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1 The One-Credit Intensity Framework

This is an alternative to Merton’s structural model. In Merton’s

model the default occurs when the stock price of the firm falls below

a pre-specified deterministic threshold (debt of the firm). But the

default time is then predictable.

Characteristics of the intensity model (Duffie, Lando):

• the Intensity model allows to add some randomness to the default

threshold, in such a way that the default occurs as a complete

surprise.

• this model loses the micro-economic interpretation of the default

time (the model comes from reliability theory), but we do not

care for the purpose of pricing.
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1.1 Construction Of The Default Time

The default time of a firm is often defined by

τ1 := inf
{
t :
∫ t

0
λ1(s) ds ≥ θ1

}
, θ1 |= F∞

• λ1 a nonnegative, continuous, F-adapted process called the

intensity process. It contains the information on the credit

quality of firm 1. Here, for simplicity, we will suppose it to be

deterministic in the examples.

• θ1 is a random threshold (an exponential r.v. of parameter 1),

independent of the intensity.

• we assume the recovery rate R1 is deterministic.
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1.2 Some Properties Of The Model

• We have P (τ1 ≤ s | F∞) = P (τ1 ≤ s | Ft) , s ≤ t, whence

F∞ |= Gt|Ft, and the (H)-hypothesis (i.e. F-martingales remain

G-martingales) and it is the more general model having this

property – provided some continuity assumption (El Karoui,

Jeanblanc).

• The Process (1τ1≤t)t≥0 is Markov.

• In some sense, we can identify the intensity process λ1 and the

instantaneous spread of firm 1 (until time of default).
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1.3 Pricing Default Zero-Coupons

The zero-coupon of firm 1 is given by (when τ1 > t)

B1(t, T ) = E
[
e−
∫ T
t (r(s)+λ1(s)) ds | Ft

]
If we choose a deterministic intensity, we can calibrate it on Credit

Default Swaps market prices. When the term structure is flat

s1(T ) = s1 (CDS prices are rather scarce!), a good approximation of

the intensity is:

λ1 =
s1

1−R1

When there is only one credit, we can identify the intensity

process with the spread of the firm.
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1.4 Multi-Credit Extensions
When dealing with more than one firm, there are many ways to

incorporate dependence in the model. Example with two firms:

θ1

|=−→ λ1
t , rt

(2)

y y(1)

θ2 −−→

|=

λ2
t , rt

• (1) correlating the intensity (stochastic) processes, but this

method provides low correlations between the default times,

• (2) correlating the random thresholds with a survival copula C̆θ

(Schönbucher and Schubert’s approach, 2001),

• (3) a more intricate way: λ2 may be correlated with θ1 (Jarrow

and Yu, 2001).
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Example of (1): correlating the intensity processes.

• We choose for the intensities two Cox-Ingersoll-Ross processes

driven by correlated Brownian motions (on the graphics, we

choose two squared Brownian motions for simplicity’s sake).

• We also draw two independent random thresholds.

When the correlation parameter ρ ranges from -1 to +1 the output

correlation between default times is less than 25 %.
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2 Copulae In A Nutshell

Definition: a copula is the joint probability of any I-dimensional

vector of uniform r.v. (U1, . . . , UI),

CU(u1, . . . , uI) := P(U1 ≤ u1, . . . , UI ≤ uI).

Example : the independent copula: C⊥(u1, . . . , uI) = u1 . . . uI.

Now let X = (X1, . . . , XI) be any I-dimensional random variable.

Key idea: Copulae are used to split the margins of X and the

dependence of the joint distribution.
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2.1 Sklar’s Representation Lemma
We denote for the marginal and joint distributions of X:

F (x1, . . . , xI) := P(X1 ≤ x1, . . . , XI ≤ xI),

Fi(xi) := P(Xi ≤ xi), i = 1, . . . , I.

As Fi(Xi) are uniform r.v., they admit a copula, which we call the

copula of X and write CX. And we get Sklar’s representation:

F (x1, . . . , xI) = CX (F1(x1), . . . , FI(xI)) .

Sometimes it is more convenient to use the joint (S) and marginal

(Si) survival distributions of X, so we can define C̆X, the survival

copula of X with

S(x1, . . . , xI) = C̆X (S1(x1), . . . , SI(xI)) .
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How to use this result ?

• We can extract copulae from well known multi-variate

distributions (e.g. the Gaussian, Student copula families).

• We can create new multi-variate distributions by joining arbitrary

margins together with some given copulae.
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2.2 The Fréchet Bounds

We have an inequality which generalizes −1 ≤ ρ ≤ +1 (where ρ is the

linear Gaussian correlation) to copulae:

C+(u1, . . . , uI) = min(u1, . . . , uI)

C−(u1, . . . , uI) =

 I∑
i=1

ui − I + 1

+

.

Then for any copula C we have:

C−(u1, . . . , uI) ≤ C(u1, . . . , uI) ≤ C+(u1, . . . , uI)
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3 A Copula Multi-Default Model

Common philosophy of all copula models for credit risk:

• Provide a simple extension of the single-credit framework.

• Split the calibration of the margins and the dependence.

Common shortcomings:

• One must choose an arbitrary copula family (dependency

structure of the default times).

• The calibration of the dependence is not easy.
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3.1 The Threshold Approach

Here, following Gesiecke, Schönbucher and Schubert we put a copula

C̆θ directly on the random thresholds θi (and keep the same

construction of default times).

One has to be cautious with this modelling:

• Keep in mind that the thresholds θi are not directly observable

market variables, whence the threshold survival copula C̆θ has a

priori no economic interpretation.

• The model is not Markov.
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3.2 Construction Of The Default Times

The default time of a firm is often defined by, for any i ∈ [[1, I]]

τi := inf
{
t :
∫ t

0
λi(s) ds ≥ θi

}
.

• λi are non-negative, continuous, F-adapted processes called the

‘intensity processes’.

• θi ∼ E(1) ∀i = 1, . . . , I;

• (θ1, . . . , θI) has a survival copula C̆θ;

• (θ1, . . . , θI) |= F∞
• we assume the recovery rates Ri are deterministic.
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3.3 Mathematical Properties
As usual, we consider the three following filtrations:

• the default-free filtration (Ft)t≥0;

• the filtration generated by the defaults

(Ht)t≥0 = (σ(τi ∧ s, s ≤ t, i = 1, . . . , I))t≥0;

• the market filtration (made right-continuous if necessary)

(Gt)t≥0 = (Ft ∨Ht)t≥0

We have for all t ≥ 0 and si ∈ [0, t] , i = 1, . . . , I.

P (τ1 ≤ s1, . . . , τI ≤ sI | F∞) = P (τ1 ≤ s1, . . . , τI ≤ sI | Ft)

Therefore we get as in the one-firm case : F∞ |= Gt|Ft, whence we

get the (H)-hypothesis. But here we do not know if the converse

statement holds.
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3.4 The Survival Approach

Li’s approach is a special case of the threshold model useful when

‘intensities’ are deterministic. It is the case that is mostly used in

practical applications.

We define the random default times as if they were independent:

τi := inf
{
t ≥ 0 :

∫ t

0
λi

s ds ≥ θi

}
, i = 1, . . . , I.

Now, using Sklar’s lemma, Sτ has a copula representation

Sτ(t1, . . . , tI) = C̆τ (S1(t1), . . . , SI(tI)) .

Comparing with the survival function obtained in the threshold

model, we get C̆τ = C̆θ, so what we choose is directly the copula of

the defaults.
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4 Pricing Basket Credit Derivatives

We are only concerned here with default-linked credit derivatives

written on a basket of companies.

Two main methods of computing the price of a credit derivative :

• Closed Formulae (CDS, F2D, N2D),

• Monte-Carlo simulations (N2D, CDO)

The choice of the methodology has an impact on the choice of the

copula: Gaussian or Student copulae are easy to simulate but not so

tractable in closed formulae.
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4.1 Pricing Default Zero-Coupons (1)

We can derive a pricing formula for firm 1’s zero-coupon of maturity

T at time t, as long as no firm has defaulted – τi > t, i = 1, . . . , I –,

B1(t, T ) = E

e−
∫ T
t rs ds

C̆θ

(
e−
∫ T
0 λ1(s) ds, . . . , e−

∫ t
0 λI(s) ds

)
C̆θ

(
e−
∫ t
0 λ1(s) ds, . . . , e−

∫ t
0 λI(s) ds

) | Ft


• We notice that firm j’s (j 6= 1) ìntensities’ intervene in the pricing

of firm 1’s zero-coupon (in particular, default of any firm changes

firm 1’s pricing formula).

• When C̆θ = C̆⊥, we retrieve the usual formula.
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4.2 Pricing Default Zero-Coupons (2)
When firms k, . . . , I have defaulted the price of firm 1’s zero-coupon

becomes (for τ1 > t, . . . , τk−1 > t, τk ≤ t, . . . , τI ≤ t):

B1(t, T ) = E

e−
∫ T
t rs ds

∂k,...,IC̆θ

(
e−
∫ T
0 λ1(s) ds, . . . , e−

∫ τI
0 λI(s) ds

)
∂k,...,IC̆θ

(
e−
∫ t
0 λ1(s) ds, . . . , e−

∫ τI
0 λI(s) ds

) | Ft



So we observe a jump of the price of zero-coupon of firm 1 when

some of the other firms defaults, which corresponds to a jump of the

spread of firm 1.

Important: in this model one cannot identify the ‘intensity’

with the spread at time t > 0.
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4.3 Implied Dynamics of Spreads

At each time t, we can find the spread (forward CDS rate) of firm 1

for a given maturity δ:

s1(t, t + δ) = (1−R1)

∫ t+δ
t B0(0, u)P(τ1 ∈ du | Gt)∫ t+δ

t duB0(0, u)P(τ1 ≥ u | Gt)
,

s1(t, t) = lim
δ→0

s1(t, t + δ) = (1−R1)P(τ1 ∈ dt | Gt).

The instantaneous spread is related to the ‘density of the

compensator’ of the process 1τ1≤t.

We observe that even in the case of deterministic ‘intensities’,

spreads are decreasing between default times and suffer from jumps

at each time of default.
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4.4 An Example with Nth-To-Default Contracts

We choose a Normal copula and we price first- and Nth-to-default

contracts for different values of the (unique) correlation parameter.

We choose two baskets of I = 4 credits with the following

characteristics (R = 50%). Basket 1 is homogeneous but it is not the

case for basket 2.

credit basket1 basket2
1 100 bp 50 bp
2 100 bp 100 bp
3 100 bp 100 bp
4 100 bp 150 bp
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We give here some approximation formulae for the margin of the Nth
to default (N = 1...4). We note s1, . . . , s4 the spreads of the firms
and m1, . . . , m4 the fair margins of the first-, ..., fourth-to-default
contract.

In case of the independent copula, C̆τ = C̆⊥, we have:

m1 ≈
4∑

i=1

si m2 ≈ m3 ≈ m4 ≈ 0.

In case of the upper Fréchet copula, C̆τ = C̆+, we have:

m1 ≈ sσ(1), . . . , m4 ≈ sσ(4).

where we have sorted the corresponding intensities

sσ(1)

1−Rσ(1)
≥ . . . ≥

sσ(4)

1−Rσ(4)
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4.5 The Problem of Repricing

At time t > 0 when repricing the product in a Monte-Carlo

methodology, it may be tempting to price a new product of maturity

T − t and draw new default times with the same dependence function.

But in this way, we would overlook the fact that the process

(1τ1≤t, . . . , 1τI≤t) is not Markov.

The model imposes a shape of dependence at time 0, but a priori we

can say nothing about the (conditional) dependence at time t > 0

given the information Gt.
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4.6 Is There Any Stationary Copula ?
To overcome the lack of Markov property, we look for a copula family

C̆ρ such that the survival copula of the conditional distribution at any

time t > 0 belongs to the same family C̆κ with a different parameter,

so we need for all Ti > t, when no default has occurred

P (τ1 > T1, . . . , τI > TI | Gt) = C̆κ (P (τ1 > T1 | Gt) , . . . , P (τI > TI | Gt)) .

This leads to a functional equation in C̆ρ : ∀α, u ∈ [0,1]I,

C̆ρ(α1u1, . . . , αIuI)

C̆ρ(α1, . . . , αI)
= C̆κ(α,ρ)

(
C̆ρ(α1u1, . . . , αI)

C̆ρ(α1, . . . , αI)
, . . . ,

C̆ρ(α1, . . . , αIuI)

C̆ρ(α1, . . . , αI)

)
,

with κ(α, ρ) some unknown function.

In case of I = 2, one solution is Gumbel-Barnett’s family

C̆ρ(u1, u2) = u1u2e−ρ log(u1) log(u2), κ(α, ρ) = ρ/(1−ρ logα1)(1−ρ logα2).
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5 The Calibration Problem

Description of a theoretical calibration procedure and why it cannot

be carried out:

• Calibrating each firm’s individual spread curve with Today’s

Credit Default Swaps Prices.

• Choosing a copula family (this is constrained by the use of

Monte-Carlo simulations).

• Calibrating the parameter of the copula (e.g. the correlation in

case of Gaussian dependence) with the prices of First-to-default.

First-to-default market is too much illiquid to perform such a true

calibration.
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5.1 Calibrating with Spread Jumps

As it is impossible to perform a calibration or a statistical estimation

of the correlation between default times, we turn to another

procedure.

Schönbucher and Schubert suggest to observe spread jumps to find

the correlation parameter.

It is not so easy to use this method in daily practical applications.
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6 Hedging Credit Derivatives

Identification of the risk factors:

• Spread movements

• Events of default

In the case of basket products contingent to occurrence of defaults,

we consider that the second risk factor is the most important to be

hedged against (the only one in a model with deterministic

ìntensities’).

Moreover, we are constrained by the fact that only CDS are available

to hedge both risks.

Hedging Credit Derivatives 6-1



6.1 Mathematical Framework
For the hedging problem, we look at the model as a particular case of

a multi-variate point process:

• We observe the successive times of defaults:

0 = T0 < T1 < . . . < TI with Ti the time of the ith default;

• At each time of default Ti, we mark the name of the defaulting

company Xi.

Then we map the model into a random measure model.

µ(ω, dt, dx) =
I∑

i=1

δTi(ω),Xi(ω)(dt, dx)1Ti(ω)<∞
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Now we get the existence of a predictable representation of

martingales – in the filtration (F∞ ∨Ht)t≥0 – from Jacod (1974).

We compute the conditional distribution Gi(dt, dx) of Ti+1 given

F∞ ∨HTi
and the following compensation measure in terms of

intensities and copula

ν(dt, dx) =
I∑

i=0

Gi(dt, dx)

Gi(]t,∞]× [[1, I]])
1Ti<t<Ti+1

Now we have for every martingale (Mt)t≥0

Mt = M0 +

∫ t

0

∫
[[1,I]]

φ(s, x) (µ(ds, dx)− ν(ds, dx)) = M0 +
I∑

i=1

∫ t

0
φ(s, i)dMi(s)

In the case where intensities are deterministic, it gives the

representation result.
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6.2 What CDS Portfolio Should We Choose ?
In case of deterministic intensities we hedge with a portfolio of CDS.

What quantity of each name should we buy/sell ?

From Jacod’s representation theorem, we get, since each martingale

Mi has one single jump of size 1 at time τi:

∆MTi
= φ(Ti, Xi).

The representation process with respect to firm i is thus the jump of

the martingale in case of instantaneous default of firm i.

From this formula, as an approximation of the hedging strategy in

the multi-firm model, we compute the representation processes both

for the derivative we want to hedge and for the CDS, and get the

hedging strategy through a linear system resolution.

Again, we have to be cautious with the computation of conditional

expectations.
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