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Abstract

In this paper, we give a few methods for the choice of copulas in financial modelling.

1 Introduction

Copulas reveal to be a very powerful tool in the banking industry, more especially in the modelling of the different
sorts of existing risks. It allows a multidimensional framework, giving up the gaussian assumption which we
know is incorrect in asset modelling and the study of extremal events. Bouyé, Durrleman, Nikeghbali,
Riboulet and Roncalli [2000] review different financial problems and show how copulas could help to solve
them. For example, they used copulas for operational risk measurement and the study of multidimensional
stress scenarios. But one of the difficulty is in general the choice of the copula. This article deals with this
problem.

Let’s recall some elementary facts about copulas. All these results are developped in Deheuvels [1981] and
Nelsen [1998]. Let (X1, . . . , XN ) ∈ RN be a random vector with cumulative distribution function

F (x1, . . . , xN ) = P (X1 ≤ x1, . . . , XN ≤ xN ) (1)

and marginal functions
Fn (xn) = P (Xn ≤ xn) , 1 ≤ n ≤ N (2)

A copula function C of F is defined as a cumulative distribution function of a probability measure with support
in [0, 1]N such that:

1. ∀ 1 ≤ n ≤ N , 0 ≤ un ≤ 1
Cn (un) = C (1, . . . , 1, un, 1, . . . , 1) = un (3)

2. ∀ (x1, . . . , xN ) such that xn is a continuity point of Fn (1 ≤ n ≤ N),

F (x1, . . . , xN ) = C (F1 (x1) , . . . ,FN (xN )) (4)

The following results about copulas are very useful. The complete proofs of these results are established in
Deheuvels [1981].
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1. Every distribution function F has at least one copula function, uniquely defined on the image set
(F1 (x1) , . . . ,FN (xN )) of the points (x1, . . . , xN ) such that ∀ 1 ≤ n ≤ N , xn is a continuity point of
Fn. If all the marginal functions are continuous, then the copula function of F is unique.

2. Every copula C is continuous and statisfies the following inequality (∀ 1 ≤ n ≤ N , 0 ≤ un, vn ≤ 1)

|C (u1, . . . , uN )−C (v1, . . . , vN )| ≤
N∑

n=1

|un − vn| (5)

3. The set C of all copula functions is convex, compact with any of the following topologies, equivalent on
C: punctual convergence, uniform convergence on [0, 1]N , weak convergence of the associated probability
measure (Deheuvels [1978]).

4. If h1, . . . , hN are monotone, non decreasing mappings of R in itself, any copula function of (X1, . . . , XN )
is also a copula function of (h1 (X1) , . . . , hN (XN )).

5. If
{
F(m),m ≥ 1

}
is a sequence of probability cumulative distribution functions in RN , the convergence

of F(m) to a distribution function F with continous margins Fn, when m −→ ∞, is equivalent to both
conditions:

(a) ∀ 1 ≤ n ≤ N , F(m)
n −→ Fn punctually;

(b) if C is the unique copula function associated to F, and if C(m) is a copula function associated to
F(m), C(m) −→ C (with the topology of C).

So it appears that copulas are in fact the dependence structure of the model. All the information about
the dependence is contained in the copula function. Thus the choice of the copula that is going to fit the data
is very important. Usually, one takes a parametric family of copulas among many existing others and fit it to
the data by estimating the parameters of the family. Nevertheless, there does not exist a systematic rigorous
method for the choice of copulas: nothing can tell us that the selected family of copula will converge to the real
structure dependence underlying the data. This can provide biased results since according to the dependence
structure selected the obtained results might be very different.

What we propose in this paper is different methods to cope with the uncertainty about the real underlying
dependence structure of the studied phenomena. In a second section, we present the parametric estimation with
a given family. Then, we give several methods to choose the ‘optimal’ copula, all based on the empirical copula
introduced be Deheuvels [1979].

2 Parametric estimation with a given family

2.1 The method of the maximum likelihood

Let us first consider the case where both the copula C and the margins Fn are continuous. The density of the
joint distribution F is given by the following expression

f (x1, . . . , xn, . . . , xN ) = c (F1 (x1) , . . . ,Fn (xn) , . . . ,FN (xN ))
N∏

n=1

fn (xn) (6)

where fn is the density of the margin Fn and c is the density of the copula

c (u1, . . . , un, . . . , uN ) =
∂ C (u1, . . . , un, . . . , uN )

∂ u1 · · · ∂ un · · · ∂ uN
(7)
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Let X = {(xt
1, . . . , x

t
N )}T

t=1 denote a sample. The expression of the log-likelihood is also

` (θ) =
T∑

t=1

ln c
(
F1

(
xt

1

)
, . . . ,Fn

(
xt

n

)
, . . . ,FN

(
xt

N

))
+

T∑
t=1

N∑
n=1

ln fn

(
xt

n

)
(8)

with θ the K × 1 vector of parameters1. Let θ̂ML be the maximum likelihood estimator. Then, it verifies the
property of asymptotic normality and we have

√
T

(
θ̂ML − θ0

)
−→ N (

0,J−1 (θ0)
)

(9)

with J (θ0) the information matrix of Fisher (Davidson and MacKinnon [1993]). If the margins are discrete
(the support is {x−n , . . . , x+

n }, the Radon-Nikodym density is2

Pr {(X1, . . . , XN ) = (x1, . . . , xN )} =

(−1)N
1∑

i1=0

· · ·
1∑

iN=0

(−1)i1+···+iN C (F1 (x1 − i1) , . . . ,Fn (xn − in) , . . . ,FN (xN − iN )) (11)

The expression of the log-likelihood becomes

` (θ) =
T∑

t=1

ln Pr
{
(X1, . . . , XN ) =

(
xt

1, . . . , x
t
N

)}
(12)

In order to clarify the underlying methods and to help the reader to reproduce the results, we use the LME
database3. We consider the joint distribution of the asset returns Aluminium Alloy (AL) and Copper (CU). We
assume that the margins are gaussians and that the dependence structure is the Frank copula:

C (u1, u2) = −α−1 ln
(

1
1− e−α

[(
1− e−α

)− (
1− e−αu1

) (
1− e−αu2

)])
(13)

The log-likelihood of the observation t is then

`t (θ) = ln
[
α (1− exp (−α)) exp

(
−α

(
Φ

(
xt

1 −m1

σ1

)
+ Φ

(
xt

2 −m2

σ2

)))]
−

ln
[
(1− exp (−α))−

(
1− exp

(
−αΦ

(
xt

1 −m1

σ1

)))(
1− exp

(
−αΦ

(
xt

2 −m2

σ2

)))]2

+
[
−1

2
ln (2π)− 1

2
ln

(
σ2

1

)− 1
2

(
xt

1 −m1

σ1

)2
]

+

[
−1

2
ln (2π)− 1

2
ln

(
σ2

2

)− 1
2

(
xt

2 −m2

σ2

)2
]

(14)

We then obtain the following results

Parameters estimate std.err. t-statistic p-value
m1 -0.000247 0.000258 -0.95 0.34
m2 0.013700 0.000192 71.5 0.00
σ1 -0.000210 0.000324 -0.65 0.52
σ2 0.017175 0.000241 71.4 0.00
α 4.597625 0.158681 28.9 0.00

1θ is the set of parameters of the margins and the copula.
2If N = 2, we retreive the result

Pr {(X1, X2) = (x1, x2)} = C (F1 (x1) ,F2 (x2))−C (F1 (x1 − 1) ,F2 (x2))−
C (F1 (x1) ,F2 (x2 − 2)) + C (F1 (x1 − 1) ,F2 (x2 − 1)) (10)

3This database is on the web site of the London Metal Exchange (http://www.lme.co.uk) and it is available in a Gauss format
on request.
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2.2 The IFM method

The problem with the ML method is that it could be computational intensive in the case of high dimension,
because it requires to estimate jointly the parameters of the margins and the parameters of the dependence
structure. However, the copula representation splits the parameters into specific parameters for marginal dis-
tributions and common parameters for the dependence structure (or the parameters of the copula). The
log-likelihood (8) could then be written as (Joe and Xu [1996])

` (θ) =
T∑

t=1

ln c
(
F1

(
xt

1; θ1

)
, . . . ,Fn

(
xt

n; θn

)
, . . . ,FN

(
xt

N ; θN

)
; α

)
+

T∑
t=1

N∑
n=1

ln fn

(
xt

n; θn

)
(15)

with θ = (θ1, . . . , θN , α). θn and α are the vectors of parameters of the parametric marginal distribution Fn

and the copula C. We could also perform the estimation of the univariate marginal distributions in a first time

θ̂n = arg max `n (θn) := arg max
T∑

t=1

ln fn

(
xt

n; θn

)
(16)

and then estimate α given the previous estimates

α̂ = arg max `c (α) := arg max
T∑

t=1

ln c
(
F1

(
xt

1; θ̂1

)
, . . . ,Fn

(
xt

n; θ̂n

)
, . . . ,FN

(
xt

N ; θ̂N

)
; α

)
(17)

This two-step method is called the method of inference functions for margins or IFM method (Joe and Xu

[1996]). The IFM estimator θ̂IFM is then defined as the vector
(
θ̂1, . . . , θ̂N , α̂

)
. Like the ML estimator, we could

show that it verifies the property of asymptotic normality and we have

√
T

(
θ̂IFM − θ0

)
−→ N (

0,V−1 (θ0)
)

(18)

with V (θ0) the information matrix of Godambe. Let us define a score function in the following way g (θ) =(
∂θ1`

1, . . . , ∂θN
`N , ∂α`c

)
. The Godambe information matrix takes the form (Joe [1997]):

V (θ0) = D−1M
(
D−1

)>
(19)

where D = E
[
∂g (θ)> /∂θ

]
and M = E

[
g (θ)> g (θ)

]
. The estimation of the covariance matrix requires to

compute many derivatives. Joe and Xu [1996] suggest then to use the Jacknife method to estimate it. Note
also that the IFM method could be viewed as a special case of the generalized method of moments with an
identity weight matrix.

Using a close idea of the IFM method, we remark that the parameter vector α of the copula could be
estimated without specifying the marginals. The method consists in transforming the data (xt

1, . . . , x
t
N ) into

uniform variates (ût
1, . . . , û

t
N ) — using the empirical distributions — and then estimate the parameter in the

following way:

α̂ = arg max
T∑

t=1

ln c
(
ût

1, . . . , û
t
n, . . . , ût

N ;α
)

(20)

In this case, α̂ could be viewed as the ML estimator given the observed margins (without assumptions on
the parametric form of the marginal distributions). Because this method is based on the empirical
distributions, we call it the canonical maximum likelihood method or CML. Note that the IFM method could be
viewed as a CML method with ût

n = Fn

(
xt

n; θ̂n

)
. In the rest of the paper, we use the notation ut

n to designe

either ût
n or Fn

(
xt

n; θ̂n

)
.
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We remark that the copula representation presents some very interesting properties for the estimation.
Consider for example the multivariate generalized hyperbolic distribution (Prause [1999])

f (x) = A (λ, α, β, δ, ρ)
(
δ2 + (x− µ)> ρ−1 (x− µ)

) 1
4 (2λ−N)

×Kλ−N
2

(
α

√
δ2 + (x− µ)> ρ−1 (x− µ)

)
exp

(
β> (x− µ)

)
(21)

where K denotes the modified Bessel function of the third kind and

A (λ, α, β, δ, ρ) =

(
α2 − β>ρβ

) 1
2 λ

(2π)
N
2 αλ−N

2 δλKλ

(
δ
√

α2 − β>ρβ
) (22)

The number of parameters is equal to 1
2N [(N + 3)] + 3. Suppose that N = 25, then we have 353 parameters.

Bouyé, Durrleman, Nikeghbali, Riboulet and Roncalli [2000] present a multivariate version of the
univariate generalized hyperbolic distribution based on the gaussian copula. Its density is

f (x) =
1

|ρ| 12
A (λ, α, β, δ, ρ)

[
N∏

n=1

(
δ2
n + (xn − µn)2

) 1
4 (2λn−1)

]

×
[

N∏
n=1

Kλn− 1
2

(
αn

√
δ2
n + (xn − µn)2

)]
exp

(
β> (x− µ)− 1

2
ς>

(
ρ−1 − I) ς

)
(23)

where

A (λ, α, β, δ, ρ) =
1

(2π)
N
2

N∏
n=1

(
α2

n − β2
n

) 1
2 λn

α
λn− 1

2
n δλn

n Kλn

(
δn

√
α2

n − β2
n

) (24)

and ς =(ς1, . . . , ςN )>, ςn = Φ−1 (Fn (xn)) and Fn the univariate GH distribution4. This distribution has
1
2N [(N + 9)] parameters. For example, we have 425 parameters for N = 25. Even if this distribution has more
parameters than the previous one, we could perform the estimation more easily. The IFM method could not
be apply to the distribution (21). In the case of the copula-based distribution, the IFM method consists in
estimating the parameters of the margins (N maximum likelihood with 5 parameters per estimation) and the
estimation of the parameters of the copula (which is straightforward in the case of the gaussian copula — see
below).

One of the important issue for the estimation is the existence of analytical solution of the IFM (or CML)
estimator, because it reduces computational aspects. This is for example a key point in the Finance industry.
Here are the IFM estimator for the gaussian and the student copulas:

• Gaussian copula
Let ςt =

(
Φ−1 (ut

1) , . . . ,Φ−1 (ut
n) , . . . ,Φ−1 (ut

N )
)
. Then we have

ρ̂IFM =
1
T

T∑
t=1

ς>t ςt (27)

4The corresponding density function is given by

f (x) = a (λ, α, β, δ)
�
δ2 + (x− µ)2

� 1
4 (2λ−1)

×Kλ− 1
2

�
α

q
δ2 + (x− µ)2

�
exp (β (x− µ)) (25)

with

a (λ, α, β, δ) =

�
α2 − β2

� 1
2 λ

√
2παλ− 1

2 δλKλ

�
δ
p

α2 − β2
� (26)
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• Student copula
Let ςt =

(
t−1
ν (ut

1) , . . . , t−1
ν (ut

n) , . . . , t−1
ν (ut

N )
)
. Bouyé, Durrleman, Nikeghbali, Riboulet and

Roncalli [2000] propose to estimate the ρ matrix with the following algorithm:

1. Let ρ̂0 be the IFM estimate of the ρ matrix for the gaussian copula;

2. ρ̂m+1 is obtained using the following equation

ρ̂m+1 =
1
T

(
ν + N

ν

) T∑
t=1

ς>t ςt

1 + 1
ν ς>t ρ̂−1

m ςt
(28)

3. Repeat the second step until convergence — ρ̂m+1 = ρ̂m (:= ρ̂∞).

4. The IFM estimate of the ρ matrix for the Student copula is ρ̂IFM = ρ̂∞.

Let us now consider the previous example. We have for n = 1, 2

`n (mn, σn) =
T∑

t=1

[
−1

2
ln (2π)− 1

2
ln

(
σ2

n

)− 1
2

(
xt

n −mn

σn

)2
]

(29)

We denote m̂n and σ̂n the corresponding ML estimates. We then define

ut
n = Φ

(
xt

n − m̂n

σ̂n

)
(30)

The paramater α is also estimated by maximising `c (α) =
∑T

t=1 `c
t (α) with

`c
t (α) = ln

[
α (1− exp (−α)) exp

(−α
(
ut

1 + ut
2

))]−
ln

[
(1− exp (−α))− (

1− exp
(−αut

1

)) (
1− ut

2

)]2 (31)

The Godambe covariance matrix is then computed with the score function

g (θ) =




∂`1 (m1, σ1) /∂m1

∂`1 (m1, σ1) /∂σ1

∂`2 (m2, σ2) /∂m2

∂`2 (m2, σ2) /∂σ2

∂`c (α) /∂α




(32)

The results are the following and are very closed to those given by the ML method.

Parameters estimate std.err. t-statistic p-value
m1 -0.000207 0.000256 -0.81 0.42
m2 0.013316 0.000325 41.0 0.00
σ1 -0.000256 0.000320 -0.80 0.42
σ2 0.016680 0.000455 36.7 0.00
α 4.440463 0.156818 28.3 0.00

In the case of the CML method, we obtain α̂CML = 3.578972 — the IFM and CML estimates are not very closed,
because the IFM method does take into account the marginal distributions.
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2.3 Estimation based on the dependence measures

We could also estimate the parameters such that they fit the dependence measures, for example the Kendall’s
tau, the Spearman’s rho or the upper tail dependence measure. Let L (θ) be a loss function. We define the
point estimator θ̂ as the solution of the following problem (Lehmann and Casella [1998])

θ̂ = arg min
θ∈Θ

L (θ) (33)

with Θ the parameters space. In most cases, people use a quadratic loss distribution

L (θ) = [ĝ − g (θ)]>W [ĝ − g (θ)] (34)

with W a weight matrix, ĝ the observed criterion values and g the criterion functions.

In the case of one-parameter bivariate copula, we could perform the estimation with only one dependence
measure. In some cases, analytical solutions are available (see the table below for some examples).

% τ λ

Gaussian ρ = 2 sin
(

π
6 %

)
ρ = sin

(
π
2 τ

)
X

Gumbel numerical solution α = (1− τ)−1 ln 2 ln (2− λ)−1

FGM 3% 9
2τ X

Otherwise, we use a root finding procedure. This is the case of the Frank copula (Frees and Valdez [1997]):

% = 1− 12
α

(D1 (α)−D2 (α))

τ = 1− 4
α

(1−D1 (α)) (35)

with Dk (x) the Debye function (Abramowitz and Stegun [1970]). With the LME example, we obtain
%̂ = 0.49958, so it comes that α̂ = 3.4390. Note that this estimate is closer to the CML estimate than the ML
and IFM estimates.

3 Non parametric estimation

In this section, we don’t assume anymore that we have a parametric copula. We are now interested in modelling
the dependence structure with consistency, this is to say thanks to a copula that is going to converge to the
real underlying dependence structure.

3.1 The Deheuvels or empirical copula

We present in this paragraph the notion of empirical copula as introduced by Deheuvels [1979]. Let Xt =
(Xt

1, . . . , X
t
N ) ∈ RN be an i.i.d. sequence with distribution F and margins Fn. We assume that F is continuous

so that the copula associated to F is unique.

If δu stands for the Dirac measure with u ∈ RN , we define µ̂ = 1
T

∑T
t=1 δXt the empirical measure associated

with a sample of X, and F̂ (x1, . . . , xN ) = µ̂
(∏N

n=1 ]−∞, xn]
)

its empirical function. We note
{

x
(t)
1 , . . . , x

(t)
N

}

the order statistic and {rt
1, . . . , r

t
N} the rank statistic of the sample which are linked by the relationship x

(rt
n)

n =
xt

n. It is possible to introduce the empirical copula of the sample as any copula Ĉ of the empirical distribution
F̂. But the problem is that Ĉ is not unique, that’s why Deheuvels [1981] proposes the following way to cope
with the problem.
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Definition 1 Any copula Ĉ ∈ C defined on the lattice

L =
{(

t1
T

, . . . ,
tN
T

)
: 1 ≤ n ≤ N, tn = 0, . . . , T

}
(36)

by

Ĉ
(

t1
T

, . . . ,
tN
T

)
=

1
T

T∑
t=1

N∏
n=1

1[rt
n≤tn] (37)

is an empirical copula.

We introduce the notation Ĉ(T ) in order to define the order of the copula, that is the dimension of the
sample used to construct it. Deheuvels [1979,1981] obtains then the following conclusions:

1. The empirical measure µ̂ (or the empirical distribution function F̂) is uniquely and reciprocally defined
by both

(a) the empirical measures of each coordinate F̂n;

(b) the values of an empirical copula Ĉ on the set L.

2. The empirical copula Ĉ defined on L is in distribution independent of the margins of F.

3. If Ĉ(T ) is any empirical copula of order T , then Ĉ(T ) → C with the topology of C (uniform convergence
for example).

We could now define the analog of the Radon-Nikodym density for the empirical copula Ĉ

ĉ

(
t1
T

, . . . ,
tn
T

, . . . ,
tN
T

)
=

2∑

i1=1

· · ·
2∑

iN=1

(−1)i1+···+iN Ĉ
(

t1 − i1 + 1
T

, . . . ,
tn − in + 1

T
, . . . ,

tN − iN + 1
T

)
(38)

ĉ is called the empirical copula frequency (Nelsen [1998]). The relationships between empirical copula distri-
bution and frequency are

Ĉ
(

t1
T

, . . . ,
tn
T

, . . . ,
tN
T

)
=

t1∑

i1=1

· · ·
tN∑

iN=1

ĉ

(
i1
T

, . . . ,
in
T

, . . . ,
iN
T

)
(39)

Note that empirical copulas permits to define the sample version of dependence measures. For example, the the
Spearman’s rho and Kendall’s tau take the following form (Nelsen [1998])

%̂ =
12

T 2 − 1

T∑
t1=1

T∑
t2=1

(
Ĉ

(
t1
T

,
t2
T

)
− t1t2

T 2

)
(40)

and

τ̂ =
2

T − 1

T∑
t1=1

T∑
t2=1

t1−1∑

i2=1

t2−1∑

i2=1

(
ĉ

(
t1
T

,
t2
T

)
ĉ

(
i1
T

,
i2
T

)
− ĉ

(
t1
T

,
i2
T

)
ĉ

(
i1
T

,
t2
T

))
(41)

We could also define the sample version of the quantile dependence function

λ (u) = Pr {U1 > u|U2 > u} =
C̄ (u, u)
1− u

(42)

and the upper tail dependence measure
λ = lim

u−→1−
λ (u) (43)
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We have

λ̂

(
t

T

)
= 2− 1− Ĉ

(
t
T , t

T

)

1− t
T

(44)

and λ̂ = limt→T λ̂ (t/T ).

We consider now the example of the LME data. We have represented in the figure 1 the corresponding
empirical copula5. In the figure 2, we have reported the empirical quantile dependence function λ̂ and the
dependence function with the Frank copula and the parameter equal to the previous ML estimate. By assuming
a normal distribution, we could compute also a confidence interval for λ̂ (Coles, Currie and Tawn [1999]).

Figure 1: Empirical copula of the (AL,CU) data

3.2 Copula approximation

In this paragraph, we use the idea of Li, Mikusinski, Sherwood and Taylor [1997] on approximation of
copulas. Their motivation was to present “certain approximations that lead naturally to a stronger convergence
than uniform convergence”. These approximations are very interesting to study the properties of the ∗-product
of copulas defined by Darsow, Nguyen and Olsen [1992] to characterize markov processes. Below, we use
these approximations to estimate non parametrically the underlying dependence structure. We present only the
two dimensional case, but the generalization is straightforward.

5We have 2713 observations in the database. Nevertheless, we use a grid equal to 1
25

for the plots. The order T of the empirical
data is then 109.
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Figure 2: Quantile dependence function

3.2.1 Approximation by Bernstein polynomials

Let Bi,n (x) denotes the Bernstein polynomial

Bi,n (x) =
(

n

i

)
xi (1− x)n−i (45)

Li, Mikusinski, Sherwood and Taylor [1997] showed that for any copula C, Bn (C) defined by

Bn (C) (u, v) =
n∑

i=1

n∑

j=1

Bi,n (u)Bj,n (v)C
(

i

n
,
j

n

)
(46)

is a copula too. Moreover, it is well known that the copula Bn (C) converges to the copula C in the strong
sense. Now, if we consider the two place function

BT

(
Ĉ(T )

)
(u, v) =

T∑
t1=1

T∑
t2=1

Bt1,T (u)Bt2,T (v) Ĉ
(

t1
T

,
t2
T

)
(47)

we know thanks to what we have said previously that BT

(
Ĉ(T )

)
is a copula that will (uniformly) converge to

the real copula C
BT

(
Ĉ(T )

)
−→ C (48)
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3.2.2 The checkerboard approximation

Another consistent way for modelling the dependence structure is to consider a checkerboard approximation

Cn (C) (u, v) = n2
n∑

i=1

n∑

j=1

∆i,j (C)
∫ u

0

χi,n (x) dx

∫ v

0

χj,n (y) dy (49)

where

∆i,j (C) = C
(

i

n
,
j

n

)
−C

(
i− 1

n
,
j

n

)
−C

(
i

n
,
j − 1

n

)
+ C

(
i− 1

n
,
j − 1

n

)
(50)

and χi,n is the characteristic function of the interval
[

i−1
n , i

n

]
. Li, Mikusinski, Sherwood and Taylor [1997]

give some properties of Cn (C):

1. Cn (C) is the copula of the doubly stochastic measure whose mass in every square of the form
[

i−1
n , i

n

]×[
j−1
n , j

n

]
is uniformly distributed and equal to the total mass in that square in the doubly stochastic

measure of the original copula

2. Cn (C) approximate C uniformly

sup
(u,v)∈[0,1]2

|C (u, v)− Cn (C) (u, v)| ≤ 2n−1 (51)

If we now take the two place function

CT

(
Ĉ(T )

)
(u, v) = T 2

T∑
t1=1

T∑
t2=1

∆t1,t2

(
Ĉ(T )

) ∫ u

0

χt1,T (x) dx

∫ v

0

χt2,T (y) dy (52)

where

∆t1,t2

(
Ĉ(T )

)
= Ĉ(T )

(
t1
T

,
t2
T

)
− Ĉ(T )

(
t1 − 1

T
,
t2
T

)
− Ĉ(T )

(
t1
T

,
t2 − 1

T

)
+ Ĉ(T )

(
t1 − 1

T
,
t2 − 1

T

)
(53)

From what we have said previously, we can deduce that CT

(
Ĉ(T )

)
is a copula which converges (uniformly) to

the real underlying copula
CT

(
Ĉ(T )

)
−→ C (54)

3.2.3 Applications

We consider the previous empirical copula of the (AL,CU) data. We have reported in the figure 3 its approxima-
tion. One of the main interest of this construction is that the associated measure is continuous. Moreover,
we know that the approximated copula converge to the underlying dependence structure. In the figure 4, we
have represented the measure for different orders T . Another important point is that the convergence of the
concordance measures is satisfied (Durrleman, Nikeghbali and Roncalli [2000]). However, these approx-
imation methods do not preserve the upper tail dependence. This is a real problem in financial modelling.
Nevertheless, one could use the perturbation method of Durrleman, Nikeghbali and Roncalli [2000] to
obtain the desired upper tail dependence.

4 Selection criteria based on empirical copulas

In this section, we consider the selection problem of ‘optimal’ copula. In general, we assume that we have a
finite subset of copulas C̃ ⊂ C. And we would like to know which copula fits best the data. If C̃ corresponds to
the Archimedean family, we could solve the problem using results on Kendall’s processes. In the general case,
we could use a distance based on the discrete Lp norm.

11



Figure 3: Approximation of the empirical copula of the (AL,CU) data with Bernstein polynomials

Figure 4: Probability density function of the Bernstein copula with different orders
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4.1 The case of Archimedean copulas

Genest and MacKay [1996] define Archimedean copulas as the following:

C (u1, . . . , un, . . . , uN ) =





ϕ−1 (ϕ (u1) + . . . + ϕ (un) + . . . + ϕ (uN )) if
N∑

n=1

ϕ (un) ≤ ϕ (0)

0 otherwise

with ϕ (u) a C2 function with ϕ (1) = 0, ϕ′ (u) < 0 and ϕ′′ (u) > 0 for all 0 ≤ u ≤ 1. Genest and Rivest
[1993] have developed an empirical method to identify the copula in the Archimedean case. Let X be a vector
of N random variables, C the associated copula with generator ϕ and K the function defined by

K (u) = Pr {C (U1, . . . , UN ) ≤ u} (55)

Barbe, Genest, Ghoudi and Rémillard [1996] showed that

K (u) = u +
N∑

n=1

(−1)n ϕn (u)
n!

κn−1 (u) (56)

with κn (u) = ∂u κn−1(u)
∂u ϕ(u) and κ0 (u) = 1

∂u ϕ(u) . A non parametric estimate of K is given by

K̂ (u) =
1
T

T∑
t=1

1[ϑi≤u] (57)

with

ϑi =
1

T − 1

T∑
t=1

1[xt
1<xi

1,...,xt
N <xi

N ] (58)

The idea is then to choose the Archimedean copula which gives K̂. Frees et Valdez [1997] propose to use a
QQ-plot of K and K̂. Another procedure consists in comparing u−K (u) and u− K̂ (u) (Genest and Rivest
[1993]).

We consider our LME example. Suppose that C̃ is the set of four archimedean copulas, the Gumbel copula
with parameters α = 1, α = 1.5, α = 2 and α = 3. We note them respectively C1, C2, C3 and C4. We have
represented in the figures 5 and 6 the two graphical procedures. In general, we notice that the procedure of
Genest and Rivest [1993] identifies more easily the ‘optimal’ copula and C2 seems to be the best dependence
structure.

In general, C̃ consists not in one parametric family with different values of the parameters, but C̃ is the set
of different families, for example Gumbel, Frank, Cook-Johnson, etc. (see the table 4.1 of Nelsen [1998] for a
list of Archimedean copulas). For each family, we could first estimate the parameters by IFM ou CML method
in order to reduce the cardinality of C̃. Note that if C is an absolutely two-dimensional copula, the expression
of the log-likelihood is

`c
t (α) = ln ϕ′′

(
C

(
ut

1, u
t
2

))
+ ln

(
ϕ′

(
ut

1

)
ϕ′

(
ut

2

))− 3 ln
(−ϕ′

(
C

(
ut

1, u
t
2

)))
(59)

We consider our previous example with three copula families. The CML estimation gives the following results

Copula ϕ (u) C (u1, u2) α̂CML

C1 Gumbel (− ln u)α exp
(
− ((− ln u1)

α + (− ln u2)
α)

1
α

)
1.462803

C2 Cook-Johnson α−1 (u−α − 1) max
([

u−α
1 + u−α

2 − 1
]− 1

α , 0
)

0.708430

C3 Frank − ln
(

exp(−αu)−1
exp(−α)−1

)
−α−1 ln

(
1 + (e−α − 1)−1 (e−αu − 1) (e−αv − 1)

)
3.578972
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Figure 5: QQ-plot procedure of Frees and Valdez [1998]

Figure 6: Graphical procedure of Genest and Rivest [1993]
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We have reported in the figure 7 the values of u−K (u) for these copulas. Because K (u) is a distribution, we
could define the ‘optimal’ copula as the copula which gives the minimum distance between K (u) and K̂ (u).
For example, we could take the Kolmogorov distance, the Hellinger distance, etc. In the case of the L2 norm,

the distance is defined as d2

(
K̂, K

)
=

∫ 1

0

[
K (u)− K̂ (u)

]2

du. With the LME data, we obtain the following

values: d2

(
K̂,K

)
= 2.63× 10−4 for the Gumbel copula, d2

(
K̂, K

)
= 11.4× 10−4 for the Cook-Johnson copula

and d2

(
K̂,K

)
= 1.10× 10−4 for the Frank copula, which is then our ‘optimal’ copula.

Figure 7: Comparison of the Gumbel, Cook-Johnson and Frank copulas

4.2 Selecting a copula among a given subset of copulas

We are not interested here in the different ways of constructing an empirical copula (by interpolation or ap-
proximation for example). All we know about any empirical copula is its values on the lattice L that we could
compute thanks to the data. Here we assume we have a finite subset of copulas C̃ ⊂ C, and we are interested in
knowing which one of the copulas in C̃ fits best the data (there might be parametric copulas or non parametric
copulas or Fréchet upper bounds for example).

What we suggest here is to consider the distance between each considered copula and the empirical copula.
But we have to specify the distance we consider. As there exists more than one empirical copula, it appears
that any distance based on the Lp norm would not be proper. For example, let’s assume that we have different
empirical copulas Ĉj (j = 1, . . . , J) and a finite subset of K copulas C̃ = {Ck}1≤k≤K . Let us consider the L2

norm

d2

(
Ĉj ,Ck

)
=

∥∥∥Ĉj −Ck

∥∥∥
L2

:=

(∫
· · ·

∫

[0,1]N

∣∣∣Ĉj (u)−Ck (u)
∣∣∣
2

du

) 1
2

(60)
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If we consider that the best copula in C̃ is the copula which minimizes d2

(
Ĉj ,Ck

)
, we might encounter some

problems since the ‘optimal’ copula depends on j and thus the copula that minimize d2

(
Ĉj ,Ck

)
can be different

for different values of j.

As all empirical copulas take the same values on L, we suggest to take a distance based on the discrete Lp

norm

d̄2

(
Ĉ(T ),Ck

)
=

∥∥∥Ĉ(T ) −Ck

∥∥∥
L2

=

(
T∑

t1=1

· · ·
T∑

tn=1

· · ·
T∑

tN=1

[
Ĉ(T )

(
t1
T

, . . . ,
tn
T

, . . . ,
tN
T

)
−Ck

(
t1
T

, . . . ,
tn
T

, . . . ,
tN
T

)]2
) 1

2

(61)

We consider that the best copula in the family C̃ is the copula which minimizes d̄2

(
Ĉ(T ),Ck

)
. The advantage

of this method is that it does not depend on the behavior of the empirical copulas out of the lattice L ={(
t1
T , . . . , tN

T

)
: 1 ≤ n ≤ N, tn = 0, . . . , T

}
.

We use the LME example. And we suppose that the set C̃ corresponds to the set of the previous paragraph
(Gumbel, Cook-Johnson and Frank copulas) and the Gaussian copula. We obtain the following results:

Copula α̂CML
d̄2(Ĉ(T ),Ck)

T

C1 Gumbel 1.462803 7.39× 10−3

C2 Cook-Johnson 0.708430 16.5× 10−3

C3 Frank 3.578972 4.47× 10−3

C4 Normal 0.491794 4.79× 10−3

The Frank copula is then always our ‘optimal’ copula.

4.3 Estimating parameters in ‘untractable’ cases

We propose here a method for estimating parameters (of some parametric families of copulas) which are difficult
to compute by maximum likelihood. This is for example the case for some asymmetric extreme copulas because
of the shape of the likelihood function. Moreover, the maximum likelihood method requires the cross derivatives
of the copula. For high dimensions and some copulas (for example, the MM1-MM5 families in Joe [1997]), an
explicit expression is very difficult to obtain. The cross derivatives could then be computed with a numerical
algorithm based on finite differences. However, these algorithms produces important numerical errors in high
dimension. That’s why we suggest in these cases to estimate the parameter of the parametric copula C (u; θ) by
taking the loss function L (θ) equal to the distance (61). We then define the point estimator θ̂ as the solution
of the following minimization problem

θ̂ = arg min
θ∈Θ

(∑

u∈L

[
Ĉ(T ) (u)−C (u; θ)

]2
) 1

2

(62)

To perform the numerical optimization, we could use a quasi-Newton algorithm like the BFGS method so that
we don’t need the Hessian matrix anymore, but just the first order derivatives. Moreover, this sort of estimation
is coherent with what we have previously said about the choice of the dependence struture for modelling. For
example, we obtain the following results for the LME data:
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Copula α̂CML
d̄2(Ĉ(T ),Ck)

T α̂L2M
d̄2(Ĉ(T ),Ck)

T

C1 Gumbel 1.462803 7.39× 10−3 1.554518 5.01× 10−3

C2 Cook-Johnson 0.708430 16.5× 10−3 1.056350 12.1× 10−3

C3 Frank 3.578972 4.47× 10−3 3.389611 3.93× 10−3

C4 Normal 0.491794 4.79× 10−3 0.528938 3.06× 10−3

α̂L2M is the point estimator based on the discrete L2 norm. We remark that we improve significantly the
distance. Moreover, in this case, this is the Normal copula which appears to be ‘optimal’.

4.4 The influence of the margins on the choice of the dependence structure

In order to define a ‘tractable’ set C̃, we have to reduce the cardinality of the subset of C in a first time. This is
done by choosing different parameter families and by doing a ML optimization for each family. In the previous
example, we have perform the estimation step using the CML method, that is we have assumed that the margins
correpond to the empirical ones. However, we are going to see that the margins play an important role to define
the optimal copula.

In the second section, we assume that the margins of AL and CU are gaussians. In the case of the Frank
copula, we then obtain the following values for the distances:

Estimation method
d̄2(Ĉ(T ),Ck)

T

CML 4.47× 10−3

IFM 11.5× 10−3

ML 12.8× 10−3

L2M 3.93× 10−3

We remark that the discrete L2 norm for IFM and ML methods are larger. If we compare the level curves of the
Deheuvels copula, CML Frank copula and ML Frank copula, we obtain the figure 8. We could certainly notice
that the gaussian margins are not appropriate. With this example, we see clearly that the impact of the margins
is very important. If the margins are not well specified, we could then find an optimal copula into the subset C̃
which is in fact irrelevant to give the good dependence structure. That’s why estimation based on CML method
is very important. If we notice that there exist significant differences between CML and ML (or IFM) methods,
that indicates that the margins are not well appropriate.

To clarify this point, we consider a simulation study. We assume that the bivariate distribution F correspond
to the Normal copula with parameter 0.5 and two margins F1 and F2 which are a student distribution (F1 = t2
and F2 = t3). We suppose now that we fit a distribution with a Normal copula and two gaussian margins.
Because the margins are wrong, the IFM and ML estimators are biased (see the figure 9). We remark that this
is not the case of the CML estimator.

5 Conclusion

Copulas are a powerful tool in financial modelling. But one of the difficulty is in general the choice of the copula.
In this article, we give a few methods to solve this problem. They are all based (sometimes not directly) on the
Deheuvels or empirical copula.
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[4] Bouyé, E., V. Durrleman, A. Nikeghbali, G. Riboulet and T. Roncalli [2000], Copulas for finance
— A reading guide and some applications, Groupe de Recherche Opérationnelle, Crédit Lyonnais, Working
Paper

[5] Coles, S., J. Currie and J. Tawn [1999], Dependence measures for extreme value analyses, Department
of Mathematics and Statistics, Lancaster University, Working Paper

[6] Darsow, W.F., B. Nguyen and E.T. Olsen [1992], Copulas and markov processes, Illinois Journal of
Mathematics, 36-4, 600-642

[7] Davidson, R. and J. MacKinnon [1993], Estimation and Inference in Econometrics, Oxford University
Press, Oxford
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