x%;@n)

t =1

=1 n=

= 0, and o are the vectors of parameters of the parametric marginal
distribution F,, and the copula C.
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We could also perform the estimation of the univariate marginal
distributions in a first time

T
On =argmax > In fn (azfl 9n>
t=1
and then estimate a given the previous estimates

b= argmax Y Ine(Fy (e:81) ... Fu (2hi0n) ... Fy (i0y) o)

Financial Applications of Copulas
Statistical modelling



4.1.3 Canonical maximum likelihood

The method consists in transforming the data (x’i, L ,xﬁ\,) into

uniform variates (ratl, . ,agv) — using the empirical distributions —
and then estimate the parameters in the following way:

T
& =argmax > Inc(aﬁ,... T A ,a’}\,;a)

t=1

Financial Applications of Copulas
Statistical modelling



4.1.4 A Monte Carlo study

= CML is the best estimator, because there are no assumptions on
the margins.

Problem: If we use wrong margins, MLE and IFM will ‘modify’ the
dependence function.

= Example with a bivariate distribution F with Normal copula

(p = 0.5) and two margins F1 and F» which are student distributions
(F1 =t> and F, = t3). We fit the distribution with a Normal copula
and two gaussian margins.
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4.2 Simulation methods

1. Simulate the random vector u from the multivariate uniform
distribution C.

2. Use the inversion method to obtain the desired random vector x
with

For the first step, there exist specific algorithms (Devroye [1986],
Marshall and Olkin [1988], etc.).
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4.3 Working with the Normal copula

Remark 2 The multivariate normal distribution is very tractable. It
is very easy to estimate the parameters and simulation is
straightforward. Moreover, this distribution has nice properties and
most of tractable statistical methods (linear regression, factor
analysis, etc.) assume the normality.

Is it always the case for the Normal copula?
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4.3.1 The WV transform

We define the operator W as follows

VI[F] : R—R
z— VI[F](z) = &1 (F(2))

We note also W1 the (left) inverse operator (W~low =1), i.e.
WL [F] (2) = FI-1 (@ (2)).
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4.3.2 Estimation

If we assume uniform margins (F = U[o,l]): the log-likelihood function
IS

T 1 & o1
6(9)=—§In|p|—52§t (p —H)Ct
t=1

with ¢ = (\U [F1] <a:’51> o, W F ] (w’f\,)) and the ML estimate of p is
also

1 L+
PML=—Z§t St
'/ =

1. IFM estimate: F,, = MLE of the nt" marginal distribution.
2. CML estimate : F,, = nt" empirical distribution.
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Example of Costinot, Roncalli and Teiletche [2000]:

e Normal copula 4+ Gaussian marginals = Gaussian distribution.

1 0.158 0.175 |
1 0.0589
1

)
|

It means that

Ccacao,NIKKEN) = C(CAC40,Dowlones) = C(NIKKEI,DowJones)
e Normal copula 4+ Empirical marginals.

1 0.207 0.157 |
p= 1 0.0962
1

In this case, we verify that

C (cAC40,DowJones) ™~ C(CAC40,NIKKEI) ™ C(NIKKEI,DowJones)
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4.3.3 Simulation

e Generate N independent gaussian random variables
x=(x1,...,ZN);

e Create a new dependent vector y = Px with p = PPT (P is the
lower Choleski decomposition of p);

e [ he resulting random numbers are

z = (w_l [F1l(y1),-. W ' [Fy] (yN)>

Financial Applications of Copulas
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4.3.4 Quantile regression

Costinot, Roncalli and Teiletche [2000] show that

0
E C (u1,up) = ® ()
uq

with
:¢—1 (ug) — B~ (uq)

V1 — 32

The expression of the function us = q* (uq; «) is also

ur = P (mrl (u1) + /1 — B2t (a))
If the margins are gaussians, we obtain the well-known curve
ok9) _ ko)
Xo = [uz — ﬁa—lul +/1 - g%t (Oé)] + 50—1X1

We remark that the relationship is linear. When the margins are not
gaussians, the relationship is linear in the W projection space.
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Remark 3 If we assume that the dependence function is Normal, we
can use the Portnoy-Koenker algorithm with the transformed

variables Y; = W [F;] (X;). Let a and b be the estimates of the linear
quantile regression

Yo =a+bY; +U
PriYo<y | Y1 =y1} =«

T he quantile regression curve of X» on X7 is then obtained as follows
Xp = WL [Fy] (a4 bW [F1] (X1))
Linearity = Normality
Can we extend the previous analysis to other statistical models

(linear regression, factor analysis, etc.)?

Financial Applications of Copulas
Statistical modelling 4-15



4.0

True

— == RQ (Portnoy—Koenker algorithm)

0.5 L . .

Linear quantile regression with
Normal copula and Student/Gamma margins



4.4 Extending univariate statistical models
e Multivariate survival modelling

e Multivariate count processes

e Multivariate time series
Some examples:

1. The Cox Proportional Hazard model has been extended to the
bivariate case by Clayton [1978].

2. Frailty models (Hougaard [1986], Oakes [1989]) = Archimedean
copulas where the generator is a Laplace transform.

3. Bouyé, Gaussel and Salmon [2000] extend the ARMA processes
when the margins are not gaussians.

4. Song [2000] proposes generalization of dispertion models (which
include binary regression, longitudinal model, etc.).
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4.5 Scoring functions

We consider an individual ¢ with p specifications (x1,...,xx). The
scoring function for this individual is

S:S(CIZ]_,... ,wN)

We then define a rule based on a target S*. The area A of
acceptation is the set

A= {z - 5(0) > S*}
S is a random variable, but only the order statistic is important.

Some example of scoring functions: credit scoring, individual
customer risk score, insurance scoring, etc.
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4.5.1 New statistical models

(not yet done)
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4.5.2 Dependence between scoring functions

Let S and S, be two scoring functions. They are equivalent if there
exist an increasing function f such that Ss (z) = f(S7 («)). Using the
Deheuvels’s characterization of copula in terms of rank statistics, it
comes that the dependence function between S; and 5S> is the upper
Fréchet copula.

= Copulas can be used to compare scoring functions.

Application: Let S71 and S, be a risk scoring function and a
profitability scoring function. How to construct a new scoring
function S = g (S1,S2) which is a risk oriented scoring function, but
take into account profitability?

= We need a distance between S1 and S», that is a distance on the
copula (Alsina [1984]).
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5 The mathematical machinery of copulas

Howard Sherwood in the AMS-IMS-SIAM Conference of 1993:

The subject matter of these conference proceedings comes in
many guises. Some view it as the study of probability
distributions with fixed marginals; those coming to the
subject from probabilistic geometry see it as the study of
copulas; experts in real analysis think of it as the study of
doubly stochastic measures; functional analysts think of it
as the study of Markov operators; and statisticians say it is
the study of possible dependence relations between pairs of

random variables. All are right since all these topics are
iIsomorphic.
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5.1 Probabilistic metric spaces

Let Fp 4 (x) be the probability that the distance between p and ¢ is
less than z. Menger [1942] proposes to replace the triangle inequality
of metric spaces by

Fpg(z+y) 2T (Fpg(x),Fpq(y))

Schweizer and Sklar [1958] define T as a t-norm.

= T must be associative

T (u, T (v,w)) =T (T (u,v) ,w)

Theorem 4 A 2-copula is a t-norm if and only if it is associative. A
t-norm is a 2-copula if and only if it satisfies the Lipschitz condition.

Financial Applications of Copulas
The mathematical machinery of copulas 5-2



Most important results on copulas obtained in the study of PMS:

e Archimedean copulas (Ling [1965], Genest and MacKay [1986]);
e Frank copula (Frank [1979]);

e Characterization of associativity of convolutions;

e Makarov inequalities (Moynihan, Schweizer and Sklar [1978]).
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5.2 Markov operators

Definition 2 (Olsen, Darsow and Nguyen (1996)) Let (2, F,P)
be a probabilistic space. A linear operator T : L*° (2) — L°°(S2) is a
Markov operator if

1. T is positive i.e. T[f] > 0 whenever f > 0,
2. 1 is a fixed point of T.
3. E[T[f]] =E[f] for every f € L°° (£2).

= Brown [1966] shows that “the set M of all Markov operators is
convex... M may be identified with the set of doubly stochastic
measures..."” .
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Darsow, Nguyen and Olsen [1992] define the product of C; and C-
by the following function

2 — 1

1
(ug,up) — (C1%C2) (uy,up) = /o 02C1 (u1,u) 81Co (u,up) du

where 01C and 0>C represent the first-order partial derivatives with
respect to the first and second variable.

Theorem 5 (Olsen, Darsow and Nguyen (1996)) The set of
copulas under the x product is isomorphic to the set of Markov
operators on L ([0,1]) under composition, via the correspondance

1
T = o [ 00 (w0 f (@) do

C(uy,up) = /zl T [1[O,u2]} (u) du
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5.2.1 Uniform convergence vs strong convergence

Kimeldorf and Sampson [1978] show that one can pass from
stochastic dependence to complete dependence in the natural sense
of weak convergence. This can be done using the theorem of Vitale
[1991]:

Theorem 6 Let Uy and Uy be uniformly distributed variables. There
is a sequence of cyclic permutations T1,15,... such that (Uy,TnUq)
converges in distribution to (U1,U) as n — oo.
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. With respect to uniform convergence, it is essentially
impossible to distinguish between situations in which one
random variable completely determines another and a
situation in which a pair of random variables is independent
(Li, Mikusinski and Taylor [2000]).

= Li, Mikusinski, Sherwood and Taylor [1998] introduced strong
convergence of copulas, which is defined to be strong convergence of
the corresponding Markov operators.

= Using strong convergence, Li, Mikusinski and Taylor [2000] show
that

[, (CD dC2= [ f(w) du— [ f'(C1) d2C1d1Co
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5.2.2 New families of copulas

Definition 3 {qﬁl,,_,,qbn} € L ([0,1]) is called a partition of unity if it
satifies the following statements
1. ¢;(z) =0,
1 1
2. /O ¢; (x) doz =
3.3 ¢i(x)=1 forall z €[0,1].
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Theorem 7 Let {¢1,...,¢n} € L°° ([0, 1]) be a partition of unity and
Brn (C) the two place function defined by

B (C) (w0) =12 35 3 235(C) [ i) da [0 ()

1=175=1
where 8;;(C) =C (£,2) - C (51 1) - C(L,52) + (51,51,

n’n n 'n n

Then B, (C) is a copula.

The proof of this theorem has been etablished by Li, Mikusinski,
Sherwood and Taylor [1997] and Kulpa [1998] using Markov
operators.

= Partition of unity have been used by Durrleman, Nikeghbali and
Roncalli [2000] to generate new families of copulas.
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5.2.3 Markov processes

Darsow, Nguyen and Olsen [1992] prove the following theorem:

Theorem 8 Let X = {X;, F+;t > 0} be a stochastic process and let

Cs,+ denote the copula of the random variables Xs and X;. Then the
following are equivalent

(i) The transition probabilities Ps i (x, A) = Pr{X; € A| Xs =z}
satisfy the Chapman-Kolmogorov equations

0
Pot (e, )= [ Pog(w,0y) Py (4. 4)

for all s < 0 <t and almost all x € R.
(ii) For all s < 0 < t,

Cs,t = Cs 9% Cy g (1)
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In the conventional approach, one specifies a Markov process
by giving the initial distribution p and a family of transition
probabilities Psy (x, A) satisfying the Chapman-Kolmogorov
equations. In our approach, one specifies a Markov process by
giving all of the marginal distributions and a family of
2-copulas satisfying (1). Ours is accordingly an alternative
approach to the study of Markov processes which is different
in principle from the conventional one. Holding the transition
probabilities of a Markov process fixed and varying the initial
distribution necessarily varies all of the marginal distributions,
but holding the copulas of the process fixed and varying the
initial distribution does not affect any other marginal
distribution (Darsow, Nguyen and Olsen [1992]).

The Brownian copula

u1 VIO (up) — /5P 1 ()
Cst(ug,up) = / b du
S,t( 1 2) 0 ( \/m
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Understanding the temporal dependence structure of diffusion
processes

The copula of a Geometric Brownian motion is the Brownian copula.

The Ornstein-Uhlenbeck copula is

U1 ® (h(to, s,t) b1 (u2) — h(to,s,s) il (u)) du
0 h(s,s,t)

CS,t (ulauQ) — /

with

h(tg, s, t) = \/62a(t—8) . 6—20,(8—250)

Remark 4 A new interpretation of the parameter a follows. For
physicists, a is the mean-reverting coefficient. From a copula point of
view, this parameter measures the dependence between the random
variables of the diffusion process. The bigger this parameter, the less
dependent the random variables.



5.3 Quasi-copulas
The class of quasi-copulas was introduced by Alsina, Nelsen and

Schweizer [1993] in order to characterize the class of binary
operations 1 on distribution functions which are induced pointwise
and derivable from functions on random variables.

Example: Mixtures are induced pointwise, convolutions are derivable.
Mixtures are not derivable, convolutions are not induced pointwise.

T he distinction between working directly with distributions
functions and working with them indirectly, via random
variables, is intrinsic and not just a matter of taste. The
classical model for probability theory — which is based on
random variables defined on a common probability space —
has its limitations (Alsina, Nelsen and Schweizer [1993]).

Financial Applications of Copulas
The mathematical machinery of copulas 5-12



5.3.1 Characterization of quasi-copulas

The original definition of quasi-copulas is not tractable (“every track
in the unit square coincides with a copula function™).

Genest, Quesada Molina, Rodriguez Lallena and Sempi [1999] prove
the following two theorems:

Theorem 9 A function Q : 12 — 1 is a quasi-copula if and only if

1. Q(0,u) = Q(u,0) =0 and Q(1,u) = Q(u,1) = 1;
2. Q is non-decreasing in each of its arguments;
3. Q satisfies Lipschitz’s condition

1Q (u2,v2) — Q (u1,v1)| < |lupg —ug| + |vo — v1|
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Theorem 10 A function Q : 12 — 1 is a quasi-copula if and only if

1. QO,u) = Q(u,0) =0 and Q(1,u) =Q(u,1) = 1;
2. ffOSulqugland()ﬁ’UlSvQSl,
Q (uz,v2) + Q (u1,v1) = Q(up,v1) + Q (uy,v2)

holds true whenever at least one of the coordinates is either equal
to O or to 1.
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Nelsen, Quesada Molina, Rodriguez Lallena and Ubeda Flores [2000]
give a fourth characterization of quasi-copulas:

Theorem 11 A function Q : 12 — 1 is a quasi-copula if and only if

1. Q0,u) = Q(u,0) =0 and Q(1,u) =Q(u,1) =1,
2. Q is absolutely continuous in each variable,

3. the partial derivatives 01Q and 0->Q exist for almost all v and v,
and for such uw and v 0 < 01Q (u,v) <1 and 0 < 0,Q (u,v) < 1.

Remark 5 All these characterizations are related to properties of
copulas (see theorem 2.2.4, definition 2.1.1 and theorem 2.2.7 of
Nelsen [1998]). But a quasi-copula does not satisfy necessarily the
property of N-increasing.

Remark 6 Every copula is a quasi-copula.
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5.3.2 A first application of quasi-copulas

Alsina [2000] induces in [0, 1] families of metrics based on
quasi-copulas. Let us define the co-quasi-copula as follows

Q" (u,v) =1-Q(1 —u,1-v)

Theorem 12 dQE,Q1 (u,v) = 1{yzzq] <Q§ (u,v) — Q1 (u,v)) is a distance
in [0,1].

Geometric interpretation of a bivariate distribution:

M) P02 2ge. ¢ (F1 (21), F2 (22))

F (z1,20) =
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5.3.3 A second application of quasi-copulas

“Nelsen, Quesada Molina, Rodriguez Lallena and Ubeda Flores
[2000] have developped a method to find best-possible bounds on
bivariate distribution functions with fixed marginals, when additional
information of a distribution-free nature is known, by using
quasi-copulas.”

Financial Applications of Copulas
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6 Conclusion

COPULAS = AN OPEN FIELD FOR FINANCE

FINANCE = Risk, Financial Econometrics, Derivatives Pricing, etc.

= see for example the works of Bikos [2000], Cherubini and Luciano
[2000] and Rosenberg [2000] on pricing of multivariate contingent
claims.

Paradox: There were no people of financial institutions — except
Crédit Lyonnais — and no people of financial academic research
centres in the Barcelona conference (July 2000).

COPULAS = A FASHION IN FINANCE?

Financial Applications of Copulas
Conclusion 6-1
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