The Risk Dimension of Asset Returns in Risk Parity Portfolios

Thierry Roncalli*

*Lyxor Asset Management¹, France & University of Évry, France

Workshop on Portfolio Management

University of Paris 6/Paris 7, April 3, 2014

¹The opinions expressed in this presentation are those of the author and are not meant to represent the opinions or official positions of Lyxor Asset Management.

Outline

Motivations

- Which Diversification?
- Which Risk Factors?
- Which Risk Premium?
- Which Risk Measure?
- 2 Risk Parity Approach
 - Definition
 - Main Properties
 - Using the Standard **Deviation-based Risk Measure**

- Some Illustrations
- 3 Applications
 - Strategic Asset Allocation
 - Tactical Asset Allocation
 - Risk parity and time-varying risk premia
 - One concept, several implementations, different performances!

- 4 回 ト 4 三 ト 4 三 ト

Conclusion

4

Motivations	Which Diversification?
Risk Parity Approach	Which Risk Factors?
Applications	Which Risk Premium?
Conclusion	Which Risk Measure?

Motivations

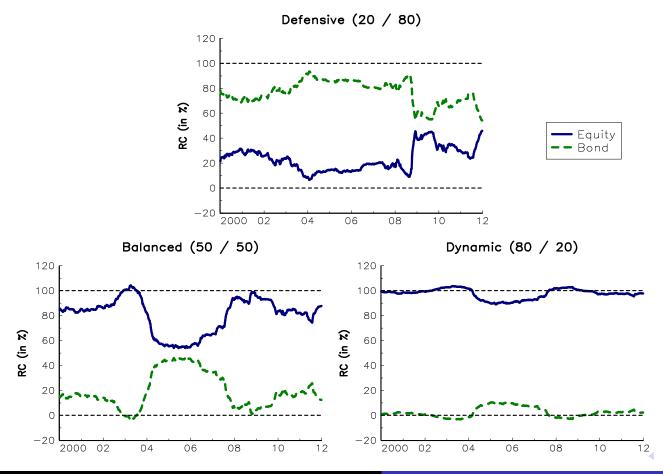
- Which Diversification?
- Which Risk Factors?
- Which Risk Premium?
- Which Risk Measure?

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Which Diversification? Which Risk Factors? Which Risk Premium? Which Risk Measure?

Which diversification? The case of diversified funds

Figure: Equity (MSCI World) and bond (WGBI) risk contributions



- Contrarian constant-mix strategy
- Deleverage of an equity exposure
- Low risk diversification
- No mapping between fund profiles and investor profiles
- Static weights
- Dynamic risk contributions
 - Diversified funds

Marketing idea?

32

3

Which Diversification? Which Risk Factors? Which Risk Premium? Which Risk Measure?

Which risk factors? How to be sensitive to Σ and not to Σ^{-1} ?

MVO portfolios are of the following form: $x^* \propto f(\Sigma^{-1})$.

The important quantity is then the information matrix $\mathcal{I} = \Sigma^{-1}$ and the eigendecomposition of \mathcal{I} is:

$$V_i(\mathcal{I}) = V_{n+1-i}(\Sigma)$$
 and $\lambda_i(\mathcal{I}) = \frac{1}{\lambda_{n+1-i}(\Sigma)}$

If we consider the following example: $\sigma_1 = 20\%$, $\sigma_2 = 21\%$, $\sigma_3 = 10\%$ and $\rho_{i,j} = 80\%$, we obtain:

	Co	variance matr	rix Σ	Information matrix ${\cal I}$			
Asset / Factor	1	2	3	1	2	3	
1	65.35%	-72.29%	-22.43%	-22.43%	-72.29%	65.35%	
2	69.38%	69.06%	-20.43%	-20.43%	69.06%	69.38%	
3	30.26%	-2.21%	95.29%	95.29%	-2.21%	30.26%	
Eigenvalue	8.31%	0.84%	0.26%	379.97	119.18	12.04	
% cumulated	88.29%	97.20%	100.00%	74.33%	97.65%	100.00%	

- ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲

Motivations	Which Diversi
Risk Parity Approach	Which Risk Fa
Applications	Which Risk Pr
Conclusion	Which Risk M

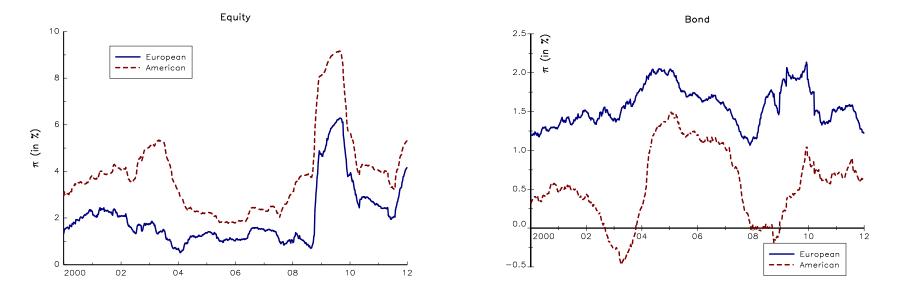
remium?

Which risk premium? Allocation = bets on risk premium

CAPM

$$\pi^{\star} = \operatorname{SR}(x^{\star} \mid r) \cdot \frac{\partial \sigma(x^{\star})}{\partial x}$$

Figure: Comparison of typical American and European institutional investors



Are bonds a performance asset or a hedging asset?

Ξ

⊒►

æ

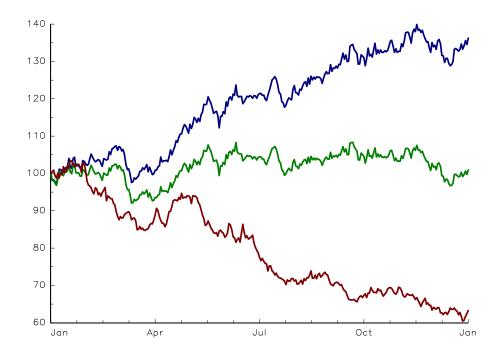
Motivations Which Risk Parity Approach Which Applications Which Conclusion Which

Which Diversification? Which Risk Factors? Which Risk Premium? Which Risk Measure?

Which risk measure?

- Equity smart beta
 - Stock volatility risk measure
 - Lyxor SmartIX ERC Equity Indices, etc.
- Fixed-income smart beta
 - Credit volatility risk measure
 - Lyxor RB EGBI, etc.
- Diversified funds
 - Asset volatility risk measure
 - Invesco IBRA Fund, etc.

Figure: 3 assets with a 20% volatility



< E

Is the volatility the right risk measure for:

- Strategic asset allocation?
- Tactical asset allocation?

Definition Main Properties Using the Standard Deviation-based Risk Measure Some Illustrations

The risk parity (or risk budgeting) approach

- Definition
- Main Properties
- Using the Standard Deviation-Based Risk Measure
- Some Illustrations

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶ --

590

王

Definition Main Properties Using the Standard Deviation-based Risk Measure Some Illustrations

Weight budgeting versus risk budgeting

Let $x = (x_1, ..., x_n)$ be the weights of *n* assets in the portfolio. Let $\mathcal{R}(x_1, ..., x_n)$ be a coherent and convex risk measure. We have:

$$\mathcal{R}(x_1, \dots, x_n) = \sum_{i=1}^n x_i \cdot \frac{\partial \mathcal{R}(x_1, \dots, x_n)}{\partial x_i}$$
$$= \sum_{i=1}^n \mathrm{RC}_i (x_1, \dots, x_n)$$

Let $b = (b_1, ..., b_n)$ be a vector of budgets such that $b_i \ge 0$ and $\sum_{i=1}^{n} b_i = 1$. We consider two allocation schemes:

Weight budgeting (WB)

$$x_i = b_i$$

Q Risk budgeting (RB)

$$\mathrm{RC}_i = b_i \cdot \mathcal{R}(x_1, \ldots, x_n)$$

<ロト < 同ト < 巨ト < 巨ト = 巨

Definition Main Properties Using the Standard Deviation-based Risk Measure Some Illustrations

Traditional risk parity with the volatility risk measure

Let Σ be the covariance matrix of the assets returns. We assume that the risk measure $\mathcal{R}(x)$ is the volatility of the portfolio $\sigma(x) = \sqrt{x^{\top}\Sigma x}$. We have:

$$\frac{\partial \mathcal{R}(x)}{\partial x} = \frac{\Sigma x}{\sqrt{x^{\top}\Sigma x}}$$
$$\operatorname{RC}_{i}(x_{1},...,x_{n}) = x_{i} \cdot \frac{(\Sigma x)_{i}}{\sqrt{x^{\top}\Sigma x}}$$
$$\sum_{i=1}^{n} \operatorname{RC}_{i}(x_{1},...,x_{n}) = \sum_{i=1}^{n} x_{i} \cdot \frac{(\Sigma x)_{i}}{\sqrt{x^{\top}\Sigma x}} = x^{\top} \frac{\Sigma x}{\sqrt{x^{\top}\Sigma x}} = \sigma(x)$$

The risk budgeting portfolio is defined by this system of equations:

$$\begin{cases} x_i \cdot (\Sigma x)_i = b_i \cdot (x^\top \Sigma x) \\ x_i \ge 0 \\ \sum_{i=1}^n x_i = 1 \end{cases}$$

<ロ > < 同 > < 巨 > < 巨 > 、

Definition Main Properties Using the Standard Deviation-based Risk Measure Some Illustrations

An example

Illustration

- 3 assets
- Volatilities are respectively 30%, 20% and 15%
- Correlations are set to 80% between the 1st asset and the 2nd asset, 50% between the 1st asset and the 3rd asset and 30% between the 2nd asset and the 3rd asset
- Budgets are set to 50%, 20% and 30%
- For the ERC (Equal Risk Contribution) portfolio, all the assets have the same risk budget

Weight budgeting (or traditional) approach

Assat	Maight	Marginal		tribution
Asset	Weight	Risk	Absolute	Relative
1	50.00%	29.40%	14.70%	70.43%
2	20.00%	16.63%	3.33%	15.93%
3	30.00%	9.49%	2.85%	13.64%
Volatility			20.87%	

Risk budgeting approach

Accot	Weight Margina		Risk Contribution		
Asset	weight	Risk	Absolute	Relative	
1	31.15%	28.08%	8.74%	50.00%	
2	21.90%	15.97%	3.50%	20.00%	
3	46.96%	11.17%	5.25%	30.00%	
Volatility			17.49%		

ERC approach

Accot	Weight	Marginal	Risk Cont	tribution	
Asset	weight	weight	Risk	Absolute	Relative
1	19.69%	27.31%	5.38%	33.33%	
2	32.44%	16.57%	5.38%	33.33%	
3	47.87%	11.23%	5.38%	33.33%	
Volatility			16.13%		

◆□▶ ◆骨▶ ◆≧▶ ◆≧▶

Definition Main Properties Using the Standard Deviation-based Risk Measure Some Illustrations

Existence and uniqueness

We consider the following risk budgeting problem:

$$\begin{array}{l} \operatorname{RC}_{i}(x) = b_{i} \mathcal{R}(x) \\ x_{i} \geq 0 \\ \sum_{i=1}^{n} b_{i} = 1 \\ \sum_{i=1}^{n} x_{i} = 1 \end{array}$$

Theorem

- The RB portfolio exists and is unique if the risk budgets are strictly positive (and if $\mathcal{R}(x)$ is bounded below)
- The RB portfolio exists and may be not unique if some risk budgets are set to zero
- The RB portfolio may not exist if some risk budgets are negative

These results hold for convex risk measures: volatility, Gaussian VaR & ES, elliptical VaR, non-normal ES, Kernel historical VaR, Cornish-Fisher VaR, etc.

MotivationsDefinitionRisk Parity ApproachMain PropertiesApplicationsUsing the Standard Deviation-based Risk MeasureConclusionSome Illustrations

The RB portfolio is a long-only minimum risk (MR) portfolio subject to a constraint of weight diversification

Let us consider the following minimum risk optimization problem:

$$egin{array}{rcl} x^{\star}(c) &=& rg\min \mathcal{R}(x) \ && \ \mathrm{u.c.} & \left\{ egin{array}{l} \sum_{i=1}^n b_i \ln x_i \geq c \ \mathbf{1}^{ op} x = 1 \ x \geq \mathbf{0} \end{array}
ight. \end{array}$$

if c = c⁻ = -∞, x^{*} (c⁻) = x_{mr} (no weight diversification)
if c = c⁺ = ∑_{i=1}ⁿ b_i ln b_i, x^{*} (c⁺) = x_{wb} (no risk minimization)
∃ c⁰ : x^{*} (c⁰) = x_{rb} (risk minimization and weight diversification)
⇒ if b_i = 1/n, x_{rb} = x_{erc} (variance minimization, weight diversification and perfect risk diversification²)

²The Gini coefficient of the risk measure is then equal to $0_2 \rightarrow 4_2 \rightarrow 4_2$

13 / 40

Definition Main Properties Using the Standard Deviation-based Risk Measure Some Illustrations

The RB portfolio is located between the MR portfolio and the WB portfolio

• The RB portfolio is a combination of the MR and WB portfolios:

$$x_i/b_i = x_j/b_j$$
 (wb)
 $\partial_{x_i} \mathcal{R}(x) = \partial_{x_j} \mathcal{R}(x)$ (mr)

$$\operatorname{RC}_i/b_i = \operatorname{RC}_j/b_j$$
 (rb)

• The risk of the RB portfolio is between the risk of the MR portfolio and the risk of the WB portfolio:

$$\mathcal{R}(x_{\mathrm{mr}}) \leq \mathcal{R}(x_{\mathrm{rb}}) \leq \mathcal{R}(x_{\mathrm{wb}})$$

With risk budgeting, we always diminish the risk compared to the weight budgeting.

 \Rightarrow For the ERC portfolio, we retrieve the famous relationship:

$$\sigma(\mathbf{x}_{\mathrm{mr}}) \leq \sigma(\mathbf{x}_{\mathrm{erc}}) \leq \sigma(\mathbf{x}_{\mathrm{ew}})$$

<ロト < 同ト < 巨ト < 巨ト

Definition Main Properties Using the Standard Deviation-based Risk Measure Some Illustrations

Introducing expected returns in RB portfolios

In the original paper of Maillard *et al.* (2010), the risk measure is the volatility:

$$\mathcal{R}(x) = \sigma(x) = \sqrt{x^{\top} \Sigma x}$$

Let us consider the standard deviation-based risk measure³:

$$\mathcal{R}(x) = -x^{\top} \mu + c \cdot \sqrt{x^{\top} \Sigma x} = -\mu(x) + c \cdot \sigma(x)$$

It encompasses three well-known risk measures:

- Gaussian value-at-risk with $c = \Phi^{-1}(\alpha)$
- Gaussian expected shortfall with $c = \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha}$
- Markowitz quadratic utility function with $c = \frac{\phi}{2}\sigma(x(\phi))$ We can easily compute the risk contribution of asset *i*:

$$\operatorname{RC}_{i} = x_{i} \left(\mu_{i} + c \cdot \frac{(\Sigma x)_{i}}{\sqrt{x^{\top} \Sigma x}} \right)$$

15 / 40

Definition Main Properties Using the Standard Deviation-based Risk Measure Some Illustrations

Existence and uniqueness

Theorem

If $c > SR^+ = SR(x^* | r)$ where x^* is the tangency portfolio, the RB portfolio exists and is unique^{*a*}.

^aBecause of the homogeneity property $\mathcal{R}(\lambda x) = \lambda \mathcal{R}(x)$.

Remark

This contrasts with the result based on the volatility risk measure: in this case, the RB portfolio always exists and is unique.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ →

Definition Main Properties Using the Standard Deviation-based Risk Measure Some Illustrations

Existence and uniqueness

Example

We consider four assets. Their volatilities are equal to 15%, 20%, 25% and 30% while the correlation matrix of asset returns is given by the following matrix:

$$C = \left(\begin{array}{ccccc} 1.00 & & & \\ 0.10 & 1.00 & & \\ 0.40 & 0.70 & 1.00 & \\ 0.50 & 0.40 & 0.80 & 1.00 \end{array}\right)$$

Here is the solution for the ERC portfolio:

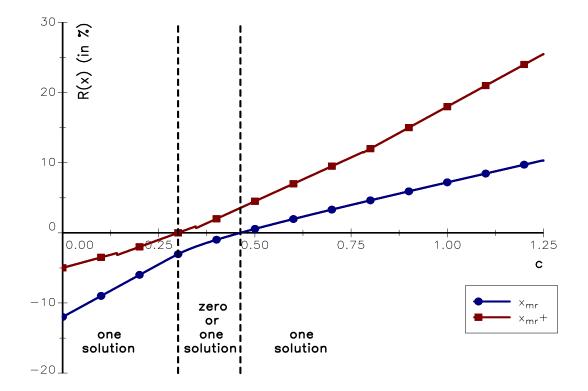
		$\mu_i = 7\%$)	$\mu_i = 25\%$			
с	0.40	$\Phi^{-1}(0.95)$	$\Phi^{-1}(0.99)$	0.40	$\Phi^{-1}(0.95)$	$\Phi^{-1}(0.99)$	
1		43.54	42.06	19.78		56.82	
2		28.18	28.11	21.89		29.75	
3		15.05	15.82	27.63		7.34	
4		13.23	14.01	30.70		6.08	
SR^+	0.557				1.991		

▲□▶▲□▶▲□▶▲□▶▲□ ♪ ④ ○ ○

Main Properties Using the Standard Deviation-based Risk Measure Some Illustrations

Existence and uniqueness

If the expected returns are 5%, 6%, 8% and 12%, we obtain:



 \Rightarrow We only consider RB portfolios with $c > SR^+$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

590

æ

Definition Main Properties Using the Standard Deviation-based Risk Measure Some Illustrations

Numerical solution of the optimization problem

Cyclical coordinate descent method of Tseng (2001):

arg min
$$f(x_1,...,x_n) = f_0(x_1,...,x_n) + \sum_{k=1}^m f_k(x_1,...,x_n)$$

where f_0 is strictly convex and the functions f_k are non-differentiable. If we apply the CCD algorithm to the RB problem:

$$\mathcal{L}(x;\lambda) = \arg\min -\mu(x) + c \cdot \sigma(x) - \lambda \sum_{i=1}^{n} b_i \ln x_i$$

we obtain⁴:

$$x_{i}^{\star} = \frac{-c\gamma_{i} + \mu_{i}\sigma(x) + \sqrt{(c\gamma_{i} - \mu_{i}\sigma(x))^{2} + 4cb_{i}\sigma_{i}^{2}\sigma(x)}}{2c\sigma_{i}^{2}}$$

 \Rightarrow It always converges⁵ (Theorem 5.1, Tseng, 2001).

⁴with $\gamma_i = \sigma_i \sum_{j \neq i} x_j \rho_{i,j} \sigma_j$.

19 / 40

Definition Main Properties Using the Standard Deviation-based Risk Measure Some Illustrations

MVO portfolios vs RB portfolios Relationships

Volatility risk measure

$$x^{\star}(\kappa) = \arg\min \frac{1}{2}x^{\top}\Sigma x$$

u.c.
$$\begin{cases} \sum_{i=1}^{n} b_{i} \ln x_{i} \ge \kappa \\ \mathbf{1}^{\top}x = 1 \\ x \ge \mathbf{0} \end{cases}$$

The RB portfolio is a minimum variance portfolio subject to a constraint of weight diversification. Generalized risk measure

$$x^{\star}(\kappa) = \arg \min - x^{\top} \mu + c \cdot \sqrt{x^{\top} \Sigma x}$$

u.c.
$$\begin{cases} \sum_{i=1}^{n} b_i \ln x_i \ge \kappa \\ \mathbf{1}^{\top} x = 1 \\ x \ge \mathbf{0} \end{cases}$$

The RB portfolio is a mean-variance portfolio subject to a constraint of weight diversification.

<ロト < 団 > < 巨 > < 巨 > 、

Definition Main Properties Using the Standard Deviation-based Risk Measure Some Illustrations

MVO portfolios vs RB portfolios

RB portfolios with expected returns = reformulation of MVO portfolios with regularization?

The answer is: NOT.

MVO

- 2D: Risk and Return (trade-off)
- $\mu(x) =$ return dimension or profile
- ER = arbitrage opportunity

 $\Rightarrow \mathsf{Active}/\mathsf{bets}\ \mathsf{management}$

RB

- 1D: Risk (no trade-off)
- $\mu(x) = risk$ dimension or profile
- Expected returns = directional risks

<ロ> <同> <同> < 三> < 三> < 三> <

 \Rightarrow Risk management

590

Definition Main Properties Using the Standard Deviation-based Risk Measure Some Illustrations

MVO portfolios vs RB portfolios Stability (I)

Example

We consider a universe of three assets. The expected returns are respectively $\mu_1 = \mu_2 = 8\%$ and $\mu_3 = 5\%$. For the volatilities, we have $\sigma_1 = 20\%$, $\sigma_2 = 21\%$, $\sigma_3 = 10\%$. Moreover, we assume that the cross-correlations are the same and we have $\rho_{i,j} = \rho = 80\%$.

lable:	Optimal portfolio ^o with $\sigma^* = 15\%$	

. . 6

Asset	Xi	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}_i^{\star}	\mathcal{VC}_i	\mathcal{VC}_i^{\star}
1	38.3	30.3	11.6	50.0	7.3	49.0
2	20.2	30.3	6.1	26.4	3.9	25.8
3	41.5	13.2	5.5	23.6	3.8	25.2
Volatili	15.0					

⁶We consider the standard deviation-based risk measure with c = 2. c = 0

22 / 40

Definition Main Properties Using the Standard Deviation-based Risk Measure Some Illustrations

MVO portfolios vs RB portfolios Stability (II)

- MVO: the objective is to target a volatility of 15%.
- **2** RB: the objective is to target the budgets (50.0%, 26.4%, 23.6%).

ρ			70%	90%		90%		
σ_2					18%	18%	l	
μ_1							20%	-20%
	<i>x</i> ₁	38.3%	38.3%	44.6%	13.7%	0.0%	56.4%	0.0%
MVO	<i>x</i> ₂	20.2%	25.9%	8.9%	56.1%	65.8%	0.0%	51.7%
	X3	41.5%	35.8%	46.5%	30.2%	34.2%	43.6%	48.3%
	<i>x</i> ₁	38.3%	37.5%	39.2%	36.7%	37.5%	49.1%	28.8%
RB	<i>x</i> ₂	20.2%	20.4%	20.0%	23.5%	23.3%	16.6%	23.3%
	<i>x</i> 3	41.5%	42.1%	40.8%	39.7%	39.1%	34.2%	47.9%

⇒ RB portfolios are less sensitive to specification errors and expected returns than optimized portfolios ($\Sigma \text{ vs } \Sigma^{-1}$; arbitrage factors vs directional risk).

Definition Main Properties Using the Standard Deviation-based Risk Measure Some Illustrations

MVO portfolios vs RB portfolios Stability (III)

MVO portfolios with targeted volatility are not sensitive to linear transformation of expected returns:

$$x^{\star}(\mu; \Sigma \mid \sigma^{\star}) = x^{\star}(\alpha \mu + \beta; \Sigma \mid \sigma^{\star})$$

RB portfolios are sensitive to linear transformation of expected returns:

ſ		μ		μ μ μ μ μ μ		2μ		3µ - 10%	
		MVO	RB	MVO	RB	MVO	RB	MVO	RB
	<i>x</i> ₁	38.3%	38.3%	38.3%	26.1%	38.3%	36.0%	38.3%	41.4%
	<i>x</i> ₂	20.2%	20.2%	20.2%	13.5%	20.2%	18.9%	20.2%	21.9%
	<i>x</i> 3	41.5%	41.5%	41.5%	60.4%	41.5%	45.1%	41.5%	36.7%

$$x^{\star}(\mu; \Sigma \mid b) \neq x^{\star}(\alpha \mu + \beta; \Sigma \mid b)$$

Definition Main Properties Using the Standard Deviation-based Risk Measure Some Illustrations

Impact of expected returns on the RB portfolio

We consider an investment universe of 3 assets. Their volatilities are equal to 15%, 20% and 25%, whereas the correlation matrix *C* is:

$$C = \left(\begin{array}{ccc} 1.00 & & \\ 0.30 & 1.00 & \\ 0.50 & 0.70 & 1.00 \end{array}\right)$$

ERC portfolios⁷ for 6 parameter sets of expected returns with c = 2:

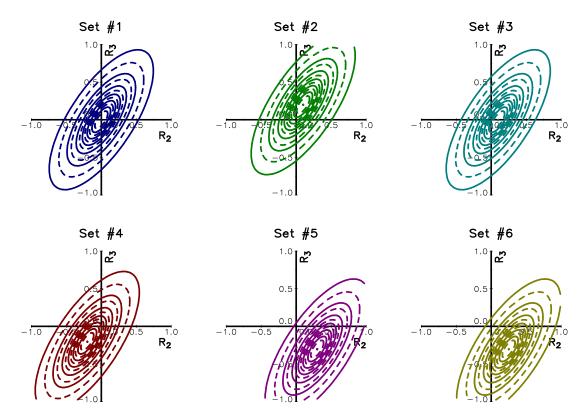
Set	#1	#2	#3	#4	#5	#6
μ_1	0%	0%	20%	0%	0%	25%
μ_2	0%	10%	10%	-20%	30%	25%
μ_3	0%	20%	0%	-20%	-30%	-30%
<i>x</i> ₁	45.25	37.03	64.58	53.30	29.65	66.50
x ₂	31.65	33.11	24.43	26.01	63.11	31.91
<i>x</i> ₃	23.10	29.86	10.98	20.69	7.24	1.59
$\begin{bmatrix} \bar{\mathcal{V}}\bar{\mathcal{C}}_1^{\star} \end{bmatrix}$	33.33	23.80	60.96	43.79	15.88	64.80
$\mathcal{VC}_2^{\overline{\star}}$	33.33	34.00	23.85	26.32	75.03	33.10
$\mathcal{VC}_3^{\overline{\star}}$	33.33	42.20	15.19	29.89	9.09	2.11

 $^{7}\mathcal{RC}_{i}^{\star} = 33.33\%.$

Definition Main Properties Using the Standard Deviation-based Risk Measure Some Illustrations

Impact of expected returns on the RB portfolio

Figure: Contour curves of the asset return distribution



 \Rightarrow Same volatility risk measure, but different directional risks

P

▶ ◀ 重

590

▲ 글 ▶

Strategic Asset Allocation Tactical Asset Allocation Risk parity and time-varying risk premia One concept, several implementations, different performances!

SAA and RP

- Long-term investment policy (10-30 years)
- Capturing the risk premia of asset classes (equities, bonds, real estate, natural resources, etc.)
- Top-down macro-economic approach (based on short-run disequilibrium and long-run steady-state)

ATP Danish Pension Fund

"Like many risk practitioners, ATP follows a portfolio construction methodology that focuses on fundamental economic risks, and on the relative volatility contribution from its five risk classes. [...] The strategic risk allocation is 35% equity risk, 25% inflation risk, 20% interest rate risk, 10% credit risk and 10% commodity risk" (Henrik Gade Jepsen, CIO of ATP, IPE, June 2012).

These risk budgets are then transformed into asset classes' weights. At the end of Q1 2012, the asset allocation of ATP was also 52% in fixed-income, 15% in credit, 15% in equities, 16% in inflation and 3% in commodities (Source: FTfm, June 10, 2012).

<ロ> <同> <同> < 同> < 三> < 三>

Strategic Asset Allocation Tactical Asset Allocation Risk parity and time-varying risk premia One concept, several implementations, different performances!

SAA in practice (March 2011)

Table: Expected returns, volatility and risk budgets⁸ (in %)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
μ_i	4.2	3.8	5.3	9.2	8.6	11.0	8.8
σ_i	5.0	5.0	7.0	15.0	15.0	18.0	30.0
bi	20.0	10.0	15.0	20.0	10.0	15.0	10.0

Table: Correlation matrix of asset returns (in %)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
(1)	100			1			1
(2)	80	100		ļ			1
(3)	60	40	100				1
$\overline{(4)}$		$^{-}-2\overline{0}$		100			+ — — -
(5)	-20	-10	20	90	100		1
(6)	-20	-20	30	70	70	100	
$\overline{(7)}$	0		10	20	- 20	30	100

⁸The investment universe is composed of seven asset classes: US Bonds 10Y (1), EURO Bonds 10Y (2), Investment Grade Bonds (3), US Equities (4), Euro Equities (5), EM Equities (6) and Commodities (7).

Strategic Asset Allocation Tactical Asset Allocation Risk parity and time-varying risk premia One concept, several implementations, different performances!

An example

	RB							M	VO	
	<i>c</i> =	$=\infty$	<i>C</i> =	= 3	$c=2$ $\sigma^{\star}=$		4.75%	σ^{\star} =	= 5%	
	Xi	VC_i^{\star}	Xi	VC_i^{\star}	Xi	VC_i^{\star}	xi	VC_i^{\star}	Xi	VC_i^{\star}
(1)	36.8	20.0	38.5	23.4	39.8	26.0	60.5	38.1	64.3	34.6
(2)	21.8	10.0	23.4	12.3	24.7	14.1	14.0	7.4	7.6	3.2
(3)	14.7	15.0	13.1	14.0	11.7	12.8	0.0	0.0	0.0	0.0
[(4]	10.2	20.0	9.5	18.3	8.9	17.1	5.2	10.0	5.5	10.8
(5)	5.5	10.0	5.2	9.2	4.9	8.6	5.2	9.2	5.5	9.8
(6)	7.0	15.0	6.9	14.5	7.0	14.4	14.2	33.7	16.0	39.5
[-(7)]	3.9	10.0	3.4	8.2	3.0	6.9	1.0	1.7	1 - 1.1	2.1
$\mu(\mathbf{x})$	5.	69	5.	58	5.	50	5.	64	5.	83
$\sigma(x)$	5.	03	4.	85	4.	74	4.	75	5.	00
$\operatorname{SR}(x \mid r)$	1.	13	1.	15	, <u>1</u> .	16	1.	19	1.	17

Table: Long-term strategic portfolios

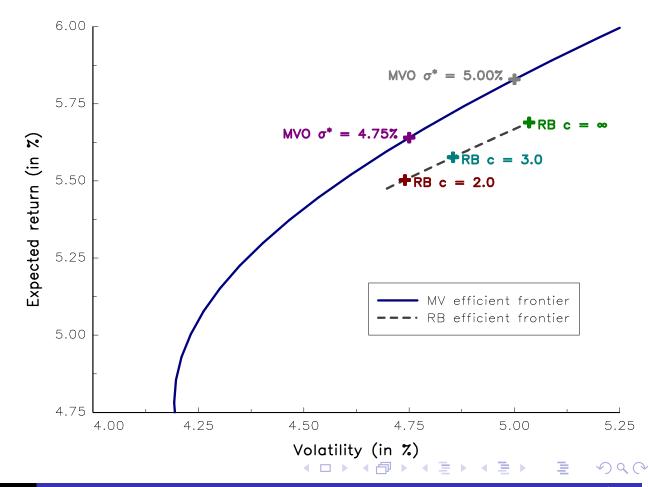
- RB portfolios have lower Sharpe ratios than MVO portfolios (by construction!), but the difference is small.
- RB portfolios are highly diversified, not MVO portfolios.
- Expected returns have some impact on the volatility contributions VC_i^* .

Strategic Asset Allocation Tactical Asset Allocation Risk parity and time-varying risk premia One concept, several implementations, different performances!

Efficient frontiers

- RB frontier is lower than MV frontier (because of the logarithmic barrier).
- $c = \infty$ corresponds to the RB portfolio with the highest volatility (and the highest expected return).
- $c \rightarrow SR(x^*|r)$ corresponds to the RB portfolio with the highest Sharpe ratio.

Figure: Efficient frontier of SAA portfolios



Strategic Asset Allocation Tactical Asset Allocation Risk parity and time-varying risk premia One concept, several implementations, different performances!

Risk parity and absolute return funds

The risk/return profile of risk parity funds is similar to that of diversified funds:

- **•** The drawdown is close to 20%;
- **2** The Sharpe ratio is lower than 0.5.

 \Rightarrow The (traditional) risk parity approach is not sufficient to build an absolute return fund.

How to transform it to an absolute return strategy?

- By incorporating some views on economics and asset classes (global macro fund, e.g. the All Weather fund of Bridgewater)
- Objective and momentum patterns (long-only CTA)
- Sy defining a more dynamic allocation (BL, time-varying risk budgets, etc.)

<ロト < 同ト < 巨ト < 巨ト -

Strategic Asset Allocation **Tactical Asset Allocation** Risk parity and time-varying risk premia One concept, several implementations, different performances!

Calibrating the scaling factor

In a TAA model, the risk measure is no longer static:

$$\mathcal{R}_t(x_t) = -x_t^{\top} \mu_t + c_t \cdot \sqrt{x_t^{\top} \Sigma_t x_t}$$

 c_t can not be constant because:

- the solution may not $exist^9$.
- 2 this rule is time-inconsistent $(1Y \neq 1M)$:

$$\begin{aligned} \mathcal{R}_t \left(x_t; c, h \right) &= -h \cdot x_t^\top \mu_t + c \sqrt{h} \cdot \sqrt{x_t^\top \Sigma_t x_t} \\ &= h \cdot \mathcal{R}_t \left(x_t; c', 1 \right) \end{aligned}$$

with $c' = h^{-0.5}c$.

⁹There is no solution if $c = \Phi^{-1}(99\%)$ and the maximum Sharpe ratio is 3. $\equiv 10^{-1} = 10^{-1} = 10^{-1}$

Strategic Asset Allocation Tactical Asset Allocation Risk parity and time-varying risk premia One concept, several implementations, different performances!

An illustration

- Investment universe: MSCI World TR Net index, Citigroup WGBI All Maturities index
- Empirical covariance matrix (260 days)
- Simple moving average based on the daily returns (260 days)
- Different rules:

$$c_t = \max(c_{\rm ES}(99.9\%), 2.00 \cdot {
m SR}_t^+)$$
 (RP #1)

$$c_t = \max\left(c_{\text{VaR}}\left(99\%\right), 1.10 \cdot \text{SR}_t^+\right) \tag{RP \#2}$$

$$c_t = 1.10 \cdot \operatorname{SR}_t^+ \cdot 1\left\{\operatorname{SR}_t^+ > 0\right\} + \infty \cdot 1\left\{\operatorname{SR}_t^+ \le 0\right\}$$
 (RP #3)

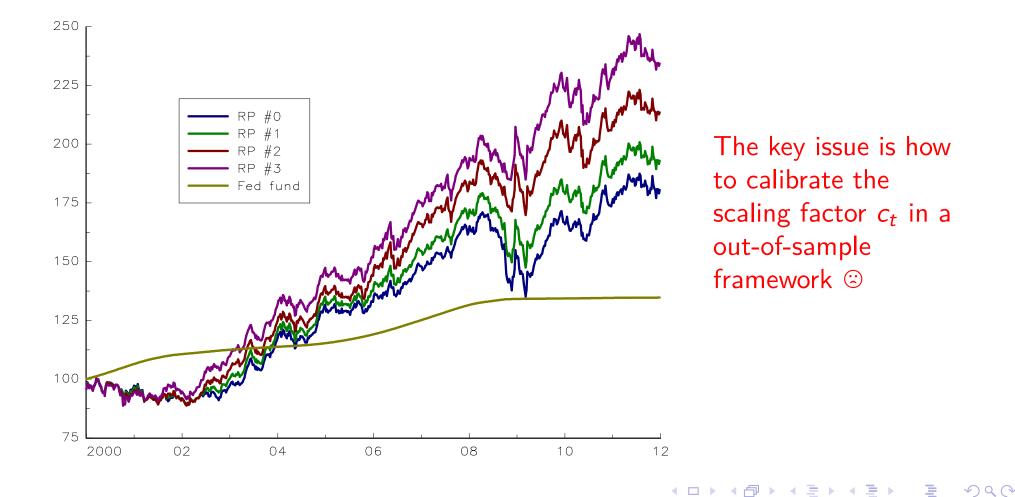
Table: Statistics of risk parity strategies

RP		$\hat{\mu}_{1\mathrm{Y}}$	$\hat{\sigma}_{1Y}$	SR	\mathcal{MDD}	γ_1	γ_2	τ
Static	#0	5.10	7.30	0.35	-21.39	0.07	2.68	0.30
					-18.06			
Active	#2	6.58	7.80	0.52	-12.78	0.05	2.80	2.98
					-12.84			

Strategic Asset Allocation Tactical Asset Allocation Risk parity and time-varying risk premia One concept, several implementations, different performances!

An illustration

Figure: Backtesting of RP strategies



Strategic Asset Allocation Tactical Asset Allocation Risk parity and time-varying risk premia One concept, several implementations, different performances!

Risk parity and time-varying risk premia

Optimality of the ERC portfolio

The ERC portfolio corresponds to the tangency portfolio if the Sharpe ratio is the same for all assets and the correlation is uniform.

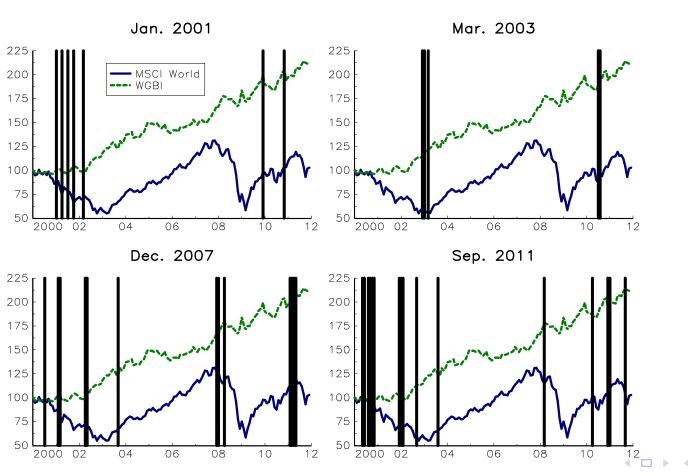
The Sharpe ratio is constant if:

- the risk premia and the volatilities are constant;
- or the dynamic of the risk premia is the same as the dynamic of the volatilities.
- \Rightarrow Risk premia are time-varying:
 - General framework: Lucas (1976), Engle, Lilien and Robins (1987), Cochrane (2005).
 - Stocks: Campbell and Shiller (1988), Lettau and Ludvigson (2001).
 - Bonds: Cochrane and Piazzesi (2002), Dai and Singleton (2002), Diebold (2006).

Strategic Asset Allocation Tactical Asset Allocation Risk parity and time-varying risk premia One concept, several implementations, different performances!

Same weight compositions, but different economic regimes

Figure: Equivalent ERC compositions (static risk parity)



- Dec. 2002 Mar. 2003 ≡ Jul.
 – Aug. 2010 (26.5/73.5)
- Jul. 2000 ≡ Feb.

 Mar. 2001 ≡
 Apr. May 2002
 ≡ Sep. 2003 ≡
 Dec. 2007 Apr.
 2008 ≡ Feb. May 2011
 (30/70)
- etc.

 $\mathscr{O} \mathcal{Q} \mathcal{O}$

Strategic Asset Allocation Tactical Asset Allocation Risk parity and time-varying risk premia One concept, several implementations, different performances!

The rising interest rate challenge

30 years downward trend of interest rate	es
--	----

US 10-year sovereign interest rate:	Peak	30/09/1981	15.80%
	Trough	25/07/2012	1.37%

 \Rightarrow A significant component of the good performance of (static) risk parity funds.

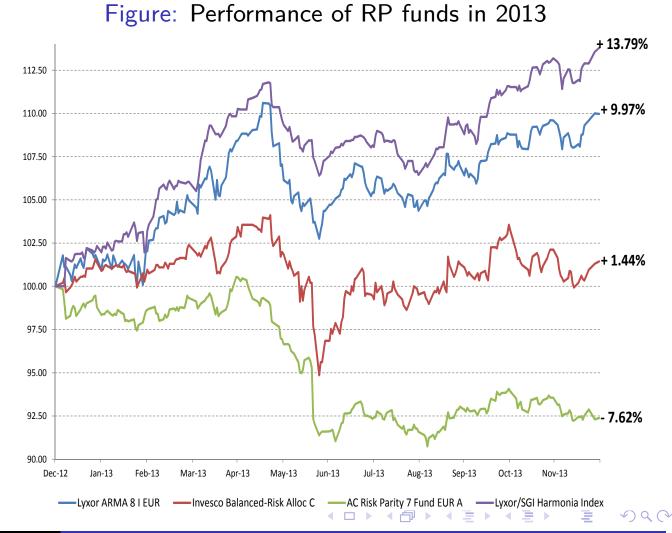
- The right benchmark is certainly not the 60/40 asset mix policy.
- What will be the performance of risk parity funds if the interest rates rise?
 - Static risk parity vs active risk parity
 - 1994 scenario: fed fund = +300 bps / long rates = +250 bps
 ⇒ static: ☺, active: ☺
 - 1999 scenario: fed fund = +125 bps / long rates = +200 bps
 ⇒ static: ☺, active: ☺

▲□▶ ▲□▶ ▲□▶ ▲亘▶ -

Strategic Asset Allocation Tactical Asset Allocation Risk parity and time-varying risk premia One concept, several implementations, different performances!

One concept, several implementations, different performances!

- Choice of the investment universe
- Choice of the risk budgets
- Choice of the TAA model
- Choice of the leverage implementation
- Choice of the rebalancing frequency
- etc.



Conclusion

- Risk parity based on the volatility risk measure = not the right answer to build absolute return fund.
- We propose a solution to incorporate discretionary views and trends into risk parity portfolios:
 - Expected returns = directional risks, and not performance opportunities.
 - It can be viewed as an active allocation strategy, but it remains a risk parity strategy.
- But it is not a magic allocation method:

"It cannot free investors of their duty of making their own choices".

▲□▶ ▲□▶ ▲□▶ ▲ □▶ -

F. Barjou.

Active Risk Parity Strategies are Up to the Interest Rate Challenge. *Lyxor Research Paper*, November 2013.

S. Maillard, T. Roncalli and J. Teïletche. The Properties of Equally Weighted Risk Contribution Portfolios. *Journal of Portfolio Management*, 36(4), 2010.

L. Martellini, V. Milhau.

Towards Conditional Risk Parity – Improving Risk Budgeting Techniques in Changing Economic Environments.

EDHEC Working Paper, March 2014.

T. Roncalli.

Introduction to Risk Parity and Budgeting.

Chapman & Hall, 410 pages, July 2013.

T. Roncalli.

Introducing Expected Returns into Risk Parity Portfolios: A New Framework for Tactical and Strategic Asset Allocation.

SSRN, www.ssrn.com/abstract=2321309, July 2013.

40 / 40

SQ P