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Abstract

In this paper, we consider the open question on Spearman’s rho and Kendall’s tau of Nelsen [1991].
Using a technical hypothesis, we can answer in the positive. One question remain open: how can we
understand the technical hypothesis? Because this hypothesis is not right in general, we could find some
pathological cases which contradicts the Nelsen’s conjecture.

1 Nelsen’s conjecture

We consider the open question of Nelsen [1991]:

It is well-known that when sampling from a bivariate population in which X and Y are independent
(or nearly so), the sample statistic corresponding to % is about 50% larger than that corresponding
to τ . [...] suppose {Cθ (x, y)} is a family of copulas induced by the (possibly multidimensional)
parameter θ such that Cθ0 = C⊥ — the product copula — and Cθ is a continuous function of θ at
θ0. For all such families considered in this section, we have

lim
θ−→θ0

d%

dτ
=

3
2

(1)

Does this always hold for such families of copulas?

1.1 The general framework

We are given a family of copulas indexed by a parameter θ ∈ A ⊂ Rk where A is a rectangle containing θ0.
which correspond to the case Cθ0 = C⊥. Let us denote C the set of all copulas. We assume that the function
θ ∈ A 7−→ Cθ ∈ C is continuous. We shall also assume that %θ 6= 0 for every θ ∈ A \ {θ0}.

We assume eventually that for every θ in A, Cθ is absolutely continuous with respect to Lebesgue’s measure.
We make also the assumption that ∂xCθ ∂yCθ is integrable for every θ in A.
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1.2 The technical hypothesis

Let ξθ (x, y) = Cθ (x, y) − C⊥ (x, y). The result we will state in sequel holds under the following technical
hypothesis: ∫ 1

0

∫ 1

0

∂xξθ (x, y) ∂yξθ (x, y)∫ 1

0

∫ 1

0
ξθ (x, y) dx dy

dx dy −→ 0 (2)

when θ −→ θ0. Note that this expression makes sense since we assume that %θ 6= 0 for every θ ∈ A \ {θ0}. Its
understanding is not clear for the moment, but we give some basic examples where it is satisfied:

• We assume that k = 1 and θ0 = 0. If ξθ (x, y) = θf (x, y) for some real function f , the expression in (2)
equals to

θ

∫ 1

0

∫ 1

0

∂xf (x, y) ∂yf (x, y)∫ 1

0

∫ 1

0
f (x, y) dxdy

dx dy (3)

and tends to 0 as θ −→ θ0.

• We assume that k = 1 and θ0 = 0. If ∂xCθ, ∂yCθ ∈ C ([0, 1]× [0, 1] , [0, 1]) and Cθ are differentiable at
point θ0, then

ξθ (x, y) = θf (x, y) + o (θ)
∂ξθ

∂x
(x, y) = θgx (x, y) + o (θ)

∂ξθ

∂y
(x, y) = θgy (x, y) + o (θ) (4)

and the expression in (2) equals to

θ

∫ 1

0

∫ 1

0

[gx (x, y) + o (1)] [gy (x, y) + o (1)]∫ 1

0

∫ 1

0
[f (x, y) + o (1)] dxdy

dxdy (5)

where the o (1)’s are uniform in (x, y). The hypothesis is also satisfied.

• We do not assume that k = 1. In order to satisfy the hypothesis, we want to apply a limit theorem. Let
us define $ (x, y) as follows

$ (x, y) =
∂xξθ (x, y) ∂yξθ (x, y)∫ 1

0

∫ 1

0
ξθ (x, y) dxdy

(6)

The hypothesis that must be checked are then $ (x, y) −→ 0 when θ −→ θ0 for almost all (x, y) and
$ (x, y) is uniformly integrable.

1.3 The main result

Theorem 1 With the above framework and hypothesis, we state that the assumption (1) holds.

Proof. We denote c the density of the copula Cθ which exists by virtue of the hypothesis. Because
∂xCθ ∂yCθ is integrable, we can write

τ = 1− 4
∫ 1

0

∫ 1

0

∫ x

0

∫ y

0

c (x, v) c (u, y) dv dudxdy

= −4
∫ 1

0

∫ 1

0

∫ x

0

∫ y

0

(c (x, v) c (u, y)− 1) dv dudx dy

= −4
∫ 1

0

∫ 1

0

∫ x

0

∫ y

0

((c (x, v)− 1) (c (u, y)− 1) + c (u, y)− 1 + c (x, v)− 1) dv du dxdy (7)
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and we also have

% = 12
∫ 1

0

∫ 1

0

∫ x

0

∫ y

0

(c (u, v)− 1) dv dudxdy (8)

We need then a lemma.

Lemma 2 We verify that
∫ 1

0

∫ 1

0

∫ x

0

∫ y

0

(c (u, y)− 1) dv dudx dy =
∫ 1

0

∫ 1

0

∫ x

0

∫ y

0

(c (x, v)− 1) dv dudxdy

= −
∫ 1

0

∫ 1

0

∫ x

0

∫ y

0

(c (u, v)− 1) dv dudxdy (9)

Proof. We first prove that the first term equals to the third one. The first term reduces to
∫ 1

0

∫ 1

0

∫ x

0

yc (u, y) dudxdy − 1
4

(10)

Using Fubini’s theorem1 for the third term, we get
∫ 1

0

∫ x

0

∫ 1

0

∫ 1

v

(c (u, v)− 1) dy dv dudx =
∫ 1

0

∫ x

0

∫ 1

0

(1− v) (c (u, v)− 1) dv dudx

=
1
2
−

∫ 1

0

∫ 1

0

∫ x

0

vc (u, v) dudxdv − 1
4

(11)

We then prove that the second term equals to the third one. The second term reduces after two uses of Fubini’s
theorem to ∫ 1

0

∫ 1

0

∫ y

0

∫ x

0

c (x, v) du dv dy dx− 1
4

=
∫ 1

0

∫ 1

0

∫ y

0

xc (x, v) dv dy dx− 1
4

(12)

Using Fubini’s theorem in the third expression, we get
∫ 1

0

∫ y

0

∫ 1

0

∫ 1

u

(c (u, v)− 1) dxdudv dy =
∫ 1

0

∫ y

0

∫ 1

0

(1− u) (c (u, v)− 1) du dv dy

=
1
2
−

∫ 1

0

∫ 1

0

∫ y

0

uc (u, v) dv dudy − 1
4

(13)

and this completes the proof of the lemma.
Using the result of the lemma and the calculations made for τ and %, we have

τ =
2
3
%− 4

∫ 1

0

∫ 1

0

∫ x

0

∫ y

0

(c (x, v)− 1) (c (u, y)− 1) dv dudxdy

=
2
3
%− 4

∫ 1

0

∫ 1

0

∂xξθ (x, y) ∂yξθ (x, y) dxdy (14)

and we conclude that the assumption (1) holds as soon as the technical hypothesis (2) is satisfied.

2 More results

2.1 The independent case
τ
% = 2

3 is not the only way to go continuously to the independent copula. In fact as we shall see, there is another
way.

1Every quantity is positive here.
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For an obvious reason, we were in the case where % 6= 0 for every θ ∈ A \ {θ0}. We can wonder whether we
may continuously go to the independent copula with % = 0 and τ 6= 0. The answer is given by the following
family

Cθ (u, v) = uv +
θ

32

(
4

((
u− 1

2

)2

+
(

v − 1
2

)2
)
− 1

)3

×
(

20

((
u− 1

2

)2

+
(

v − 1
2

)2
)
− 1

)
1h(u− 1

2 )
2
+(v− 1

2 )
2
< 1

4

i (15)

for θ ∈ (−1, 1).

2.2 The case where % = 0 and τ = 0

We have shown that there are only two ways to go regularly to the independent copula. We may be
interested in knowing whether this remarkable property of the independent copula holds for the more general
class of copulas for which % = 0 and τ = 0. The answer is no.

We can try to do the same work as we did for the independent copula. Let C? be the copula for which % = 0
and τ = 0 and Cθ be a family of copulas defined as follows

Cθ (u, v) = C? (u, v) + θf (u, v) (16)

where f is a suitable “perturbation”. The same calculations lead to the following equation:

τ

%
=

2
3

∫∫
I2

∂2
x,yC

? (u, v) f (u, v) du dv∫∫
I2

f (u, v) dudv
− θ

3

∫∫
I2

∂2
x,yf (u, v) f (u, v) du dv∫∫

I2
f (u, v) dudv

(17)

The fact that ∂2
x,yC

? (u, v) = 1 for the independent copula cannot be used here. Nevertheless, we give an
example where we go to the following copula in a very unusual way.

Let C be the two place function defined by

C (u, v) = uv + α [u(u− 1)(2u− 1)] [v(v − 1)(2v − 1)] (18)

with α ∈ [−1, 2].

Theorem 3 C is a copula function.

Proof. The family given by equation (18) is a sub-family of one defined by Nelsen [1998]:

C (u, v) = uv + uv(u− 1)v(v − 1) [a + b(1− 2u)(1− 2v)] (19)

where b ∈ [−1, 2] and a ∈ R such that |a| ≤ b + 1 for b ∈ [−1, 1
2

]
and |a| ≤ √

6b− 3b2 for b ∈ [
1
2 , 2

]
. If we set

a to zero, it comes that b ≥ −1 for b ∈ [−1, 1
2

]
and b ≤ 2 for b ∈ [

1
2 , 2

]
. The two place function (18) is also a

copula with cubic sections (see section 3.2.5 of Nelsen [1998]).

In figure 1, we have represented the density of the cubic copula2 with α equal respectively to −1, −0.5, 1
and 2. The contours of density correspond to figure 2. We remark that the mass distribution is symmetric
about the point

(
1
2 , 1

2

)
, which explain that % = 0 and τ = 0. In order to understand more easily this dependence

structure, we have plotted the density of the bivariate random variables (X,Y ) when the margins are normal
in figure 3.

2which is equal to
∂2

∂u ∂v
C (u, v) = 1 + α

�
6u2 − 6u + 1

� �
6v2 − 6v + 1

�
(20)
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Figure 1: Density function for the cubic copula

Figure 2: Contours of density for the cubic copula
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Figure 3: Probability density function with Gaussian marginals

Theorem 4 The Kendall’s tau and the Spearman’s rho of the cubic copula (18) is 0 for any value of α.

Proof. If a copula C satisfies C (u, v) = u − C (u, 1− v) or C (u, v) = v − C (1− u, v), we know that
τ = % = 0 (see exercise 5.19 of Nelsen [1998]). We can check that the cubic copula satisfy the two conditions:

u−C (u, 1− v) = u− [u (1− v) + α [u(u− 1)(2u− 1)] [−v (1− v) (1− 2v)]]
= uv + α [u(u− 1)(2u− 1)] [v(v − 1)(2v − 1)]
= C (u, v) (21)

Let C? = C1 and

f (u, v) = uv (1− u) (1− v) (u− 2v)
(

u− 716
1235

v

)
(22)

After routine calculations, it turns out that

% =
6

6175
θ (23)

and
τ = − 6

6175
θ +

329606
343175625

θ2 (24)

Here θ ∈ (−1.2, 1.7). We have represented the contours of density of this copula family in figure 4. The τ − %
region corresponds to figure 5.
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Figure 4: Contours of density for the ‘perturbed’ cubic copula

Figure 5: τ − % region of the ‘perturbed’ cubic copula
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2.3 A remark on the power of tests for the independence of two random variables

The example of the cubic copula (18) shows that Kendall’s tau and Speraman’s rho can not be used to test
the independence. We may consider now the power of tests for independence if the copula of the corresponding
randoms variables verifies % = τ = 0 but is not the product copula. For example, if we use the χ2 test for
contingency table data, we obtain figure 6 for the density of the associated test3. In particular, we remark
the very poor power4 of the χ2 test when α is closed to 0. If we use standard dependence measures5 as the
Schweizer and Wolff’s σ or the Hoeffding’s index Φ2, we obtain a similar result. We have represented them6 in
figure 7. Figure 8 shows the distribution of the Hoeffding’s index estimator based on the empirical copula7 with
250 observations. We remark that the power of the test8 is very closed to the Type I error when α is small!

Figure 6: χ2 test for independence and the cubic copula
3The number of observations is fixed to 2000. To build the two-way table, we consider 10 classes of same length.
4For α = 0.25 and 2000 observations, the power of the test is equal to 0.11 when the Type I error is 5%, which corresponds to

the vertical solid line in figure 6.
5see [2], [3] and [6].
6We have

Φ =
1

7
√

10
|α| (25)

and

σ =
3

64
|α| (26)

7Let Ĉ be the empirical (or Deheuvels) copula. An estimator of the Hoeffding’s index is given by the following formula

Φ̂ =

vuut 90

T 2 − 1

TX

t1=1

TX

t2=1

�
Ĉ

�
t1

T
,
t2

T

�
− t1t2

T 2

�2

(27)

where T is the number of observations.
8For α = 0.25 and 250 observations, the power of the test is equal to 0.06 when the Type I error is 5%, which corresponds to

the vertical solid line in figure 8.
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Figure 7: Dependence measures of the cubic copula

Figure 8: Φ test for independence and the cubic copula
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