Managing Sovereign Credit Risk in Bond Portfolios

Benjamin Bruder*, Pierre Hereil*, Thierry Roncalli*

*Lyxor Asset Management, France

AFGAP, November 17, 2011

< ∃ >

Outline

Some facts

- Rediscovering the sovereign credit risk
- The eurozone crisis

2 Measuring the risk of sovereign bond portfolios

- Defining the sovereign credit risk measure
- The model
- Defining the risk measure and risk contributions
- Application to debt (capitalisation)-weighting
- Implications for the management of bond portfolios
 - Fundamental indexation
 - Risk-based indexation
 - Comparison of the indexing schemes
 - Comparison with active management

4 Conclusion

Some facts

Measuring the risk of sovereign bond portfolios Implications for the management of bond portfolios Conclusion Rediscovering the sovereign credit risk The eurozone crisis

Major financial crises

- 200 sovereign external defaults and 68 internal defaults since 1800
- 1982 (Mexico, Latin America)
- 1997 (Asia, Russia)
- 2001 (Turkey, Argentina)

Sovereign credit risk concerns generally emerging markets:

Argentina (1982-83, 1989, 1995, 2001), Brazil (1982, 1987, 1990, 1994, 1998-99), Mexico (1982, 1989, 1994-95), Nigeria (1987, 1989, 1996, 1999), Pakistan (1983, 2000), Philippine (1983, 1997), Turkey (1982, 1994, 1999, 2001), etc.

 \Rightarrow Costs may be huge: Argentina (55% of GDP, 1980-82), Japan (10% of GDP, 1990s), Chile (41% of GDP, 1981-87), Israel (30% of GDP, 1977-83), United States (3% of GDP, 1980s), Sweden (10% of GDP, 1990-93), etc.

Source: Crockett (1997), Wyplosz (1999).

Rediscovering the sovereign credit risk The eurozone crisis

Definition

The country risk encompasses three types of risk:

- External debt (e.g. Russian crisis)
- Banking system (e.g. U.S. savings and loan crisis)
- Financial crisis (e.g. Subprime crisis)

Specificity of sovereign debt: it takes a long time to deleverage (e.g. Canada, 2000)

Rediscovering the sovereign credit risk The eurozone crisis

The syndrome of this-time-is-different

The essence of this-time-is-different syndrome is simple. It is rooted in the firmly held belief that **financial crises are things** that happen to other people in other countries at other times; crises do not happen to us, here and now. We are doing things better, we are smarter, we have learned from past mistakes. The old rules of valuation no longer apply. The current boom, unlike the many booms that preceded catastrophic collapses in the past (even in our country), is built on sound fundamentals, structural reforms, technological innovations, and good policy. Or so the story goes [...] Unfortunately, a **highly leveraged economy** can unwittingly be sitting with its back at the edge of a financial cliff for many years before chance and circumstance provoke a crisis of confidence that pushes it off.

Source: Reinhart and Rogoff (2009).

Some facts

Measuring the risk of sovereign bond portfolios Implications for the management of bond portfolios Conclusion Rediscovering the sovereign credit risk The eurozone crisis

Debt crisis or Euro crisis?

- 2001-2007: No major financial crises
- 2007-2008: Subprime crisis
- September 2008: Bankruptcy of Lehman Brothers
- April 2010: Greece sovereign debt rating is cut to BB+
- August 2011: Downgrade of US government debt

Theory of debt sustainability

- Ponzi scheme
- Bubbles as payoffs at infinity
- Instability of the debt ratio dynamics (primary balance, real interest rate & output)

Theory of optimum currency area

It describes the optimal characteristics for the creation of a currency (e.g. a monetary union)

Is the eurozone an optimal currency area?

Some facts

Measuring the risk of sovereign bond portfolios Implications for the management of bond portfolios Conclusion Rediscovering the sovereign credit risk The eurozone crisis

The eurozone debt Evolution of the debt market value (in MEUR)

Rediscovering the sovereign credit risk The eurozone crisis

Exposure of investors to the eurozone risk

From domestic bonds to non-domestic bonds (since 2000) \Rightarrow Diversification of sovereign bond portfolios

- Institutional investors
- Pension funds
- Retail ("contrat en euro")

Country	France	Germany	Greece	Italy	Portugal	Spain	UK
France	29.2%	9.1%	16.8%	9.4%	26.6%	12.9%	3.4%
Germany	5.9%	26.5%	9.5%	6.2%	16.3%	13.1%	2.3%
Italy	3.1%	3.0%	6.7%	47.4%	4.5%	1.8%	0.9%
Japan	4.1%	5.1%	2.1%	2.2%	1.1%	1.2%	2.1%
UK	4.0%	4.4%	3.2%	3.3%	3.6%	4.1%	65.3%
US	2.4%	2.8%	0.3%	0.6%	0.2%	1.9%	4.8%
Domestic	29.2%	26.5%	22.0%	47.4%	1.3%	36.4%	65.3%
Non-resident	70.8%	73.5%	78.0%	52.6%	98.7%	63.6%	34.7%

Figure: Detention of the public debt in 2008

Source: Broyer and Bruner (2010).

Defining the sovereign credit risk measure The model Defining the risk measure and risk contributions Application to debt (capitalisation)-weighting

Ratings or spreads?

Figure: Some popular measures of country risk

Country	S&P Rating ¹	Euromoney	Country Risk ²	Opacity Score ³	CDS Spre	ad (in bp)
country		Score	Rank		01/09/11	04/10/11
Austria	AAA	84.01	13	16	123	186
Belgium	AA+	77.81	19	19	249	309
Finland	AAA	86.96	8	9	64	85
France	AAA	80.90	16	23	163	201
Germany	AAA	84.98	11	17	76	122
Greece	CCC	52.38	65	31	2,291	5,736
Ireland	BBB+	62.33	43	15	781	726
Italy	А	71.20	30	36	384	487
Netherlands	AAA	86.67	9	24	80	117
Portugal	BBB-	61.35	44	25	957	1,167
Spain	AA	66.71	36	26	376	391
Norway	AAA	93.44	1		44	52
Switzerland	AAA	90.31	3	22	58	79
Denmark	AAA	89.21	4	15	100	153
Sweden	AAA	88.74	5	14	54	66
Canada	AAA	87.17	7	20		
United Kingdom	AAA	80.22	17	18	76	102
United States	AA+	82.10	15	22	52	52
Japan	AA-	74.66	25	25	102	155
	¹ Sep. 15 th 2011	² March 2011		³ 2009. Milken Institute		

Benjamin Bruder, Pierre Hereil, Thierry Roncalli

Defining the sovereign credit risk measure The model Defining the risk measure and risk contributions Application to debt (capitalisation)-weighting

Choosing the right measure

- Volatility of price returns \neq a good measure of sovereign credit risk
- \bullet Correlation of price returns \neq a good measure of contagion
- A better measure is the yield spread, but it is difficult to compute because it is difficult to define the reference (risk-free) rate.

 \Rightarrow One of the best measure is the CDS spread (it does not depend on the currency, the yield curve or the duration).

Some analytics

Let $S_i(t)$ be the spread of the *i*th country. We have¹:

$$\mathrm{d}S_{i}(t) = \sigma_{i}^{S} \cdot S_{i}(t)^{\beta_{i}} \cdot \mathrm{d}W_{i}(t)$$

Moreover, we assume that the correlation between the brownian motions $W_i(t)$ and $W_j(t)$ is $\Gamma_{i,j}$.

Remark

 $\beta = 0 \Rightarrow$ Absolute variations of spread are Gaussian. $\beta = 1 \Rightarrow$ Relative variations of spread are Gaussian.

¹The dynamics is the same as in the SABR model. $\langle \Box \rangle \langle \Box \rangle$

Benjamin Bruder, Pierre Hereil, Thierry Roncalli

Defining the sovereign credit risk measure **The model** Defining the risk measure and risk contributions Application to debt (capitalisation)-weighting

Calibration of the β_i parameter

We assume that we observe spreads at some known dates t_0, \ldots, t_n . Let $S_{i,j}$ be the observed spread for the *i*th country at date t_j . The log-likelihood function for the *i*th country is:

$$\ell = -\frac{n}{2} \ln 2\pi - n \ln \sigma_i^S - \frac{1}{2} \sum_{j=1}^n \ln (t_j - t_{j-1}) - \beta_i \sum_{j=1}^n \ln S_{i,j-1} - \frac{1}{2} \sum_{j=1}^n \frac{(S_{i,j} - S_{i,j-1})^2}{\left(\sigma_i^S S_{i,j-1}^{\beta_i}\right)^2}$$

Figure: Results for the period January 2008-August 2011

Country	AT	BE	FI	FR	DE	GR	IE	IT	NL	PT	ES	Average
estimate	0.996	1.017	0.816	0.786	0.899	1.070	0.836	1.157	0.793	1.013	1.148	0.957
std-dev.	1.10%	2.00%	1.60%	1.60%	2.00%	1.10%	0.70%	1.70%	0.90%	1.10%	2.10%	1.45%

$$\Rightarrow$$
 We assume that $\beta_i = 1$.

Defining the sovereign credit risk measure **The model** Defining the risk measure and risk contributions Application to debt (capitalisation)-weighting

Estimation of the volatility σ_i^S

Figure:	Statistics	of	σ_i^S
---------	------------	----	--------------

Country	July-08	July-09	July-10	July-11	September-11
Austria	66.9%	105.8%	77.8%	45.9%	54.4%
Belgium	73.3%	88.9%	78.0%	57.2%	65.8%
Finland	106.8%	97.9%	75.2%	49.8%	55.7%
France	78.2%	91.8%	97.7%	57.3%	63.9%
Germany	81.3%	98.5%	74.9%	48.8%	55.7%
Greece	67.5%	65.8%	94.7%	49.4%	56.8%
Ireland	80.3%	99.8%	73.4%	51.7%	53.5%
Italy	58.8%	69.5%	89.3%	61.5%	69.3%
Netherlands	95.2%	103.7%	68.6%	47.3%	54.9%
Portugal	66.9%	72.0%	116.6%	53.5%	58.3%
Spain	72.4%	76.8%	90.2%	58.9%	64.6%

 $\Rightarrow \sigma_i^S$ decreases when $S_i(t)$ increases.

Defining the sovereign credit risk measure **The model** Defining the risk measure and risk contributions Application to debt (capitalisation)-weighting

Estimation of the contagion matrix

Figure: Estimated Γ matrix (January 2008)

Country	AT	BE	FI	FR	DE	GR	IE	IT	NL	РТ	ES
Austria	100%										
Belgium	54%	100%									
Finland	27%	34%	100%								
France	55%	60%	42%	100%							
Germany	51%	43%	23%	50%	100%						
Greece	42%	38%	29%	47%	43%	100%					
Ireland	33%	35%	41%	37%	27%	22%	100%				
Italy	47%	50%	37%	60%	47%	61%	35%	100%			
Netherlands	22%	38%	32%	29%	17%	4%	29%	22%	100%		
Portugal	38%	48%	23%	45%	45%	58%	29%	58%	12%	100%	
Spain	35%	49%	22%	33%	33%	35%	28%	41%	30%	41%	100%

 \Rightarrow The average correlation is 38%.

Defining the sovereign credit risk measure **The model** Defining the risk measure and risk contributions Application to debt (capitalisation)-weighting

Estimation of the contagion matrix

Figure: Estimated Γ matrix (September 2011)

Country	AT	BE	FI	FR	DE	GR	IE	ІТ	NL	РТ	ES
Austria	100%										
Belgium	75%	100%									
Finland	68%	64%	100%								
France	72%	70%	61%	100%							
Germany	77%	72%	65%	72%	100%						
Greece	38%	48%	35%	37%	37%	100%					
Ireland	58%	62%	55%	56%	59%	54%	100%				
Italy	71%	85%	66%	67%	69%	48%	68%	100%			
Netherlands	69%	67%	72%	67%	78%	45%	56%	68%	100%		
Portugal	55%	66%	50%	55%	57%	54%	80%	73%	52%	100%	
Spain	67%	76%	56%	60%	61%	49%	69%	80%	56%	71%	100%

 \Rightarrow The correlations have increased (the average correlation is now 62%).

Defining the sovereign credit risk measure **The model** Defining the risk measure and risk contributions Application to debt (capitalisation)-weighting

Estimation of the contagion matrix

Defining the sovereign credit risk measure The model Defining the risk measure and risk contributions Application to debt (capitalisation)-weighting

Computing the sovereign risk measure for one bond

Let $B_t(D_i)$ be a zero-coupon risky bond of maturity (or duration) D_i . We have:

$$\mathrm{d}\ln B_t(D_i) = -D_i \cdot \mathrm{d}R(t) - D_i \cdot \mathrm{d}S_i(t)$$

with R(t) the "risk-free" interest rate.

We then define the credit risk component of bond volatility as follows:

$$\sigma_i^B = D_i \cdot \sigma_i^S \cdot S_i(t)^{\beta_i}$$

Benjamin Bruder, Pierre Hereil, Thierry Roncalli

Defining the sovereign credit risk measure The model Defining the risk measure and risk contributions Application to debt (capitalisation)-weighting

Computing the sovereign risk measure of a bond portfolio

Let $x = (x_1, ..., x_m)$ be the weights of bonds in the portfolio. The risk measure is:

$$\mathscr{R}(x) = \sqrt{x^{\top} \Sigma x}$$

with:

$$\Sigma_{i,j} = \Gamma_{i,j} \cdot \sigma_i^B \cdot \sigma_j^B$$

 $\mathscr{R}(x)$ is the volatility of the CDS basket which would perfectly hedge the sovereign credit risk of the bond portfolio.

Defining the sovereign credit risk measure The model Defining the risk measure and risk contributions Application to debt (capitalisation)-weighting

Euler decomposition of convex risk measure

Let $\mathscr{R}(x_1,\ldots,x_m)$ be a coherent convex risk measure. We have:

$$\mathscr{R}(x_1,\ldots,x_m) = \sum_{i=1}^m \underbrace{x_i \cdot \frac{\partial \mathscr{R}(x_1,\ldots,x_m)}{\partial x_i}}_{RC_i}$$

We can then decompose the risk measure exactly by m individual sources of risk.

Our risk measure $\mathscr{R}(x) = \sqrt{x^{\top}\Sigma x}$ is convex:

$$\frac{\partial \mathscr{R}(x)}{\partial x} = \frac{\Sigma x}{\sqrt{x^{\top}\Sigma x}}$$

$$RC_{i} = x_{i} \cdot \frac{(\Sigma x)_{i}}{\sqrt{x^{\top}\Sigma x}}$$

$$\sum_{i=1}^{m} RC_{i} = \sum_{i=1}^{m} x_{i} \cdot \frac{(\Sigma x)_{i}}{\sqrt{x^{\top}\Sigma x}} = x^{\top} \frac{\Sigma x}{\sqrt{x^{\top}\Sigma x}} = \sqrt{x^{\top}\Sigma x} = \mathscr{R}(x)$$

Defining the sovereign credit risk measure The model Defining the risk measure and risk contributions Application to debt (capitalisation)-weighting

The IRB formula is an example of a convex risk measure

Assumptions in the Basle II IRB model:

- The portfolio is infinitely granular.
- 2 LGD is independent of default times.
- **③** Default times are correlated with a one-factor model.

The expression of the unexpected loss is then:

$$UL(\alpha) = \sum_{i=1}^{m} EAD_i \cdot K_i$$

=
$$\sum_{i=1}^{m} EAD_i \cdot \mathbb{E}[LGD_i] \cdot \left(\Phi\left(\frac{\Phi^{-1}(PD_i) + \sqrt{\rho}\Phi^{-1}(\alpha)}{\sqrt{1-\rho}}\right) - PD_i\right)$$

It satisfies the Euler decomposition: K_i is the marginal risk and $EAD_i \cdot K_i$ is the risk contribution.

Defining the sovereign credit risk measure The model Defining the risk measure and risk contributions Application to debt (capitalisation)-weighting

Illustration of the risk decomposition

- 3 assets
- \bullet Volatilities are respectively 20%, 30% and 15%
- Correlations are set to 60% between the $1^{\rm st}$ asset and the 2^{nd} asset and 10% between the first two assets and the 3^{rd} asset
- The risk measure is the volatility of the portfolio

Asset	Woight	Marginal	Risk Contribution					
Asset	weight	Risk Absolute R		Relative				
1	60.00%	18.80%	11.28%	66.67%				
2	20.00%	23.94%	4.79%	28.30%				
3	20.00%	4.26%	0.85%	5.03%				
Volatility			16.92%					

Traditional approach

Defining the sovereign credit risk measure The model Defining the risk measure and risk contributions Application to debt (capitalisation)-weighting

Some results for the EGBI index

Figure: EGBI weights and risk contributions

Country	July	-08	July	-09	July	-10	July	-11	Septem	ber-11
Country	Weights	RC								
Austria	4.1%	1.7%	3.6%	7.7%	4.1%	2.3%	4.3%	1.5%	4.3%	1.8%
Belgium	6.2%	6.1%	6.5%	5.1%	6.3%	5.7%	6.4%	6.5%	6.4%	6.7%
Finland	1.2%	0.4%	1.3%	0.5%	1.3%	0.2%	1.6%	0.2%	1.6%	0.3%
France	20.5%	9.8%	20.4%	13.2%	22.2%	15.1%	23.1%	13.3%	23.1%	15.5%
Germany	24.4%	6.1%	22.3%	13.0%	22.9%	6.0%	22.1%	5.3%	22.1%	5.5%
Greece	4.9%	11.4%	5.4%	8.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Ireland	1.0%	1.3%	1.5%	4.3%	2.1%	3.3%	1.4%	5.4%	1.4%	2.7%
Italy	22.1%	45.2%	22.4%	29.5%	23.4%	38.7%	23.1%	38.5%	23.1%	46.3%
Netherlands	5.3%	1.7%	5.3%	4.1%	6.1%	1.6%	6.2%	1.2%	6.2%	1.5%
Portugal	2.4%	3.9%	2.3%	2.3%	2.1%	6.3%	1.6%	6.6%	1.6%	4.4%
Spain	7.8%	12.4%	9.1%	11.8%	9.6%	20.9%	10.3%	21.3%	10.3%	15.5%
Sovereign Risk	0.7	0%	2.5	9%	6.1	2%	4.0	2%	8.1	2%

Defining the sovereign credit risk measure The model Defining the risk measure and risk contributions Application to debt (capitalisation)-weighting

Some results for the EGBI index

Fundamental indexation Risk-based indexation Comparison of the indexing schemes Comparison with active management

Alternative indexation

We remind that the debt (capitalisation)-weighting is defined by²:

 $x_i = \frac{\text{DEBT}_i}{\sum_{i=1}^m \text{DEBT}_i}$

Two forms of alternative indexation:

- Fundamental indexation
- e Risk-based indexation

²Two forms of debt-weighting are considered : DEBT (with the 11 countries) and DEBT* (without Greece after July 2010). This last one corresponds to the weighting scheme of the EGBI index.

Benjamin Bruder, Pierre Hereil, Thierry Roncalli

Fundamental indexation Risk-based indexation Comparison of the indexing schemes Comparison with active management

Fundamental indexation

The GDP-weighting is then defined by:

$$x_i = \frac{\text{GDP}_i}{\sum_{i=1}^m \text{GDP}_i}$$

Other economic fundamentals may concerns (Brodsky et al., 2011):

- fiscal space;
- external finance position;
- financial sector health;
- willingness to pay.

Fundamental indexation Risk-based indexation Comparison of the indexing schemes Comparison with active management

GDP indexation

Figure: Weights and risk contributions of the GDP indexation

Country	July	/-08	July	July-09 July-10		/-10	July	/-11	Septen	1ber-11
Country	GDP	RC	GDP	RC	GDP	RC	GDP	RC	GDP	RC
Austria	3.1%	1.4%	3.1%	7.0%	3.1%	1.7%	3.2%	1.0%	3.2%	1.3%
Belgium	3.8%	4.0%	3.8%	3.2%	3.9%	3.3%	4.0%	3.5%	4.0%	4.0%
Finland	2.0%	0.8%	1.9%	0.7%	2.0%	0.3%	2.1%	0.3%	2.1%	0.3%
France	21.2%	11.2%	21.5%	14.9%	21.4%	13.4%	21.5%	10.6%	21.5%	13.8%
Germany	27.4%	7.6%	27.2%	17.0%	27.7%	6.7%	27.9%	5.8%	27.9%	6.7%
Greece	2.6%	6.2%	2.7%	4.4%	2.6%	15.7%	2.4%	19.8%	2.4%	13.8%
Ireland	2.0%	3.0%	1.9%	5.6%	1.8%	2.6%	1.7%	5.9%	1.7%	3.3%
Italy	17.4%	37.5%	17.3%	23.5%	17.2%	25.8%	17.0%	23.9%	17.0%	32.6%
Netherlands	6.5%	2.5%	6.5%	5.3%	6.5%	1.6%	6.6%	1.2%	6.6%	1.6%
Portugal	1.9%	3.3%	1.9%	2.0%	1.9%	5.3%	1.9%	6.7%	1.9%	5.1%
Spain	12.0%	22.6%	12.0%	16.5%	11.8%	23.7%	11.8%	21.4%	11.8%	17.5%
Sovereign Risk	0.6	4%	2.4	7%	6.5	9%	4.5	6%	8.2	6%

 \Rightarrow Debt and GDP indexations produces similar sovereign credit risk

measures.

Fundamental indexation Risk-based indexation Comparison of the indexing schemes Comparison with active management

GDP indexation Evolution of risk contributions

Fundamental indexation Risk-based indexation Comparison of the indexing schemes Comparison with active management

Risk-based indexation

To define a RB portfolio, we consider a set of **given** risk budgets $\{RB_1, \ldots, RB_m\}$.

Then we have to solve the following non-linear system of m equations:

$$RC_{1}(x_{1},...,x_{m}) = RB_{1}$$

$$\vdots$$

$$RC_{i}(x_{1},...,x_{m}) = RB_{i}$$

$$\vdots$$

$$RC_{m}(x_{1},...,x_{m}) = RB_{m}$$

Traditional approach

 $\mathsf{Weights} \to \mathsf{Risk} \ \mathsf{Contributions}$

Risk-budgeting approach

Risk Contributions \rightarrow Weights

Fundamental indexation Risk-based indexation Comparison of the indexing schemes Comparison with active management

Illustration of the risk-budgeting approach

- 3 assets
- \bullet Volatilities are respectively 20%, 30% and 15%
- Correlations are set to 60% between the 1^{st} asset and the 2^{nd} asset and 10% between the first two assets and the 3^{rd} asset
- The risk measure is the volatility of the portfolio

Asset	Woight	Marginal	Risk Con	tribution
Asset	weight	Risk	Absolute	Relative
1	60.00%	18.80%	11.28%	66.67%
2	20.00%	23.94%	4.79%	28.30%
3	20.00%	4.26%	0.85%	5.03%
Volatility			16.92%	

Traditional approach

Risk budgeting approach

Accet	Woight	Marginal	Risk Con	tribution
Asset	weight	Risk	Absolute	Relative
1	48.50%	17.69%	8.58%	60.00%
2	13.17%	21.71%	2.86%	20.00%
3	38.32%	7.46%	2.86%	20.00%
Volatility			14.30%	

Fundamental indexation Risk-based indexation Comparison of the indexing schemes Comparison with active management

GDP-RB indexation

In this cas, we have:

$$RC_i = \frac{\text{GDP}_i}{\sum_{i=1}^m \text{GDP}_i}$$

\Rightarrow Simulation with portfolios rebalanced every months.

Fundamental indexation Risk-based indexation Comparison of the indexing schemes Comparison with active management

GDP-RB indexation

Figure: Weights and risk contributions of the GDP-RB indexation

Country	July-08		July-09		July-10		July-11		September-11	
Country	RC	Weights	RC	Weights	RC	Weights	RC	Weights	RC	Weights
Austria	3.1%	3.9%	3.1%	1.2%	3.1%	2.9%	3.2%	4.2%	3.2%	3.8%
Belgium	3.8%	2.1%	3.8%	4.1%	3.9%	2.2%	4.0%	1.9%	4.0%	2.0%
Finland	2.0%	3.2%	1.9%	4.4%	2.0%	6.3%	2.1%	6.0%	2.1%	6.1%
France	21.2%	22.0%	21.5%	25.6%	21.4%	15.5%	21.5%	16.5%	21.5%	15.3%
Germany	27.4%	47.8%	27.2%	35.5%	27.7%	50.0%	27.9%	48.7%	27.9%	50.2%
Greece	2.6%	0.7%	2.7%	1.4%	2.6%	0.2%	2.4%	0.2%	2.4%	0.3%
Ireland	2.0%	0.8%	1.9%	0.6%	1.8%	0.6%	1.7%	0.2%	1.7%	0.5%
Italy	17.4%	5.3%	17.3%	11.2%	17.2%	6.0%	17.0%	5.2%	17.0%	4.7%
Netherlands	6.5%	9.2%	6.5%	6.7%	6.5%	12.8%	6.6%	14.0%	6.6%	12.5%
Portugal	1.9%	0.7%	1.9%	1.6%	1.9%	0.4%	1.9%	0.2%	1.9%	0.4%
Spain	12.0%	4.2%	12.0%	7.7%	11.8%	3.1%	11.8%	2.9%	11.8%	4.2%
Sovereign	0.39%		2.10%		3.25%		1.91%		4.13%	
Risk										

Fundamental indexation Risk-based indexation Comparison of the indexing schemes Comparison with active management

GDP-RB indexation

Fundamental indexation Risk-based indexation Comparison of the indexing schemes Comparison with active management

DEBT-RB indexation

In this cas, we have:

$$RC_i = \frac{\text{DEBT}_i}{\sum_{i=1}^m \text{DEBT}_i}$$

If all countries present the same risk level and correlations:

Debt-based risk budgeting \rightarrow Debt (capitalisation)-weighting

Fundamental indexation Risk-based indexation Comparison of the indexing schemes Comparison with active management

DEBT-RB indexation

Figure: Weights and risk contributions of the DEBT-RB indexation

Country	July-08		July-09		July-10		July-11		September-11	
	RC	Weights	RC	Weights	RC	Weights	RC	Weights	RC	Weights
Austria	4.1%	5.4%	3.6%	1.4%	3.9%	3.9%	4.2%	5.9%	4.2%	5.5%
Belgium	6.2%	3.6%	6.5%	7.1%	6.0%	3.8%	6.2%	3.2%	6.2%	3.4%
Finland	1.2%	2.0%	1.3%	3.1%	1.2%	4.4%	1.5%	4.8%	1.5%	5.0%
France	20.5%	22.4%	20.4%	25.5%	21.2%	17.2%	22.5%	18.9%	22.5%	17.7%
Germany	24.4%	45.8%	22.3%	30.9%	21.9%	45.0%	21.5%	42.1%	21.5%	43.9%
Greece	4.9%	1.4%	5.4%	2.9%	4.3%	0.4%	2.6%	0.2%	2.5%	0.3%
Ireland	1.0%	0.4%	1.5%	0.5%	2.0%	0.8%	1.4%	0.2%	1.4%	0.4%
Italy	22.1%	6.9%	22.4%	14.8%	22.4%	8.5%	22.5%	7.4%	22.5%	6.7%
Netherlands	5.3%	8.2%	5.3%	5.8%	5.9%	12.8%	6.0%	14.3%	6.0%	12.7%
Portugal	2.4%	0.9%	2.3%	2.0%	2.0%	0.4%	1.6%	0.2%	1.6%	0.4%
Spain	7.8%	3.0%	9.1%	6.0%	9.2%	2.7%	10.1%	2.7%	10.1%	4.0%
Sovereign	0.41%		2.19%		3.63%		2.10%		4.57%	
Risk										

Fundamental indexation Risk-based indexation Comparison of the indexing schemes Comparison with active management

DEBT-RB indexation Evolution of weights

Fundamental indexation Risk-based indexation Comparison of the indexing schemes Comparison with active management

Comparison of the indexing schemes

Fundamental indexation Risk-based indexation Comparison of the indexing schemes Comparison with active management

Comparison of the indexing schemes Evolution of the GIIPS risk contribution

Fundamental indexation Risk-based indexation Comparison of the indexing schemes Comparison with active management

Comparison of the indexing schemes Simulation of the performance

Fundamental indexation Risk-based indexation Comparison of the indexing schemes Comparison with active management

Comparison of the indexing schemes Main statistics (01/01/2008 – 06/09/2011)

DEBT		GDP	GDP-RB	DEBT-RB	DEBT*	DEBT*-RB	
Average Return	4.7%	5.2%	6.8%	6.5%	4.8%	6.6%	
Volatility	4.4%	4.3%	4.4%	4.4%	4.4%	4.4%	
Sharpe	1.05	1.19	1.53	1.49	1.10	1.50	
Tracking Error		0.6%	2.2%	2.0%	0.3%	2.0%	
Information Ratio		0.84	0.91	0.90	0.55	0.91	
Correlation		99.2%	87.4%	89.7%	99.8%	89.6%	
Beta		97.1%	87.5%	88.8%	98.9%	88.7%	

Fundamental indexation Risk-based indexation Comparison of the indexing schemes Comparison with active management

Comparison of the indexing schemes Characteristics of the portfolios (September 2011)

Country	DEBT		GDP		GDP-RB		DEBT-RB		DEBT*		DEBT*-GDP		
Country	Weights	RC	Weights	RC	Weights	RC	Weights	RC	Weights	RC	Weights	RC	
Austria	4.2%	1.5%	3.2%	1.3%	3.8%	3.2%	5.5%	4.2%	4.3%	1.8%	5.5%	4.3%	
Belgium	6.2%	5.8%	4.0%	4.0%	2.0%	4.0%	3.4%	6.2%	6.4%	6.7%	3.4%	6.4%	
Finland	1.5%	0.2%	2.1%	0.3%	6.1%	2.1%	5.0%	1.5%	1.6%	0.3%	5.0%	1.6%	
France	22.5%	13.2%	21.5%	13.8%	15.3%	21.5%	17.7%	22.5%	23.1%	15.5%	17.7%	23.1%	
Germany	21.5%	4.7%	27.9%	6.7%	50.2%	27.9%	43.9%	21.5%	22.1%	5.5%	43.9%	22.1%	
Greece	2.5%	13.0%	2.4%	13.8%	0.3%	2.4%	0.3%	2.5%	0.0%	0.0%	0.0%	0.0%	
Ireland	1.4%	2.4%	1.7%	3.3%	0.5%	1.7%	0.4%	1.4%	1.4%	2.7%	0.4%	1.4%	
Italy	22.5%	40.2%	17.0%	32.6%	4.7%	17.0%	6.7%	22.5%	23.1%	46.3%	6.8%	23.1%	
Netherlands	6.0%	1.3%	6.6%	1.6%	12.5%	6.6%	12.7%	6.0%	6.2%	1.5%	12.8%	6.2%	
Portugal	1.6%	3.9%	1.9%	5.1%	0.4%	1.9%	0.4%	1.6%	1.6%	4.4%	0.4%	1.6%	
Spain	10.1%	13.6%	11.8%	17.5%	4.2%	11.8%	4.0%	10.1%	10.3%	15.5%	4.0%	10.3%	
Yield-to-Maturity	3.8	8%	3.8	3%	2.86%		2.92%		3.51%		2.88%		
Duration	Duration 6.11		6.07		6.03		6.06		6.13		6.06		
Average Spread 3.26%		6%	3.08%		1.50%		1.63%		2.68%		1.56%		
Implied Rating	A		А		AA+		AA+		A+		AA+		
Weight Concentration	48.8% 5		50.	50.7%		65.4%		61.2%		51.9%		61.6%	
Risk Concentration 56.6%		52.6%		50.7%		48.8%		64.0%		51.9%			
Risk Measure	8.9	7%	8.2	6%	4.13%		4.57%		8.12%		4.48%		

Fundamental indexation Risk-based indexation Comparison of the indexing schemes Comparison with active management

Comparison with active management

- Database: Morningstar
- Category: Bond EURO Government
- 218 funds

The Academic Rule³:

Average Performance of Active Management = Performance of the Index – Management Fees

 \Rightarrow Implied fees for Bond EURO Government: 36 bps / year

³There is a large literature on this subject, see e.g. Blake *et al* (1993). 🐗 🛓 🦿

Fundamental indexation Risk-based indexation Comparison of the indexing schemes Comparison with active management

Comparison with active management

Conclusion

- Fundamental indexation is not enough.
- Fundamental indexation must be completed by risk-based methods.
- Risk-budgeting approach is a good compromise between managing the performance and managing the risk.
- Extension of this approach:
 - to take into account trading constraints;
 - to take into account other risks (e.g. interest rates or foreign exchange);
 - to be applied to other asset classes (corporate bonds, high yield, global aggregate, etc.).
- Risk-budgeting approach = good model for Solvency II.

For Further Reading I

Debt Be Not Proud.

Journal of Indexes, 13(6), pp. 10-17, 2010.

B. Bruder, P. Hereil, T. Roncalli.
 Mesurer et gérer le risque de crédit souverain de la zone euro.
 Revue Banque, 740, Octobre 2011.

B. Bruder, P. Hereil, T. Roncalli. Managing Sovereign Credit Risk in Bond Portfolios. SSRN, ssrn.com/abstract=1957050, October 2011.

B. Bruder, P. Hereil, T. Roncalli. Managing Sovereign Credit Risk. *Journal of Indexes Europe*, 1(4), November 2011.

For Further Reading II

B. Brodsky, G. Flannery, S. Mesrour. Introducing the BlackRock Sovereign Risk Index: A More Comprehensive View of Credit Quality. BlackRock Investment Institute, *White Paper*, 2011.

R. Cantor, F. Packer.

Determinants and Impact of Sovereign Credit Rating. Federal Reserve Bank of New York Economic Policy Review, 2(2), 1996, pp. 1-15.

P. Demey, S. Maillard, T. Roncalli Risk-Based Indexation.

Lyxor White Paper Series, 1, 2010.

J. Hilscher, Y. Nosbusch.

> Determinants of Sovereign Risk: Macroeconomic Fundamentals and the Pricing of Sovereign Debt.

Review of Finance, 14, pp. 235-262, 2010.

For Further Reading III

C.P. Kindleberger.

Speculation and Forward Exchange.

Journal of Political Economy, 47(2), 1939, pp. 163-181.

C.P. Kindleberger.

Manias, Panics, and Crashes: A History of Financial Crises. John Wiley & Sons, fifth edition, 2005 (first edition in 1978).

R.A. Mundell.

A Theory of Optimum Currency Areas. American Economic Review, 51(4), 1961, pp. 657-665.

C.M. Reinhart, K.S. Rogoff This Time Is Different: Eight Centuries of Financial Folly Princeton University Press, 2009.

For Further Reading IV

L. Spaventa.

The Growth of Public Debt: Sustainability, Fiscal Rules, and Monetary Rules.

Staff Papers - International Monetary Fund, 34(2), 1987, pp. 374-399.

R. Toloui.

Time To Rethink Bond Indexes? Journal of Indexes, 13(5), pp. 26-29, 2010.

C. Wyplosz.

International Financial Instability.

in I. Kaul, M. Stern and I. Grunberg, International Development Cooperation and Global Public Goods: Toward Sustainable Development in the 21st Century, Oxford University Press, 1999, pp. 152-189.