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Abstract

Risk parity is an allocation method used to build diversified portfolios that does not
rely on any assumptions of expected returns, thus placing risk management at the heart
of the strategy. This explains why risk parity became a popular investment model after
the global financial crisis in 2008. However, risk parity has also been criticized because
it focuses on managing risk concentration rather than portfolio performance, and is
therefore seen as being closer to passive management than active management. In
this article, we show how to introduce assumptions of expected returns into risk parity
portfolios. To do this, we consider a generalized risk measure that takes into account
both the portfolio return and volatility. However, the trade-off between performance
and volatility contributions creates some difficulty, while the risk budgeting problem
must be clearly defined. After deriving the theoretical properties of such risk budgeting
portfolios, we apply this new model to asset allocation. First, we consider long-term
investment policy and the determination of strategic asset allocation. We then consider
dynamic allocation and show how to build risk parity funds that depend on expected
returns.

Keywords: Risk parity, risk budgeting, expected returns, ERC portfolio, value-at-risk,
expected shortfall, active management, tactical asset allocation, strategic asset allocation.

JEL classification: G11.

1 Introduction
Although portfolio management did not change much in the 40 years following the seminal
works of Markowitz and Sharpe, the development of risk budgeting techniques marked an
important milestone in the deepening of the relationship between risk and asset management.
Risk parity subsequently became a popular financial model for investment after the global
financial crisis in 2008. Today, pension funds and institutional investors are using this

∗I would like to thank Andrew Butler, Lionel Martellini, Vincent Milhau and Guillaume Weisang for
their helpful comments.
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approach in the development of smart beta and the redefinition of long-term investment
policies (Roncalli, 2013).

In a risk budgeting (RB) portfolio, ex-ante risk contributions are equal to some given
risk budgets. Generally, allocation is carried out by taking a volatility risk measure into ac-
count. It simplifies the computation, especially when a large number of assets are involved.
However, the volatility risk measure has been criticized because it assumes that asset re-
turns are normally distributed (Boudt et al., 2013). There are now different approaches to
extending the risk budgeting method by considering non-normal asset returns. However, in
our view, these extensions do not generally produce better results and present a number of
computational problems when implemented for large asset universes.

A more interesting extension is the introduction of expected returns into the risk bud-
geting approach. Risk parity is generally presented as an allocation method unrelated to
the Markowitz approach. Most of the time, these are opposed, because risk parity does
not depend on expected returns. This is the strength of such an approach. In particular,
with an equal risk contribution (ERC) portfolio, the risk budgets are the same for all as-
sets (Maillard et al., 2010). This may be interpreted as a neutral portfolio applied when
the portfolio manager has no convictions. However, the risk parity approach has also been
strongly criticized, because some investment professionals consider this aspect a weakness,
with some active managers having subsequently reintroduced expected returns in an ad hoc
manner. For instance, they modify the weights of the risk parity portfolio in a second step
by applying the Black-Litterman model or optimizing the tracking error. A second solution
consists in linking risk budgets to expected returns. In this paper, we propose a third route
considering a generalized standard deviation-based risk measure, which encompasses the
Gaussian value-at-risk and expected shortfall risk measures. It is often forgotten that these
risk measures depend on the vector of expected returns. In this case, the risk contribution of
an asset has two components: a performance contribution and a volatility contribution. A
positive view on one asset will reduce its risk contribution and increase its allocation. How-
ever, unlike in the mean-variance framework, the RB portfolio obtained remains relatively
diversified.

The introduction of expected returns into risk parity portfolios is particularly relevant in
strategic asset allocation (SAA). SAA is the central component of a long-term investment
policy. It relates to the portfolio of equities, bonds and alternative assets that the investor
wishes to hold over a long period (typically 10 to 30 years). Risk parity portfolios based on
the volatility risk measure define well-diversified strategic portfolios. The use of a standard
deviation-based risk measure allows the risk premiums of the different asset classes to be
taken into account. Risk parity may also be relevant in tactical asset allocation (TAA), where
it may be viewed as an alternative method to the Black-Litterman model. Active managers
may then naturally incorporate their bets into the RB portfolio and continue to benefit
from the diversification. This framework has already been used by Martellini et al. (2014)
to understand the behavior of risk parity funds with respect to economic environments. In
particular, they show how to improve a risk parity strategy against a backdrop of interest
rate rises.

This article is organized as follows. In section two, we introduce the theoretical frame-
work, showing in particular how the objective function of mean-variance optimization as
a risk measure can be interpreted. We then move on to define the risk contribution and
describe how it relates to performance and volatility contributions. In section three, we
explain the specification of the risk budgeting portfolio, demonstrating that the problem is
more complex than for the volatility risk measure and has a unique solution under some re-
strictions. Examples are provided in the fourth section, in which we apply the RB approach
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to strategic asset allocation. We also compare RB portfolios with optimized portfolios in
the case of tactical asset allocation. Section five offers some concluding remarks.

2 The framework
2.1 Combining performance allocation and risk allocation
We consider a universe of n risky assets. Let µ and Σ be the vector of expected returns
and the covariance matrix of asset returns. We have Σi,j = ρi,jσiσj where σi is the volatil-
ity of asset i and ρi,j is the correlation between asset i and asset j. The mean-variance
optimization (MVO) model is the traditional method for optimizing performance and risk
(Markowitz, 1952). This is generally achived by considering the following quadratic pro-
gramming problem:

x? (γ) = arg min 1
2x
>Σx− γx> (µ− r1)

where x is the vector of portfolio weights, γ is a parameter to control the investor’s risk
aversion and r is the return of the risk-free asset. Sometimes restrictions are imposed to
reflect the constraints of the investor, for instance, we could impose 1>x = 1 and x ≥ 0 for a
long-only portfolio. This framework is particularly appealing because the objective function
has a concrete financial interpretation in terms of utility functions, with the investor facing
a trade-off between risk and performance. To obtain a better expected return, the investor
must then choose a riskier portfolio.

However, the mean-variance framework has been hotly debated for some time (Michaud,
1989) and the stability of the MVO allocation is an open issue, even if some methods can
regularize the optimized portfolio (Ledoit and Wolf, 2004; DeMiguel et al., 2009). The
problem is that the Markowitz optimization is a very aggressive model of active manage-
ment, detecting arbitrage opportunities that are sometimes false and may result from noise
data. The model then transforms these arbitrage opportunities into investment bets in an
optimistic way without considering adverse scenarios. This problem is particularly relevant
when the input parameters are historical estimates. In this case, the Markowitz optimization
is equivalent to optimizing the in-the-sample backtest.

Despite the above drawback, the Markowitz model remains an excellent tool for combin-
ing performance allocation and risk allocation. Moreover, as noted by Roncalli (2013), “there
are no other serious and powerful models to take into account return forecasts”. The only
other model that is extensively used in active management is the Black-Litterman model,
but this may in fact be viewed as an extension of the Markowitz model. In both cases, the
trade-off between return and risk is highlighted. Let µ (x) = x>µ and σ (x) =

√
x>Σx be

the expected return and the volatility of portfolio x. We also note π (x) = µ (x)− r its risk
premium. It is obvious that the optimization problem can also be formulated as follows1:

x? (c) = arg min−π (x) + c · σ (x)

Remark 1 The Markowitz optimization problem can be interpreted as a risk minimization
problem:

x? (c) = arg minR (x)
where R (x) is the risk measure defined as follows:

R (x) = −π (x) + c · σ (x)
1The mapping between the solutions x? (γ) and x? (c) is given by the relationship: c = γ−1σ (x? (γ)).
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Notably, the Markowitz model is therefore equivalent to minimizing a risk measure that
encompasses both the performance dimension and the risk dimension.

2.2 Interpretation of the Markowitz risk measure
The above analysis suggests that we can use the Markowitz risk measure in a risk parity
model taking expected returns into account. Let L (x) be the portfolio excess loss. We have
L (x) = −x> (R− r) where R is the random vector of returns. We consider the generalized
standard deviation-based risk measure:

R (x) = E [L (x)] + c · σ (L (x))
= − (µ (x)− r) + c · σ (x)

Assuming that asset returns are normally distributed: R ∼ N (µ,Σ), we have µ (x) = x>µ

and σ (x) =
√
x>Σx. Let π be the vector of risk premiums2. It follows that:

R (x) = −x>π + c ·
√
x>Σx

The result is the Markowitz risk measure. This formulation encompasses two well-known
risk measures:

• Gaussian value-at-risk:

VaRα (x) = −x>π + Φ−1 (α)
√
x>Σx

In this case, the scaling factor c is equal to Φ−1 (α).

• Gaussian expected shortfall:

ESα (x) = −x>π +
√
x>Σx

(1− α) φ
(
Φ−1 (α)

)
Like the value-at-risk measure, this is a standard deviation-based risk measure where
the scaling factor c is equal to φ

(
Φ−1 (α)

)
/ (1− α).

We can deduce that the expression of the marginal risk is:

MRi = −πi + c
(Σx)i√
x>Σx

This means that:

RCi = xi ·
(
−πi + c

(Σx)i√
x>Σx

)
= −xiπi + c

xi · (Σx)i√
x>Σx

This confirms that the standard deviation-based risk measure satisfies the Euler decompo-
sition:

R (x) =
n∑
i=1
RCi

This implies that it is a good option for a risk budgeting approach.
2We have πi = µi − r.
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2.3 Relationship between the risk contribution, performance con-
tribution and volatility contribution

Here the risk contribution has two components. The first component is the opposite of the
performance contribution πi (x), while the second component corresponds to the standard
risk contribution σi (x) based on the volatility risk measure. We can therefore reformulate
RCi as follows:

RCi = −πi (x) + cσi (x)
with πi (x) = xiπi and σi (x) = xi · (Σx)i/σ (x).

The normalized risk contribution of asset i can be defined as follows:

RC?i = −πi (x) + cσi (x)
R (x)

Similarly, the normalized performance (or excess return) contribution is:

PC?i = πi (x)
π (x) = xiπi∑n

j=1 xjπj

while the volatility contribution is:

VC?i = σi (x)
σ (x) =

xi · (Σx)i
x>Σx

We thus obtain the following proposition.

Proposition 1 The risk contribution of asset i is the weighted average of the excess return
contribution and the volatility contribution:

RC?i = (1− ω)PC?i + ωVC?i (1)

where the weight ω is:
ω = cσ (x)

−π (x) + cσ (x) (2)

The range of ω is ]−∞,∞[. If c = 0, ω is equal to 0. ω is then a decreasing function
with respect to c until the value c? = (µ (x)− r) /σ (x), which is the ex-ante Sharpe ratio
SR (x | r) of the portfolio. If c > c?, ω is positive and tends towards one, when c tends
towards ∞. We conclude that the risk contribution is a return-based (or volatility-based)
contribution if c is lower (or higher) than the Sharpe ratio of the portfolio. The singularity
around the Sharpe ratio implies that the value of c must be carefully calibrated.

3 Risk budgeting portfolios
Roncalli (2013) defines the RB portfolio using the following non-linear system:

RCi (x) = biR (x)
bi > 0
xi ≥ 0∑n
i=1 bi = 1∑n
i=1 xi = 1

(3)

where bi is the risk budget of asset i expressed in relative terms. The constraint bi > 0
implies that we cannot set some risk budgets to zero. This restriction is necessary in order
to ensure that the RB portfolio is unique (Roncalli, 2013).
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3.1 Existence and uniqueness of the RB portfolio
When using a standard deviation-based risk measure, we have to impose a second restriction
in order to ensure the existence of the RB portfolio:

R (x) ≥ 0 (4)

If {0} ∈ ImR (x), it implies that the risk measure can take both positive and negative
values. We then face a singularity problem, meaning that there may be no solution to the
system (3). The restriction (4) is equivalent to requiring the scaling factor c to be larger
than the bound c? defined as follows:

c? = SR+

= max
(

sup
x∈[0,1]n

SR (x | r) , 0
)

3.1.1 The case c > SR+

Theorem 1 If c > SR+, the RB portfolio exists and is unique. It is the solution of the
following optimization program:

x? (κ) = arg minR (x) (5)

u.c.


∑n
i=1 bi ln xi ≥ κ

1>x = 1
x ≥ 0

where κ is a constant to be determined.

We will now consider a slight modification to the optimization program (5):

y? = arg minR (y) (6)

u.c.
{ ∑n

i=1 bi ln yi ≥ κ
y ≥ 0

with κ as an arbitrary constant. Following Roncalli (2013), the optimal solution satisfies
the first-order conditions:

yi
∂R (y)
∂ yi

= λbi

where λ is the Lagrange coefficient associated with the constraint
∑n
i=1 bi ln yi ≥ κ. As we

have a standard optimization problem (minimization of a convex function subject to convex
bounds), it can be deduced that:

(i) The solution to the problem (6) exists and is unique if the objective function R (y) is
bounded from below.

(ii) The solution to the problem (6) may not exist if the objective function R (y) is not
bounded from below.

For the volatility risk measure, we have R (y) ≥ 0, meaning that the solution always ex-
ists (case i). The existence of a solution is more complex when we consider the standard
deviation-based risk measure. Indeed, we may have:

lim
y→∞

R (y) = −∞
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because the expected return component may be negative and may not be offset by the
volatility component. In this instance, the solution may not exist (case ii). However, if we
require that c > SR+, we obtain case i becauseR (y) ≥ 0. More generally, the solution exists
if there is a constant R− such that R (y) > R−. In this case, the RB portfolio corresponds
to the normalized optimal portfolio y?. We can therefore deduce that there is a constant κ
such that the RB portfolio is the only solution to the problem (5).

We now understand why restriction R (x) ≥ 0 is important for defining the RB portfolio.
Indeed, a coherent convex risk measure satisfies the homogeneity property:

R (λx) = λR (x)

where λ is a positive scalar. Suppose that there is a portfolio x ∈ [0, 1]n such that R (x) < 0.
We can then leverage the portfolio by a scaling factor λ > 1, and we obtainR (λx) < R (x) <
0. It follows that:

lim
λ→∞

R (λx) = −∞

This is why it is necessary for the risk measure to always be positive.

There is an issue with Theorem 1, however, as we have to calculate the upper bound
SR+. To do this, we can explore all the portfolios in set [0, 1]n and calculate the supremum
of the Sharpe ratios. This approach may be time-consuming, in particular when the asset
universe is large. It is better to use the following result:

Theorem 2 Let xmr be the minimum risk long-only portfolio defined as follows:

xmr = arg minR (x)

u.c.
{

1>x = 1
x ≥ 0

The RB portfolio exists and is unique if R (xmr) > 0.

3.1.2 The case c ≤ SR+

This case is not relevant from a financial point of view, because the risk measure of some
portfolios may be negative. By leveraging these portfolios, the risk measure may be infinitely
negative. From a mathematical point of view, we can however show these results:

• Make SR− equal to max
(
infx∈[0,1]n SR (x | r) , 0

)
. If c < SR−, the RB portfolio exists

and is unique.

• If c ∈
[
SR−,SR+], the RB portfolio may not exist.

Example 1 We consider four assets. Their volatilities are equal to 15%, 20%, 25% and
30% while the correlation matrix of asset returns is provided by the following matrix:

C =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00


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We will calculate the ERC portfolio by considering different values for the scaling factor.
The results are reported in Table 1. If the risk premium of each asset is set to 7%, the
maximum Sharpe ratio is equal to 0.56. In this case, the ERC portfolio does not exist if c is
equal to 0.40. However, there is a solution if c is equal to 1.00, 1.65 or 2.33. If we consider
higher risk premiums (πi = 25%), the bounds become SR− = 0.83 and SR+ = 1.99. We
can confirm that there is a solution if c is equal to 0.40 or 2.33. Curiously, there is also a
solution if c is equal to 1.00, but not if c is equal to 1.65.

Table 1: ERC portfolios for different values of c

πi = 7% πi = 25%
c 0.40 1.00 Φ−1 (0.95) Φ−1 (0.99) 0.40 1.00 Φ−1 (0.95) Φ−1 (0.99)

SR− = 0.23 / SR+ = 0.56 SR− = 0.83 / SR+ = 1.99
1 47.71 43.54 42.06 19.78 0.09 56.82
2 28.40 28.18 28.11 21.89 0.16 29.75
3 12.83 15.05 15.82 27.63 94.41 7.34
4 11.06 13.23 14.01 30.70 5.34 6.08

3.2 Comparing WB and RB portfolios
Let {b1, . . . , bb} be a vector of budgets. In a weight budgeting portfolio, the weight of asset
i is equal to its budget bi. In a risk budgeting portfolio, it is the risk contribution of asset i
that is equal to its budget bi. Roncalli (2013) shows that the following inequalities hold:

R (xmr) ≤ R (xrb) ≤ R (xwb)

where xmr is the (long-only) minimum risk portfolio, xrb is the risk budgeting portfolio and
xwb is the weight budgeting portfolio.

This result is important because it implies that the RB portfolio is located between these
two portfolios. It has a lower risk than the WB portfolio and remains more diversified than
the MR portfolio.

3.3 Comparing MVO and RB portfolios
By using the generalized risk measure instead of volatility, RB portfolios can be interpreted
as MVO portfolios subject to a diversification constraint (see Figure 1). It is therefore
tempting to view a risk parity portfolio as a diversified mean-variance portfolio, which
implicitly corresponds to a shrinkage approach of the covariance matrix (Jagannathan and
Ma, 2003). The issue is then whether these RB portfolios are simply a reformulation of MVO
portfolio with regularization? This is in fact not the case, as the expected returns do not
have a return dimension, but rather a risk dimension in the risk budgeting framework. They
therefore constitute directional risks, which have to be managed. This is very different to
the mean-variance approach, which considers expected returns as one of the two dimensions
of the risk/return trade-off. This difference can be demonstrated by considering the stability
issue of these two approaches.

Example 2 We consider a universe of three assets. The risk premiums are π1 = π2 = 8%
and π3 = 5% respectively. The volatilities are σ1 = 20%, σ2 = 21% and σ3 = 10%.
Moreover, we assume that the cross-correlations are the same: ρi,j = ρ = 80%.
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Figure 1: Comparing MVO and RB portfolios

Volatility risk measure

x? (κ) = arg min 1
2x
>Σx

u.c.


∑n
i=1 bi ln xi ≥ κ

1>x = 1
x ≥ 0

The RB portfolio is a minimum variance
portfolio subject to a constraint of weight
diversification.

Generalized risk measure

x? (κ) = arg min−x>µ+ c ·
√
x>Σx

u.c.


∑n
i=1 bi ln xi ≥ κ

1>x = 1
x ≥ 0

The RB portfolio is a mean-variance port-
folio subject to a constraint of weight di-
versification.

Portfolio managers using the risk budgeting approach are motivated to obtain a diver-
sified portfolio that changes in line with market conditions, but remains relatively stable
over time. In Example 2, we calculate the long-only MVO portfolio by targeting a volatility
of 15%. The solution is (38.3%, 20.2%, 41.5%). We will now change the input parameters
slightly, and provide the results in Table 2. For instance, if the volatility of the second asset
is 18% instead of 21%, the solution becomes (13.7%, 56.1%, 30.2%) and we can then see a
substantial decrease in the weight of the first asset. This confirms that the MVO portfolio is
highly sensitive to input parameters. We shall then consider the RB portfolios by targeting
the risk budgets (50.0%, 26.4%, 23.6%), which correspond to the risk contributions of the
initial MVO portfolio. Of course, the RB and MVO portfolios coincide if we use the original
values of the parameters. If the volatility of the second asset is 18% instead of 21%, the
RB solution becomes (36.7%, 23.5%, 39.7%). In this case, the RB portfolio is very different
to the MVO portfolio. In fact, we observe that RB portfolios are more stable, even if we
change the expected returns. This stability is important and explains why risk budgeting
produces lower turnover than mean-variance optimization.

Table 2: Sensitivity of MVO and RB portfolios to input parameters

ρ 70% 90% 90%
σ2 18% 18%
π1 20% −10%

x1 38.3% 38.3% 44.6% 13.7% 0.0% 56.4% 0.0%
MVO x2 20.2% 25.9% 8.9% 56.1% 65.8% 0.0% 51.7%

x3 41.5% 35.8% 46.5% 30.2% 34.2% 43.6% 48.3%
x1 38.3% 37.5% 39.2% 36.7% 37.5% 49.1% 28.8%

RB x2 20.2% 20.4% 20.0% 23.5% 23.3% 16.6% 23.3%
x3 41.5% 42.1% 40.8% 39.7% 39.1% 34.2% 47.9%

3.4 Numerical algorithm to find the RB portfolio
There have been a number of studies into the most efficient way to numerically solve the
RB portfolio (Chaves et al., 2012; Spinu, 2013; Griveau-Billion et al., 2014). In this article,
we propose using the cyclical coordinate descent (or CCD) algorithm developed by Tseng
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(2001). The main idea behind the CCD algorithm is to minimize a function f (x1, . . . , xn)
by minimizing only one direction per step, whereas traditional descent algorithms consider
all the directions at the same time. In this case, we find the value of xi which minimizes the
objective function by considering the values taken by xj for j 6= i to be fixed. The procedure
is repeated for each direction until the global minimum is reached.

The Lagrangian function of the problem (6) is given by:

L (x;λ) = arg min−x>π + c ·
√
x>Σx− λ

n∑
i=1

bi ln xi

Without loss of generality, we can fix λ = 1. The first-order conditions are

∂ L (x;λ)
∂ xi

= −πi + c
(Σx)i
σ (x) −

bi
xi

At the optimum, we have ∂xi
L (x;λ) = 0 or:

cσ2
i x

2
i +

cσi∑
j 6=i

xjρi,jσj − πiσ (x)

xi − biσ (x) = 0

By definition of the RB portfolio we have xi > 0. We notice that the polynomial function is
convex because we have σ2

i > 0. Since the product of the roots is negative, we always have
two solutions with opposite signs. It can be deduced that the solution is the positive root
of the second degree equation:

x?i =
−c
(
σi
∑
j 6=i xjρi,jσj

)
+ πiσ (x) +

√(
c
(
σi
∑
j 6=i xjρi,jσj

)
− πiσ (x)

)2
+ 4cbiσ2

i σ (x)

2cσ2
i

If the values of (x1, · · · , xn) are strictly positive and if c > SR+, x?i should be strictly
positive. The positivity of the solution is then achieved after each iteration if the starting
values are positive. The coordinate-wise descent algorithm consists in iterating the previous
equation until convergence.

4 Applications to asset allocation
4.1 A defensive model of active management
If expected returns are added to the risk measure, the risk budgeting approach becomes
an active management model. Indeed, the portfolio manager may then express their views
and check how their bets modify the RB portfolio. However, contrary to the mean-variance
approach which is a decidedly aggressive model of active management, the risk budgeting
approach defines more conservative portfolios. In some ways, this framework is a defensive
active management model. This property can be seen in the following example.

Example 3 We consider an investment universe of three assets. The volatility is equal to
15%, 20% and 25% respectively, whereas the correlation matrix C is equal to:

C =

 1.00
0.30 1.00
0.50 0.70 1.00


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We also define six parameter sets of risk premia:

Set #1 #2 #3 #4 #5 #6
π1 0% 0% 20% 0% 0% 25%
π2 0% 10% 10% −20% 30% 25%
π3 0% 20% 0% −20% −30% −30%

Table 3 shows the optimized portfolios if we use the standard deviation-based risk mea-
sure and a scaling factor c of 2. For the risk budgeting portfolio, it is assumed that the risk
budgets are the same for all three assets, meaning that we actually obtain an ERC portfo-
lio. We then move on to consider two optimized mean-variance portfolios: the long/short
portfolio (or L-S MVO) and the long-only portfolio (or L-O MVO). Detailed results are
presented in Tables 6, 7 and 8 in Appendix B. For the MVO portfolios, risk aversion γ is
calibrated in order to obtain the volatility of the corresponding ERC portfolio. For instance,
the volatility of the three optimized portfolios (ERC, L-S MVO and L-O MVO) is the same
for the parameter set #2 and is equal to 16.22%.

Table 3: Optimized portfolios

Set #1 #2 #3 #4 #5 #6
x1 45.25 37.03 64.58 53.30 29.66 66.50

ERC x2 31.65 33.11 24.43 26.01 63.11 31.91
x3 23.10 29.86 10.98 20.69 7.24 1.59
x1 76.00 36.98 96.69 111.53 74.00 82.95

L-S MVO x2 43.11 33.20 48.36 23.70 94.41 57.13
x3 −19.11 29.81 −45.05 −35.23 −68.42 −40.07
x1 69.66 36.98 88.03 98.76 29.43 69.66

L-O MVO x2 30.34 33.20 11.97 1.24 70.57 30.34
x3 0.00 29.81 0.00 0.00 0.00 0.00

Applying parameter set #1, we obtain the traditional ERC portfolio based on the volatil-
ity risk measure. Indeed, all the risk premiums πi are equal to zero, implying that the risk
contributions RC?i are exactly equal to the volatility contribution VC?i . For the mean-
variance approach, the optimal portfolio is the minimum variance portfolio because the
expected returns are equal to zero. We can therefore see several major differences between
the RB portfolio and the MVO portfolios. If we move on to apply parameter set #2, the
differences are minimal because the risk premiums are in line with volatilities3. In the three
other cases (#3, #4 and #5), the ERC portfolio differs from the MVO portfolios signifi-
cantly. This result can be explained by the fact that the expected returns are not ranked
in the same order as the volatilities. In the last case #6, the ERC portfolio is very similar
to the L-O MVO portfolio because the third asset has a strong negative risk premium4 and
the risk premiums of the first two assets are in line with the volatilities.

The above numerical results demonstrate that the RB portfolio is less aggressive than
the MVO portfolio, and that the MVO portfolio is more concentrated than the RB portfolio.
The framework presented in this article is therefore an interesting alternative to the mean-
variance framework when portfolio managers want active management without concentrating
their portfolios on a small number of bets.

3In Appendix A, we show that the ERC portfolio is optimal under some conditions. In fact, the parameter
set #2 is not so far to verify these conditions.

4In this case, it represents a low weight for the ERC portfolio whereas it is not selected by the L-O MVO
portfolio.
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4.2 Strategic asset allocation

We shall now consider the example given on page 287 in Roncalli (2013). The invest-
ment universe is composed of seven asset classes covering bonds, equities and commodities.
Appendix C shows the values of the input parameters (expected return, volatility and cross-
correlation) necessary to define a strategic asset allocation. Below we compare the RB and
MVO approaches. The RB portfolio is defined using the following risk budgets: 20%, 10%,
15%, 20%, 10%, 15% and 10%. Concerning MVO portfolios, the objective function is to
target an ex-ante volatility of 4.75% or 5%.

The results when the risk-free rate is equal to 3% are provided in Table 4. If c =∞, we
get the RB portfolio based on the volatility risk measure. In this case, volatility contributions
are exactly equal to the risk budgets. In order to take the expected returns into account,
we consider the RB portfolio with c 6= ∞. For instance, if c = 1.5, we overweight bonds
overall and underweight equities. We can compare the allocation of the RB portfolio with
those of MVO portfolios when we target a volatility σ?. MVO portfolios visibly improve
the Sharpe ratio, but are more concentrated than the RB portfolios, both in weighting (US
Bonds 10Y) and in risk (EM Equities). Therefore, even if the breakdown between bonds,
equities and commodities is similar for RB and MVO portfolios, the RB allocation is clearly
more appropriate for a strategic asset allocation as it is more diversified within each asset
class.

Table 4: Long-term strategic portfolios with r = 3%

RB MVO
c =∞ c = 3 c = 1.5 σ? = 4.75% σ? = 5%
xi VC?i xi VC?i xi VC?i xi VC?i xi VC?i

(1) 36.8 20.0 36.9 19.3 37.2 18.6 60.5 38.1 64.3 34.6
(2) 21.8 10.0 21.2 9.3 20.5 8.5 14.0 7.4 7.6 3.2
(3) 14.7 15.0 14.5 14.5 14.0 13.8 0.0 0.0 0.0 0.0
(4) 10.2 20.0 10.4 20.7 10.7 21.4 5.2 10.0 5.5 10.8
(5) 5.5 10.0 5.6 10.3 5.7 10.5 5.2 9.2 5.5 9.8
(6) 7.0 15.0 7.5 16.3 8.2 18.1 14.2 33.7 16.0 39.5
(7) 3.9 10.0 3.9 9.7 3.8 9.2 1.0 1.7 1.1 2.1
µ (x) 5.69 5.73 5.79 5.64 5.83
σ (x) 5.03 5.08 5.14 4.75 5.00

SR (x | r) 0.53 0.54 0.54 0.56 0.57

In Figure 2, all these portfolios are located in the mean-variance (MV) and risk budgeting
(RB) efficient frontiers5. We also report efficient frontiers when the risk-free rate is equal to
0% and 4%. Depending on the level of this parameter, the Sharpe ratio of the RB portfolio
is either a decreasing or an increasing function of the scaling factor c. The RB efficient
frontier is more limited than the MV efficient frontier. For instance, it is not possible to
obtain an ex-ante volatility lower than 5% when the risk-free rate is equal to 3%. Moreover,
the RB efficient frontier depends on the specification of the risk budgets.

5The RB efficient frontier is obtained by considering c ∈
]
SR+,∞

[
.
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Figure 2: Strategic asset allocation

4.3 Tactical asset allocation
While strategic asset allocation refers to long-term investment horizons, tactical asset allo-
cation deals with short to medium-term investment horizons. The aim is to define a dynamic
allocation in order to modify the neutral portfolio and to enhance its performance. Trad-
ing signals based on fundamental analysis, medium-term market sentiment, business cycle
forecasts or momentum patterns may be developed to achieve this.

In a TAA model, the risk measure is no longer static. At time t, it becomes:

Rt (xt) = −x>t (µt − rt) + ct ·
√
x>t Σtxt (7)

In this framework, µt and Σt are time-varying statistics. The vector xt corresponds to the
portfolio weights at time t and generally depends on the previous allocation xt−1. Let b
be the vector of risk budgets. The risk parity strategy then consists of computing the RB
portfolio for each time t:

RCi,t (xt) = biRt (xt)

By imposing πt = µt − rt = 0, this framework is already used to design ‘simple’ risk parity
equity/bond funds. Some portfolio managers also use this framework to define a neutral
portfolio which is then modified according to their views. This construction of ‘active’ risk
parity funds is similar to the TAA approach of Black and Litterman (1992). A more natural
approach is to introduce expected returns into risk parity portfolios directly using Equation
(7). However, an issue exists concerning the calibration of the scaling factor ct. Indeed,
we have previously seen that it is not possible to rely on the scaling factor ct at a given
confidence level α of the value-at-risk (or the expected shortfall) because the RB portfolio
may not exist. It is therefore better to define ct endogenously. For each time t, we compute
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the maximum Sharpe ratio SR+
t . We must then define a rule such that ct is greater than

the lower bound SR+
t .

Let us consider an application with equities and bonds6 for the period January 2000 –
December 2011. The empirical covariance matrix is estimated using a lag window of 260
trading days. To calculate the vector of expected returns, we will use a simple moving
average based on the daily returns for the last 260 trading days. We will also assume that
the portfolio is rebalanced every week and that the risk budgets are equal. We will use the
simple risk parity strategy7 RP #0 and two versions of the active risk parity strategy8 RP
#1 and RP #2. Whereas the first RP fund is a pure risk parity strategy, the two other
funds mix risk parity and trend-following strategies. Table 5 states different statistics9 for
the period January 2000 – December 2012. Our goal is not to say that active risk parity
strategies are better than simple risk parity strategies, but to show that they are different. In
this example, the trend-following signals have been positive, meaning that the performance,
the Sharpe ratio and the drawdown of the simple risk parity strategy have all been improved.
By taking expected returns into account, the turnover has been multiplied by a factor of 10.
This justifies the tactical (or active) nature of this allocation method.

Table 5: Statistics of simple and active risk parity strategies

RP µ̂1Y σ̂1Y SR MDD γ1 γ2 τ
#0 5.10 7.30 0.35 −21.39 0.07 2.68 0.30
#1 6.36 7.74 0.50 −14.97 0.04 2.76 3.00
#2 7.40 8.00 0.61 −12.84 0.04 2.74 3.64

Remark 2 By considering a simple risk parity strategy, we implicitly assume that the risk
is fully represented by the volatility. For instance, in the above example, the allocation is the
same in the first quarter of 2003 and in summer 2010. This implies that these two periods
present the same patterns in terms of volatility risk. By taking expected returns into account,
we assume that directional risk is another component for measuring overall risk. From this
point of view, the two periods do not present the same patterns, as they differ in terms of
directional risks (trend, valuation, risk premium, etc.). Changes in market conditions are
important to mitigate risk parity allocations, which are highly sensitive to bond risk even
though the risk of interest rate rises is significant (Martellini et al., 2014).

5 Conclusion
In this article, we consider the risk budgeting approach when the risk measure depends on
expected returns, showing that the problem is more complex than when the risk measure is
the portfolio volatility because there is a trade-off between performance contributions and

6These correspond to the MSCI World TR Net index and the Citigroup WGBI All Maturities index.
7RP #0 corresponds to the classical ERC portfolio by considering the portfolio volatility as the risk

measure.
8In the case of RP #1, we have ct = max

(
1.10 · SR+

t ,Φ−1 (95%)
)
whereas the scaling factor is ct =

1.10 · SR+
t ·1

{
SR+

t > 0
}

+∞ · 1
{

SR+
t ≤ 0

}
in the case of RP #2

9µ̂1Y is the annualized performance, σ̂1Y is the yearly volatility and MDD is the maximum drawdown
observed for the entire period. These statistics are expressed in %. SR is the Sharpe ratio, τ is the portfolio
turnover, whereas the skewness and excess kurtosis correspond to γ1 and γ2.
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volatility contributions. It appears that risk budgeting makes sense only when the scaling
factor is higher than a specific value.

This framework is of particular interest when building a strategic asset allocation. The
traditional way to apply the risk budgeting approach to an SAA is to link the risk budgets
to risk premiums. With the new framework, risk premiums may be used to directly define
the risk contributions of the SAA portfolio. Another important application concerns tactical
asset allocations. To date, risk parity has been used to define a neutral portfolio that was
improved using the Black-Litterman model. We can now incorporate expected returns into
the risk budgeting step, in some ways making it an active management strategy.

By introducing expected returns, we nonetheless face the risk of incorporating bad fore-
casts or views, meaning that the robustness and simplicity of the original ERC portfolio
has been lost. In our view, the framework presented here would therefore be more suitable
for building risk parity portfolios with moderate bets than for creating very active trading
strategies.
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A Optimality of the ERC portfolio

Let us consider the ERC portfolio in the case of the volatility risk measure. If we assume
a constant correlation matrix, Maillard et al. (2010) show that the optimal weights are
given by xi ∝ σ−1

i . They also show that it is the tangency portfolio if all the assets have
the same Sharpe ratio: µi = r + s · σi. This implies that the volatility contributions are
equal: VC?i = VC?j . Because xi ∝ σ−1

i and πi = s · σi, we can deduce that the performance
contributions are also equal: PC?i = PC?j . It follows that the composition of the ERC
portfolio is the same for both the volatility and standard deviation-based risk measures.
Finally, we can confirm that the result obtained by Maillard et al. (2010) remains valid in
the case of the standard deviation-based risk measure:

Theorem 3 The ERC portfolio is optimal if we assume a constant correlation matrix and
that all the assets have the same Sharpe ratio.

B Additional results of the active management example

The composition x of the optimized portfolios is provided in Tables 6, 7 and 8 for the dif-
ferent sets of parameters. For each portfolio, we have also computed the normalized risk
contribution RC?i , the normalized volatility contribution VC?i and the normalized perfor-
mance contribution PC?i . The parameter ω is defined by Equation (2) and measures the
weight of the volatility contribution relative to the risk contribution. Finally, we show the
risk premium π (x), the volatility σ (x) and the Sharpe ratio SR (x | r) of the optimized
portfolio x. All the statistics are expressed in %, except the parameter ω and the Sharpe
ratio SR (x | r) which are measured in decimals.

Table 6: ERC portfolios

Set #1 #2 #3 #4 #5 #6
x1 45.25 37.03 64.58 53.30 29.66 66.50
x2 31.65 33.11 24.43 26.01 63.11 31.91
x3 23.10 29.86 10.98 20.69 7.24 1.59
RC?1 33.33 33.33 33.33 33.33 33.33 33.33
RC?2 33.33 33.33 33.33 33.33 33.33 33.33
RC?3 33.33 33.33 33.33 33.33 33.33 33.34
VC?1 33.33 23.80 60.96 43.79 15.88 64.79
VC?2 33.33 34.00 23.85 26.32 75.03 33.10
VC?3 33.33 42.20 15.19 29.89 9.09 2.11
PC?1 0.00 84.09 0.00 0.00 68.92
PC?2 35.66 15.91 55.69 112.95 33.06
PC?3 64.34 0.00 44.31 −12.95 −1.98
ω 1.00 1.40 2.19 0.76 2.10 8.63

π (x) 0.00 9.28 15.36 −9.34 16.76 24.12
σ (x) 15.35 16.22 14.11 14.89 16.00 13.64

SR (x | r) 0.00 0.57 1.09 −0.63 1.05 1.77
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Table 7: Long/short MVO portfolios

Set #1 #2 #3 #4 #5 #6
x1 76.00 36.98 96.69 111.53 74.00 82.95
x2 43.11 33.20 48.36 23.70 94.41 57.13
x3 −19.11 29.81 −45.05 −35.23 −68.42 −40.07
RC?1 76.00 33.27 120.37 112.45 −67.64 4.69
RC?2 43.11 33.46 88.59 25.58 24.68 3.23
RC?3 −19.11 33.27 −108.96 −38.03 142.96 92.08
VC?1 76.00 23.75 85.78 103.74 35.60 72.61
VC?2 43.11 34.12 29.84 7.68 75.51 50.01
VC?3 −19.11 42.13 −15.62 −11.42 −11.11 −22.61
PC?1 0.00 79.99 0.00 0.00 44.08
PC?2 35.77 20.01 −205.47 57.98 30.36
PC?3 64.23 0.00 305.47 42.02 25.56
ω 1.00 1.40 6.98 1.08 −1.90 −1.38

π (x) 0.00 9.28 24.17 2.31 48.85 47.04
σ (x) 13.19 16.22 14.11 14.89 16.00 13.64

SR (x | r) 0.00 0.57 1.71 0.15 3.05 3.45

Table 8: Long-only MVO portfolios

Set #1 #2 #3 #4 #5 #6
x1 69.66 36.98 88.03 98.76 29.43 69.66
x2 30.34 33.20 11.97 1.24 70.57 30.34
x3 0.00 29.81 0.00 0.00 0.00 0.00
RC?1 69.66 33.27 89.81 98.65 44.05 69.66
RC?2 30.34 33.46 10.19 1.35 55.95 30.34
RC?3 0.00 33.27 0.00 0.00 0.00 0.00
VC?1 69.66 23.75 92.36 99.47 14.91 69.66
VC?2 30.34 34.12 7.64 0.53 85.09 30.34
VC?3 0.00 42.13 0.00 0.00 0.00 0.00
PC?1 0.00 93.63 0.00 0.00 69.66
PC?2 35.77 6.37 100.00 100.00 30.34
PC?3 64.23 0.00 0.00 0.00 0.00
ω 1.00 1.40 3.00 0.99 2.95 12.72

π (x) 0.00 9.28 18.80 −0.25 21.17 25.00
σ (x) 13.57 16.22 14.11 14.89 16.00 13.57

SR (x | r) 0.00 0.57 1.33 −0.02 1.32 1.84
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C Input parameters of the SAA example
We shall now consider the example given on page 287 in Roncalli (2013). The investment
universe is composed of seven asset classes: US Bonds 10Y (1), EURO Bonds 10Y (2),
Investment Grade Bonds (3), US Equities (4), Euro Equities (5), EM Equities (6) and
Commodities (7). In Tables 9 and 10, we provide the long-run statistics used to compute
the strategic asset allocation10. We have assumed that the long-term investor has decided
to define the strategic portfolio using the risk budgets bi provided in Table 9.

Table 9: Expected returns, volatility and risk budgets for the SAA approach (in %)

(1) (2) (3) (4) (5) (6) (7)
µi 4.2 3.8 5.3 9.2 8.6 11.0 8.8
σi 5.0 5.0 7.0 15.0 15.0 18.0 30.0
bi 20.0 10.0 15.0 20.0 10.0 15.0 10.0

Table 10: Correlation matrix of asset returns for the SAA approach (in %)

(1) (2) (3) (4) (5) (6) (7)
(1) 100
(2) 80 100
(3) 60 40 100
(4) −10 −20 30 100
(5) −20 −10 20 90 100
(6) −20 −20 30 70 70 100
(7) 0 0 10 20 20 30 100

10These figures are taken from Eychenne et al. (2011).
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