The Impact of ESG Investing on Asset Pricing, Credit Rating, Financial Analysis and the Cost of the Debt

Thierry Roncalli*

*Amundi Asset Management¹, France

 2^{nd} ESG & Climate Risk in Quantitative Finance Conference, October $6^{th},\,2021$

¹The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

ESG Investing in Stock and Bond Markets

Some Amundi publications

- How ESG Investing Has Impacted the Asset Pricing in the Equity Market, DP-36-2018, 36 pages, November 2018
- ESG Investing in Recent Years: New Insights from Old Challenges, DP-42-2019, 32 pages, December 2019
- ESG Investing and Fixed Income: It's Time to Cross the Rubicon, DP-45-2019, 36 pages, January 2020
- ESG & Factor Investing: A New Stage Has Been Reached, Amundi Viewpoint, May 2020
- Measuring and Managing Carbon Risk in Investment Portfolios, WP-99-2020, 67 pages, August 2020
- The Market Measure of Carbon Risk and its Impact on the Minimum Variance Portfolio, WP-105-2021, 24 pages, January 2021
- ESG and Sovereign Risk: What is Priced by the Bond Market and Credit Rating Agencies?, WP-114-2021, 102 pages, October 2021

Available at https://research-center.amundi.com, www.ssrn.com, https://arxiv.org and www.researchgate.net

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

2010 – 2017: From hell to heaven

- ESG investing tended to penalize both passive and active ESG investors between 2010 and 2013
- Contrastingly, ESG investing was a source of outperformance from 2014 to 2017 in Europe and North America
- Two success stories between 2014 and 2017: Environmental in North America and Governance in the Eurozone
- ESG was a risk factor (or a beta strategy) in the Eurozone, whereas it was an alpha strategy in North America

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

Sorted portfolio methodology

Sorted-portfolio approach

- Sorted-based approach of Fama-French (1992)
- At each rebalancing date *t*, we rank the stocks according to their Amundi **ESG** *z*-score *s*_{*i*,*t*}
- We form the five quintile portfolios Q_i for i = 1, ..., 5
- The portfolio Q_i is invested during the period]t, t+1]:
 - Q_1 corresponds to the best-in-class portfolio (best scores)
 - Q_5 corresponds to the worst-in-class portfolio (worst scores)
- Quarterly rebalancing
- Universe: MSCI World Index
- Equally-weighted and sector-neutral portfolio (and region-neutral for the world universe)

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

North America (2010 – 2017)

Figure: Annualized return of ESG sorted portfolios (North America)

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

Eurozone (2010 – 2017)

Figure: Annualized return of ESG sorted portfolios (Eurozone)

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

North America (2010 – 2017)

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

Eurozone (2010 – 2017)

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

The 2014 break

Table: Summary of the results (sorted portfolios, 2010 – 2017)

Before 2014							
Factor	North America	Eurozone	Europe ex-EMU	Japan	¯₩orld DM		
ESG			0	+	0		
E	_	0	+	_	0		
S	_	—	0	_	_		
G	_	0	+	0	+		
		Since 2	014				
Factor	North America	Eurozone	Europe ex-EMU	Japan	World DM		
ESG	++	++	0		+		
E	++	++	_	+	++		
S	+	+	0	0	+		
G	+	++	0	+	++		

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

The 2014 break

How to explain the 2014 break?

O The intrinsic value of ESG screening or the materiality of ESG

"Since we observe a feedback loop between extra-financial risks and asset pricing, we may also wonder whether the term 'extra' is relevant, because ultimately, we can anticipate that these risks may no longer be extra-financial, but simply financial" (Bennani et al., 2018).

ESG risks \Rightarrow Asset pricing

The extrinsic value of ESG investing or the supply/demand imbalance

Investment flows matter!

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

The steamroller of ESG for institutional investors

- In some countries, 100% of RFPs require ESG filters
- For some institutional investors, 100% of RFPs require ESG filters (public, para-public and insurance investors)
- For some strategies, 100% of RFPs require ESG filters (index tracking)

Source: Based on RFPs received at Amundi.

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

2018 – 2019: On the road again

Main result

The 2018 – 2019 period seems to be a continuity of the 2014 – 2017 period rather than another distinctive phase

North America

Eurozone

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

New findings in the stock market

The transatlantic divide

Eurozone > North America

2 Social: from laggard to leader²

 $S \succ (E, G)$

O ESG investing: growing in complexity

Beyond worst-in-class exclusion and best-in-class selection strategies

²In the Eurozone: 2010 – 2013: **E**, then 2014 – 2017: **G**, then 2018 – 2019: **S** In North America: 2010 – 2013: **G**, then 2014 – 2017: **E**, then 2018 – 2019: **S**

Thierry Roncalli

ESG Investing in Stock and Bond Markets

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

The transatlantic divide: the case of the Eurozone

Figure: Annualized return of long/short $Q_1 - Q_5$ sorted portfolios

 \Rightarrow Performance remains highly positive, and is improved for E and S

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

The transatlantic divide: the case of North America

Figure: Annualized return of long/short $Q_1 - Q_5$ sorted portfolios

 \Rightarrow Performance is positive, but reduced for **S** and **G**, whereas **E** is negative

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

How to explain the American setback?

The regulatory value of ESG investing (or the intrinsic value revisited)

- Trump election effect
- Regulatory environment

ESG regulations are increasing, with a strong momentum in Europe but a weaker one in North America

US withdrawal from Paris Climate Agreement

Source: PRI, responsible investment regulation database, 2019.

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

How to explain the American setback?

The extrinsic value of ESG investing

- The 2014 break
 - November 2013: Responsible Investment and the Norwegian Government Pension Fund Global (2013 Strategy Council)
 - Strong mobilization of the largest institutional European investors: NBIM, APG, PGGM, ERAFP, FRR, etc.
 - They are massively invested in European stocks and America stocks: NBIM ≻ CaIPERS + CaISTRS + NYSCRF for U.S. stocks
- The 2018-2019 period
 - Implication of U.S. investors continues to be weak
 - Strong mobilization of medium (or tier two) institutional European investors, that have a low exposure on American stocks
 - Mobilization of European investors is not sufficient

 \Rightarrow The extrinsic value of ESG investing is temporary, and a new equilibrium will be found on the long run

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

Social is strong in Eurozone since 2016

 \Rightarrow The trend were already identified

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

Performance of optimized portfolios

Figure: Social optimized portfolios in Eurozone (2018 – 2019)

\Rightarrow **S** is very strong (no diversification loss)

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

Performance of optimized portfolios

Figure: Social optimized portfolios (2018 – 2019)

 \Rightarrow **S** is the winning pillar in ESG passive management

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

Social is also in action in North America

 \Rightarrow Similar trend in North America + Q_4 effect

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

ESG investing: growing in complexity

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

The dynamic view of ESG investing

Figure: How to play ESG momentum?

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

The 2020-2021 period

- Reverse transatlantic divide?
- Covid-19 catalyst
- Biden puzzle
- Rise of EM ESG investing

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

Single-factor model

Regression model

We have:

$$R_{i,t} = \alpha_i + \beta_i^j \mathscr{F}_{j,t} + \varepsilon_{i,t}$$

where $\mathscr{F}_{j,t}$ can be: market, size, value, momentum, low-volatility, quality or ESG.

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

Single-factor model

Table: Results of cross-section regressions with long-only risk factors (average R^2)

Factor	North A	America	Eurozone		
I actor	2010 - 2013	2014 - 2019	2010 - 2013	2014 - 2019	
Market	40.8%	28.6%	42.8%	36.3%	
Size	39.3%		37.1%	23.3%	
Value	38.9%	26.7%	41.6%	33.6%	
Momentum	39.6%	26.3%	40.8%	34.1%	
Low-volatility	35.8%	25.1%	38.7%	33.4%	
Quality	39.1%	26.6%	42.4%	34.6%	
ESG	40.1%	27.4%	42.6%	35.3%	

- Specific risk has increased during the period 2014 2019
- Since 2014, we find that:
 - ESG \succ Value \succ Quality \succ Momentum \succ ... (North America)
 - ESG \succ Quality \succ Momentum \succ Value \succ ... (Eurozone)

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

Multi-factor model

Regression model

We have:

$$R_{i,t} = \alpha_i + \sum_{j}^{n_{\mathscr{F}}} \beta_i^j \mathscr{F}_{j,t} + \varepsilon_{i,t}$$

- 1F = market
- 5F = size + value + momentum + low-volatility + quality
- 6F = 5F + ESG

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

Multi-factor model

Table: Results of cross-section regressions with long-only risk factors (average R^2)

Factor	North A	America	Eurozone		
Factor	2010 - 2013	2014 - 2019	2010 - 2013	2014 - 2019	
Market	40.8%	28.6%	42.8%	36.3%	
5F model	46.1%	38.4%	49.5%	45.0%	
6F model (5F + ESG)	46.7%	39.7%	50.1%	45.8%	

*** p-value statistic for the MSCI Index (time-series, 2014 – 2019):

- 6F = Size, Value, Momentum, Low-volatility, Quality, ESG (North America)
- 6F = Size, Value, Momentum, Low-volatility, Quality, ESG (Eurozone)

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

Factor selection

Figure: North America

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

Factor selection

ESG investing during the 2010 – 2017 period ESG investing during the 2018 – 2019 period ESG and factor investing

What is the difference between alpha and beta?

- ESG remains an alpha strategy in North America
- ESG becomes a beta strategy (or a risk factor) in Europe

Figure: The market of ESG investing at the start of 2018

Source: Global Sustainable Investment Alliance (2019)

The Performance of ESG Investing (EUR IG) Extension to Other Bond Universes ESG and the Cost of Capital

Why ESG investing in bond markets is different than ESG investing in stock markets

Stocks

- ESG scoring is incorporated in portfolio management
- ESG = long-term business risk
 ⇒ strongly impacts the equity
- Portfolio integration
- Managing the business risk

Bonds

- ESG integration is generally limited to exclusions
- ESG lowly impacts the debt
- Portfolio completion
- Fixed income = impact investing
- Development of pure play ESG securities (green and social bonds)

 \Rightarrow Stock holders are more ESG sensitive than bond holders because of the capital structure

Why ESG investing in bond markets is different than ESG investing in stock markets

ESG investment flows affect asset pricing differently:

- Impact on carry (coupon effect)?
- Impact on price dynamics (credit spread/mark-to-market effect)?

The distinction between IG and HY bonds

 \Rightarrow There are more worst-in-class issuers in the HY universe, and best-in-class issuers in the IG universe

The Performance of ESG Investing (EUR IG) Extension to Other Bond Universes ESG and the Cost of Capital

Sorted portfolio methodology

Sorted-portfolio approach

- Sorted-based approach of Fama-French (1992)
- At each rebalancing date *t*, we rank the bonds according to their Amundi **ESG** *z*-score
- We form the five quintile portfolios Q_i for i = 1, ..., 5
- The portfolio Q_i is invested during the period]t, t+1]:
 - Q_1 corresponds to the best-in-class portfolio (best scores)
 - Q_5 corresponds to the worst-in-class portfolio (worst scores)
- Monthly rebalancing
- Universe: ICE (BofAML) Large Cap IG EUR Corporate Bond
- Sector-weighted and sector-neutral portfolio
- Within a sector, bonds are equally-weighted

The Performance of ESG Investing (EUR IG) Extension to Other Bond Universes ESG and the Cost of Capital

ESG sorted portfolios

Figure: Annualized credit return in bps of **ESG** sorted portfolios (EUR IG, 2010 – 2019)

Table: Carry statistics (in bps)

Period	Q_1	Q_5
2010-2013	175	192
2014-2019	113	128

- Negative carry (coupon level)
- Positive mark-to-market (dynamics of credit spreads and bond prices)

The Performance of ESG Investing (EUR IG) Extension to Other Bond Universes ESG and the Cost of Capital

Performance of optimized portfolios

Figure: Excess credit return in bps of optimized portfolios (EUR IG)

The Performance of ESG Investing (EUR IG) Extension to Other Bond Universes ESG and the Cost of Capital

Performance of optimized portfolios (USD IG)

Figure: Excess credit return in bps of optimized portfolios (USD IG)

The Performance of ESG Investing (EUR IG) Extension to Other Bond Universes ESG and the Cost of Capital

ESG ratings and credit ratings

Figure: Average **ESG** score with respect to the credit rating (2010 – 2019)

The Performance of ESG Investing (EUR IG) Extension to Other Bond Universes ESG and the Cost of Capital

An integrated Credit-ESG model

We consider the following regression model:

$$\ln \text{OAS}_{i,t} = \alpha_t + \beta_{esg} \cdot \mathscr{S}_{i,t} + \beta_{md} \cdot \text{MD}_{i,t} + \sum_{j=1}^{N_{\mathscr{S}ector}} \beta_{\mathscr{S}ector}(j) \cdot \mathscr{S}ector_{i,t}(j) + \beta_{md} \cdot \text{MD}_{i,t} + \sum_{j=1}^{N_{\mathscr{S}ector}} \beta_{\mathscr{S}ector}(j) \cdot \mathscr{S}ector_{i,t}(j) + \beta_{md} \cdot \text{MD}_{i,t} + \beta_{md} \cdot \text{MD}_{i,t} + \beta_{md} \cdot \text{MD}_{i,t} + \beta_{md} \cdot \beta_{md} \cdot$$

$$\beta_{sub} \cdot \text{SUB}_{i,t} + \sum_{k=1}^{N_{\mathscr{R}ating}} \beta_{\mathscr{R}ating}(k) \cdot \mathscr{R}ating_{i,t}(k) + \varepsilon_{i,t}$$

where:

- $\mathscr{S}_{i,t}$ is the **ESG** *z*-score of Bond *i* at time *t*
- SUB_{*i*,*t*} is a dummy variable accounting for subordination of the bond
- MD_{*i*,*t*} is the modified duration
- $\mathscr{S}ector_{i,t}(j)$ is a dummy variable for the j^{th} sector
- $\mathscr{R}ating_{i,t}(k)$ is a dummy variable for the k^{th} rating

The Performance of ESG Investing (EUR IG) Extension to Other Bond Universes ESG and the Cost of Capital

An integrated Credit-ESG model

Table: Results of the panel data regression model (EUR IG, 2010 – 2019)

	2010–2013						2014-	2019	
	ESG	E	S	G		ESG	Е	S	G
R^2	60.0%	59.4%	59.5%	60.3%		66.3%	65.0%	65.2%	64.6%
Excess R^2 of ESG	0.6%	0.0%	0.2%	1.0%		4.0%	2.6%	2.9%	2.3%
$\hat{\beta}_{esg}$ <i>t</i> -statistic	-0.05 -32	-0.01 -7	-0.02 -16	-0.07 -39		-0.09 -124	-0.08 -98	-0.08 -104	-0.08 -92

The assumption $\mathscr{H}_0: \beta_{esg} < 0$ is not rejected

ESG cost of capital with min/max score bounds

We calculate the difference between:

- (1) the funding cost of the worst-in-class issuer and
- (2) the funding cost of the best-in-class issuer

by assuming that:

- the two issuers have the same credit rating;
- the two issuers belong to the same sector;
- the two issuers have the same capital structure;
- the two issuers have the same debt maturity.

\Rightarrow Two approaches:

- Theoretical approach: ESG scores are set to -3 and +3 (not realistic)
- Empirical approach: ESG scores are set to observed min/max score bounds (e.g. min/max = -2.0/+1.9 for Consumer Cyclical A-rated EUR, -2.1/+3.2 for Banking A-rated EUR, etc.)

The Performance of ESG Investing (EUR IG) Extension to Other Bond Universes ESG and the Cost of Capital

ESG cost of capital with min/max score bounds

Table: ESG cost of capital (IG, 2014 – 2019)

	EUR				USD				
	AA	А	BBB	Average	-	AA	А	BBB	Average
Banking	23	45	67	45		11	19	33	21
Basic	9	25	44	26		5	15	34	18
Capital Goods	8	32	42	27		6	15	26	16
Communication		26	48	37		5	11	23	13
Consumer Cyclical	3	26	43	28		2	8	17	10
Consumer Non-Cyclical	15	29	31	25		6	12	19	12
Utility & Energy	12	32	56	33		9	14	31	18
Average	12	31	48	31		7	13	26	15

The case of sovereign risk ESG rating versus credit rating

ESG and sovereign risk

Motivation

- Financial analysis **versus/and** extra-financial analysis
- Sovereign risk \neq Corporate risk
- Which ESG metrics are priced and not priced by the market?
- What is the nexus between ESG analysis and credit analysis?

The case of sovereign risk ESG rating versus credit rating

Sovereign ESG thematics

Environmental

- Biodiversity
- Climate change
- Commitment to environmental standards
- Energy mix
- Natural hazard
- Natural hazard outcome
- Non-renewable energy resources
- Temperature
- Water management

Social

- Civil unrest
- Demographics
- Education
- Gender
- Health
- Human rights
- Income
- Labour market standards
- Migration
- Water and electricity access

Governance

- Business environment and R&D
- Governance effectiveness
- Infrastructure and mobility
- International relations
- Justice
- National security
- Political stability

The case of sovereign risk ESG rating versus credit rating

Data

Endogenous variable

10Y sovereign bond yield spread

Explanatory variables

- 269 ESG variables grouped into 26 ESG thematics
- 6 control variables: GDP Growth, Net Debt, Reserves, Account Balance, Inflation and Credit Rating

Panel dimensions

- 67 countries
- 2015 -- 2020

The case of sovereign risk ESG rating versus credit rating

Single-factor analysis

Let $s_{i,t}$ be the bond yield spread of the country *i* at time *t*. We consider the following regression model:

$$s_{i,t} = \alpha + \underbrace{\beta_{x_{i,t}}}_{\text{ESG metric}} + \underbrace{\sum_{k=1}^{6} \gamma_k z_{i,t}^{(k)}}_{\text{Control variables}} + \varepsilon_{i,t}$$

and:

$$\sum_{k=1}^{6} \gamma_k z_{i,t}^{(k)} = \gamma_1 g_{i,t} + \gamma_2 \pi_{i,t} + \gamma_3 d_{i,t} + \gamma_4 ca_{i,t} + \gamma_5 r_{i,t} + \gamma_6 \mathscr{R}_{i,t}$$

where $g_{i,t}$ is the economic growth, $\pi_{i,t}$ is the inflation, $d_{i,t}$ is the debt ratio, $c_{a_{i,t}}$ is the current account balance, $r_{i,t}$ is the reserve adequacy and $\Re_{i,t}$ is the credit rating

The case of sovereign risk ESG rating versus credit rating

Single-factor analysis

Table: 10 most relevant indicators of the single-factor analysis

Pillar	Thematic	Indicator	$\Delta \Re_c^2$	<i>F</i> -test
S	Human rights	Freedom of assembly	8.74%	89.58
S	Human rights	Extent of arbitrary unrest	8.04%	80.10
S	Human rights	Extent of torture and ill treatment	7.63%	75.48
S	Labour market standards	Severity of working time violations	7.21%	70.46
G	National security	Severity of kidnapping	6.80%	64.49
G	Business environment and R&D	Ease of access to loans	6.77%	73.57
G	Infrastructure and mobility	Roads km	6.45%	63.66
S	Labour market standards	Forced labor violations (extent)	6.10%	54.40
S	Labour market standards	Child labor (extent)	5.83%	54.68
S	Migration	Vulnerability of migrant workers	5.83%	53.76

The case of sovereign risk ESG rating versus credit rating

Single-factor analysis

Table: Summary of the results

	E	S	G
	Temperature	Labour market standards	Infrastructure and mobility
Relevant	Climate change	Human rights	National security
	Natural hazard outcome	Migration	Justice
Less relevant	Water management Energy mix	Income Education Water and electricity access	Political stability

The case of sovereign risk ESG rating versus credit rating

Multi-factor analysis

We consider the following multi-factor regression model:

$$s_{i,t} = \alpha + \underbrace{\sum_{j=1}^{m} \beta_j x_{i,t}^{(j)}}_{\text{ESG variables}} + \underbrace{\sum_{k=1}^{6} \gamma_k z_{i,t}^{(k)}}_{\text{Control variables}} + \varepsilon_{i,t}$$

A 4-step process

- We consider the significant variables of the single-factor analysis at the 1% level
- We filter the variables selected at Step 1 in order to eliminate redundant variables (cross-correlation greater than 80%) within each ESG theme
- We perform a lasso regression to retain the seven most relevant variables for each ESG pillar
- We perform a multi-factor analysis:
 - Lasso estimation to rank the seven E, S and G variables (m = 21)
 - **2** Panel estimation to estimate the final model (m = 7)

The case of sovereign risk ESG rating versus credit rating

Multi-factor analysis

Figure: Filtering process

The case of sovereign risk ESG rating versus credit rating

Multi-factor analysis

Table: Results after Step 3

Rank	Pillar	Thematic	Variable	Sign
1		Non-renewable energy resources	Total GHG emissions	_
2		Biodiversity	Biodiversity threatening score	—
3		Natural hazard	Severe storm hazard (absolute high extreme)	—
4	E	Temperature	Temperature change	+
5		Non-renewable energy resources	Fossil fuel intensity of the economy	—
6		Natural hazard	Drought hazard (absolute high extreme)	—
7		Commitment to environmental standards	Paris Agreement	—
1		Migration	Vulnerability of migrant workers	
2		Demographics	Projected population change (5 years)	+
3		Civil unrest	Frequency of civil unrest incidents	—
4	S	Labor market standards	Index of labor standards	—
5		Labor market standards	Right to join trade unions (protection)	—
6		Human rights	Food import security	—
7		Income	Average monthly wage	—
1		International relationships	Exporting across borders (cost)	+
2		Business environment and R&D	Ethical behaviour of firms	—
3		National security	Severity of kidnappings	—
4	G	Business environment and R&D	Capacity for innovation	—
5		Infrastructure and mobility	Physical connectivity	—
6		Infrastructure and mobility	Air transport departures	—
7		Infrastructure and mobility	Rail lines km	—

The case of sovereign risk ESG rating versus credit rating

Multi-factor analysis Global analysis

Pillar	Indicator	Rank
G	Exporting across borders (cost)	1
Е	Severe storm hazard	2
G	Capacity for innovation	3
G	Ethical behaviour of firms	4
Е	Temperature change	5
G	Severity of kidnappings	6
E	Drought hazard	7
Е	Fossil fuel intensity of the economy	8
Е	Biodiversity threatening score	9
S	Index of labor standards	10

ESG pillar importance

The case of sovereign risk ESG rating versus credit rating

Multi-factor analysis High- vs middle-income countries

Thierry Roncalli

53 / 70

The case of sovereign risk ESG rating versus credit rating

Multi-factor analysis

Pillar	Indicator	Rank
Е	Fossil fuel intensity of the economy	1
Е	Temperature change	2
Е	Cooling degree days annual average	3
G	Capacity for innovation	4
Е	Heat stress (future)	5
G	Severity of kidnappings	6
Е	Biodiversity threatening score	7
G	Efficacy of corporate boards	8
Е	Total GHG emissions	9
S	Significant marginalized group	10

ESG pillar importance

- Transition risk
- **S** is lagging

The case of sovereign risk ESG rating versus credit rating

Multi-factor analysis Middle-income countries

Pillar	Indicator	Rank
E	Tsunami hazard	1
E	Transport infrastructure exposed to	2
	natural hazards	
G	Severity of kidnappings	3
S	Discrimination based on LGBT status	4
G	Air transport departures	5
G	Exporting across borders (cost)	6
S	Index of labour standards	7
S	Vulnerability of migrant workers	8
Е	Paris Agreement	9
G	Military expenditure (% of GDP)	10

ESG pillar importance

- Physical risk
- Social issues are priced

The case of sovereign risk ESG rating versus credit rating

Explaining credit ratings with ESG metrics

We consider the logit model:

$$\Pr\left\{\mathscr{G}_{i,t}=1\right\} = \mathbf{F}\left(\beta_0 + \underbrace{\sum_{j=1}^m \beta_j x_{i,t}^{(j)}}_{\mathsf{ESG variables}}\right)$$

where:

- $\mathscr{G}_{i,t} = 1$ indicates if the country *i* is rated upper grade at time *t*
- F(z) is the logistic cumulative density function
- $x_{i,t}^{(j)}$ is the jth selected indicator

We note $\theta_j = e^{\beta_j}$ is the odds-ratio coefficient

The case of sovereign risk ESG rating versus credit rating

Explaining credit ratings with ESG metrics

Table: List of selected ESG variables for the logistic regression

Theme	Variable	Rank
Commitment to environmental standards	Domestic regulatory framework	1
Climate change	Climate change vulnerability (average)	2
Water management	Water import security (average)	3
Energy mix	Energy self sufficiency	4
Water management	Wastewater treatment index	5
Water management	Water intensity of the economy	6
Biodiversity	Biodiversity threatening score	7
Health	Health expenditure per capita	1
Water and electricity access	Public dissatisfaction with water quality	2
Education	Mean years of schooling of adults	3
Income	Base pay / value added per worker	4
Demographic	Urban population change (5 years)	5
Human rights	Basic food stuffs net imports per person	6
Human rights	Food import security	7
Government effectiveness	Government effectiveness index	1
Business environment and R&D	Venture capital availability	2
Business environment and R&D	R&D expenditure (% of GDP)	3
Infrastructure and mobility	Customs efficiency	4
Business environment and R&D	Enforcing a contract (time)	5
Business environment and R&D	Paying tax (process)	6
Business environment and R&D	Getting electricity (time)	7

The case of sovereign risk ESG rating versus credit rating

Explaining credit ratings with ESG metrics

Table: Logit model with environmental variables

Variable	$\hat{ heta}_j$	$\hat{\sigma}\left(\hat{ heta}_{j} ight)$	<i>t</i> -student	<i>p</i> -value
Domestic regulatory framework	1.415	0.156	3.16***	0.00
Climate change vulnerability (average)	2.929	0.572	5.51***	0.00
Water import security (average)	1.385	0.147	3.07***	0.00
Energy self sufficiency	0.960	0.033	-1.16	0.24
Wastewater treatment index	1.011	0.008	1.36	0.17
Water intensity of the economy	1.000	0.000	-1.02	0.30
Biodiversity threatening score	0.887	0.026	-4.02***	0.00

 $\ell\left(\hat{\beta}\right) = -107.60, \text{ AIC} = 231.19, \ \mathfrak{R}^2 = 49.1\%, \ \mathrm{ACC} = 83.6\%$

The case of sovereign risk ESG rating versus credit rating

Explaining credit ratings with ESG metrics

Table: Logit model with social variables

Variable	$\hat{ heta}_j$	$\hat{\sigma}\left(\hat{ heta}_{j} ight)$	<i>t</i> -student	<i>p</i> -value
Health expenditure per capita	1.001	0.000	3.47***	0.00
Public dissatisfaction with water quality	0.889	0.024	-4.27***	0.00
Mean years of schooling of adults	2.710	0.583	4.64***	0.00
Base pay / value added per worker	0.000	0.000	-5.13^{***}	0.00
Urban population change (5 years)	1.653	0.131	6.36***	0.00
Basic food stuffs net imports per person	0.996	0.001	-3.58^{***}	0.00
Food import security	0.973	0.006	-4.33^{***}	0.00

 $\ell\left(\hat{\beta}\right) = -72.41$, AIC = 160.83, $\Re^2 = 65.6\%$, ACC = 87.9%

The case of sovereign risk ESG rating versus credit rating

Explaining credit ratings with ESG metrics

Table: Logit model with governance variables

Variable	$\hat{\pmb{ heta}}_j$	$\hat{\sigma}\left(\hat{ heta}_{j} ight)$	<i>t</i> -student	<i>p</i> -value
Government effectiveness index	1.096	0.035	2.81***	0.00
Venture capital availability	1.020	0.005	4.16***	0.00
R&D expenditure (% of GDP)	2.259	1.006	1.83^{*}	0.06
Customs efficiency	2.193	1.657	1.04	0.29
Enforcing a contract (time)	0.997	0.001	-3.69***	0.00
Paying tax (process)	0.914	0.031	-2.63***	0.00
Getting electricity (time)	0.989	0.004	-2.73***	0.00

$$\ell\left(\hat{\beta}\right) = -67.78$$
, AIC = 151.57, $\Re^2 = 67.9\%$, ACC = 90.1%

The case of sovereign risk ESG rating versus credit rating

Explaining credit ratings with ESG metrics

Table: Logit model with the ESG selected variables

Pillar	Variable	$\hat{ heta}_j$	$\hat{\sigma}\left(\hat{ heta}_{j} ight)$	<i>t</i> -student	<i>p</i> -value
	Domestic regulatory framework	2.881	2.108	1.44	0.14
E	Climate change vulnerability (average)	0.275	0.302	-1.17	0.24
E	Water import security (average)	0.717	0.467	-0.50	0.61
	Biodiversity threatening score	1.029	0.199	0.14	0.88
	Health expenditure per capita	0.998	0.002	-1.10	0.26
	Public dissatisfaction with water quality	1.332	0.269	1.41	0.15
S	Mean years of schooling of adults	68.298	85.559	3.37***	0.00
	Base pay / value added per worker	0.000	0.000	-1.07	0.28
	Urban population change (5 years)	3.976	1.857	2.95***	0.00
	Basic food stuffs net imports per person	0.990	0.004	-2.07^{**}	0.03
	Food import security	0.803	0.067	-2.59^{***}	0.00
	Government effectiveness index	1.751	0.412	2.37**	0.01
	Venture capital availability	1.099	0.035	2.93***	0.00
G	Enforcing a contract (time)	0.999	0.004	-0.31	0.75
	Paying tax (process)	0.846	0.096	-1.47	0.14
	Getting electricity (time)	0.882	0.037	-2.95^{***}	0.00
(\hat{a})					

 $\ell\left(\hat{\beta}\right) = -18.91$, AIC = 71.83, $\Re^2 = 91.1\%$, ACC = 96.7%

The case of sovereign risk ESG rating versus credit rating

Explaining credit ratings with ESG metrics

Table: Summary of the results

	***	\mathfrak{R}^2	Accuracy	Sensitivity	Specificity	AIC
E	4	49.1%	83.6%	82.6%	84.8%	231.19
S	7	65.6%	87.9%	88.8%	86.9%	160.83
G	5	67.9%	90.1%	87.5%	93.1%	151.57
ESG	5	91.1%	96.7%	96.8%	96.5%	71.83

 \Rightarrow Final model: Education, Demographics, Human rights, Government effectiveness, Business environment and R&D

The case of sovereign risk ESG rating versus credit rating

Explaining credit ratings with ESG metrics

Figure: Prediction accuracy (in %) of credit ratings

The case of sovereign risk ESG rating versus credit rating

ESG and sovereign risk

Table: Summary of the results

What is directly priced		What is indirectly priced
by the bond market?		by credit rating agencies?
E ≻ G ≻ S		$G \succ S \succ E$
Significant market-based ESG indicators	\neq	Relevant CRA-based ESG indicators
 High-income countries 		E metrics are second-order variables:
Transition risk \succ Physical risk		 Environmental stantards
		 Water management
 Middle-income countries 		 Biodiversity
Physical risk \succ Transition risk		 Climate change
S matters for middle-income countries,		Education, Demographic and Human
especially for Gender inequality, Working		rights are prominent indicators for the S
conditions and Migration		pillar
National security, Infrastructure and mo-		Government effectiveness, Business envi-
bility and International relationships are		ronment and R&D dominate the G pillar
the relevant G metrics		
Fundamental analysis: $\mathfrak{R}^2_c \approx 70\%$		Accuracy $> 95\%$
Extra-financial analysis: $\Delta \mathfrak{R}^2_{m{c}} pprox 13.5\%$		AAA, AA, B, CCC \succ A \succ BB \succ BBB

The case of sovereign risk ESG rating versus credit rating

Scoring system

Table: An example of ESG criteria (corporate issuers)

Environmental

- Emission & energy use
- Water
- Green cars*
- Green financing*

Social

- Employment conditions
- Community involvement
- Access to medicine*
- Digital device*

Governance

- Board independence
- Audit and control
- Remuneration
- Shareholder' rights

 \Rightarrow Weighting schemes depend on sectors

(*) means a specific criterion (related to one or several sectors)

The case of sovereign risk ESG rating versus credit rating

Scoring system

- Sector-neutral
- Scaling and mapping \Leftrightarrow ESG ratings

Figure: Distribution of the ESG scores (z-score profile and Gaussian mapping)

The case of sovereign risk ESG rating versus credit rating

From ESG scores to ESG ratings

The case of sovereign risk ESG rating versus credit rating

ESG ratings versus credit ratings The case of corporate risk

Credit rating

- What is the question? Measuring the 1Y PD
- Rating correlation $\ge 90\%$ Convergence in the 1990s
- Absolute rating
 ⇒ Facilitates comparison
- More stable
- Accounting standards

ESG rating

- What is the question? ???
- Rating correlation ≤ 40% European issuers > American issuers > Japanese issuers (≈ 0)
- Relative rating
 ⇒ Complicates comparison
- Less stable
- ESG standardization and the issue of self-reporting

What can we anticipate? \Rightarrow Strong convergence for subcomponents, (more or less) convergence for **E**, **S**, and **G** ratings, but not for **ESG** ratings The example of Tesla!

ESG Investing in Stock and Bond Markets

The case of sovereign risk ESG rating versus credit rating

ESG ratings versus credit ratings The case of sovereign risk

Strong convergence between extra-financial and financial analysis

 \neq

Medium/weak convergence between ESG ratings and credit ratings?

Puzzle!

Disclaimer

This material is provided for information purposes only and does not constitute a recommendation, a solicitation, an offer, an advice or an invitation to purchase or sell any fund, SICAV, sub-fund, ("the Funds") described herein and should in no case be interpreted as such.

This material, which is not a contract, is based on sources that Amundi considers to be reliable. Data, opinions and estimates may be changed without notice.

Amundi accepts no liability whatsoever, whether direct or indirect, that may arise from the use of information contained in this material. Amundi can in no way be held responsible for any decision or investment made on the basis of information contained in this material.

The information contained in this document is disclosed to you on a confidential basis and shall not be copied, reproduced, modified, translated or distributed without the prior written approval of Amundi, to any third person or entity in any country or jurisdiction which would subject Amundi or any of "the Funds", to any registration requirements within these jurisdictions or where it might be considered as unlawful. Accordingly, this material is for distribution solely in jurisdictions where permitted and to persons who may receive it without breaching applicable legal or regulatory requirements.

Not all funds, or sub-funds will be necessarily be registered or authorized in all jurisdictions or be available to all investors.

Investment involves risk. Past performances and simulations based on these, do not guarantee future results, nor are they reliable indicators of futures performances.

The value of an investment in the Funds, in any security or financial product may fluctuate according to market conditions and cause the value of an investment to go up or down. As a result, you may lose, as the case may be, the amount originally invested.

All investors should seek the advice of their legal and/or tax counsel or their financial advisor prior to any investment decision in order to determine its suitability.

It is your responsibility to read the legal documents in force in particular the current French prospectus for each fund, as approved by the AMF, and each investment should be made on the basis of such prospectus, a copy of which can be obtained upon request free of charge at the registered office of the management company.

This material is solely for the attention of institutional, professional, qualified or sophisticated investors and distributors. It is not to be distributed to the general public, private customers or retail investors in any jurisdiction whatsoever nor to "US Persons".

Moreover, any such investor should be, in the European Union, a "Professional" investor as defined in Directive 2004/39/EC dated 21 May 2004 on markets in financial instruments ("MIFID") or as the case may be in each local regulations and, as far as the offering in Switzerland is concerned, a "Qualified Investor" within the meaning of the provisions of the Swiss Collective Investment Schemes Ordinance of 23 June 2006 (CISA), the Swiss Collective Investment Schemes Ordinance of 22 November 2006 (CISO) and the FINMA's Circular 08/8 on Public Offering within the meaning of the legislation on Collective Investment Schemes of 20 November 2008. In no event may this material be distributed in the European Union to non "Professional" investors as defined in the MIFID or in each local regulation, or in Switzerland to investors who do not comply with the definition of "qualified investors" as defined in the applicable legislation and regulation.

Amundi, French joint stock company ("Société Anonyme") with a registered capital of € 1 086 262 605 and approved by the French Securities Regulator (Autorité des Marchés Financiers-AMF) under number GP 04000036 as a portfolio management company,

90 boulevard Pasteur, 75015 Paris-France

437 574 452 RCS Paris.

www.amundi.com