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Abstract

In this short note, we consider some problems of two-asset options pricing. In particular, we investigate
the relationship between options prices and the ‘correlation’ parameter in the Black-Scholes model. Then,
we consider the general case in the framework of the copula construction of risk-neutral distributions. This
extension involves results on the supermodular order applied to the Feynman-Kac representation. We show
that it could be viewed as a generalization of a maximum principle for parabolic PDE.

1 Introduction

In this paper, we address the problem of the relationship between the dependence function and the price of
two-asset options. For example, one might wonder if the price of a Spread option is a monotone (decreasing or
increasing) function of the correlation parameter in the Black-Scholes model. Another question is related to the
(lower and upper) bounds of the option price with respect to this correlation parameter. For the Black-Scholes
model, we solve these two problems by using a maximum principle for parabolic PDE. In the general case where
the risk-neutral distribution satisfies a copula decomposition, we directly use properties of the supermodular
order to solve them. We remark that this method could be viewed as a generalization of the previous maximum
principle.

As a matter of fact, the supermodular method may be used for more general problems than two-asset
options pricing. These problems are special cases of Fokker-Planck equations and correspond to a Feynman-
Kac representation (Friedman [1975]).

Theorem 1 (Feynman-Kac representation) Let x (t) be a diffusion process determined by the SDE of the
form

dx (t) = µ (x (t) , t) dt + σ (x (t) , t) dW (t) (1)

where W (t) is a n-dimensional Wiener process defined on the fundamental probability space (Ω,F ,P) with the

covariance matrix E
[

W (t)W (t)>
]

= ρt. Let A be the differential operator defined by

Au (x, t) =
1
2

trace
[

σ (x, t)> ∂2
x,xu (x, t)σ (x, t)ρ

]

+ µ (x, t)> ∂xu (x, t) (2)

A is called the ‘infinitesimal generator’ of the diffusion process x (t). Under the following assumptions:
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1. µ (x, t), σ(x, t), k (x, t) and g (x, t) are lipschitz and bounded functions on Rm× [0, T ];

2. f (x) is continuous;

3. g (x, t) and f (x) satisfy the exponential growth condition;

4. and the polynomial growth condition is verified for u (x, t);

there exists then a unique solution to the Cauchy problem
{

−∂tu (x, t) + k (x, t)u (x, t) = Au (x, t) + g (x, t)
u (x, T ) = f (x) (3)

This solution is given by the Feynman-Kac formula

u (x, t0) = E
[

f (x (T )) exp

(

−
∫ T

t0
k (x (t) , t) dt

)

+
∫ T

t0
g (x (t) , t) exp

(

−
∫ t

t0
k (x (s) , s) ds

)

dt

∣

∣

∣

∣

∣

x (t0) = x

]

(4)

2 The case of the Black-Scholes model

In the BS model, the asset prices are correlated geometric Brownian motions
{

dS1 (t) = µ1S1 (t) dt + σ1S1 (t) dW1 (t)
dS2 (t) = µ2S2 (t) dt + σ2S2 (t) dW2 (t) (5)

where E [W1 (t)W2 (t)] = ρt. Using Ito calculus and the arbitrage theory, the price P (S1, S2, t) of the European
two-asset option with the payoff function G (S1, S2) is the (unique) solution of the following parabolic PDE

{ 1
2σ2

1S
2
1∂2

1,1P + ρσ1σ2S1S2∂2
1,2P + 1

2σ2
2S

2
2∂2

2,2P + b1S1∂1P + b2S2∂2P − rP + ∂tP = 0
P (S1, S2, T ) = G (S1, S2)

(6)

where b1 and b2 are the cost-of-carry parameters and r is the instantaneous constant interest rate. First, we
consider the case of the Spread option and show that the price is a nonincreasing function of the correlation
parameter ρ. Second, we extend this result to other two-asset options. Moreover, we give explicit lower and
upper bounds for these option prices.

2.1 An example with the Spread option

Before to state the main proposition, we recall the weak maximum principle for parabolic PDE1.

Theorem 2 (Phragmen-Lindeloff principle) We consider the operator Lu (x, t) =
∑

i,j ai,j (x, t) ∂2
i,ju (x, t)+

∑

i bi (x, t) ∂iu (x, t) + ∂tu (x, t) + c (x, t) u (x, t) where the functions ai,j (x, t), bi (x, t) and c (x, t) are contin-
uous and bounded. Moreover, we assume that (ai,j (x, t)) is a symmetric, positive definite matrix for (x, t) ∈
Rm × [0, T ). Let w ∈ C2 (Rm × [0, T )) ∩ C0 (Rm × [0, T ]) with |w (x, t)| ≤ βeα‖x‖ for all (x, t) ∈ Rm × [0, T ]
and some constants α and β. If Lw (x, t) ≤ 0 for t < T and w (x, T ) ≥ 0, then we have w (x, t) ≥ 0 for all
(x, t) ∈ Rm × [0, T ].

In order to obtain qualitative properties of the Spread option, it is more convenient to deal with an elliptic
operator. If we make the change of variables S̃1 = ln S1 and S̃2 = ln S2, it comes that

{ 1
2σ2

1∂
2
1,1P + ρσ1σ2∂2

1,2P + 1
2σ2

2∂
2
2,2P +

(

b1 + 1
2σ2

1

)

∂1P +
(

b2 + 1
2σ2

2

)

∂2P − rP + ∂tP = 0

P
(

S̃1, S̃2, T
)

=
(

exp S̃2 − exp S̃1 −K
)+ (7)

The operator Lρu = 1
2σ2

1∂
2
1,1u + ρσ1σ2∂2

1,2u + 1
2σ2

2∂
2
2,2u +

(

b1 + 1
2σ2

1

)

∂1u +
(

b2 + 1
2σ2

2

)

∂2u − ru + ∂tu is also
elliptic for ρ ∈ ]−1, 1[. We can now establish the following proposition.

1The next theorem could be linked to the submartingale property of w (x (t) , t).
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Proposition 3 The price of the Spread option in the Black-Scholes model is a nonincreasing function of ρ for
ρ ∈ [−1, 1].

Proof. The complete proof is given in Appendix A. We just give here the main ideas to prove the proposition.
We first verify the exponential growth condition. Then, we consider the case ρ1 < ρ2 and compute the difference
function ∆

(

S̃1, S̃2, t
)

= Pρ1

(

S̃1, S̃2, t
)

− Pρ2

(

S̃1, S̃2, t
)

. It comes that ∆ is the solution of the following PDE







Lρ1
∆

(

S̃1, S̃2, t
)

= (ρ2 − ρ1)σ1σ2∂2
1,2Pρ2

(

S̃1, S̃2, t
)

∆
(

S̃1, S̃2, T
)

= 0

In order to apply the maximum principle to ∆
(

S̃1, S̃2, t
)

, we would like to show that ∂2
1,2Pρ2

(

S̃1, S̃2, t
)

≤ 0. We

show this by using again the maximum principle to ∂2
1,2Pρ2

(

S̃1, S̃2, t
)

. It comes finally that ∆
(

S̃1, S̃2, t
)

≥ 0.
So, we conclude that

ρ1 < ρ2 ⇒ Pρ1

(

S̃1, S̃2, t
)

≥ Pρ2

(

S̃1, S̃2, t
)

(8)

Remark 4 The Spread option price is a one to one mapping with respect to the parameter ρ. To one price
corresponds one and only one parameter ρ. This is the implied BS correlation2.

2.2 Other two-asset options

We may extend the previous proposition to other two-asset options. We remark that the key point in the proof
is the sign of the cross derivative ∂2

1,2G (S1, S2) of the payoff function. In general, this differential is a measure
and G does not depend on the parameter ρ.

Proposition 5 Let G be the payoff function. If ∂2
1,2G is a nonpositive (resp. nonnegative) measure then the

option price is nonincreasing (resp. nondecreasing) with respect to ρ.

Let us investigate some examples. For the call option on the maximum of two assets, the payoff func-
tion is defined as G (S1, S2) = (max (S1, S2)−K)+. We have ∂2

1,2G (S1, S2) = −δ{S1=S2,S1>K} which is a
nonpositive measure. So, the option price nonincreases with respect to ρ. In the case of a BestOf call/call

option, the payoff function is G (S1, S2) = max
(

(S1 −K1)
+ , (S2 −K2)

+
)

and we have ∂2
1,2G (S1, S2) =

−δ{S2−K2−S1+K1=0,S1>K1,S2>K2}. We have the same behaviour than the Max option. For the Min option,
we remark that min (S1, S2) = S1 + S2 − max (S1, S2). So, the price is a nondecreasing function of ρ. Other
results could be found in Table 1.

2.3 Bounds of two-asset options prices

The previous analysis leads us to define the lower and upper bounds of two-asset options price when the
parameter ρ is unknown. Let P− (S1, S2, t) and P+ (S1, S2, t) be respectively the lower and upper bounds

P− (S1, S2, t) ≤ Pρ (S1, S2, t) ≤ P+ (S1, S2, t) (9)

We have the following result.

Proposition 6 If ∂2
1,2G is a nonpositive (resp. nonnegative) measure then P− (S1, S2, t) and P+ (S1, S2, t)

correspond to the cases ρ = 1 (resp. ρ = 1) and ρ = −1 (resp. ρ = 1).

2In fact we can show that increasingness is strict by using a strong maximum principle which is available as soon as the operator
is strictly elliptic (Nirenberg [1953]).

3



Option type Payoff increasing decreasing
Spread (S2 − S1 −K)+ X
Basket (α1S1 + α2S2 −K)+ α1α2 > 0 α1α2 < 0
Max (max (S1, S2)−K)+ X
Min (min (S1, S2)−K)+ X

BestOf call/call max
(

(S1 −K1)
+ , (S2 −K2)

+
)

X

BestOf put/put max
(

(K1 − S1)
+ , (K2 − S2)

+
)

X

Worst call/call min
(

(S1 −K1)
+ , (S2 −K2)

+
)

X

Worst put/put min
(

(K1 − S1)
+ , (K2 − S2)

+
)

X

Table 1: Relationship between option prices and the parameter ρ

To be more precise, we have to study the special cases ρ = −1 and ρ = 1. Let ε be a constant which is
equal to 1 if the distribution ∂2

1,2G is a nonnegative measure and −1 if the distribution ∂2
1,2G is a nonpositive

measure. The bounds satisfy then the one-dimensional PDE
{ 1

2σ2
1S

2∂2
1,1P

± (S, θ) + b1S∂1P± (S, θ)− rP± (S, θ) + ∂θP± (S, θ) = 0
P± (S, T ) = G (S, h±ε (S))

(10)

where

hε (S) = S2 (t)
[

S
S1 (t)

]εσ2/σ1

exp
((

b2 +
1
2
εσ1σ2 −

1
2
σ2

2 − ε
σ2

σ1
b1

)

(T − t)
)

(11)

3 The general case

In this section, we generalize the previous results. For that, we know that the European prices of two-asset
options are given by

P (S1, S2, t) = e−r(T−t)EQ [G (S1 (T ) , S2 (T ))| Ft] (12)

with Q the martingale probability measure. Let F be the bivariate risk-neutral distribution at time t. Using
the copula construction of Coutant, Durrleman, Rapuch and Roncalli [2001], we have

F (S1, S2) = C (F1 (S1) ,F2 (S2)) (13)

where F1 and F2 are the two univariate risk-neutral distributions. C is called the risk-neutral copula.

In the Black-Scholes model and for the Spread option, we have proved that if ρ1 < ρ2, then Pρ1
(S1, S2, t) ≥

Pρ2
(S1, S2, t) and that the lower and upper bounds are reached respectively for ρ = 1 and ρ = −1. Now, we

are going to give similar results for the general case. For the Spread option, we will prove that if C1 ≺ C2,
then PC1 (S1, S2, t) ≥ PC2 (S1, S2, t) and that the lower and upper bounds are reached for the upper and lower
Fréchet bounds. These results are all based on properties of the supermodular order.

3.1 Supermodular order

Following Müller and Scarsini [2000], we say that the function f is supermodular if and only if

∆(2)f := f (x1 + ε1, x2 + ε2)− f (x1 + ε1, x2)− f (x1, x2 + ε2) + f (x1, x2) ≥ 0 (14)

for all (x1, x2) ∈ R2 and (ε1, ε2) ∈ R2
+. If f is twice differentiable, then the condition (14) is equivalent

to ∂2
1,2f (x1, x2) ≥ 0 for all (x1, x2) ∈ R2 (Marshall and Olkin [1979]). We can then show the following

relationship between the concordance order and supermodular functions.
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Theorem 7 Let F1 and F2 be the probability distribution functions of X1 and X2. Let EC [f (X1, X2)] denote
the expectation of the function f (X1, X2) when the copula of the random vector (X1, X2) is C. If C1 ≺ C2,
then EC1 [f (X1, X2)] ≤ EC2 [f (X1, X2)] for all supermodular functions f such that the expectations exist.

Proof. See Tchen [1980] and Müller and Scarsini [2000].

3.2 Concordance order and two-asset options prices

Using the previous theorem, we have directly the following proposition.

Proposition 8 If the payoff function G is supermodular, then the option price nondecreases with respect to the
concordance order. More explicitly, we have

C1 ≺ C2 ⇒ PC1 (S1, S2, t) ≤ PC2 (S1, S2, t) (15)

Let us consider the simple case of the Basket option where G (S1, S2) = (S1 + S2 −K)+. We have

∆(2)G = (x1 + x2 + ε1 + ε2 −K)+ − (x1 + x2 + ε2 −K)+ − (x1 + x2 + ε1 −K)+ + (x1 + x2 −K)+

:= max (∆1, 0)−max (∆2, 0)−max (∆3, 0) + max (∆4, 0)
(16)

To prove that G is supermodular, we consider the different cases. For example, if ∆4 = x1 + x2 −K ≥ 0, we
get ∆(2)G = 0. If only ∆4 < 0, then ∆(2)G = ∆1 −∆2 −∆3 = − (x1 + x2 −K) = −∆4 > 0. The other cases
may be verified in the same way. Using the previous proposition, if C1 〈S1 (T ) , S2 (T )〉 ≺ C2 〈S1 (T ) , S2 (T )〉,
it comes that EC1 [G (S1 (T ) , S2 (T ))] ≤ EC2 [G (S1 (T ) , S2 (T ))]. So, we deduce that the price of the Basket
option nondecreases with respect to the concordance order and that the price of the Spread option nonin-
creases with respect to the concordance order. We can prove this last statement in two different ways. In-
deed, for the Spread option, we have C1 〈−S1 (T ) , S2 (T )〉 � C2 〈−S1 (T ) , S2 (T )〉 because C〈−X1,X2〉 (u1, u2) =
u2 − C〈X1,X2〉 (1− u1, u2) (Nelsen [1999]). Hence, using the supermodularity of the Basket payoff function,
EC1 [G (−S1 (T ) , S2 (T ))] ≥ EC2 [G (−S1 (T ) , S2 (T ))]. Another way to derive the result is to remark that
∂2
1,2H is a nonpositive measure, where H (S1, S2) = G (−S1, S2). Thus, −H is supermodular and the result is

a consequence of the next proposition.

We can then generalize results of Table 1 in this framework. For that, we state the main proposition of this
section.

Proposition 9 Let G be a continuous payoff function. If the distribution ∂2
1,2G is a nonnegative (resp. non-

positive) measure then the option price is nondecreasing (resp. nonincreasing) with respect to the concordance
order.

Proof. See Appendix B.

Remark 10 This last proposition is interesting because families of copulas are generally totally (positively or
negatively) ordered. For example, we know that the parametric family Cρ of bivariate Normal copulas is positively
ordered

ρ1 < ρ2 ⇒ Cρ1
≺ Cρ2

(17)

As for the Black-Scholes model, the option price nonincreases or nondecreases with respect to the ‘correlation’
parameter ρ depending on the submodular or supermodular property of the payoff function. So, the results of
the Black-Scholes model can be viewed as a special case of this framework. Moreover, they remain true if the
bivariate risk-neutral distribution is not gaussian, but only has a Normal copula. Other cases are considered in
Coutant, Durrleman, Rapuch and Roncalli [2001]. For example, we obtain similar relationships with
Ornstein-Uhlenbeck diffusions.
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3.3 Bounds of two-asset options prices

Let us introduce the lower and upper Fréchet copulas C− (u1, u2) = max (u1 + u2 − 1, 0) and C+ (u1, u2) =
min (u1, u2). We can prove that for any copula C, we have C− ≺ C ≺ C+. For any distribution F with
given marginals F1 and F2, it comes that C− (F1 (x1) ,F2 (x2)) ≤ F (x1, x2) ≤ C+ (F1 (x1) ,F2 (x2)) for all
(x1, x2) ∈ R2

+. The probabilistic interpretation of these Fréchet bounds are the following:

• two random variables X1 and X2 are countermonotonic — or C 〈X1, X2〉 = C− — if there exists a
random variable X such that X1 = f1 (X) and X2 = f2 (X) with f1 nonincreasing and f2 nondecreasing;

• two random variables X1 and X2 are comonotonic — or C 〈X1, X2〉 = C+ — if there exists a random
variable X such that X1 = f1 (X) and X2 = f2 (X) where the functions f1 and f2 are nondecreasing.

We can now state the following proposition.

Proposition 11 If ∂2
1,2G is a nonpositive (resp. nonnegative) measure then P− (S1, S2, t) and P+ (S1, S2, t)

correspond to the cases C = C+ (resp. C = C−) and C = C− (resp. C = C+).

Let ε be a constant which is equal to 1 if the distribution ∂2
1,2G is a nonnegative measure and −1 if the

distribution ∂2
1,2G is a nonpositive measure. We have

P± (S1, S2, t) = e−r(T−t)
(

1∓ ε
2
EC− [G (S1 (T ) , S2 (T ))] +

1± ε
2
EC+ [G (S1 (T ) , S2 (T ))]

)

(18)

If the two univariate risk-neutral distributions F1 and F2 are continuous, these bounds become more tractable
because

C = C− ⇔ S2 (T ) = F−1
2 (1− F1 (S1 (T ))) (19)

and

C = C+ ⇔ S2 (T ) = F−1
2 (F1 (S1 (T ))) (20)

For example, if ε = 1, we have P− (S1, S2, t) = e−r(T−t)E
[

G
(

S1 (T ) ,F−1
2 (1− F1 (S1 (T )))

)]

and P+ (S1, S2, t) =
e−r(T−t)E

[

G
(

S1 (T ) ,F−1
2 (F1 (S1 (T )))

)]

. For the Black-Scholes model, we can either solve the one-dimensional
PDE (10) or compute the one-dimensional expectation. For example, in the case of the Spread option, we obtain

P± (S1, S2, t) = e−r(T−t)
∫ ∞

−∞
(h∓ (ξ (x))− ξ (x)−K)+

1
σ1

√

2π (T − t)
exp

(

−1
2

x2

σ2
1 (T − t)

)

dx (21)

where ξ (x) = S1 (t) ex+(b1− 1
2 σ2

1)(T−t) and h is defined by the equation (11).

4 Numerical illustrations

Let us first consider the case of the Spread option in the Black and Scholes model. We use the following
parameters: b1 = 6%, b2 = 5%, σ1 = 25%, σ2 = 20% and r = 5%. The maturity T of the Spread option is
one month. We note ∆ρ1,ρ2

(S1, S2) = Pρ1
(S1, S2, 0)−Pρ1

(S1, S2, 0). In Figures 1 and 2, we have reported the
values of ∆ρ1,ρ2

(S1, S2) when the strike K is respectively equal to 0 and 15. We verify that ∆ρ1,ρ2
(S1, S2) ≥ 0

when ρ1 < ρ2. Figure 3 shows how the price Pρ (S1, S2, 0) moves with respect to ρ. We remark that the
relationship between the option price and the ‘correlation’ parameter is almost linear. For the Min option, we
obtain Figure 4.

When the cross derivatives of the payoff function is neither a nonpositive measure neither a nonnegative
measure, the relationship between the price and the parameter ρ may be less simple. In this case, it depends on
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Figure 1: Difference ∆ρ1,ρ2
(S1, S2) with ρ1 = 0 and ρ2 = 0.5 (K = 0)

Figure 2: Difference ∆ρ1,ρ2
(S1, S2) with ρ1 = −0.25 and ρ2 = 0 (K = 15)
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Figure 3: Relationship between the price of the Spread option and the parameter ρ (K = 5)

Figure 4: Relationship between the price of the Min option and the parameter ρ (K = 100)
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the parameters of the asset prices and on the characteristics of the option. Let us consider the following case
WorstOf call/put option

G (S1, S2) = min
(

(S1 −K1)
+ , (K2 − S2)

+
)

(22)

In Figure 5, we have reported the values of the option prices for K1 = 105 and K2 = 95. We remark that the
price is not necessarily a monotonous function of ρ. Moreover, the bounds do not always correspond to the
cases ρ = 1 and ρ = −1.

We consider now the Heston model. The asset prices Sn (t) are given by the following SDE
{

dSn (t) = µnSn (t) dt +
√

Vn (t)Sn (t) dW 1
n (t)

dVn (t) = κn (Vn (∞)− Vn (t)) dt + σn
√

Vn (t) dW 2
n (t)

(23)

with E
[

W 1
n (t)W 2

n (t) | Ft0

]

= ρn (t− t0), κn > 0, Vn (∞) > 0 and σn > 0. The market prices of risk processes
are λ1

n (t) = (µn − r) /
√

Vn (t) and λ2
n (t) = λnσ−1

n

√

Vn (t). To compute prices of two-asset options, we consider
that the risk-neutral copula is the Normal copula with parameter ρ. In Figure 6, we have reported the values of
option prices3.

5 Discussion

We conclude this paper with some remarks.

• We recall that main results depend on the sign of ∂2
1,2G. Using two different points of view, we obtain the

same condition. It appears that results obtained with a maximum principle for the Black-Scholes model
are a special case of the supermodular order. It could be explained by the Feynman-Kac representation
of risk-neutral valuation.

• Similar problems have been already studied in actuarial sciences. For example, Dhaene and Goovaerts
[1996] shows that the bounds of the stop-loss problem are reached for the Fréchet bounds (see Genest,
Marceau and Mesfioui [2000] for a survey).

• We have discussed here about two-asset options. The natural following step is to consider more than two
assets. In the case of the Black-Scholes model, the PDE becomes

{ 1
2

∑

i
σ2

i S
2
i ∂2

i,iP +
∑

i<j
ρi,jσiσjSiSj∂2

i,jP +
∑

i
biSi∂iP − rP + ∂tP = 0

P (S1, .., SN , T ) = G (S1, .., SN )
(24)

where ρi,j is the correlation between the Brownian motions of Si and Sj . If we fix all the correlations
ρi,j except one, we retrieve the same condition as in the two-assets options case. Sometimes, the trader
uses the same values for all ρi,j . Let us denote ρ this parameter, which could be interpreted as the mean
correlation. We can give the following result.

Proposition 12 Assume that G is continuous. If
∑

i<j σiσj∂2
i,jG is a nonnegative (resp. nonpositive)

measure, then the price is nondecreasing (resp. nonincreasing) with respect to ρ.

In the case of the three-asset option with G (S1, S2,S3) = (S1 +S2−S3−K)+, we have
∑

i<j σiσj∂2
i,jG =

(σ1σ2 − σ1σ3 − σ2σ3) δ(S1+S2−S3−K=0). Hence, if σ1σ2−σ1σ3−σ2σ3 > 0, the price nondecreases with ρ,
and if σ1σ2 − σ1σ3 − σ2σ3 < 0, the price nonincreases. In addition, if σ1σ2 − σ1σ3 − σ2σ3 = 0, the price
does not depend on ρ. We could of course give similar results for the Max and for more general Basket
options.

3The numerical values are Sn (t0) = 100, τ = 1/12, bn = r = 5%, Vn (t0) = Vn (∞) =
√

20%, κn = 0.5, σn = 90% and λn = 0.
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Figure 5: Relationship between the price of the WorstOf call/put option and the parameter ρ (S1 = 100)

Figure 6: Relationship between the Heston prices and the parameter ρ
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• Tchen [1980] shows that if EC1 [f (X1, X2)] ≥ EC2 [f (X1, X2)] for all (C1,C2) ∈ C2 with C1 ≺ C2 then
f is supermodular. However, Tchen [1980] establishes this property only for discrete margins. One may
then wonder if ∂2

1,2G is neither positive nor negative implies that the price of the option is not monotone.
This is an open problem. Moreover, one might wonder if the method using the concordance order can be
generalized with more than two assets. Müller and Scarsini [2000] show that the supermodular order
is strictly stronger than the concordance order for dimension bigger than three. So the method used for
two-asset options cannot be generalized here. This is not surprising if we consider the example above: the
condition about the sign of

∑

i<j σiσj∂2
i,jG involves the values of the volatilities which are independent

of the payoff function.

As a result, it is more difficult to define conservative price for multi-asset options. Understanding the
relationship between the stochastic dependence and the price of equity structured products is then a challenge
for both the front office and the risk management.
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A Proof of Proposition 3

We first prove that there exist two constants α and β such that
∣

∣

∣P
(

S̃1, S̃2, t
)∣

∣

∣ ≤ β exp
(

α
∥

∥

∥S̃1, S̃2

∥

∥

∥

)

. Following

Villeneuve [1999], for all M > 0, there exists a constant C such that E
[

supt≥s exp
(

M
∥

∥

∥S̃s,(s̃1,s̃2)
t

∥

∥

∥

)]

≤

C exp (M ‖s̃1, s̃2‖) where S̃s,(s̃1,s̃2)
t =

(

S̃1 (t) | S̃1 (s) = s̃1, S̃2 (t) | S̃2 (s) = s̃2

)

. By noting that
∣

∣

∣P
(

S̃1, S̃2, T
)∣

∣

∣ ≤

β exp
(

α
∥

∥

∥S̃1, S̃2

∥

∥

∥

)

, the majoration follows from the Feynman-Kac representation.

We can then use the maximum principle. This part of the proof is adapted from Beresticky [1999].

Let −1 ≤ ρ1 < ρ2 ≤ 1 and Pρ be the solution of the PDE. We consider ∆
(

S̃1, S̃2, t
)

= Pρ1

(

S̃1, S̃2, t
)

−

Pρ2

(

S̃1, S̃2, t
)

. It comes that ∆ is the solution of the following PDE






Lρ1
∆

(

S̃1, S̃2, t
)

= (ρ2 − ρ1) σ1σ2∂2
1,2Pρ2

(

S̃1, S̃2, t
)

∆
(

S̃1, S̃2, T
)

= 0

The weak maximum principle asserts that if Lρ1
∆ ≤ 0 for

(

S̃1, S̃2, t
)

∈ R2 × [0, T ) and if ∆
(

S̃1, S̃2, T
)

≥ 0

for
(

S̃1, S̃2

)

∈ R2, then ∆
(

S̃1, S̃2, t
)

≥ 0 for
(

S̃1, S̃2, t
)

∈ R2 × [0, T ]. We assume that the solution is

smooth (say C∞ in the domain where t < T ). We can differentiate with respect to S̃1 and S̃2 the equa-
tion Lρ2

Pρ2

(

S̃1, S̃2, t
)

= 0 and we get Lρ2
∂2
1,2Pρ2

(

S̃1, S̃2, t
)

= 0. For the terminal condition, we use a

convolution product with an identity approximation because the payoff is not smooth. Let θ (x1, x2) be
a positive function C∞(R2) with its support in B (0, 1) satisfying

∫∫

B(0,1) θ (x1, x2) dx1 dx2 = 1. We de-

fine θm (x1, x2) = m−2θ
(

m−1x1,m−1x2
)

. We consider now ψm

(

S̃1, S̃2, t
)

=
(

∂2
1,2Pρ2

∗ θm
)

(

S̃1, S̃2, t
)

=
(

∂2
1,2θm ∗ Pρ2

)

(

S̃1, S̃2, t
)

. We know that ψm is C∞. By using the properties of the convolution product,

we get Lρ2
ψm

(

S̃1, S̃2, t
)

= 0. We just have to prove that ψm

(

S̃1, S̃2, T
)

≤ 0 and
∣

∣

∣ψm

(

S̃1, S̃2, t
)∣

∣

∣ ≤

β exp
(

α
∥

∥

∥S̃1, S̃2

∥

∥

∥

)

.

The first step can be done by calculating ∂2
1,2Pρ2

(

S̃1, S̃2, T
)

using the jump formula and the relationship

∂2
1,2Pρ2

(

S̃1, S̃2, T
)

= S1S2∂2
1,2Pρ2

(S1, S2, T ). We get also ∂2
1,2Pρ2

(S1, S2, T ) = −δ{S2−S1−K=0} where δ is the

dirac measure. Because ∂2
1,2Pρ2

is a nonpositive measure, it comes that ψm

(

S̃1, S̃2, T
)

≤ 0.

To show the majoration, we remark that the support of the function ∂2
1,2θm is included in B (0, R) for some

constant R and that there exists a constant M such that
∣

∣

∣∂2
1,2θm

(

S̃1, S̃2

)∣

∣

∣ ≤ M . It comes that

∣

∣

∣ψm

(

S̃1, S̃2, t
)∣

∣

∣ =

∣

∣

∣

∣

∣

∫∫

B(0,R)
∂2
1,2θm (x1, x2) Pρ2

(

S̃1 − x1, S̃2 − x2, t
)

dx1 dx2

∣

∣

∣

∣

∣

≤
∫∫

B(0,R)
M

∣

∣

∣Pρ2

(

S̃1 − x1, S̃2 − x2, t
)∣

∣

∣ dx1 dx2

≤ M
∫∫

B(0,R)
β exp

(

α
∥

∥

∥S̃1 − x1, S̃2 − x2

∥

∥

∥

)

dx1 dx2

≤ M
∫∫

B(0,R)
β exp

(

α
∥

∥

∥S̃1, S̃2

∥

∥

∥ + α ‖x1, x2‖
)

dx1 dx2

≤ β′ exp
(

α′
∥

∥

∥S̃1, S̃2

∥

∥

∥

)

(25)
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and α′ and β′ do not depend on time. So, ψm

(

S̃1, S̃2, t
)

≤ 0 because of the maximum principle. Moreover,

ψm

(

S̃1, S̃2, t
)

converges pointwise to ∂2
1,2Pρ2

(

S̃1, S̃2, t
)

because ∂2
1,2Pρ2

(

S̃1, S̃2, t
)

is continuous for t < T . We

finally obtain that Lρ1
∆

(

S̃1, S̃2, t
)

≤ 0 because ∂2
1,2Pρ2

(

S̃1, S̃2, t
)

≤ 0. This completes the proof.

B Proof of Proposition 9

We just have to remark that when ∂2
1,2G exists and is continous, we have ∆(2)G =

∫ S2+ε2

S2

∫ S1+ε1

S1
∂2
1,2G ≥ 0.

When ∂2
1,2G is a distribution, we use the same method than in Appendix A. We consider the same kernel θm so

that G ∗ θm is smooth enough. We get ∆(2) (G ∗ θm) =
∫ S2+ε2

S2

∫ S1+ε1

S1
∂2
1,2 (G ∗ θm) =

∫ S2+ε2

S2

∫ S1+ε1

S1

(

∂2
1,2G

)

∗
θm ≥ 0. When m tends to ∞, we obtain ∆(2) (G ∗ θm) → ∆(2)G ≥ 0 because G is continuous. So the function
G is supermodular. Using the proposition 8, we get the first result.

If the distribution ∂2
1,2G is a nonpositive measure, −G is supermodular and we have directly the result.
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