Portfolio Optimization versus Risk-Budgeting Allocation¹

Thierry Roncalli*

*Lyxor Asset Management, France & Évry University, France

WG RISK ESSEC, January 18, 2012

¹The opinions expressed in this presentation are those of the author and are not meant to represent the opinions or official positions of Lyxor Asset Management. $\equiv -9 \circ \circ$

Outline

Portfolio optimization

- Some Models
- Robustness of the Markowitz framework
- Weights constraints and Portfolio Theory

2 Risk-budgeting techniques

- Risk-budgeting principles
- The ERC portfolio

3 Some illustrations

- Risk-based indexation
- Risk parity funds
- Bond portfolios management

< □ ▶

▶ < 토 ▶ < 토 ▶</p>

3

Some Models Robustness of the Markowitz framework Weights constraints and Portfolio Theory

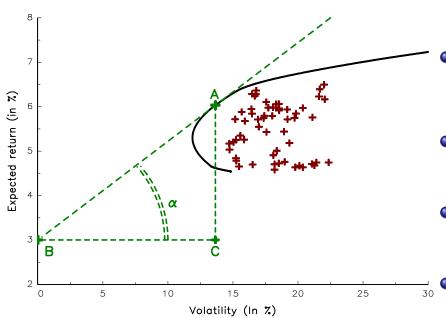
Some models

Most Popular Models in Asset Allocation

- Mean-variance portfolio selection (Markowitz, 1952) (minimum-variance strategy, tangency portfolio, strategic asset allocation, market-cap indexation, etc.)
- Dynamic optimization (Merton, 1971) (constant-mix strategy, liability-driven investment, lifecycle funds, target date funds, etc.)
- Tactical asset allocation (Black-Litterman, 1992) (equilibrium portfolios, flexible views, market timing, etc.)

 \Rightarrow These 3 models are based on optimization techniques.

▲ 伊 ▶ ▲ 王 ▶ ▲ 日 ▶


 $\mathcal{A} \mathcal{A} \mathcal{A}$

Some Models Robustness of the Markowitz framework Weights constraints and Portfolio Theory

The Markowitz framework

In the portfolio theory of Markowitz, we maximize the expected return for a given level of volatility:

$$\max \mu\left(w
ight)=\mu^ op w$$
 u.c. $\sigma\left(w
ight)=\sqrt{w^ op\Sigma w}=\sigma^\star$

- Optimized portfolios with respect to volatility and expected return
- The optimal portfolio is the tangency portfolio
- Confusion between volatility and diversification concepts
- The solution is not robust; it is highly sensitive to expected return inputs
- High turnover of the portfolio

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Some Models Robustness of the Markowitz framework Weights constraints and Portfolio Theory

Stability

We consider the minimum-variance portfolio (because it does not depend on expected returns).

2 assets with $\sigma_1(t) = \sigma_2(t) = 20\%$ and $\rho_{1,2}(t) = 100\%$:

 $w_1^{\star}(t) = w_2^{\star}(t) = 50\%$

In t+1, if the volatility of the first $\sigma_1(t+1) = 19,9\%$, we obtain:

$$w_1^{\star}(t+1) = 100\%$$
 and $w_2^{\star}(t+1) = 0\%$

<ロト < 団ト < 団ト < 団ト = 三日

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Some Models Robustness of the Markowitz framework Weights constraints and Portfolio Theory

An example

3 assets with $\sigma_1(t) = 20\%$, $\sigma_2(t) = 22\%$ and $\sigma_3(t) = 23\%$ and a uniform correlation ρ . We assume that the true correlation ρ is 90%.

Table: Optimal portfolios

				Estimated	correlation				
		Ν	No short sellin	g	With short selling				
Asset	EW	90%	85%	95%	90%	85%	95%		
1	33.33%	95.65%	70.09%	100.00%	100.00%	70.09%	100.00%		
2	33.33%	4.35%	23.78%	0.00%	17.61%	23.78%	36.82%		
3	33.33%	0.00%	6.13%	0.00%	-17.61%	6.13%	-36.82%		
Volatility	20.93%	20.00%	20.17%	20.00%	19.92%	20.17%	20.02%		

Michaud (1989), FAJ:

The Markowitz Optimization Enigma: Is "Optimized" Optimal?

JQ (~

Some Models Robustness of the Markowitz framework Weights constraints and Portfolio Theory

On the importance of the information matrix

Let μ and Σ be the vector of expected returns and the covariance matrix. Optimal solutions are of the following form:

$$w^{\star} \propto \Sigma^{-1} \mu$$

In the case of the minimum-variance portfolio, the form is:

$$w^{\star} \propto \Sigma^{-1} \mathbf{1}$$

The important quantity is $\mathscr{I} = \Sigma^{-1}$, which is called the information matrix.

<ロト < 同ト < ヨト < ヨト -

Some Models Robustness of the Markowitz framework Weights constraints and Portfolio Theory

Which factors are important?

Eigendecomposition of the information matrix

The eigendecomposition of $\mathscr{I} = \Sigma^{-1}$ is the same as the one of Σ , but with reverse order of eigenvectors and inverse eigenvalues:

$$egin{array}{rcl} V_i(\mathscr{I}) &=& V_{n-i}(\Sigma) \ \lambda_i(\mathscr{I}) &=& rac{1}{\lambda_{n-i}(\Sigma)} \end{array}$$

Table: Example with the previous covariance matrix (with correlation 90%)

	Co	ovariance mat	rix	Information matrix				
Asset / Factor	1	2 3		1	2	3		
1	52.88%	-13.02%	83.87%	83.87%	-13.02%	52.88%		
2	58.56%	-65.93%	-47.16%	-47.16%	-65.93%	58.56%		
3	61.44%	74.05%	-27.25%	-27.25%	74.05%	61.44%		
Eigenvalues	0.1319	0.0051	0.0043	233.4190	197.1199	7.5790		
% cumulated	93.4%	97.0%	100.0%	53.3%	98.3%	100.0%		

▲□▶▲□▶▲□▶▲□▶ ▲□

Solutions

Because the optimal solution depends principally on the last factors of the covariance matrix, we have to introduce some regularization techniques:

- regularization of the objective function by using resampling techniques
- regularization of the covariance matrix:
 - Factor analysis
 - Shrinkage methods
 - Random matrix theory
 - etc.
- regularization of the program specification by introducing some constraints

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

Some Models Robustness of the Markowitz framework Weights constraints and Portfolio Theory

Main result

We consider a universe of *n* assets. We denote by μ the vector of their expected returns and by Σ the corresponding covariance matrix. We specify the optimization problem as follows:

$$\min \frac{1}{2} w^{\top} \Sigma w$$

u.c.
$$\begin{cases} \mathbf{1}^{\top} w = 1\\ \mu^{\top} w \ge \mu^{\star}\\ w \in \mathbb{R}^{n} \cap \mathscr{C} \end{cases}$$

where w is the vector of weights in the portfolio and \mathscr{C} is the set of weights constraints. We define:

• the unconstrained portfolio w^* or $w^*(\mu, \Sigma)$:

$$\mathscr{C} = \mathbb{R}^n$$

• the constrained portfolio \tilde{w} :

$$\mathscr{C}(w^{-},w^{+}) = \left\{ w \in \mathbb{R}^{n} : w_{i}^{-} \leq w_{i} \leq w_{i}^{+} \right\}$$

Theorem

Jagannathan and Ma (2003) show that the constrained portfolio is the solution of the unconstrained problem:

$$ilde{w} = w^{\star}\left(ilde{\mu}, ilde{\Sigma}
ight)$$

with:

$$\left\{ egin{array}{l} ilde{\mu} & \ ilde{\Sigma} = \Sigma + (\lambda^+ - \lambda^-) \, \mathbf{1}^ op + \mathbf{1} \left(\lambda^+ - \lambda^-
ight)^ op \end{array}
ight.$$

where λ^- and λ^+ are the Lagrange coefficients vectors associated to the lower and upper bounds.

 \Rightarrow Introducing weights constraints is equivalent to introduce some relative views (similar to the **Black-Litterman** approach).

▲ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶ ─

Some Models Robustness of the Markowitz framework Weights constraints and Portfolio Theory

Proof for the global minimum-variance portfolio

We define the Lagrange function as $f(w; \lambda_0) = \frac{1}{2}w^{\top}\Sigma w - \lambda_0 (\mathbf{1}^{\top}w - 1)$ with $\lambda_0 \ge 0$. The first order conditions are $\Sigma w - \lambda_0 \mathbf{1} = 0$ and $\mathbf{1}^{\top}w - 1 = 0$. We deduce that the optimal solution is:

$$w^{\star} = \lambda_0^{\star} \Sigma^{-1} \mathbf{1} = \frac{1}{\mathbf{1}^{\top} \Sigma \mathbf{1}} \Sigma^{-1} \mathbf{1}$$

With weights constraints $\mathscr{C}(w^-, w^+)$, we have:

$$f(w;\lambda_0,\lambda^-,\lambda^+) = \frac{1}{2}w^{\top}\Sigma w - \lambda_0 \left(\mathbf{1}^{\top}w - \mathbf{1}\right) - \lambda^{-\top} \left(w - w^{-}\right) - \lambda^{+\top} \left(w^+ - w\right)$$

with $\lambda_0 \ge 0$, $\lambda_i^- \ge 0$ and $\lambda_i^+ \ge 0$. In this case, the first-order conditions becomes $\Sigma w - \lambda_0 \mathbf{1} - \lambda^- + \lambda^+ = 0$ and $\mathbf{1}^\top w - 1 = 0$. We have:

$$\tilde{\Sigma}\tilde{w} = \left(\Sigma + \left(\lambda^{+} - \lambda^{-}\right)\mathbf{1}^{\top} + \mathbf{1}\left(\lambda^{+} - \lambda^{-}\right)^{\top}\right)\tilde{w} = \left(2\tilde{\lambda}_{0} - \tilde{w}^{\top}\Sigma\tilde{w}\right)\mathbf{1}$$

Because $\tilde{\Sigma}\tilde{w}$ is a constant vector, it proves that \tilde{w} is the solution of the unconstrained optimisation problem with $\lambda_0^{\star} = \left(2\tilde{\lambda}_0 - \tilde{w}^\top \Sigma \tilde{w}\right)$.

Some Models Robustness of the Markowitz framework Weights constraints and Portfolio Theory

Examples

Table: Specification of the covariance matrix Σ (in %)

σ_i	$ ho_{i,j}$											
15.00	100.00											
20.00	10.00	100.00										
25.00	40.00	70.00	100.00									
30.00	50.00	40.00	80.00	100.00								

Given these parameters, the global minimum variance portfolio is equal to:

$$w^{\star} = \left(\begin{array}{c} 72.742\% \\ 49.464\% \\ -20.454\% \\ -1.753\% \end{array}\right)$$

(日) (四) (로) (로) (로) (로)

Table: Global minimum variance portfolio when $w_i \ge 10\%$

<i></i> \widetilde{W}_{i}	λ_i^-	λ_i^+	$\tilde{\sigma}_i$	$ ilde{ ho}_{i,j}$							
			15.000								
				10.000	100.000						
10.000	1.190	0.000	19.671		58.709						
10.000	1.625	0.000	23.980	17.378	16.161	67.518	100.000				

Table: Global minimum variance portfolio when $0\% \le w_i \le 50\%$

<i>w</i> _i	λ_i^-	λ_i^+	$\tilde{\sigma}_i$	$\begin{array}{c c} & \tilde{\rho}_{i,j} \\ 100.000 \\ 35.057 & 100.000 \\ 46.881 & 69.087 & 100.000 \\ 52.741 & 41.154 & 79.937 & 100.000 \end{array}$							
50.000	0.000	1.050	20.857	100.000							
50.000	0.000	0.175	20.857	35.057	100.000						
0.000	0.175	0.000	24.290	46.881	69.087	100.000					
0.000	0.000	0.000	30.000	52.741	41.154	79.937	100.000				

- 25

Table: MSR tangency portfolio when $0\% \le w_i \le 40\%$ and $sh^* = 0.5$

1		1 1	$\tilde{\sigma}_i$	1 1 1 1							
40.000	0.000	0.810	19.672	100.000							
40.000	0.000	0.540	22.539	37.213	100.000						
0.000	0.000	0.000	25.000	46.970	71.698	100.000					
20.000	0.000	0.000	30.000	51.850	43.481	80.000	100.000				

We obtain:

$$\widetilde{sh} = \left(\begin{array}{c} 0.381\\ 0.444\\ 0.5\\ 0.5 \end{array} \right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ξ.

Risk-budgeting principles The ERC portfolio

Euler decomposition of risk measures

Let $\mathscr{R}(w_1, \ldots, w_n)$ be a coherent convex risk measure. We have:

$$\mathscr{R}(w_1,\ldots,w_n) = \sum_{i=1}^n \underbrace{w_i \cdot \frac{\partial \mathscr{R}(w_1,\ldots,w_n)}{\partial w_i}}_{RC_i}$$

 RC_i is the risk contribution of the i^{th} asset: it is the product of its weight by its marginal risk.

Let us consider a set of **given** risk budgets $\{RB_1, \ldots, RB_n\}$, the risk-budgeted portfolio is defined by:

$$RC_{1}(w_{1},...,w_{n}) = RB_{1}$$

$$RC_{i}(w_{1},...,w_{n}) = RB_{i}$$

$$RC_{n}(w_{1},...,w_{n}) = RB_{n}$$

< = > < = >

Risk-budgeting principles The ERC portfolio

When the risk measure is the volatility of the portfolio

Let Σ and w be the covariance matrix and the portfolio weights. We have:

$$\mathscr{R}(w) = \sigma(w) = \sqrt{w^{\top} \Sigma w}$$

We deduce that:

$$\frac{\partial \mathscr{R}(w)}{\partial w} = \frac{\Sigma w}{\sqrt{w^{\top} \Sigma w}}$$

The risk contribution of the i^{th} asset is then:

$$RC_i = w_i \cdot \frac{(\Sigma w)_i}{\sqrt{w^\top \Sigma w}}$$

We verify that this risk measure is convex:

$$\sum_{i=1}^{n} RC_{i} = \sum_{i=1}^{n} w_{i} \cdot \frac{(\Sigma w)_{i}}{\sqrt{w^{\top} \Sigma w}} = w^{\top} \frac{\Sigma w}{\sqrt{w^{\top} \Sigma w}} = \sqrt{w^{\top} \Sigma w} = \mathscr{R}(w)$$

JQ (~

Illustration

- 3 assets
- Volatilities are respectively 20%, 30% and 15%
- Correlations are set to 60% between the 1st asset and the 2nd asset and 10% between the first two assets and the 3rd asset

The marginal risk for the first asset is:

$$\lim_{\varepsilon \to 0} \frac{\sigma(w_1 + \varepsilon, w_2, w_3) - \sigma(w_1, w_2, w_3)}{(w_1 + \varepsilon) - w_1}$$

If
$$\varepsilon = 1\%$$
, we have:
 $rac{\partial \mathscr{R}(x)}{\partial w_1} \simeq rac{16.72\% - 16.54\%}{1\%} = 18.01\%$

Traditional approach											
Asset	Weight	Marginal	Risk Contribution								
Asset	weight	Risk	Absolute	Relative							
1	50.00%	17.99%	9.00%	54.40%							
2	25.00%	25.17%	6.29%	38.06%							
2	25.00%	4.99%	1.25%	7.54%							
Volatility			16.54%								

Risk budgeting approach

Asset	Weight	Marginal	Risk Contribution			
Asset	weight	Risk	Absolute	Relative		
1	41.62%	16.84%	7.01%	50.00%		
2	15.79%	22.19%	3.51%	25.00%		
2	42.58%	8.23%	3.51%	25.00%		
Volatility			14.02%			

ERC approach

Asset	Weight	Marginal	Risk Contribution			
Asset	weight	Risk	Absolute	Relative		
1	30.41%	15.15%	4.61%	33.33%		
2	20.28%	22.73%	4.61%	33.33%		
2	49.31%	9.35%	4.61%	33.33%		
Volatility			13.82%			

Definition

The Euler decomposition gives us:

$$\sigma(w) = \sum_{i=1}^{n} w_i \times \frac{\partial \sigma(w)}{\partial w_i} = \sum_{i=1}^{n} \mathrm{RC}_i$$

The ERC portfolio is the risk-balanced portfolio such that the risk contribution is the same for all assets of the portfolio:

$$RC_i = RC_j$$
 for all i, j

The ERC portfolio is then the solution of the following non-linear system:

$$\begin{cases} w_2 \times (\Sigma w)_2 = w_1 \times (\Sigma w)_1 \\ w_3 \times (\Sigma w)_3 = w_1 \times (\Sigma w)_1 \\ \vdots \\ w_n \times (\Sigma w)_n = w_1 \times (\Sigma w)_1 \\ w_1 + w_2 + \dots + w_n = 1 \\ w_1 > 0, w_2 > 0, \dots, w_n > 0 \end{cases}$$

< = > < = >

э.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Risk-budgeting principles The ERC portfolio

Properties

Consider the following optimization problem:

$$w^{\star}(c) = rgmin \sqrt{w^{\top} \Sigma w}$$

u.c. $\begin{cases} \sum_{i=1}^{n} \ln w_i \ge c \\ \mathbf{1}^{\top} w = 1 \\ \mathbf{0} \le w \le \mathbf{1} \end{cases}$

We have $w^*(-\infty) = w_{mv}$ and $w^*(-n \ln n) = w_{1/n}$. The ERC portfolio corresponds to a particular value of c such that $-\infty \le c \le -n \ln n$.

- The solution of the ERC problem exists and is **unique**.
- **2** We also obtain the following inequality:

$$\sigma_{mv} \leq \sigma_{erc} \leq \sigma_{1/n}$$

because if $c_1 \leq c_2$, we have $\sigma(w^*(c_1)) \leq \sigma(w^*(c_2))$. The ERC portfolio may be viewed as a portfolio "between" the 1/n portfolio and the minimum-variance portfolio.

The ERC portfolio is a form of variance-minimizing portfolio subject to a constraint of sufficient diversification in terms of weights.

• If the correlations are the same, the solution is:

$$w_i = \frac{\sigma_i^{-1}}{\sum_{j=1}^n \sigma_j^{-1}}$$

The weight allocated to each component *i* is given by the ratio of the inverse of its volatility with the harmonic average of the volatilities.

• If the volatilities are the same, we have:

$$w_i \propto \left(\sum_{k=1}^n w_k \rho_{ik}\right)^{-1}$$

The weight of the asset *i* is proportional to the inverse of the weighted average of correlations of component *i* with other components.

• In the general case, we obtain:

$$w_i \propto \beta_i^{-1}$$

The weight of the asset *i* is proportional to the inverse of its beta.

- The ERC portfolio is the tangency portfolio if all the assets have the same Sharpe ratio and if the correlation is uniform (one-factor model).
- Let us consider the minimum variance portfolio with a constant correlation matrix $C_n(\rho)$. The solution is:

$$w_{i} = \frac{-((n-1)\rho+1)\sigma_{i}^{-2} + \rho\sum_{j=1}^{n}(\sigma_{i}\sigma_{j})^{-1}}{\sum_{k=1}^{n}(-((n-1)\rho+1)\sigma_{k}^{-2} + \rho\sum_{j=1}^{n}(\sigma_{k}\sigma_{j})^{-1})}$$

The lower bound of $C_n(\rho)$ is achieved for $\rho = -(n-1)^{-1}$ and we have:

$$w_i = \frac{\sum_{j=1}^n (\sigma_i \sigma_j)^{-1}}{\sum_{k=1}^n \sum_{j=1}^n (\sigma_k \sigma_j)^{-1}} = \frac{\sigma_i^{-1}}{\sum_{k=1}^n \sigma_k^{-1}} \to \text{erc}$$

• The ERC portfolio minimizes the Gini and Herfindal indexes applied to the risk measure.

▲□▶ ▲□▶ ▲三▶ ▲三▶

Pros and cons of market-cap indexation

Pros of market-cap indexation

- A convenient and **recognized approach** to participate to broad equity markets.
- Management simplicity: low turnover & transaction costs.

Cons of market-cap indexation

- Trend-following strategy: momentum bias leads to bubble risk exposure as weight of best performers ever increases.
 - \Rightarrow Mid 2007, financial stocks represent 40% of the Eurostoxx 50 index.
- Growth biais as high valuation multiples stocks weight more than low-multiple stocks with equivalent realised earnings.

 \Rightarrow Mid 2000, the 8 stocks of the technology/telecom sectors represent 35% of the Eurostoxx 50 index.

- \Rightarrow 2¹/₂ years later after the dot.com bubble, these two sectors represent 12%.
- Concentrated portfolios.
 - \Rightarrow The top 100 market caps of the S&P 500 account for around 70%.
- Lack of risk diversification and high drawdown risk: no portfolio construction rules leads to concentration issues (e.g. sectors, stocks).

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Alternative-weighted indexation

Alternative-weighted indexation aims at building passive indexes where the weights are not based on market capitalization.

Two sets of responses:

- Fundamental indexation \Rightarrow promising alpha
 - Dividend yield indexation
 - **2** RAFI indexation
- **2** Risk-based indexation \Rightarrow promising diversification
 - Equally weighted (1/n)
 - O Minimum-variance portfolio
 - **3** ERC portfolio
 - MDP/MSR portfolio

□ ▶ ▲ ■ ▶ ▲ ■ ▶ →

3

Risk-based indexation Risk parity funds Bond portfolios management

Risk-based methods

Equally-weighted (1/n)

- Weights are equal
- Easy to understand
- Contrarian strategy with a take-profit scheme
- The least concentrated in terms of weights
- Do not depend on risks

Most Diversified Portfolio (MDP)

- Also known as the Max Sharpe Ratio (MSR) portfolio of EDHEC
- Based on the assumption that sharpe ratio is equal for all stocks
- It is the tangency portfolio if the previous assumption is verified
- Sensitive to the covariance matrix

Minimum-variance (MV)

- Low volatility portfolio
- The only optimal portfolio not depending on expected returns assumptions
- Good out of sample performance
- Concentrated portfolios
- Sensitive to the covariance matrix

Equal-Risk Contribution (ERC)

- Risk contributions are equal
- Highly diversified portfolios
- Less sensitive to the covariance matrix (than the MV and MDP portfolios)
- Not efficient for universe with a large number of stocks (equivalent to the 1/n portfolio)

 $Q (\sim$

Risk-based indexation Risk parity funds Bond portfolios management

Comparison of the 4 Methods

In terms of bets

$$\exists i : w_i = 0 \quad (\mathsf{MV} - \mathsf{MDP}) \\ \forall i : w_i \neq 0 \quad (1/\mathsf{n} - \mathsf{ERC})$$

In terms of risk factors

$$W_{i} = W_{j} \qquad (1/n)$$

$$\frac{\partial \sigma(w)}{\partial w_{i}} = \frac{\partial \sigma(w)}{\partial w_{j}} \qquad (MV)$$

$$W_{i} \times \frac{\partial \sigma(w)}{\partial w_{i}} = W_{j} \times \frac{\partial \sigma(w)}{\partial w_{j}} \qquad (ERC)$$

$$\frac{1}{\sigma_{i}} \times \frac{\partial \sigma(w)}{\partial w_{i}} = \frac{1}{\sigma_{j}} \times \frac{\partial \sigma(w)}{\partial w_{j}} \qquad (MDP)$$

(日) (四) (王) (王) (王)

Application to the Eurostoxx 50 index

CW WV ERC MDP 1/n								•					,							
TOTAL 6.1 2.1 2 5.0 RWE AG (NEU) 1.7 2.7 2.7 2 7.0 5.0 BANCO SANTANDER 5.8 1.3 2 ING GROEP NV 1.6 0.8 0.4 2 7.0 5.0 5.0 TELEFONICA SA 5.0 31.2 3.5 2 10.0 1.0 5.0 5.0 DANONE 1.6 1.9 3.4 1.8 2 8.7 3.3 5.0 5.0 5.0 SANOFI-AVENTIS 3.6 1.1 2 1.0 10.0 5.0 5.0 BERDROLA SA 1.6 2.8 3.1 4.5 2 10.0 5.0 5.0 5.0 S.0 5.0 S.0 5.0 S.0 5.0 S.0 5.0 S.0 ANHEUSERUSCH INB 1.6 2.8 3.1 4.5 2 10.0 5.0 5.0 5.0 S.0 ANHEUSERUSCH INB 1.6 1.6 2.8 1.1 2 5.0 5.0 S.0 S.0 S.0 S.0 S.0 S.0 S.0 S.0 S.0 S.							MV	MDP	MV	MDP							MV	MDP	MV	MDP
BANCO SANTANDER 5.8 1.3 2 UN ING GROEP NV 1.6 0.8 0.4 2 UN UN FELEFONICA SA 5.0 31.2 3.5 2 100 5.0 5.0 DANONE 1.6 1.9 3.4 1.8 2 8.7 3.3 5.0 5.0 SANOFI-AVENTIS 3.6 2.1 2 2 1.0 5.0 5.0 IBERDROLASA 1.6 2.1 2 2 5.0 5.0 1.2 SANOFI-AVENTIS 3.6 2.1 1.1 2 1.4 ENEL 1.6 2.8 3.1 4.5 2 1.0 5.0		CW	MV	ERC	MDP	1/n	10%	10%	5%	5%		CW	MV	ERC	MDP	1/n	10%	10%	5%	5%
TELEFONICA SA 5.0 3.0 3.6 1.2 3.7 3.7 2 1.0 5.0 5.0 DANONE 1.6 1.6 1.0 1.8 1.8 2.8 8.7 3.3 5.0 5.0 SANOFI-AVENTIS 3.6 1.2.1 4.5 1.5 2 1.0.0 1.0 5.0 1.4 END PARIBAS 3.4 1.4 1.5 2.1 2 2.1 2.0 2.0 2.0 1.4 END PARIBAS 3.2 2.1 1.0 5.0 2	TOTAL	6.1		2.1		2			5.0		RWE AG (NEU)	1.7	2.7	2.7		2	7.0		5.0	
AANOFI-AVENTIS 3.6 12.1 4.5 15.5 2 10.0 10.0 5.0 10 10.0 10.0 5.0 10 10.0 10.0 5.0 10 10.0 10.0 10.0 5.0 10 10.0 10.0 10.0 10.0 5.0 10.	BANCO SANTANDER	5.8		1.3		2					ING GROEP NV	1.6		0.8	0.4	2				
E.O. AG3.62.12255.4ENEL1.62.12.125.02.55.02.5BNP PARIBAS3.41.122221.52221.61.62.83.14.521.005.0	TELEFONICA SA	5.0	31.2	3.5		2	10.0		5.0	5.0	DANONE	1.6	1.9	3.4	1.8	2	8.7	3.3	5.0	5.0
AI I.1 I.	SANOFI-AVENTIS	3.6	12.1	4.5	15.5	2	10.0	10.0	5.0	5.0	IBERDROLA SA	1.6		2.5		2	5.1		5.0	1.2
SIGMENS AG 3.2 1.5 2 1.5 2 1.5 2 1.6 0.2 0.7 1.0 2 2.1 1.0. 5.0 5.0 BBVA (BILB-VIZ-ARG) 2.9 1.4 2 5.0 5.0 5.0 AIR LIQUIDE(L') 1.4 2.1 2 2.0 5.0 5.0 AIR LIQUIDE(L') 1.4 2.1 2 5.0 5.0 BAYER AG 2.9 2.6 3.7 2 2.2 5.0 5.0 5.0 AIR LIQUIDE(L') 1.4 2.1 2 5.0 5.0 GDF SUEZ 2.5 2.6 4.5 2 5.4 5.0 5.0 SCHNEIDER ELECTRIC 1.3 1.0 2.7 1.3 2 3.1 5.0 5.0 SASE SE 2.5 1.5 2 2 5.7 5.0 PHILPS ELEC(KON) 1.2 1.8 2.0 3.7 2.5 5.0 5.0 SOC GENERALE 2.2 1.4 3.7 1.0.8 2 1.0.0 5.0 1.0 I.0.0 5.0 I.0 I.0 <td>E.ON AG</td> <td>3.6</td> <td></td> <td>2.1</td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td>1.4</td> <td>ENEL</td> <td>1.6</td> <td></td> <td>2.1</td> <td></td> <td>2</td> <td></td> <td></td> <td>5.0</td> <td>2.9</td>	E.ON AG	3.6		2.1		2				1.4	ENEL	1.6		2.1		2			5.0	2.9
BBVA/BILE-VIZ-ARG) 2.9 1.4 2 1.4 2 1.4 2 1.4 2 1.4 2 5.0 5.0 5.0 ASSIC GENERALI SPA 1.6 1.8 2 2 5.0 5.0 5.0 AIR LIQUIDE(L') 1.4 2.1 2 5.0 5.0 5.0 5.0 MUENCHENER RUECKVE 1.3 2.1 2 3.1 5.0 5.0 5.0 GDF SUEZ 2.5 2.5 2.6 4.5 2 5.4 5.0 5.0 SCHNEIDER ELECTRIC 1.3 1.0 2.7 1.3 2 3.7 2.5 5.0 5.0 5.0 BASF SE 2.5 1.5 2 2 5.4 5.0 5.0 SCHREIDER ELECTRIC 1.3 1.0 2.7 1.3 2 3.7 2.5 5.0 5.0 5.0 SOC GENERALE 2.2 1.2 3.9 2 3.7 5.0 5.0 CREDI 1.1 0.8 2.8 2 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	BNP PARIBAS	3.4		1.1		2					VIVENDI SA	1.6	2.8	3.1	4.5	2	10.0	5.9	5.0	5.0
BAYER AG 2.9 2.6 3.7 2 2.2 5.0 5.0 AIR LIQUIDE(L') 1.4 2.1 2 5.0 5.0 ENI 2.7 2.1 2 2.6 5.4 5.0 5.0 MUENCHENER RUECKVE 1.3 2.1 2.1 2 3.1 5.0 5.0 BASF SE 2.5 1.5 2 2 5.4 5.0 5.0 CARREFOUR 1.3 1.0 2.7 1.3 2 3.7 2.5 5.0 5.0 ALLIANZ SE 2.4 1.4 2 2 3.7 5.0 5.0 PHILIPS ELEC(KON) 1.2 1.8 2 5.0 5.0 5.0 SOC GENERALE 2.2 1.4 3.7 10.8 2.0 5.0 5.0 5.0 100 10.0 5.0 5.0 100 1.0 5.0 5.0 1.0 1.0 1.0 1.1 0.8 2.8 2 5.0 5.0 VINICREDIT SPA 2.2 1.4 3.7 10.8 1.0 0.0 5.0 5.0	SIEMENS AG	3.2		1.5		2					ANHEUSER-BUSCH INB	1.6	0.2	2.7	10.9	2	2.1	10.0	5.0	5.0
ENI 2.7 2.1 2 MUENCHENER RUECKVE 1.3 2.1 2.1 2 3.1 5.0 5.0 GDF SUEZ 2.5 2.6 4.5 2 5.4 5.0 5.0 SCHNEIDER ELECTRIC 1.3 1.5 2 CARREFOUR 1.3 1.0 2.7 1.3 2 3.7 2.5 5.0 5.0 5.0 ALLIANZ SE 2.4 1.4 2 LVMH MOET HENNESSY 1.2 1.8 2 VINCI 1.3 1.0 2.7 1.3 2 3.7 5.0	BBVA(BILB-VIZ-ARG)	2.9		1.4		2					ASSIC GENERALI SPA	1.6		1.8		2				
GDF SUEZ 2.5 2.6 4.5 2 5.4 5.0 SCHNEIDER ELECTRIC 1.3 1.5 2 1.4 2 5.0 SCHNEIDER ELECTRIC 1.3 1.0 2.7 1.3 2 3.7 2.5 5.0 5.0 ALLIANZ SE 2.4 1.4 2 - - VINCI 1.3 1.6 2 3.7 2.5 5.0 5.0 5.0 VUNICREDIT SPA 2.3 1.1 2 - 5.0 1.0 1.0 2.1 1.8 2 - 1.4 2 - 1.4 2 - 1.4 2 - 1.4 2 -	BAYER AG	2.9		2.6	3.7	2	2.2	5.0	5.0	5.0	AIR LIQUIDE(L')	1.4		2.1		2			5.0	
BASF SE 2.5 1.5 2 2 2 2 2 3.7 2.5 5.0 5.0 ALLIANZ SE 2.4 1.4 2 2 1.4 2 2 1.4 2 2 1.4 2 1.5 1.5 1.5 1.5 1.5 1.6 2 2 2 1.6 2 2 1.6 2 2 1.6 2 2 1.6 2 1.6 2 1.6 2 1.6 2 1.6 2 1.6 2 1.6 2 1.6 2 1.6 2 1.6 2 1.6 2 1.6 2 1.6 1.6 2 1.6 1.6 2 1.6 1.6 1.6 2 1.6 </td <td>ENI</td> <td>2.7</td> <td></td> <td>2.1</td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td>MUENCHENER RUECKVE</td> <td>1.3</td> <td></td> <td>2.1</td> <td>2.1</td> <td>2</td> <td></td> <td>3.1</td> <td>5.0</td> <td>5.0</td>	ENI	2.7		2.1		2					MUENCHENER RUECKVE	1.3		2.1	2.1	2		3.1	5.0	5.0
ALIANZ SE 2.4 1.4 2 2 VINCI 1.3 1.6 2 2 1.4 2 UNICREDIT SPA 2.3 1.1 2 3.9 2 3.7 5.0 PHILIPS ELEC(KON) 1.2 1.8 2 2 5.0 5.0 1.1 2 1.4 2 1.4 3.9 2 3.7 5.0 PHILIPS ELEC(KON) 1.2 1.4 2 5.5 5.0 5.0 5.0 1.0 1.0 5.0 1.0 1.0 1.0 1.1 0.8 2.8 2 5.5 5.0 5.0 5.0 5.0 1.0 1.0 1.0 1.0 1.1 0.8 2.8 2 5.5 5.0<	GDF SUEZ	2.5		2.6	4.5	2		5.4	5.0	5.0	SCHNEIDER ELECTRIC	1.3		1.5		2				
UNICREDIT SPA 2.3 1.1 2 V V V/MH MOET HENNESSY 1.2 1.8 2 V	BASF SE	2.5		1.5		2					CARREFOUR	1.3	1.0	2.7	1.3	2	3.7	2.5	5.0	5.0
SOC GENERALE 2.2 1.2 3.9 2 3.7 5.0 PHILIPS ELEC(KON) 1.2 1.4 2 1.4 2 UNILEVER NV 2.2 11.4 3.7 10.8 2 10.0 10.0 5.0 5.0 L'OREAL 1.1 0.8 2.8 2 5.5 5.0 5.0 5.0 FRANCE TELECOM 2.1 14.9 4.1 10.2 2 10.0 10.0 5.0 5.0 CIE DE ST-GOBAIN 1.0 1.1 0.8 2.8 2 5.5 5.0 5.0 5.0 NOKIA OYJ 2.1 1.8 4.5 2 4.8 5.0 REPSOL YPF SA 0.9 2.0 2.0 2 5.0	ALLIANZ SE	2.4		1.4		2					VINCI	1.3		1.6		2				
UNILEVER NV 2.2 11.4 3.7 10.8 2 10.0 10.0 5.0 5.0 10.0 1.0 1.0 1.1 0.8 2.8 2 5.5 5.0	UNICREDIT SPA	2.3		1.1		2					LVMH MOET HENNESSY	1.2		1.8		2				
FRANCE TELECOM 2.1 14.9 4.1 10.2 2 10.0 10.0 5.0 CIE DE ST-GOBAIN 1.0 1.1 2 NOKIA OYJ 2.1 1.8 4.5 2 4.8 5.0 REPSOL YPF SA 0.9 2.0 2 5.0 5.0 DAIMLER AG 2.1 1.3 2 2 4.8 5.0 CRH 0.8 1.7 5.1 2 5.2 5.0 DEUTSCHE BANK AG 1.9 1.0 2 5.7 3.7 5.0 5.0 CREDIT AGRICOLE SA 0.8 1.1 2 5.2 5.0 5.0 DEUTSCHE TELEKOM 1.9 3.2 2.6 2 5.7 3.7 5.0 5.0 DEUTSCHE BOERSE AG 0.7 1.5 2 1.9 INTESA SANPAOLO 1.8 1.0 2 5.7 3.7 5.0 5.0 DEUTSCHE BOERSE AG 0.7 1.5 2 2 2.5 AXA 1.8 1.0 2 2 5.0 5.0 ALSTOM 0.6 1.5 2 7.4	SOC GENERALE	2.2		1.2	3.9	2		3.7		5.0	PHILIPS ELEC(KON)	1.2		1.4		2				
NOKIA OYJ 2.1 1.8 4.5 2 4.8 5.0 REPSOL YPF SA 0.9 2.0 2 5.0 DAIMLER AG 2.1 1.3 2 - - 6RH 0.8 1.7 5.1 2 5.2 5.0 DEUTSCHE BANK AG 1.9 1.0 2 - - CRH 0.8 1.7 5.1 2 5.2 5.0 DEUTSCHE BANK AG 1.9 3.2 2.6 2 5.7 3.7 5.0 5.0 DEUTSCHE BOERSE AG 0.7 1.5 2 1.9 INTESA SANPAOLO 1.9 1.3 2 - - - ALSTOM 0.7 1.5 2 1.9 AXA 1.8 1.0 2 - - - ALSTOM 0.6 1.5 2 2.5 ARCELORMITTAL 1.8 1.0 2 10.0 10.0 5.0 5.0 VOLKSWAGEN AG 0.2 1.8 7.1 2 7.4 5.0	UNILEVER NV	2.2	11.4	3.7	10.8	2	10.0	10.0	5.0	5.0	L'OREAL	1.1	0.8	2.8		2	5.5		5.0	5.0
DAIMLER AG 2.1 1.3 2 V V CRH 0.8 1.7 5.1 2 5.2 5.0 DEUTSCHE BANK AG 1.9 1.0 2 CREDIT AGRICOLE SA 0.8 1.1 2 1.5 2 1.5 1.5 2 1.5 1	FRANCE TELECOM	2.1	14.9	4.1	10.2	2	10.0	10.0	5.0	5.0	CIE DE ST-GOBAIN	1.0		1.1		2				
DEUTSCHE BANK AG 1.9 1.0 2 KREDIT AGRICOLE SA 0.8 1.1 2 DEUTSCHE TELEKOM 1.9 3.2 2.6 2 5.7 3.7 5.0 5.0 DEUTSCHE BOERSE AG 0.7 1.5 2 1.5 INTESA SANPAOLO 1.9 1.3 2 - - - - - - 1.5 2 1.5 2 2.5 2.5 2.5 - - - - - 1.5 2 1.5 2 1.5 2 1.5 2 1.5 2 2.5 <t< td=""><td>NOKIA OYJ</td><td>2.1</td><td></td><td>1.8</td><td>4.5</td><td>2</td><td></td><td>4.8</td><td></td><td>5.0</td><td>REPSOL YPF SA</td><td>0.9</td><td></td><td>2.0</td><td></td><td>2</td><td></td><td></td><td>5.0</td><td></td></t<>	NOKIA OYJ	2.1		1.8	4.5	2		4.8		5.0	REPSOL YPF SA	0.9		2.0		2			5.0	
DEUTSCHE TELEKOM 1.9 3.2 2.6 2 5.7 3.7 5.0 5.0 DEUTSCHE BOERSE AG 0.7 1.5 2 1.9 1.3 2 1.5 2 2.0 2.5	DAIMLER AG	2.1		1.3		2					CRH	0.8		1.7	5.1	2		5.2		5.0
INTESA SANPAOLO 1.9 1.3 2 TELECOM ITALIA SPA 0.7 2.0 2 2.5 AXA 1.8 1.0 2 ALSTOM 0.6 1.5 2<	DEUTSCHE BANK AG	1.9		1.0		2					CREDIT AGRICOLE SA	0.8		1.1		2				
AXA 1.8 1.0 2 ALSTOM 0.6 1.5 2 ARCELORMITTAL 1.8 1.0 2 ALSTOM NV 0.4 0.7 2 SAP AG 1.8 21.0 3.4 11.2 2 10.0 10.0 5.0 5.0 VOLKSWAGEN AG 0.2 1.8 7.1 2 7.4 5.0	DEUTSCHE TELEKOM	1.9		3.2	2.6	2	5.7	3.7	5.0	5.0	DEUTSCHE BOERSE AG	0.7		1.5		2				1.9
ARCELORMITTAL 1.8 1.0 2 AEGON NV 0.4 0.7 2 SAP AG 1.8 21.0 3.4 11.2 2 10.0 10.0 5.0 5.0 VOLKSWAGEN AG 0.2 1.8 7.1 2 7.4 5.0	INTESA SANPAOLO	1.9		1.3		2					TELECOM ITALIA SPA	0.7		2.0		2				2.5
SAP AG 1.8 21.0 3.4 11.2 2 10.0 10.0 5.0 5.0 VOLKSWAGEN AG 0.2 1.8 7.1 2 7.4 5.0	AXA	1.8		1.0		2					ALSTOM	0.6		1.5		2				
	ARCELORMITTAL	1.8		1.0		2					AEGON NV	0.4		0.7		2				
Total of components 50 11 50 17 50 14 16 20 23	SAP AG	1.8	21.0	3.4	11.2	2	10.0	10.0	5.0	5.0	VOLKSWAGEN AG	0.2		1.8	7.1	2		7.4		5.0
		_									Total of components	50	11	50	17	50	14	16	20	23

Table: Composition in % (January 2010)

・ロト < 団ト < 目ト < 目ト < 目 < のへで

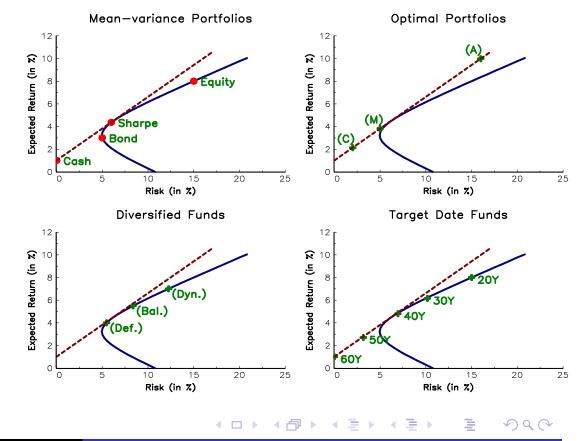
Risk-based indexation Risk parity funds Bond portfolios management

Application to the Eurostoxx 50 index

Figure: Performance of the ERC Eurozone Index (Ticker: SGIXERCE Index)

Justification of diversified funds

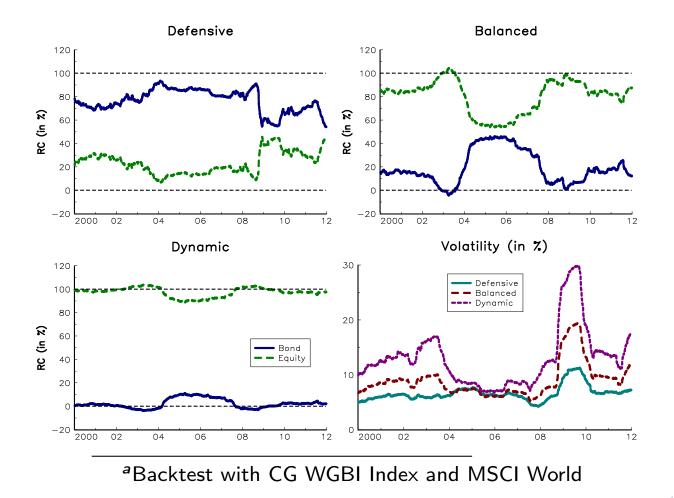
Investor Profiles


- Moderate (medium risk tolerance)
- Conservative (low risk tolerance)
- Aggressive (high risk tolerance)

Fund Profiles

- Defensive (80% bonds and 20% equities)
- Balanced (50% bonds and 50% equities)
- Oynamic (20% bonds and 80% equities)

Relationship with portfolio theory?


Figure: The asset allocation puzzle

Risk-based indexation Risk parity funds Bond portfolios management

What type of diversification offer diversified funds?

Figure: Risk contribution of diversified funds^a

Diversified funds = Marketing idea?

- Deleverage of an equity exposure
- Diversification in weights \neq Risk diversification
- No mapping between fund profiles and volatility profiles
- No mapping between fund profiles and investor profiles

∍

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

ERC diversified funds

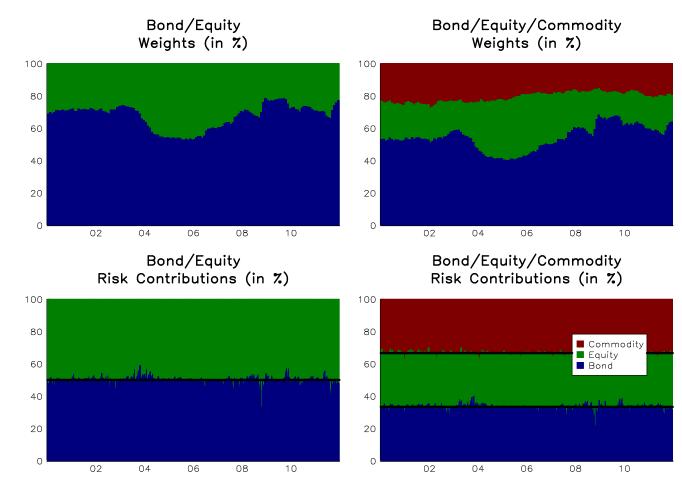


Figure: Weights and risk contributions of ERC funds²

²Backtest with CG WGBI Index, MSCI World and DJ UBS Commodity Index 📱 🖉 🤉 🖓

Risk-based indexation Risk parity funds Bond portfolios management

Risk parity funds

Definition

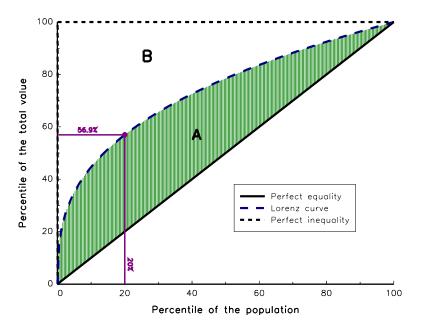
A risk parity fund is an ERC startegy on multi-assets classes.

Some examples

- AQR Capital Management
- Bridgewater
- Invesco
- Lyxor Asset Management
- PanAgora Asset Management
- Wegelin Asset Management

< □ ▶

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶


590

Statistical measures of concentration

- The Lorenz curve L(x)
 It is a graphical representation of the concentration. It represents the cumulative weight of the first x% most representative stocks.
- The Gini coefficient It is a dispersion measure based on the Lorenz curve:

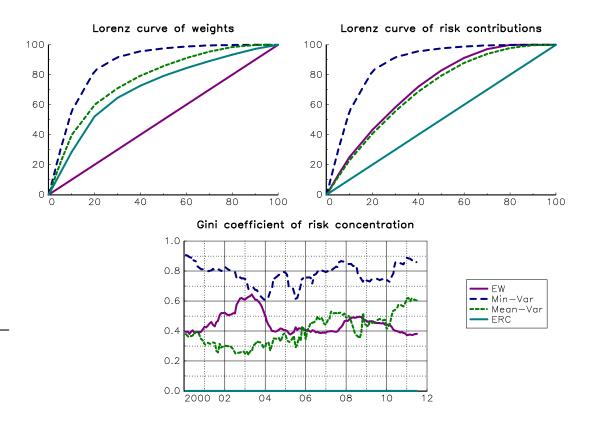
$$G = \frac{A}{A+B} = 2\int_0^1 \mathscr{L}(x) \, \mathrm{d}x - 1$$

G takes the value 1 for a perfectly concentrated portfolio and 0 for the equally-weighted portfolio.

• The risk concentration of a portfolio is analyzed using Lorenz curve and Gini coefficient applied to risk contributions.

- ▲ 글 ▶ :

-∢ ∃ ▶


Diversification of multi-assets classes funds

Backtest (monthly rebalancing) with 10 asset classes^a:

- EuroStoxx, S&P 500, TOPIX, MSCI EM
- EuroMTS 10-15Y, EuroMTS Inflation, JPMorgan EMBI
- GSCI, GOLD, EPRA/NAREIT Dev. Europe

 a Vol(Mean-Var) = Vol(ERC)

Figure: Concentration statistics

< □ ▶

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Ŧ

JQ (~

Diversification of multi-assets classes funds

Table: Range of weights and risk contributions

		E	N	Min	-Var	Mea	n-Var	EF	RC	
		min	max	min	max	min	max	min	max	
	Eurostoxx	10.0%	10.0%	0.0%	5.6%	0.0%	10.3%	2.3%	7.4%	
	S&P 500	10.0%	10.0%	0.0%	5.9%	0.0%	18.2%	2.7%	8.8%	
	ΤΟΡΙΧ	10.0%	10.0%	0.0%	8.5%	3.5%	17.4%	3.1%	8.8%	
	MSCI EM	10.0%	10.0%	0.0%	2.3%	0.0%	4.0%	1.7%	5.0%	
Moighta	EMTS 10/15	10.0%	10.0%	0.0%	39.0%	14.7%	65.7%	13.7%	35.7%	
Weights	EMTS INF	10.0%	10.0%	34.3%	84.5%	0.0%	37.5%	18.7%	37.0%	
	EMBI	10.0%	10.0%	0.0%	48.3%	0.0%	11.2%	6.5%	18.0%	
	GSCI	10.0%	10.0%	0.0%	3.7%	0.7%	12.2%	2.8%	8.2%	
	GOLD	10.0%	10.0%	0.0%	6.5%	4.5%	22.6%	4.2%	11.7%	
	RE	10.0%	10.0%	0.0%	18.8%	0.8%	14.4%	2.9%	12.1%	
	Eurostoxx	10.9%	37.1%	0.0%	5.6%	0.0%	21.2%	10.0%	10.0%	
	S&P 500	7.5%	21.7%	0.0%	5.9%	0.0%	20.2%	10.0%	10.0%	
	ΤΟΡΙΧ	5.8%	18.4%	0.0%	8.5%	9.2%	28.6%	10.0%	10.0%	
	MSCI EM	13.7%	27.9%	0.0%	2.3%	0.0%	18.3%	10.0%	10.0%	
RC	EMTS 10/15	-2.5%	2.8%	0.0%	39.0%	9.2%	34.5%	10.0%	10.0%	
κC	EMTS INF	-2.0%	1.5%	34.3%	84.5%	0.0%	11.9%	10.0%	10.0%	
	EMBI	1.5%	8.8%	0.0%	48.3%	0.0%	9.3%	10.0%	10.0%	
	GSCI	5.4%	22.0%	0.0%	3.7%	1.4%	22.6%	10.0%	10.0%	
	GOLD	-3.7%	13.7%	0.0%	6.5%	7.4%	30.4%	10.0%	10.0%	
	RE	3.7%	18.7%	0.0%	18.8%	1.3%	19.7%	10.0%	10.0%	
Tur	nover	0'	%	10	1%	12	5%	42%		

 \Rightarrow High turnover of min- and mean-variance portfolios (stability issue)

 \Rightarrow ERC = risk-balanced dynamic allocation with moderate turnover \blacksquare

Risk-based indexation Risk parity funds Bond portfolios management

Bond portfolios management

- Cap-weighted indexation for equities \Rightarrow debt-weighted indexation for bonds
- In Fund management driven by the search of yield
- \Rightarrow Time to rethink bond indexes? (Toloui, 2010)

590

Risk-based indexation Risk parity funds Bond portfolios management

Bond portfolios management

Debt weighting It is defined by^a:

 $w_i = \frac{\text{DEBT}_i}{\sum_{i=1}^n \text{DEBT}_i}$

^aTwo forms of debt-weighting are considered : DEBT (with the 11 countries) and DEBT* (without Greece after July 2010). This last one corresponds to the weighting scheme of the EGBI index.

Alternative weighting

Eundamental indexation The GDP-weighting is defined by:

$$w_i = \frac{\text{GDP}_i}{\sum_{i=1}^n \text{GDP}_i}$$

Q Risk-based indexation The DEBT-RB and GDP-RB weightings are defined by:

$$RB_{i} = \frac{DEBT_{i}}{\sum_{i=1}^{n} DEBT_{i}}$$
$$RB_{i} = \frac{GDP_{i}}{\sum_{i=1}^{n} GDP_{i}}$$

3

Choosing the right measure of credit risk

- Volatility of price returns \neq a good measure of credit risk
- Correlation of price returns \neq a good measure of contagion
- A better measure is the yield spread, but it is difficult to compute because it is difficult to define the reference (risk-free) rate.

 \Rightarrow One of the best measure is the CDS spread (it does not depend on the currency, the yield curve or the duration).

The CDS model

Let $S_i(t)$ be the spread of the *i*th issuer. We have:

$$\mathrm{d}S_{i}(t) = \sigma_{i}^{S} \cdot S_{i}(t) \cdot \mathrm{d}W_{i}(t)$$

Moreover, we assume that the correlation between the brownian motions $W_i(t)$ and $W_j(t)$ is $\Gamma_{i,j}$.

∢ ⊒ ▶

< ∃ >

Computing the credit risk measure of a bond portfolio

Let $w = (w_1, ..., w_n)$ be the weights of bonds in the portfolio. The risk measure is:

$$\mathscr{R}(x) = \sqrt{w^{\top} \Sigma w} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j \Sigma_{i,j}}$$

with $\Sigma_{i,j} = \Gamma_{i,j} \cdot \sigma_i^B \cdot \sigma_j^B$ and $\sigma_i^B = D_i \cdot \sigma_i^S \cdot S_i(t)$, where D_i is the duration of the bond *i*, σ_i^S is the CDS volatility of the corresponding issuer, $S_i(t)$ is the CDS level and $\Gamma_{i,j}$ is the correlation between the CDS relative variations of issuers corresponding to the bonds *i* and *j*.

 $\mathscr{R}(w)$ is the volatility of the CDS basket which would perfectly hedge the credit risk of the bond portfolio.

 $\mathscr{R}(w)$ depends on 3 "CDS" parameters $S_i(t)$, σ_i^S and $\Gamma_{i,j}$ and two "portfolio" parameters w_i and D_i .

Statistics as of December 1st, 2011

Table: CDS levels $S_i(t)$, volatilities σ_i^S and correlations $\Gamma_{i,j}$

Country	Spread	Vol.	AT	BE	FI	FR	DE	GR	IE	IT	NL	РТ	ES
Austria	184	68.4%	100%										
Belgium	299	72.7%	78%	100%									
Finland	69	64.6%	72%	69%	100%								
France	192	69.8%	81%	79%	70%	100%							
Germany	98	64.1%	81%	74%	70%	79%	100%						
Greece	6,000	63.3%	26%	36%	27%	26%	28%	100%					
Ireland	702	52.2%	63%	71%	56%	65%	66%	43%	100%				
Italy	467	73.3%	72%	85%	67%	73%	69%	38%	72%	100%			
Netherlands	105	65.1%	78%	76%	76%	78%	83%	32%	64%	71%	100%		
Portugal	1,048	55.3%	60%	73%	52%	62%	59%	44%	82%	75%	58%	100%	
Spain	390	70.6%	72%	79%	60%	69%	65%	32%	71%	80%	64%	70%	100%

Defining the risk contribution

Our credit risk measure $\mathscr{R}(w) = \sqrt{w^{\top}\Sigma w}$ is a convex risk measure. It means that:

$$\mathscr{R}(w_1,\ldots,w_n) = \sum_{i=1}^n w_i \cdot \frac{\partial \mathscr{R}(w_1,\ldots,w_m)}{\partial w_i}$$
$$= \sum_{i=1}^n RC_i$$

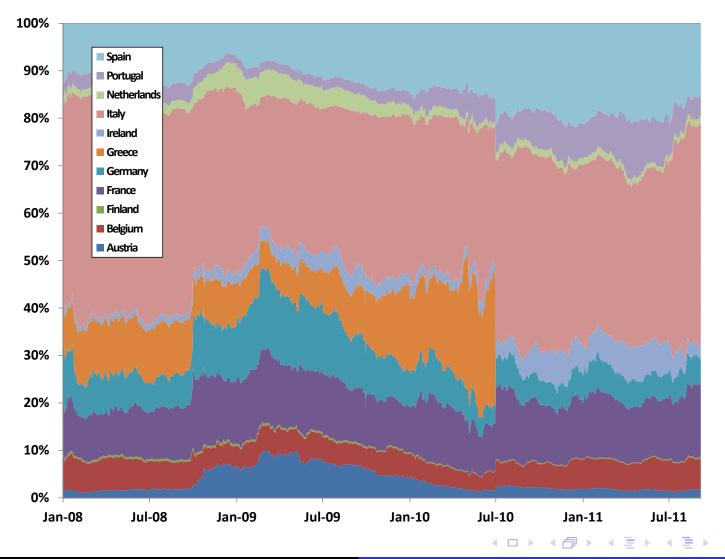
We can then decompose the risk measure exactly by n individual sources of risk.

The risk contribution RC_i is an increasing function of the parameters D_i , $S_i(t)$ and σ_i^S .

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Risk-based indexation Risk parity funds Bond portfolios management

Some results for the EGBI index


Figure: EGBI weights and risk contributions

Country	July-08		July-09		July	-10	July	-11	September-11	
Country	Weights	RC	Weights	RC	Weights	RC	Weights	RC	Weights	RC
Austria	4.1%	1.7%	3.6%	7.7%	4.1%	2.3%	4.3%	1.5%	4.3%	1.8%
Belgium	6.2%	6.1%	6.5%	5.1%	6.3%	5.7%	6.4%	6.5%	6.4%	6.7%
Finland	1.2%	0.4%	1.3%	0.5%	1.3%	0.2%	1.6%	0.2%	1.6%	0.3%
France	20.5%	9.8%	20.4%	13.2%	22.2%	15.1%	23.1%	13.3%	23.1%	15.5%
Germany	24.4%	6.1%	22.3%	13.0%	22.9%	6.0%	22.1%	5.3%	22.1%	5.5%
Greece	4.9%	11.4%	5.4%	8.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Ireland	1.0%	1.3%	1.5%	4.3%	2.1%	3.3%	1.4%	5.4%	1.4%	2.7%
Italy	22.1%	45.2%	22.4%	29.5%	23.4%	38.7%	23.1%	38.5%	23.1%	46.3%
Netherlands	5.3%	1.7%	5.3%	4.1%	6.1%	1.6%	6.2%	1.2%	6.2%	1.5%
Portugal	2.4%	3.9%	2.3%	2.3%	2.1%	6.3%	1.6%	6.6%	1.6%	4.4%
Spain	7.8%	12.4%	9.1%	11.8%	9.6%	20.9%	10.3%	21.3%	10.3%	15.5%
Sovereign Risk	0.70%		2.59%		6.12%		4.02	2%	8.12%	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Risk-based indexation Risk parity funds Bond portfolios management

Some results for the EGBI index Evolution of risk contributions

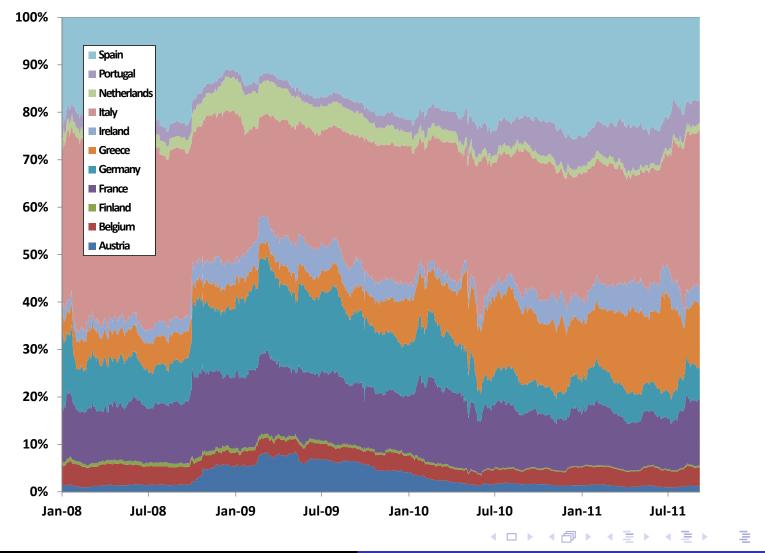
5900

E

GDP indexation

Figure: Weights and risk contributions of the GDP indexation

Country	July-08		July-09		July	/-10	July	/-11	September-11	
Country	GDP	RC	GDP	RC	GDP	RC	GDP	RC	GDP	RC
Austria	3.1%	1.4%	3.1%	7.0%	3.1%	1.7%	3.2%	1.0%	3.2%	1.3%
Belgium	3.8%	4.0%	3.8%	3.2%	3.9%	3.3%	4.0%	3.5%	4.0%	4.0%
Finland	2.0%	0.8%	1.9%	0.7%	2.0%	0.3%	2.1%	0.3%	2.1%	0.3%
France	21.2%	11.2%	21.5%	14.9%	21.4%	13.4%	21.5%	10.6%	21.5%	13.8%
Germany	27.4%	7.6%	27.2%	17.0%	27.7%	6.7%	27.9%	5.8%	27.9%	6.7%
Greece	2.6%	6.2%	2.7%	4.4%	2.6%	15.7%	2.4%	19.8%	2.4%	13.8%
Ireland	2.0%	3.0%	1.9%	5.6%	1.8%	2.6%	1.7%	5.9%	1.7%	3.3%
Italy	17.4%	37.5%	17.3%	23.5%	17.2%	25.8%	17.0%	23.9%	17.0%	32.6%
Netherlands	6.5%	2.5%	6.5%	5.3%	6.5%	1.6%	6.6%	1.2%	6.6%	1.6%
Portugal	1.9%	3.3%	1.9%	2.0%	1.9%	5.3%	1.9%	6.7%	1.9%	5.1%
Spain	12.0%	22.6%	12.0%	16.5%	11.8%	23.7%	11.8%	21.4%	11.8%	17.5%
Sovereign Risk	0.64%		2.47%		6.59%		4.56%		8.26%	


 \Rightarrow Debt and GDP indexations produces similar sovereign credit risk

measures.

3

Risk-based indexation Risk parity funds Bond portfolios management

GDP indexation Evolution of risk contributions

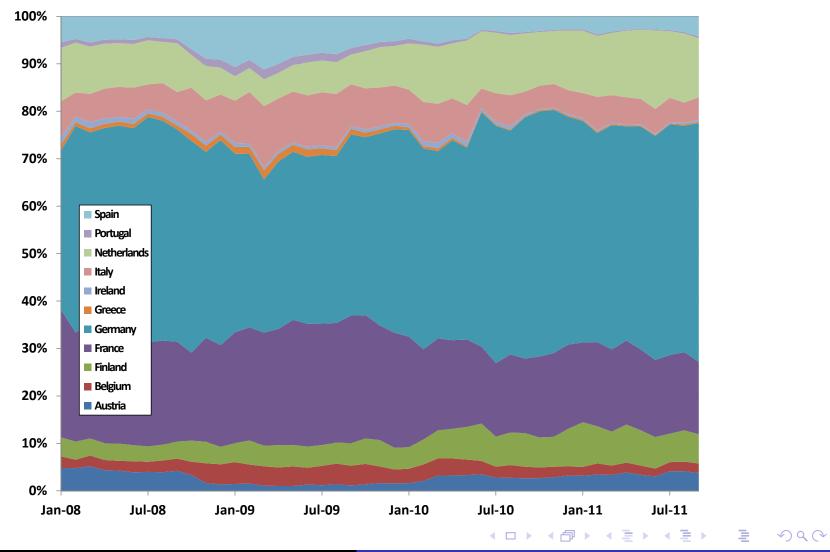
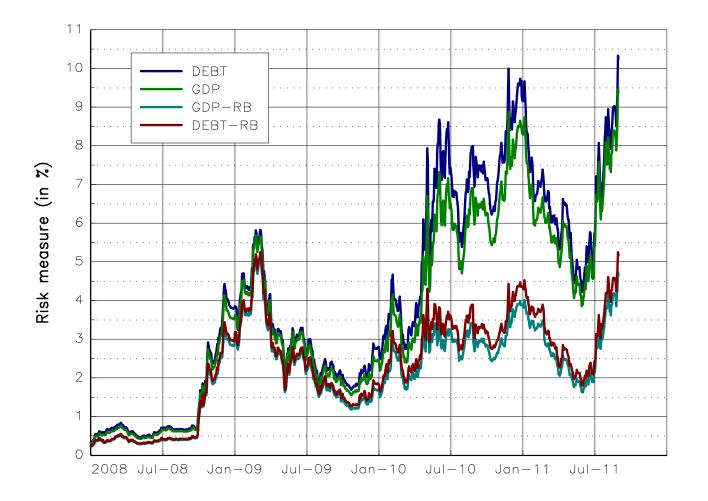

GDP-RB indexation

Figure: Weights and risk contributions of the GDP-RB indexation

Country	July-08		July-09		Jul	y-10	July-11		September-11	
Country	RC	Weights	RC	Weights	RC	Weights	RC	Weights	RC	Weights
Austria	3.1%	3.9%	3.1%	1.2%	3.1%	2.9%	3.2%	4.2%	3.2%	3.8%
Belgium	3.8%	2.1%	3.8%	4.1%	3.9%	2.2%	4.0%	1.9%	4.0%	2.0%
Finland	2.0%	3.2%	1.9%	4.4%	2.0%	6.3%	2.1%	6.0%	2.1%	6.1%
France	21.2%	22.0%	21.5%	25.6%	21.4%	15.5%	21.5%	16.5%	21.5%	15.3%
Germany	27.4%	47.8%	27.2%	35.5%	27.7%	50.0%	27.9%	48.7%	27.9%	50.2%
Greece	2.6%	0.7%	2.7%	1.4%	2.6%	0.2%	2.4%	0.2%	2.4%	0.3%
Ireland	2.0%	0.8%	1.9%	0.6%	1.8%	0.6%	1.7%	0.2%	1.7%	0.5%
Italy	17.4%	5.3%	17.3%	11.2%	17.2%	6.0%	17.0%	5.2%	17.0%	4.7%
Netherlands	6.5%	9.2%	6.5%	6.7%	6.5%	12.8%	6.6%	14.0%	6.6%	12.5%
Portugal	1.9%	0.7%	1.9%	1.6%	1.9%	0.4%	1.9%	0.2%	1.9%	0.4%
Spain	12.0%	4.2%	12.0%	7.7%	11.8%	3.1%	11.8%	2.9%	11.8%	4.2%
Sovereign Risk	0.39%		2.10%		3.25%		1.91%		4.13%	


Risk-based indexation Risk parity funds Bond portfolios management

GDP-RB indexation Evolution of weights

Risk-based indexation Risk parity funds Bond portfolios management

Comparison of the indexing schemes Evolution of the risk measure

5900 Portfolio Optimization vs Risk-Budgeting Allocation 48 / 54

Risk-based indexation Risk parity funds Bond portfolios management

Comparison of the indexing schemes Evolution of the GIIPS risk contribution

- • □ ▶ • @ ▶ • ≧ ▶ • ≧ ● のへで

Risk-based indexation Risk parity funds Bond portfolios management

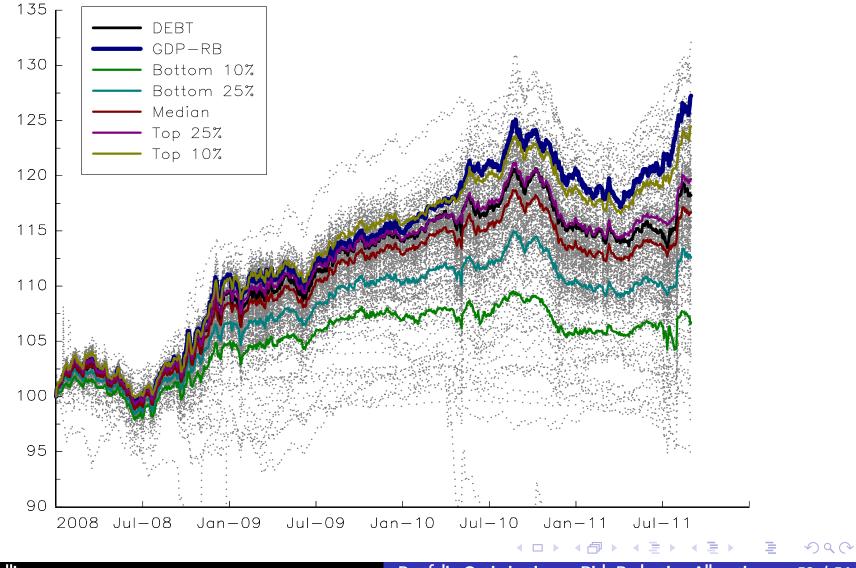
Comparison of the indexing schemes

Simulation of the performance

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ E 5900

Comparison with active management

- Database: Morningstar
- Category: Bond EURO Government
- 218 funds


The Academic Rule³:

Average Performance of Active Management = Performance of the Index – Management Fees

 \Rightarrow Implied fees for Bond EURO Government: 36 bps / year

Risk-based indexation Risk parity funds Bond portfolios management

Comparison with active management

Conclusion

- Portfolio optimization leads to concentrated portfolios in terms of weights and risk
- The use of weights constraints to diversify is equivalent to a discretionary shrinkage method
- Risk-budgeting techniques is a better approach to diversify portfolios
- Strong focus on ERC portfolios last years from the asset management industry (equity indexes, risk parity funds, commodity funds, multi-strategy funds)

For Further Reading I

- B. Bruder, P. Hereil, T. Roncalli.
 Managing Sovereign Credit Risk in Bond Portfolios.
 SSRN, ssrn.com/abstract=1957050, October 2011.
- B. Bruder, P. Hereil, T. Roncalli.
 Managing Sovereign Credit Risk.
 Journal of Indexes Europe, 1(4), November 2011.
- S. Maillard, T. Roncalli, J. Teiletche. The Properties of Equally Weighted Risk Contribution Portfolios. *Journal of Portfolio Management*, 36(4), Summer 2010.
- 🚺 T. Roncalli.

Understanding the Impact of Weights Constraints in Portfolio

Theory.

SSRN, ssrn.com/abstract=1761625, January 2011.