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Definition

“In its primary sense, robo-advisory is a term for defining automated portfolio
management. This includes automated trading and rebalancing, but also automated
portfolio allocation” (Bourgeron et al., 2018, page 1).
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Some figures

US market
The five largest robo-advisors:

Vanguard Personal Advisor Services ($115 bn in 2018 vs $47 bn in 2016)
Schwab Intelligent Portfolios ($33 bn in 2018 vs $10 bn in 2016)
Betterment ($16 bn in 2018 vs $7 bn in 2016)
Wealthfront ($11 bn in 2018)
Personal Capital ($8 bn in 2018)

The tree that hides the forest: 22 new robo-advisors in 2014, 44 new robo-advisors in
2015, etc.
In 2015, Blackrock acquired FutureAdvisor ($0.8 bn) for a value between 150 and 200
millions of dollar

⇒ What is planned?
$1 trillion of assets in 2020 (OECD, 2017)
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Some figures

European market

It is dominated by the UK: Nutmeg (£1.5 bn), Zen Assets (£1 bn), Fidelity (US/UK), etc.
Vaamo (Germany), True Wealth (Switzerland), OwlHub (Germany), Moneyfarm
(UK/Italy), Scalable Capital (Germany/UK), Yomoni (France), Werthstein (Switzerland),
WeSave (France), Fundshop (France), Quirion (Switzerland), Ginmon (Germany), Marie
Quantier (France), Descartes Finance (Switzerland), etc.
Less than e1 bn in 2016, e6 bn in 2017 and e14 bn in 2018

Motivation

Digitalization of financial services in the US (millennials and others)
Management fee reduction in Europe
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What are the objectives of a robo-advisor?

The underlying idea is to offer a customized service

Better knowing the individual investor
What are the goals of the investor? (saving, retirement, housing, education financing, etc.)
What is the risk aversion of the investor?
MIFID II compliant

Building more appropriate asset allocation solutions
Robo-advisors claim to offer a customized solution
Robo-advisors claim to offer a cost-efficient solution
Robo-advisors claim to offer a more-transparent solution
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What are the objectives of a robo-advisor?

Reality is different

Closed system with a few number of products
Small universe of assets classes
Web/digital application or robo-advisor?

Thierry Roncalli How Machine Learning Can Improve Portfolio Allocation of Robo-Advisors 6 / 147



Robo-advisors: what does it mean?
What is the issue?

Solving portfolio optimization with machine learning algorithms
Conclusion

Robo-advisors everywhere
What are the challenges?
Machine learning and robo-advisors

Robo-advisors today
 

 
 
 
 
 

 

This is the robo! 

This is the advisor! 
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Robo-advisors tomorrow

This is the robo-advisor! 
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The industry of asset management

This is a map This is a map

What is different? What remains the same?
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The industry of asset management

This is a mobile This is a smartphone

What is different? What remains the same?
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The industry of asset management

You don’t buy a product

You buy a service
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The industry of asset management

Retail investors
Wealth management

Retail distribution Institutional investors

⇒ Not one robo-advisor but at least 3 robo-advisory concepts:
1 Retail investors (BtoC)
2 Distribution channels (BtoB)
3 Banking networks (BtoB/BtoC)
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Retail investors

Mass production versus mass customization
“While mass production has happened a long time ago in investment management
through the introduction of mutual funds and more recently exchange traded funds, a
new industrial revolution is currently under way, which involves mass customization, a
production and distribution technique that will allow individual investors to gain
access to scalable and cost-efficient forms of goal-based investing solutions”
(Martellini2, 2016, page 5).

⇒ 3 dimensions:
KYC
Bespoke/customized solution
Client reporting

2Martellini, L. (2016), Mass Customization Versus Mass Production – How an Industrial Revolution is About
to Take Place in Money Management and Why It Involves a Shift from Investment Products to Investment
Solutions, Journal of Investment Management, 14(3), pp. 5-13.
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Goal-based investing

Needs, preferences and
objectives of the client

Asset allocation Reporting

The main issues are:
Asset allocation engine
Producing the reporting according to client needs
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Goal-based investing

Portfolio management engine

Lifestyle ⇒ lifecycle
Goal setting (client profiling)
What is the objective function?

Mean-variance utility function
Goal probability
Multi-objective function
Etc.

Mass customization (tricky part)
Low correlation between income and
saving/investment
Housing issue and real estate investment
Income volatility

Product ⇒ solution

Client reporting

Return, volatility, Sharpe ratio, beta,
Sortino ratio, etc.
Probability to achieve a goal

Probability to have a supplementary
retirement of $300 per month, $500 per
month, $1000 per month, etc.
Probability to finance children’s
education
Probability to purchase real estate

Conflicting goals & trade-off costs
between several goals (arbitrage)
Positive and negative scenarios

The forgotten dimension
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Distribution networks

How to manage hundreds of funds/portfolios from an industrial perspective?

25 distributors × (20 investment portfolios + 20 model portfolios) = 1000 portfolios ⇒ 50
fund managers

A robo-advisor is an integrated system between the asset manager and the distributor:
Taking into account distributor’s active views and/or advisor’s active views and/or asset
manager’s views (tactical asset allocation)
Open architecture investment platforms ⇒ model portfolios 6= investment portfolios
Plugging thematic funds, sales/marketing campaign, etc.
Trading ideas testing
Custom reporting
Etc.
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(Private/retail) banking networks

What is different between robo-advisors for distribution networks and banking networks?

The allocation is done by the financial advisor
Private banking ⇒ open architecture 6= retail banking ⇒ closed architecture
How to manage sticky positions (direct investment in some emblematic/iconic stocks)

⇒ The goal is to reduce the commercial activity and to increase the advisory activity
⇒ This implies to increase the allocation expertise of financial advisors

The major issue is to build a robo that can be used and understood by financial
advisors
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Machine learning and robo-advisors

Machine learning

Big data
Digitalization
Forecasting
Scoring
Learning &
optimization algorithms

More than a data science

Robo-advisors
Client profiling
Expected returns
Views and active bets
Self-automated
portfolio allocation
Custom reporting

More than a web application

How machine learning is used in
finance?

1 Prediction
Trading signals
Alternative data

2 Classification
Event analysis
NLP

3 Optimization & on-line learning
Beyond MVO
Hyperparameter calibration
Optimal control
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The issue of portfolio allocation

Portfolio allocation generally reduces to mean-variance optimization
Success of MVO portfolios ⇒ QP!
What does diversification mean?

Diversification versus hedging
Volatility optimization?

The key parameter: Σ−1 and not Σ

Risk or arbitrage factors?
Arbitrage factor = hedging portfolios
Stability of MVO solutions
The secret sauce of portfolio optimization
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Robust asset allocation

Shrinkage approach (Ledoit-Wolf solution = Tikhonov problem)
Turnover constraints (L1 penalization problem)
How to be sensitive to Σ and not to Σ−1

Risk budgeting approach (e.g. equal risk contribution, risk parity, etc.)
Logarithmic barrier problems

Defining the robo-advisor optimization objective function ⇒ not a QP problem!
Defensive diversified funds (20/80) ⇒ RB-based function
Dynamic diversified funds (80/20) ⇒ MVO-based function
Flexible funds ⇒ MVO-based between asset classes but RB-based within asset classes

one size fits all approach
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Optimization algorithms for large-scale machine learning problems

Cyclical coordinate descent (CCD)
Alternative Direction Method of
Multipliers (ADMM)
Proximal operators (PO)
Dykstra’s algorithm
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Solving the robo-advisor asset allocation problem

Two problems:
Optimization of the portfolio weights

Main algorithm: ADMM
Sub algorithms: CCD + PO + Dykstra (+ QP)

Calibration of the hyperparameters and online learning
Gaussian processes
Bayesian optimization
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Machine learning and robo-advisors

And now the mathematics...
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Amundi Quantitative Research on portfolio allocation, machine learning and
robo-advisors

Amundi Working Papers

Alternative Risk Premia: What Do We Know?, WP-61-2017, February 2017.
Robust Asset Allocation for Robo-Advisors, WP-75-2018, September 2018.
Constrained Risk Budgeting Portfolios, WP-79-2019, February 2019.
Financial Applications of Gaussian Processes and Bayesian Optimization, WP-80-2019,
March 2019.

research-center.amundi.com
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Portfolio allocation

Let µ and Σ be the vector of expected returns
and the covariance matrix of asset returns. We
note µ (x) = x>µ the expected return of the
portfolio and σ (x) =

√
x>Σx the portfolio

volatility

Asset allocation problems (Markowitz, 1952)
1 σ -problem:

maxµ (x) s.t. σ (x)≤ σ
?

2 µ-problem:

minσ (x) s.t. µ (x)≥ µ
?

Portfolio allocation = Mean-variance optimization (MVO)
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Why MVO is so popular?

QP trick (Markowitz, 1952 and 1956)

Transform the previous problems into a QP problem:

x? (γ) = argmin
1
2
x>Σx− γx>µ

s.t. 1>n x = 1

Solving σ - and µ-problems are equivalent to QP + bisection algorithm

Mann, H.B. (1943), Quadratic Forms with Linear Constraints, American Mathematical Monthly, 50, pp. 430-433.
Martin, A.D. (1955), Mathematical Programming of Portfolio Selections, Management Science, 1(2), pp. 152-166.
Frank, M., and Wolfe, P. (1956), An Algorithm for Quadratic Programming, Naval Research Logistics Quarterly, 3, pp. 95-110.
Hildreth, C. (1957), A Quadratic Programming Procedure, Naval Research Logistics Quarterly, 4, pp. 79-85.
Barankin, E.W., and Dorfman, R. (1958), On Quadratic Programming, University of California Publications in Statistics, 2(13), pp. 285-318.
Beale, E.M.L. (1959), On Quadratic Programming, Naval Research Logistics Quarterly, 6(3), pp. 227-243.
Wolfe, P. (1959), The Simplex method for Quadratic Programming, Econometrica, 27, pp. 382-398.

Mean-variance optimization = Quadratic programming
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Extension to other asset allocation problems

Definition

A quadratic programming (QP) problem is an optimization problem with a quadratic objective
function and linear inequality constraints:

x? = argmin
1
2
x>Qx−x>R

s.t. Sx ≤ T

Portfolio optimization with a benchmark/Tracking-error problems ⇒ Always QP!
Active management with views/Black-Litterman model ⇒ Always QP!
Index sampling ⇒ Always QP!
Turnover management ⇒ Always QP!
Linear and quadratic transaction cost models ⇒ Always QP!

QP everywhere!
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Diversification versus hedging

Diversification: a concept easy to understand?

Diversification = the search of negative correlations?

What is the difference between diversification and hedging?

Diversification = volatility reduction?
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What is the issue?

The rule of the game

The mean-variance approach is one of the most aggressive active management models: it
concentrates the portfolio on a small number of bets (idiosyncratic factors and arbitrage
factors).

⇒ The goal of Markowitz optimization is not to diversify, but to build active bets and
leverage them!
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Why MVO portfolios are unstable?

⇒ Because MVO portfolios are sensitive to the precision matrix Σ−1 and not directly to the
covariance matrix Σ!

Eigendecomposition of the precision matrix

We have Σ = VΛV> and Σ−1 =
(
VΛV>

)−1
= V>

−1
Λ−1V−1 = VΛ−1V>.

The eigendecomposition of I is then:

Vi (I ) = Vn−i (Σ) and λi (I ) =
1

λn−i (Σ)

⇒ It means that the first factor of the precision matrix corresponds to the last factor of the
covariance matrix and that the last factor of the precision matrix corresponds to the first factor.
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Illustration of the eigendecomposition of the precision matrix

If we consider the following example: σ1 = 20%, σ2 = 21%, σ3 = 10% and ρi ,j = 80%, we
obtain the following eigendecomposition:

Covariance matrix Σ Precision matrix I
Asset / Factor 1 2 3 1 2 3

1 65.35% −72.29% −22.43% −22.43% −72.29% 65.35%
2 69.38% 69.06% −20.43% −20.43% 69.06% 69.38%
3 30.26% −2.21% 95.29% 95.29% −2.21% 30.26%

Eigenvalue 8.31% 0.84% 0.26% 379.97 119.18 12.04
% cumulated 88.29% 97.20% 100.00% 74.33% 97.65% 100.00%

6 6

12.04≡ 1/8.31%

Reverse order of eigenvectors

⇒ Optimization on the last risk factors: idiosyncratic risk factors and (certainly) noise
factors!
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Risk factors versus arbitrage factors

We consider a universe of 6 assets. The volatility is equal respectively to 20%, 21%, 17%,
24%, 20% and 16%. For the correlation matrix, we have:

ρ =


1.00
0.40 1.00
0.40 0.40 1.00
0.50 0.50 0.50 1.00
0.50 0.50 0.50 0.60 1.00
0.50 0.50 0.50 0.60 0.60 1.00


⇒ We compute the minimum variance (MV) portfolio with a shortsale constraint

Thierry Roncalli How Machine Learning Can Improve Portfolio Allocation of Robo-Advisors 32 / 147



Robo-advisors: what does it mean?
What is the issue?

Solving portfolio optimization with machine learning algorithms
Conclusion

Markowitz optimization and quadratic programming
Diversification, risk factors and arbitrage
The secret sauce of portfolio optimization

Risk factors versus arbitrage factors

Table: Effect of deleting a PCA factor

x? MV λ1 = 0 λ2 = 0 λ3 = 0 λ4 = 0 λ5 = 0 λ6 = 0
x?1 15.29 15.77 20.79 27.98 0.00 13.40 0.00
x?2 10.98 16.92 1.46 12.31 0.00 8.86 0.00
x?3 34.40 12.68 35.76 28.24 52.73 53.38 2.58
x?4 0.00 22.88 0.00 0.00 0.00 0.00 0.00
x?5 1.01 17.99 2.42 0.00 15.93 0.00 0.00
x?6 38.32 13.76 39.57 31.48 31.34 24.36 97.42

Source: Roncalli (2013)

⇒ Deleting the first principal component factor has less impact than deleting the last
principal component factor!
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Noise versus arbitrage factors

Figure: Factor decomposition of the FTSE covariance matrix (June 2012)

⇒ Shrinkage is then necessary to eliminate the noise factors, but is not sufficient because it is
extremely difficult to filter the arbitrage factors!
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Mathematical optimality vs financial optimality

“The indifference of many investment practitioners to mean-variance optimization
technology, despite its theoretical appeal, is understandable in many cases. The major
problem with MV optimization is its tendency to maximize the effects of errors in the
input assumptions. Unconstrained MV optimization can yield results that are inferior
to those of simple equal-weighting schemes” (Michaud, 1989).

Are optimized portfolios optimal?

Go to CCD
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Arbitrage factors create instability

We consider a universe of 3 assets.
The parameters are: µ1 = µ2 = 8%, µ3 = 5%, σ1 = 20%, σ2 = 21%, σ3 = 10% and
ρi ,j = 80%.
The objective is to maximize the expected return for a 15% volatility target.
The optimal portfolio is (38.3%,20.2%,41.5%).

What is the sensitivity to the input
parameters?

ρ 70% 90% 90%
σ2 18% 18%
µ1 9%
x1 38.3 38.3 44.6 13.7 −8.0 60.6
x2 20.2 25.9 8.9 56.1 74.1 −5.4
x3 41.5 35.8 46.5 30.2 34.0 44.8
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What is an arbitrage factor?

The magic formula (Stevens, 1998)

x?i = γ
µi −β>i µ

(−i)

s2i

where:
βi is the hedging portfolio of Asset i
β>i µ

(−i) is the expected return of the hedging portfolio
s2i is the tracking error of the hedging portfolio

⇒ Arbitrage factor = long/short position between an asset and its hedging portfolio�
�

�

MVO diversification 6= Diversification of risk factors

= Concentration on arbitrage factors

Go to ROBO-ADMM
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What is an arbitrage factor?

Table: Hedging portfolios (in %) at the end of 2006

SPX SX5E TPX RTY EM US HY EMBI EUR JPY GSCI
SPX 58.6 6.0 150.3 -30.8 -0.5 5.0 -7.3 15.3 -25.5
SX5E 9.0 -1.2 -1.3 35.2 0.8 3.2 -4.5 -5.0 -1.5
TPX 0.4 -0.6 -2.4 38.1 1.1 -3.5 -4.9 -0.8 -0.3
RTY 48.6 -2.7 -10.4 26.2 -0.6 1.9 0.2 -6.4 5.6
EM -4.1 30.9 69.2 10.9 0.9 4.6 9.1 3.9 33.1
US HY -5.0 53.5 160.0 -18.8 69.5 95.6 48.4 31.4 -211.7
EMBI 10.8 44.2 -102.1 12.3 73.4 19.4 -5.8 40.5 86.2
EUR -3.6 -14.7 -33.4 0.3 33.8 2.3 -1.4 56.7 48.2
JPY 6.8 -14.5 -4.8 -8.8 12.7 1.3 8.4 50.4 -33.2
GSCI -1.1 -0.4 -0.2 0.8 10.7 -0.9 1.8 4.2 -3.3
ŝi 0.3 0.7 0.9 0.5 0.7 0.1 0.2 0.4 0.4 1.2
R2

i 83.0 47.7 34.9 82.4 60.9 39.8 51.6 42.3 43.7 12.1
Source: Bruder et al. (2013)
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What is an arbitrage factor?

The second magic formula (Bourgeron et al., 2018)

x?i = y?i + ωi (y?i − z?i )

where:
y? is the optimal portfolio by assuming zero correlation
z? is the optimal portfolio of the hedging strategies
ωi is the leverage defined by:

ωi =
σ2
i − s2i
s2i

=
idiosyncratic variance
tracking error variance

MVO diversification = Leverage/hedging strategy?
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Implementing portfolio optimization in practice

The question

How to be exposed to common risk factors with Markowitz optimization?

The most frequent answer

Quants impose discretionary constraints:

The secret sauce of portfolio allocation

WYWIWYG (what you want is what you get)
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The secret sauce of portfolio optimization

It is based on the iterative process:

x?(k) = argmin
1
2
x>Σx− γx>µ

s.t.

 1>x = 1
06 x 6 1
x ∈ Ω(k)

where Ω(0) = Rn and k is the step.

This iterative process can be represented by the sequence P defined as follows:

P =
{
x?(0),Ω(1),x

?
(1),Ω(2),x

?
(2),Ω(3),x

?
(3), . . .

}
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An example of strategic asset allocation

Table: Expected returns and risks (in %)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
µi 4.2 3.8 5.3 10.4 9.2 8.6 5.3 11.0 8.8
σi 5.0 5.0 7.0 10.0 15.0 15.0 15.0 18.0 30.0

Table: Correlation matrix of asset returns (in %)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
US 10Y Bonds (1) 100
Euro 10Y Bonds (2) 80 100

IG Bonds (3) 60 40 100
HY Bonds (4) −20 −20 50 100
US Equities (5) −10 −20 30 60 100
Euro Equities (6) −20 −10 20 60 90 100
Japan Equities (7) −20 −20 20 50 70 60 100
EM Equities (8) −20 −20 30 60 70 70 70 100
Commodities (9) 0 0 10 20 20 20 30 30 100
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Building a strategic asset allocation

Table: The iterative trial-and-error solutions

Step k #0 #1 #2 #3 #4 · · · #K
US 10Y Bonds (1) 28.39 25.00 24.99 25.00 12.13 10.00
Euro 10Y Bonds (2) 0.00 15.90 18.60 16.50 22.13 30.00

IG Bonds (3) 0.00 0.00 0.00 4.86 15.00 10.00
HY Bonds (4) 69.64 25.00 16.41 10.00 10.00 5.00
US Equities (5) 0.00 10.70 20.86 25.00 10.00 10.00
Euro Equities (6) 0.00 0.00 3.16 5.00 20.00 20.00
Japan Equities (7) 0.00 0.00 0.00 0.00 0.00 5.00
EM Equities (8) 1.17 21.27 15.98 10.00 10.00 8.00
Commodities (9) 0.79 2.13 0.00 3.64 0.73 2.00

µ (x) 8.63 7.77 7.41 7.12 6.99 6.57
σ (x) 7.00 7.00 7.00 7.00 7.00 6.84

SR(x | r) 80.49 68.08 63.03 58.93 57.00 52.17

⇒ cap of 25%, then at least 40% of equity, then Euro > US, then JPY > 5%, etc.
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Scientific legitimacy of portfolio optimization?

Figure: How does the secret sauce of portfolio optimization work?
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How to model portfolio allocation of a robo-advisor?

We must complement Markowitz optimization by:
introducing smoothness of the solution and/or
imposing sparsity of the solution and/or
introducing smoothness of rebalancing and/or
imposing sparsity of rebalancing and/or
considering risk factors instead of arbitrage factors and/or
etc.

⇒ We do not manage a defensive 20/80 diversified fund in the same way than an aggressive
80/20 diversified fund
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How to smooth the allocation?

The covariance shrinkage approach

Let Σ̂ be the empirical covariance matrix. It is an unbiased estimator, but its convergence
is very slow
Let Φ̂ be another estimator which is biased but converges more quickly

Ledoit and Wolf (2003) propose to combine Σ̂ and Φ̂:

Σ̂(α) = αΣ̂ + (1−α)Φ̂

The value of α is estimated by minimizing a quadratic loss:

α
? = argminE

[∥∥∥Σ̂(α)−Σ
∥∥∥2]
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How to smooth the allocation?
Tikhonov regularization

The Tikhonov problem can be written as follows:

x? = argmin
1
2
x>Σx− γx>µ +

1
2

ρ2 ‖Γ2 (x−x0)‖22
s.t. x ∈ Ω

where ρ2 > 0 is a positive number, Γ2 is a n×n ∈ matrix and x0 is an initial portfolio

The Ledoit-Wolf covariance shrinkage method is a special case: ρ2 =
1−α?

α?

Γ2 = chol Φ̂

The double shrinkage method is obtained by setting Γ2 = In and x0 6= 0
The ridge regularization is defined by Γ2 = In
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How to smooth the allocation?
Tikhonov regularization

Figure: Ridge solution with a target portfolio
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Figure: Ridge solution without a target portfolio
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How to smooth the allocation?
Relationship between Tikhonov regularization and spectral filtering

Figure: Inverse of singular values (or eigenvalues)
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How to sparsify the allocation?
Rebalancing management

Turnover constraint: ∑
n
i=1

∣∣xi −x0i
∣∣≤ τ+

Rebalancing costs: ∑
n
i=1
(
x−i c

−
i + x+

i c+
i

)
where c−i and c+

i are the bid and ask costs

⇒ Special cases of the lasso problem:

x? = argmin
1
2
x>Σx− γx>µ + ρ1 ‖Γ1 (x−x0)‖1

s.t. x ∈ Ω

where ρ1 > 0 is a positive number, Γ1 is a n×n ∈ matrix and x0 is an initial portfolio
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How to be sensitive to Σ and not to Σ−1?

Let x = (x1, . . . ,xn) be the weights of n assets in the portfolio. Let R (x1, . . . ,xn) be a coherent
and convex risk measure. We have:

R (x1, . . . ,xn) =
n

∑
i=1

xi ·
∂ R (x1, . . . ,xn)

∂ xi

=
n

∑
i=1

RCi (x1, . . . ,xn)

Let b = (b1, . . . ,bn) be a vector of budgets such that bi ≥ 0 and ∑
n
i=1 bi = 1. The risk

budgeting portfolio is defined by:

RCi = bi ·R (x1, . . . ,xn)
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How to be sensitive to Σ and not to Σ−1?

Illustration
3 assets
Volatilities are respectively 30%, 20% and
15%

Correlations are set to 80% between the
1st asset and the 2nd asset, 50% between
the 1st asset and the 3rd asset and 30%
between the 2nd asset and the 3rd asset
Budgets are set to 50%, 20% and 30%

For the ERC (Equal Risk Contribution)
portfolio, all the assets have the same risk
budget

Absolute Relative

1 50.00% 29.40% 14.70% 70.43%

2 20.00% 16.63% 3.33% 15.93%

3 30.00% 9.49% 2.85% 13.64%

Volatility 20.87%

Absolute Relative

1 31.15% 28.08% 8.74% 50.00%

2 21.90% 15.97% 3.50% 20.00%

3 46.96% 11.17% 5.25% 30.00%

Volatility 17.49%

Absolute Relative

1 19.69% 27.31% 5.38% 33.33%

2 32.44% 16.57% 5.38% 33.33%

3 47.87% 11.23% 5.38% 33.33%

Volatility 16.13%

ERC approach

Asset Weight
Marginal 

Risk

Risk Contribution

Asset Weight
Marginal 

Risk

Risk Contribution

Weight budgeting (or traditional) approach

Asset Weight
Marginal 

Risk

Risk Contribution

Risk budgeting approach
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How to be sensitive to Σ and not to Σ−1?

In the case of the volatility risk measure, risk budgeting is equivalent to solve the logarithmic
barrier problem:

x? = argmin
1
2
x>Σx−λ

n

∑
i=1

bi lnxi

⇒ Extension to Markowitz mean-variance utility function
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Defining the optimization problem of the robo-advisor

The optimization problem becomes:

x?t+1 = argmin
1
2

(x−b)>Σt (x−b)− γ (x−b)> µt + ρ̃1

∥∥∥Γ̃1 (x− x̃)
∥∥∥
1

+

1
2

ρ̃2

∥∥∥Γ̃2 (x− x̃)
∥∥∥2
2

+ ρ1 ‖Γ1 (x−xt)‖1 +
1
2

ρ2 ‖Γ2 (x−xt)‖22−λ

n

∑
i=1

bi lnxi

s.t.

 1>x = 1
06 x 6 1
x ∈ Ω

where b is the benchmark portfolio, x̃ is the reference (or SAA) portfolio and xt is the current
portfolio

This is not a QP problem!
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Optimization algorithms for large-scale machine learning problems

Fantastic Four

Cyclical Coordinate Descent (CCD)
Alternative Direction Method of Multipliers (ADMM)
Proximal operators
Dykstra’s algorithm
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Coordinate descent methods

The fall and the rise of the descent method
In the 1980s:

Conjugate gradient methods (Fletcher–Reeves, Polak–Ribiere, etc.)
Quasi-Newton methods (NR, BFGS, DFP, etc.)

In the 1990s:
Neural networks
Learning rules: Descent, Momentum/Nesterov and Adaptive learning methods

In the 2000s:
Gradient descent (by observations): Batch gradient descent (BGD), Stochatic gradient
descent (SGD), Mini-batch gradient descent (MGD)
Gradient descent (by parameters): Coordinate descent (CD), cyclical coordinate descent
(CCD), Random coordinate descent (RCD)
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Coordinate descent methods

Descent method
The descent algorithm is defined by the following rule:

x (k+1) = x (k) + ∆x (k) = x (k)−ηD(k)

At the k th Iteration, the current solution x (k) is updated by going in the opposite direction to
D(k) (generally, we set D(k) = ∂x f

(
x (k)

)
)

Coordinate descent method
Coordinate descent is a modification of the descent algorithm by minimizing the function along
one coordinate at each step:

x
(k+1)
i = x

(k)
i + ∆x

(k)
i = x

(k)
i −ηD

(k)
i

⇒ The coordinate descent algorithm becomes a scalar problem
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Cyclical coordinate descent (CCD)

Choice of the variable i

1 Random coordinate descent (RCD)
We assign a random number between 1 and n to the index i (Nesterov, 2012)

2 Cyclical coordinate descent (CCD)
We cyclically iterate through the coordinates (Tseng, 2001):

x
(k+1)
i = argmin

x
f
(
x

(k+1)
1 , . . . ,x

(k+1)
i−1 ,x ,x

(k)
i+1, . . . ,x

(k)
n

)
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Cyclical coordinate descent (CCD)
Application to the linear regression

We consider the linear regression:
Y = Xβ + ε

where Y is a n×1 vector, X is a n×m matrix and β is a m×1 vector. The optimization
problem is:

β̂ = argmin f (β ) =
1
2

(Y −Xβ )> (Y −Xβ )

Since we have ∂β f (β ) =−X> (Y −Xβ )), we deduce that:

∂ f (β )

∂ βj
= x>j (Xβ −Y )

= x>j
(
xjβj +X(−j)β(−j)−Y

)
= x>j xjβj + x>j X(−j)β(−j)−x>j Y

where xj is the n×1 vector corresponding to the j th variable and X(−j) is the n× (m−1)

matrix (without the j th variable)
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Cyclical coordinate descent (CCD)
Application to the linear regression

At the optimum, we have ∂βj
f (β ) = 0 or:

βj =
x>j Y −x>j X(−j)β(−j)

x>j xj
=

x>j
(
Y −X(−j)β(−j)

)
x>j xj

CCD algorithm for the linear regression

We have:

β
(k+1)
j =

x>j

(
Y −

j−1
∑

j ′=1
xj ′β

(k+1)
j ′ −

m

∑
j ′=j+1

xj ′β
(k)
j ′

)
x>j xj

⇒ Introducing pointwise constraints is straightforward
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Cyclical coordinate descent (CCD)
Application to the lasso regression

The objective function becomes:

f (β ) =
1
2

(Y −Xβ )> (Y −Xβ ) + λ ‖β‖1

Since the norm is separable – ‖β‖1 = ∑
m
j=1

∣∣βj

∣∣, the first-order condition is:

x>j (Xβ −Y ) + λ∂
∣∣βj

∣∣= 0

CCD algorithm for the lasso regression

We have:

β
(k+1)
j =

1
x>j xj

Sλ

(
x>j

(
Y −

j−1
∑
j ′=1

xj ′β
(k+1)
j ′ −

m

∑
j ′=j+1

xj ′β
(k)
j ′

))
where Sλ (v) is the soft-thresholding operator: Sλ (v) = sign(v) · (|v |−λ )+
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CCD code of the lasso regression

Table: Matlab code

for k = 1:nIters
for j = 1:m

x_j = X(:,j);
X_j = X;
X_j(:,j) = zeros(n,1);
if lambda > 0

v = x_j’*(Y - X_j*beta);
beta(j) = max(abs(v) - lambda,0) * sign(v) / (x_j’*x_j);

else
beta(j) = x_j’*(Y - X_j*beta) / (x_j’*x_j);

end
end

end
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Convergence of the CCD algorithm applied to the lasso regression

Figure: Convergence of the CCD algorithm (lasso
regression)
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1 The dimension problem is (2m,2m) for QP
and (1,0) for CCD!

2 CCD is faster for lasso regression than for
linear regression (because of the
soft-thresholding operator)!

Suppose n = 50000 and m = 1000000 (DNA problem)
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Application to the risk budgeting problem

Roncalli (2013) shows that:

xRB =
x? (λ )

1>x? (λ )

where x? (λ ) is the solution of the Lagrange problem

x? (λ ) = argminR (x)−λ

n

∑
i=1

bi lnxi

s.t. x ≥ 0

where λ is an arbitrary positive scalar

⇒ We obtain a logarithmic barrier problem
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Solving the risk budgeting problem with the CCD algorithm

In the case of the Markowitz utility function, the objective function is equal to:

f (x) =−x>π + c
√
x>Σx−λ

n

∑
i=1

bi lnxi

where π = µ− r . For the cycle k +1 and the i th coordinate of the CCD algorithm, we have:

xi =
−c
(
σi ∑j 6=i xjρi ,jσj

)
+ πiσ (x) +

√(
c
(
σi ∑j 6=i xjρi ,jσj

)
−πiσ (x)

)2
+4λcbiσ

2
i σ (x)

2cσ2
i

In this equation, we have the following CCD correspondence: xi → x
(k+1)
i , xj → x

(k+1)
j if j < i ,

xj → x
(k)
j if j > i , x →

(
x

(k+1)
1 , . . . ,x

(k+1)
i−1 ,x

(k)
i ,x

(k)
i+1, . . . ,x

(k)
n

)
.

⇒ Extension to many asset allocation problems with a logarithmic barrier or smart beta
optimization problems (Richard and Roncalli, 2015).

Go to GP
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Alternative direction method of multipliers

Definition

The alternating direction method of multipliers (ADMM) is an algorithm introduced by Gabay
and Mercier (1976) to solve problems which can be expressed as:

{x?,z?} = argmin f (x) +g (z)

s.t. Ax +Bz = c

The algorithm is:

x (k) = argmin
{
f (x) +

ϕ

2

∥∥∥Ax +Bz (k−1)− c +u(k−1)
∥∥∥2
2

}
z (k) = argmin

{
g (z) +

ϕ

2

∥∥∥Ax (k) +Bz− c +u(k−1)
∥∥∥2
2

}
u(k) = u(k−1) +

(
Ax (k) +Bz (k)− c

)
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An example of ADMM

We consider the following optimization problem:

x? = argmin f (x) s.t. x− ≤ x ≤ x+

It can be written as:

{x?,z?}= argmin f (x) +g (z) s.t. x− z = 0n

where g (z) = 1Ω (x) and Ω = {x : x− ≤ x ≤ x+}. By setting ϕ = 1
2 , the z-step becomes:

z (k) = argmin
{
g (z) +

1
2

∥∥∥x (k)− z +u(k−1)
∥∥∥2
2

}
= proxg

(
x (k) +u(k−1)

)
where the proximal operator is the box projection:

proxg (v) = x−�1
{
v < x−

}
+ v �1

{
x− ≤ v ≤ x+

}
+ x+�1

{
v > x+

}
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An example of ADMM (cont’d)

The ADMM algorithm is then:

x (k) = argmin
{
f (x) +

1
2

∥∥∥x− z (k−1) +u(k−1)
∥∥∥2
2

}
z (k) = proxg

(
x (k) +u(k−1)

)
u(k) = u(k−1) +

(
x (k)− z (k)

)

⇒ Solving the constrained optimization problem consists in solving the unconstrained
optimization problem, applying the box projection and iterating these steps until convergence

Thierry Roncalli How Machine Learning Can Improve Portfolio Allocation of Robo-Advisors 68 / 147



Robo-advisors: what does it mean?
What is the issue?

Solving portfolio optimization with machine learning algorithms
Conclusion

Defining the optimization problem of the robo-advisor
Algorithms for solving the robo-advisor allocation problem
Algorithms for calibrating the robo-advisor allocation problem

ADMM and the Cholesky trick

We consider the following problem:

x? = argmaxU (x)

s.t.
{

x ∈ Ω√
x>Σx ≤ σ̄

We have:

{x?,z?} = argmin f (x) +g (z)

s.t. −Lx + z = 0n

where f (x) =−U (x) +1Ω (x), g (z) = 1E (z), E =
{
z ∈ Rn : ‖z‖22 ≤ σ̄2

}
and L is the upper

Cholesky decomposition matrix of Σ:

‖z‖22 = z>z = x>L>Lx = x>Σx = σ
2 (x)

⇒ The Cholesky trick has been used by Gonzalvez et al. (2019) for solving trend-following
strategies using the ADMM algorithm in the context of Bayesian learning
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Proximal operator

Definition

The proximal operator proxf (v) of the function f (x) is defined by:

proxf (v) = x? = argminx

{
f (x) +

1
2
‖x−v‖22

}
If f (x) =− lnx , we have:

f (x) +
1
2
‖x−v‖22 =− lnx +

1
2

(x−v)2 =− lnx +
1
2
x2−xv +

1
2
v2

The first-order condition is −x−1 + x−v = 0. It follows that:

proxf (v) =
v +
√
v2 +4
2

If f (x) =−λ ∑
n
i=1 lnxi , we have (proxf (v))i =

vi +
√

v2i +4λ

2
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An example of proximal operator

We consider the following optimization problem:

x? = argmin f (x)−λ

n

∑
i=1

lnxi

We set z = x and g (z) =−λ ∑
n
i=1 lnxi . The ADMM algorithm becomes

x (k) = argmin
{
f (x) +

ϕ

2

∥∥∥x− z (k−1) +u(k−1)
∥∥∥2
2

}
v (k) = x (k) +u(k−1)

z (k) =
v (k) +

√
v (k)�v (k) +4λ

2

u(k) = u(k−1) +
(
x (k)− z (k)

)
If f (x) is a quadratic function, the x-step is straightforward (e.g. the ERC portfolio)
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Proximal operators and projections

If we assume that f (x) = 1Ω (x) where Ω is a convex set, we have:

proxf (v) = argminx

{
1Ω (x) +

1
2
‖x−v‖22

}
= PΩ (v)

where PΩ (v) is the standard projection. Parikh and Boyd (2014) show that:

Ω PΩ (v) Ω PΩ (v)

Ax = B v −A† (Av −B) c>x 6 d v −
(
c>v −d

)
+

‖c‖22
c

a>x = b v −
(
a>v −b

)
‖a‖22

a x− 6 x 6 x+ T (v ;x−,x+)

where T (v ;x−,x+) is the truncation operator
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Norm constraints

We have proxλ max (v) = min(v ,s?) where s? is given by:

s? =

{
s ∈ R :

n

∑
i=1

(vi − s)+ = λ

}
If f (x) is a Lp-norm function and Bp (c ,λ ) is the Lp-ball with center c and radius λ , we have:

p proxλ f (v) PBp(0n,λ ) (v)

p = 1 Sλ (v) = (|v |−λ1)+� sign(v) v −proxλ max (|v |)� sign(v)

p = 2
(
1− 1

max(λ ,‖v‖2)

)
v v −proxλ‖·‖2 (|v |)

p = ∞ proxλ max (|v |)� sign(v) T (v ;−λ ,λ )

In the case where the center c is not equal to 0n, we have:

PBp(c,λ ) (v) = PBp(0n,λ ) (v − c) + c
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ADMM and constraints

We consider the following optimization problem:

x? = argmin f (x) s.t. x ∈ Ω

where Ω is a complex set of constraints:

Ω = Ω1∩Ω2∩·· ·Ωm

We set z = x and g (z) = 1Ω (z). The ADMM algorithm becomes

x (k) = argmin
{
f (x) +

ϕ

2

∥∥∥x− z (k−1) +u(k−1)
∥∥∥2
2

}
v (k) = x (k) +u(k−1)

z (k) = PΩ

(
v (k)

)
u(k) = u(k−1) +

(
x (k)− z (k)

)
The question is how to compute PΩ (v)
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Dykstra’s algorithm

We consider the proximal problem x? = proxf (v) where f (x) = 1Ω (x) and:

Ω = Ω1∩Ω2∩·· ·∩Ωm

The Dykstra’s algorithm is:
1 The x-update is:

x (k) = PΩmod(k,m)

(
x (k−1) + z (k−m)

)
2 The z-update is:

z (k) = x (k−1) + z (k−m)−x (k)

where x (0) = v , z (k) = 0n for k < 0 and mod(k ,m) denotes the modulo operator taking values
in {1, . . . ,m}
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Dykstra’s algorithm

Successive projections of PΩk

(
x (k−1)

)
does not work!

Successive projections of PΩk

(
x (k−1) + z (k−m)

)
does work!
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Application to the mean-variance optimization with the mixed L1−L2
penalty

The Markowitz portfolio optimization problem becomes:

x? = argmin
1
2
x>Σx− γx>µ +

1
2

ρ2 ‖Γ2 (x−x0)‖22 + ρ1 ‖Γ1 (x−x0)‖1
s.t. x ∈ Ω
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Solving the mixed penalty problem with ADMM

If Ω is a set of linear constraints (Ax = B, Cx ≥ D, x− ≤ x ≤ x+), the mixed penalty problem
can be written as:

{x?,z?} = argmin f (x) +g (z)

s.t. x− z = 0

where:
f (x) =

1
2
x>Σx− γx>µ +

1
2

ρ2 ‖Γ2 (x−x0)‖22 +1Ω (x)

and:
g (z) = ρ1 ‖Γ1 (z−x0)‖1

The ADMM algorithm is implemented as follows:
1 the x-step is a QP problem
2 the z-step is the L1 projection (thresholding operator of the lasso proximal operator)
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Solving the mixed penalty problem with the Dykstra’s algorithm

If Ω is more complex, the mixed penalty problem can be written as:

{x?,z?} = argmin f (x) +g (z)

s.t. x− z = 0n

where:

f (x) =
1
2
x>Σx− γx>µ +

1
2

ρ2 ‖Γ2 (x−x0)‖22 ∝
1
2
x>
(

Σ + ρ2Γ>2 Γ2
)
x−x>

(
γµ + ρ2Γ>2 Γ2x0

)
and:

g (z) = 1Ω (z) + ρ1 ‖Γ1 (z−x0)‖1
The ADMM algorithm is implemented as follows:

1 the x-step is:

x (k) =
(

Σ + ρ2Γ>2 Γ2 +
ϕ

2
In
)−1(

γµ + ρ2Γ>2 Γ2x0 + ϕ

(
z (k−1)−u(k−1)

))
2 the z-step is given by the Dykstra’s algorithm
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Back to optimization problem of the robo-advisor

We have:

x?t+1 = argminϕMV (x) + ϕL2 (x) +1Ω (x) + ϕL1 (x)−λ

n

∑
i=1

bi lnxi

where:

ϕMV (x) =
1
2

(x−b)>Σt (x−b)− γ (x−b)> µt

ϕL1 (x) = ρ̃1

∥∥∥Γ̃1 (x− x̃)
∥∥∥
1

+ ρ1 ‖Γ1 (x−xt)‖1

ϕL2 (x) =
1
2

ρ̃2

∥∥∥Γ̃2 (x− x̃)
∥∥∥2
2

+
1
2

ρ2 ‖Γ2 (x−xt)‖22

The ADMM algorithm is implemented as follows:

{x?,z?} = argmin f (x) +g (z)

s.t. x− z = 0
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Solving the optimization problem of the robo-advisor
1 General case:

solved by ADMM←−
{

f (x) = ϕMV (x) + ϕL2 (x)−λ ∑
n
i=1 bi lnxi −→ solved by CCD

g (z) = ϕL1 (x) +1Ω (x) −→ solved by PO + Dykstra

or:

solved by ADMM←−
{

f (x) = ϕMV (x) + ϕL2 (x) −→ analytical solution
g (z) = ϕL1 (x) +1Ω (x)−λ ∑

n
i=1 bi lnxi −→ solved by ADMM + PO + Dykstra

2 Ω is a set of linear constraints:

solved by ADMM←−
{

f (x) = ϕMV (x) + ϕL2 (x) +1Ω (x) −→ solved by QP
g (z) = ϕL1 (x)−λ ∑

n
i=1 bi lnxi −→ solved by CCD

or:

solved by ADMM←−
{

f (x) = ϕMV (x) + ϕL2 (x) + ϕL1 (x) +1Ω (x) −→ solved by Augmented QP
g (z) =−λ ∑

n
i=1 bi lnxi −→ solved by PO

3 No risk budgeting:

solved by ADMM←−
{

f (x) = ϕMV (x) + ϕL2 (x) +1Ω (x) −→ solved by QP
g (z) = ϕL1 (x) −→ solved by PO
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Calibrating the robo-advisor allocation problem

How to calibrate the hyperparameters in a systematic way?

The covariance matrix Σt (e.g. the length of the window)
The vector of expected returns µt (e.g. the length of the moving average, the importance
of the views in a Black-Litterman framework, etc.)
The L1 shrinkage parameters (e.g. ρ1, ρ̃1, Γ1 and Γ̃1)
The L2 shrinkage parameters (e.g. ρ2, ρ̃2, Γ2 and Γ̃2)
The turnover parameter
The logarithmic barrier penalization λ

Etc.

⇒ Global optimization
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Calibrating the robo-advisor allocation problem

What can we do in the case of black-box functions?
1 Grid approach (combinatorial problem)
2 Stochastic optimization (Monte Carlo sampling)
3 Bayesian optimization (Močkus theory)
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Gaussian process

Definition

A Gaussian process (GP) is a collection {f (x) , x ∈X } such that for any n ∈ N and
x1, . . . ,xn ∈X , the random vector (f (x1) , . . . , f (xn)) has a joint multivariate Gaussian
distribution which is characterized by its mean function:

m (x) = E [f (x)]

and its covariance function:

K
(
x ,x ′

)
= cov

(
f (x) , f

(
x ′
))

= E
[
(f (x)−m(x))

(
f
(
x ′
)
−m

(
x ′
))]
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Why modeling with GPs?

The Gaussian process is a non-parametric and probabilistic model of a nonlinear function:
Non-parametric ⇒ does not rely on any particular parametric functional form to be
postulated
Probabilistic ⇒ takes uncertainty into account in every aspect of the model

Learn from few data
Has attractive analytical properties
Be a natural part of Bayesian framework, making modeling assumptions explicit
Provide uncertainty quantification
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Covariance functions

The covariance function determines properties of GPs: regularity, lengthscale, periodicity,
etc.
Usual covariance kernels

SE kernel

KSE
(
x ,x ′

)
= σ

2 exp
(
−1
2
(
x−x ′

)>
Σ
(
x−x ′

))
Brownian motion kernel

KBM
(
x ,x ′

)
= min

(
x ,x ′

)
Linear kernel: K (x ,x ′) = x>x ′ (Bayesian linear regression)
Matern32, Rational Quadratic, Periodic, etc.

Kernel cooking
Space-time mixing

K
(
(x ,t) ,

(
x ′,t ′

))
= KTime

(
t,t ′
)
·KSpace

(
x ,x ′

)
KSE +KLinear ·KMatern32
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Bayesian approach to machine learning

1 Formulate our knowledge about the situation probabilistically
2 Define a model that expresses qualitative aspects of our knowledge (eg, forms of

distributions, independence assumptions). The model will have some unknown parameters
3 Specify a prior probability distribution for these unknown parameters that expresses our

beliefs about which values are more or less likely, before seeing the data
4 Gather data
5 Compute the posterior probability distribution for the parameters, given the observed data.

Use this posterior distribution to:
Reach scientific conclusions, properly accounting for uncertainty
Make predictions by averaging over the posterior distribution
Make decisions so as to minimize posterior expected loss

From Radford Neal.
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Bayesian inference

Place a prior probability distribution p (θ)

Choose a statistical model p(x | θ) that reflects our beliefs about x given θ

Observe samples X = (X1, ...,Xn)

Update probability distribution p (θ | X1, . . . ,Xn) with Bayes’ theorem:

Posterior =
Likelihood×Prior
Marginal Likelihood

⇔ p (θ | X ) =
p (X | θ)p (θ)

p (X )
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Application to Gaussian processes

Gaussian process regression

The posterior of a GP is a GP. The posterior at points x? is:

f (x? | x ,y)∼N (m (x? | x ,y) ,K (x?,x? | x ,y))

where m (x? | x ,y) is the mean vector of the posterior distribution:

m (x? | x ,y) = m (x?) +K (x?,x)K (x ,x)−1 (y −m (x))

and the covariance matrix K (x?,x? | x ,y) is the Schur’s complement of the prior:

K (x?,x? | x ,y) = K (x?,x?)−K (x?,x)K (x ,x)−1K (x ,x?)

⇒ The prediction is the conditional expectation:

ŷ? = m (x? | x ,y)
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Practice of Gaussian processes

We generally assume that:
m (x) = 0n
m (x?) = 0n?

⇒ The conditional expectation reduces to:

m (x? | x ,y) = K (x?,x)K (x ,x)−1 y
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Bayesian inference of GP

Figure: Function sinc(2x)
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Bayesian inference of GP

Figure: Posterior distribution of the sample with the KSE kernel
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Online learning

Figure: Prior distribution with the previous training
data
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Figure: Posterior distribution with a new
observation
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General principle of Bayesian optimization

Bayesian optimization = Method for the global optimization of multi-modal,
computationally expensive black box functions
Goal: optimize (minimize) a function f (x) on some bounded set X such that:

We don’t know the analytical expression of f
We don’t have access to gradients
Computing f (x) for a given x is expensive (time and/or money, for instance deep learning
on AWS Servers)
The dimension problem is high (more than two hyperparameters) ⇒ combinatorial issue
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General principle of Bayesian optimization

The underlying idea of Bayesian optimization is to:
1 estimate the unknown objective function and,
2 build the optimal grid search

BO produces an iterative solution:

Grid search

Acquisition
function

Estimated
function

Gaussian
process

Exploration stage
Exploitation stage

New observation
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Probabilistic surrogate and acquisition function

Bayesian optimization consists of two parts:
Probabilistic surrogate
The approximation of the objective function is called a surrogate model3

Acquisition function
Acquisition functions can be interpreted in the framework of Bayesian decision theory as
evaluating an expected maximal gain associated with evaluating f at a point x

3Gaussian processes are a popular surrogate model for Bayesian optimization because the GP posterior is still
a multivariate normal distribution
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Acquisition function

f (x) has a Gaussian process prior and we observe samples of the form {(xi ,yi )}ni=1 where
yi = f (xi ) + εi , εi ∼N

(
0,σ2

ε

)
.

For a new observation x?, the posterior probability distribution is:

f (x? | x ,y)∼N
(
m̂n (x?) ,K̂n (x?,x?)

)
We note Dn the augmented data with the GP:

Dn =
{(

xi ,yi , f̂i (xi )
)}n

i=1

Let Un (x?) be the acquisition function based on Dn. The Bayesian optimization consists
then in finding the new optimal point xn+1 ∈X such that:

xn+1 = argmax Un (x?)
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Improvement-based acquisition function

Improvement

Let fn (κ?
n) be the current optimal value among n samples drawn from f (x):

κ?
n = argmax

κ∈x
f (κ)

Let xn+1 be the next point to be evaluated in order to improve this value. We define the
improvement ∆n (x?) as follows:

∆n (x?) = max
(
f̂n (x?)− fn (κ?

n) ,0
)

⇒ Kushner (1964) proposes to maximize the probability of a positive improvement:

Pr{∆n (x?) > 0}= Pr
{
f̂n (x?) > fn (κ?

n)
}

= Φ

 m̂n (x?)− fn (κ?
n)√

K̂n (x?,x?)


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Improvement-based acquisition function

Močkus (1975) proposes to take into account the expected value of improvement:

EIn (x?) = E [∆n (x?)]

In the GP framework, we obtain:

EIn (x?) = (m̂n (x?)− fn (κ?
n))Φ

 m̂n (x?)− fn (κ?
n)√

K̂n (x?,x?)

+

√
K̂n (x?,x?)φ

 m̂n (x?)− fn (κ?
n)√

K̂n (x?,x?)


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Bayesian Optimization Algorithm

BO algorithm

We initialize the data sample D1 and the vector θ1 of hyperparameters
for n = 1,2, . . . do
Find the optimal value xn+1 ∈X of the utility maximization problem:

xn+1 = argmax Un (x?)

Update the data:
Dn+1←Dn ∪

{(
xn+1,yn+1, f̂n+1 (xn+1)

)}
Update the hyperparameter vector θn+1 of the kernel function

end for
return Dn and θn
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Example of Bayesian optimization

Figure: Objective function of the minimization problem
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Example of Bayesian optimization

Figure: Grid search
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Example of Bayesian optimization

Go to Appendix
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Example of Bayesian optimization

Figure: Bayesian grid
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Building a self-automated trend-following strategy

We apply Bayesian optimization to the online calibration of the following trend-following
strategy:

x?t = argmin
x
−x>µ̂t + λt ‖x−xt−1‖22

s.t. σt (x)≤ σ̄

where µ̂t is the estimated vector of expected returns at time t, σt (x) =
√

x>Σ̂tx is the
portfolio volatility estimated at time t and σ̄ is the target volatility of the trend-following
strategy
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Building a self-automated trend-following strategy

Traditional CTA strategy

λt is constant (e.g. 10%)
Constant moving window length for estimating µ̂t (e.g. 3M or 12M)
Constant moving window length for estimating Σ̂t (e.g. 12M)

⇒ Two problems:
1 The optimization stage (x?t ), which is solved by using ADMM and the Cholesky trick
2 The calibration stage (λt , moving window length of µ̂t and Σ̂t), which is solved by using

BO
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Building a self-automated trend-following strategy

Setup
The trends are computed using a moving-average estimator where `t (µ) is the window
length of the MA estimator
The covariance matrix is estimated using the empirical estimator, which window length is
denoted by `t (Σ)
The portfolio is rebalanced every week

Hyperparameters
the parameter λt that controls the turnover between two rebalancing dates
the window length `t (µ) that controls the estimation of trends
the time horizon `t (Σ) that measures the risk of the assets

BO objective function: cumulative return over a 2-year backtest
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Results of Bayesian optimization

Most of the time, the optimal window `t (µ) is high and equal to 18 months on average
After the Global Financial Crisis of 2008, its value is dramatically reduced (short-term
momentum preferred)
Regularization hyperparameter λt and covariance window `t (µ) show a positive
correlation with VIXt while the opposite is true for trend window
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Results of Bayesian optimization

Figure: BO calibrated ridge penalization λt (in %)
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Results of Bayesian optimization

Figure: BO calibrated return window length `t (µ) (in months)
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Results of Bayesian optimization

Figure: BO calibrated covariance window length `t (Σ) (in months)
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Results of Bayesian optimization

Figure: Cumulated performance
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Applying Bayesian optimization to the robo-advisor calibration problem

Turnover
Level of

Diversification

Active
Management
Intensity

Black-Litterman
Active Views
Confidence

etc.

Bayesian
Optimization

λ ρ1 ρ2 ρ̃1 ρ̃2 τ δ etc.

= Multi-objective function
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QP algorithm = universal algorithm in MVO-type asset allocation problems
Robo-advisors require to solve more complex asset allocation optimization problems
The optimization step can be achieved by considering numerical algorithms that have been
successful in machine learning

1 CCD
2 ADMM
3 Proximal operators
4 Dykstra’s algorithm

The calibration step can be achieved by considering Bayesian optimization and Gaussian
processes

The second step is the tricky part when building self-automated robo-advisors...

Next step: learning...
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Precision matrix and hedging portfolios

We consider the following regression model:

Ri ,t = β0 + β
>
i R

(−i)
t + εi ,t

R
(−i)
t denotes the vector of asset returns Rt excluding the i th asset

εi ,t ∼N (0,s2i )

R2
i is the R-squared of the linear regression

Precision matrix

Stevens (1998) shows that the precision matrix is given by:

Ii ,i =
1

σ̂2
i

(
1−R2

i

) and Ii ,j =− β̂i ,j

σ̂2
i

(
1−R2

i

) =− β̂j ,i

σ̂2
j

(
1−R2

j

)
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Precision matrix and hedging portfolios

We finally obtain:

x?i = γΣ−1µ = γ
µi − β̂>i µ

(−i)

σ̂2
i

(
1−R2

i

) = γ
µi − β̂>i µ

(−i)

ŝ2i

From this equation, we deduce the following conclusions:
1 The better the hedge, the higher the exposure. This is why highly correlated assets

produces unstable MVO portfolios.
2 The long-short position is defined by the sign of µi − β̂>i µ

(−i). If the expected return of
the asset is lower than the conditional expected return of the hedging portfolio, the weight
is negative.

�
�

�

Markowitz diversification 6= Diversification of risk factors

= Concentration on arbitrage factors
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Precision matrix and hedging portfolios

Table: Hedging portfolios (in %) at the end of 2006
SPX SX5E TPX RTY EM US HY EMBI EUR JPY GSCI

SPX 58.6 6.0 150.3 -30.8 -0.5 5.0 -7.3 15.3 -25.5
SX5E 9.0 -1.2 -1.3 35.2 0.8 3.2 -4.5 -5.0 -1.5
TPX 0.4 -0.6 -2.4 38.1 1.1 -3.5 -4.9 -0.8 -0.3
RTY 48.6 -2.7 -10.4 26.2 -0.6 1.9 0.2 -6.4 5.6
EM -4.1 30.9 69.2 10.9 0.9 4.6 9.1 3.9 33.1
US HY -5.0 53.5 160.0 -18.8 69.5 95.6 48.4 31.4 -211.7
EMBI 10.8 44.2 -102.1 12.3 73.4 19.4 -5.8 40.5 86.2
EUR -3.6 -14.7 -33.4 0.3 33.8 2.3 -1.4 56.7 48.2
JPY 6.8 -14.5 -4.8 -8.8 12.7 1.3 8.4 50.4 -33.2
GSCI -1.1 -0.4 -0.2 0.8 10.7 -0.9 1.8 4.2 -3.3
ŝi 0.3 0.7 0.9 0.5 0.7 0.1 0.2 0.4 0.4 1.2
R2

i 83.0 47.7 34.9 82.4 60.9 39.8 51.6 42.3 43.7 12.1
Source: Bruder et al. (2013)
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The mechanism of Markowitz optimization

We consider two portfolios:
1 The first portfolio y? is the optimal portfolio by assuming zero correlation:

y?i = γ
µi

σ2
i

2 The second portfolio z? is the optimal portfolio of the hedging strategies:

z?i = γ
β̂>i µ

(−i)

σ2
i − s2i

The Markowitz solution is then:
x?i = y?i + ωi (y?i − z?i )

where:

ωi =
R2

i

1−R2
i

=
σ2
i − s2i
s2i
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Arbitrage factors and hedging portfolios

Example

We consider a universe of four assets. The expected returns are µ̂1 = 7%, µ̂2 = 8%, µ̂3 = 9%
and µ̂4 = 10% whereas the volatilities are equal to σ̂1 = 15%, σ̂2 = 18%, σ̂3 = 20% and
σ̂4 = 25%. All the correlations are equal to 50%, except ρ1,4 = 60% and ρ3,4 = 40%.

Table: Linear dependence between the four assets (hedging portfolios)

Asset αi βi R2
i

1 1.70% 0.139 0.187 0.250 45.83%
2 2.06% 0.230 0.268 0.191 37.77%
3 2.85% 0.409 0.354 0.045 33.52%
4 1.41% 0.750 0.347 0.063 41.50%

Thierry Roncalli How Machine Learning Can Improve Portfolio Allocation of Robo-Advisors 122 / 147



Appendix
Hedging is the key concept of Markowitz diversification
What is the impact of adding constraints?
Analysis of Black-Litterman regularization
Example of Bayesian optimization

Arbitrage factors and hedging portfolios

Table: Risk/return analysis of hedging portfolios

Asset µi µ̂i αi σi σ̂i si R2
i

1 7.00% 5.30% 1.70% 15.00% 10.16% 11.04% 45.83%
2 8.00% 5.94% 2.06% 18.00% 11.06% 14.20% 37.77%
3 9.00% 6.15% 2.85% 20.00% 11.58% 16.31% 33.52%
4 10.00% 8.59% 1.41% 25.00% 16.11% 19.12% 41.50%

Table: Optimal portfolio

Asset ωi y?i z?i x?i
1 84.62% 80.22% 132.48% 36.00%
2 60.68% 63.67% 125.09% 26.39%
3 50.43% 58.02% 118.19% 27.67%
4 70.94% 41.26% 85.40% 9.94%
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Arbitrage factors and hedging portfolios

Impact of the correlation

ρ3,4 = 40% =⇒ ρ3,4 = 95%

Table: Linear dependence between the four assets (hedging portfolios)

Asset αi βi R2
i

1 3.16% 0.244 −0.595 0.724 47.41%
2 2.23% 0.443 0.470 −0.157 33.70%
3 1.66% −0.174 0.076 0.795 91.34%
4 −1.61% 0.292 −0.035 1.094 92.37%
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Arbitrage factors and hedging portfolios

Table: Risk/return analysis of hedging portfolios (ρ3,4 = 95%)

Asset µi µ̂i αi σi σ̂i si R2
i

1 7.00% 3.84% 3.16% 15.00% 10.33% 10.88% 47.41%
2 8.00% 5.77% 2.23% 18.00% 10.45% 14.66% 33.70%
3 9.00% 7.34% 1.66% 20.00% 19.11% 5.89% 91.34%
4 10.00% 11.61% −1.61% 25.00% 24.03% 6.90% 92.37%

Table: Optimal portfolio (ρ3,4 = 95%)

Asset ωi y?i z?i x?i
1 90.16% 60.73% 70.30% 52.10%
2 50.82% 48.20% 103.08% 20.31%
3 1054.10% 43.92% 39.22% 93.44%
4 1211.48% 31.23% 39.25% −65.85%
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Arbitrage factors and hedging portfolios

Impact of the expected return

µ1 = 7% =⇒ µ1 = 3%

Table: Linear dependence between the four assets (hedging portfolios)

Asset αi βi R2
i

1 −2.30% 0.139 0.187 0.250 45.83%
2 2.98% 0.230 0.268 0.191 37.77%
3 4.49% 0.409 0.354 0.045 33.52%
4 4.41% 0.750 0.347 0.063 41.50%
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Arbitrage factors and hedging portfolios

Table: Risk/return analysis of hedging portfolios (µ1 = 3%)

Asset µi µ̂i αi σi σ̂i si R2
i

1 3.00% 5.30% −2.30% 15.00% 10.16% 11.04% 45.83%
2 8.00% 5.02% 2.98% 18.00% 11.06% 14.20% 37.77%
3 9.00% 4.51% 4.49% 20.00% 11.58% 16.31% 33.52%
4 10.00% 5.59% 4.41% 25.00% 16.11% 19.12% 41.50%

Table: Optimal portfolio (µ1 = 3%)

Asset ωi y?i z?i x?i
1 84.62% 53.59% 206.52% −75.81%
2 60.68% 99.25% 164.80% 59.46%
3 50.43% 90.44% 135.19% 67.87%
4 70.94% 64.31% 86.63% 48.48%
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Analytical framework of adding constraints

We specify the optimization problem as follows:

min
1
2
x>Σx

s.t.

 1>x = 1
µ>x ≥ µ?

x ∈ C

where C is the set of weights constraints. We define:

the unconstrained portfolio x? or x? (µ,Σ):

C = Rn

the constrained portfolio x̃ :

C
(
x−,x+

)
=
{
x ∈ Rn : x−i ≤ xi ≤ x+

i

}
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Analytical framework of adding constraints

Theorem

Jagannathan and Ma (2003) show that the constrained portfolio is the solution of the
unconstrained problem:

x̃ = x?
(

µ̃, Σ̃
)

with: {
µ̃ = µ

Σ̃ = Σ + (λ +−λ−)1>+1(λ +−λ−)
>

where λ− and λ + are the Lagrange coefficients vectors associated to the lower and upper
bounds.

⇒ Introducing weights constraints is equivalent to introduce a shrinkage method or to
introduce some relative views (similar to the Black-Litterman approach).
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Application to the minimum variance portfolio

Table: Specification of the covariance matrix Σ (in %)

σi ρi ,j

15.00 100.00
20.00 10.00 100.00
25.00 40.00 70.00 100.00
30.00 50.00 40.00 80.00 100.00

Given these parameters, the global minimum variance portfolio is equal to:

x? =


72.74%
49.46%
−20.45%
−1.75%


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Application to the minimum variance portfolio

Table: Minimum variance portfolio when xi ≥ 10%

x̃i λ
−
i λ

+
i σ̃i ρ̃i ,j

56.195 0.000 0.000 15.00 100.00
23.805 0.000 0.000 20.00 10.00 100.00
10.000 1.190 0.000 19.67 10.50 58.71 100.00
10.000 1.625 0.000 23.98 17.38 16.16 67.52 100.00

Table: Minimum variance portfolio when 10%≤ xi ≤ 40%

x̃i λ
−
i λ

+
i σ̃i ρ̃i ,j

40.000 0.000 0.915 20.20 100.00
40.000 0.000 0.000 20.00 30.08 100.00
10.000 0.915 0.000 21.02 35.32 61.48 100.00
10.000 1.050 0.000 26.27 39.86 25.70 73.06 100.00
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Extension to constrained MVO portfolios

Remark

Roncalli (2013) extends the previous result when C = {x ∈ Rn : Cx ≥ d}. The covariance
matrix is shrinked as follows:

Σ̃ = Σ−
(
C>λ1>+1λ

>C
)

where λ is the vector of Lagrange coefficients associated to the constraints Cx ≥ d .
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Myopic behavior of portfolio managers

Weight constraints - Shrinkage methods

By using weight constraints, the portfolio manager may change (implicitly):
1 the value and/or the ordering of the volatilities;
2 the value, the sign and/or the ordering of the correlations;
3 the underlying assumption of the theory itself.

The question is then the following:

Is the portfolio manager aware of
and in agreement with these changes?
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Portfolio optimization with a benchmark

Let µ (x | b) = (x−b)> µ be the expected excess return and σ (x | b) =

√
(x−b)>Σ(x−b) be

the tracking error volatility, where b is the benchmark

The objective function is:

f (x | b) =
1
2

(x−b)>Σ(x−b)− γ (x−b)> µ

∝
1
2
x>Σx− γx>

(
µ +

1
γ

Σb

)
⇒ QP problem with Q = Σ and R = γ µ̃ where µ̃ = µ + 1

γ
Σb is the regularized vector of

expected returns

Tracking error constraints ⇔ regularization of the QP problem
If b is the risk-free asset, the regularized QP solution is the capital market line (Roncalli,
2013)
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Portfolio optimization with a benchmark

The penalization approach of the QP problem

Markowitz optimization:

x? = argmin
1
2
x>Σx− γx>µ

Markowitz optimization with a benchmark:

x? (b) = argmin
1
2
x>Σx−ξx>

(
µ + µb

2

)
s.t. x ∈ Ω

where ξ = 2γ and µb is the vector of Black-Litterman implied expected returnsa.
aIf the benchmark b is the optimal portfolio, we have b = γΣ−1µb
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Portfolio optimization with views

Black and Litterman (1992) state that vector Rt of asset returns follow a Gaussian distribution:

Rt ∼N (µ̃,Σm)

where:

µ̃ is the implied expected return associated with the current allocation x0:

µ̃ = r + SR(x0 | r)
Σmx0√
x>0 Σmx0

Σm is the market covariance matrix of asset returns

The portfolio manager’s views are given by:

PRt = Q + ε

where P is a (k×n) matrix, Q is a (k×1) vector and ε ∼N (0,Σε ) is a Gaussian vector of
dimension k .
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A new QP problem

We deduce that:

µ̄ = E [Rt | PRt = Q + ε]

= µ̃ + ΣmP
>
(
PΣmP

>+ Σε

)−1
(Q−P µ̃)

and:

Σ̄ = E
[
(Rt − µ̄)(Rt − µ̄)> | PRt = Q + ε

]
= Σm−ΣmP

>
(
PΣmP

>+ Σε

)−1
PΣm

The case of absolute views

If P = In and Q = µ̆, we deduce that:

µ̄ =
(
In−Σm (Σm + Σε )−1

)
µ̃ + Σm (Σm + Σε )−1 µ̆
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The regularized QP problem of the Black-Litterman model

Let Σ̂ be the empirical covariance matrix.
1 If we assume that Σm = τΣ̂ and Σε = τΣ̂, we obtain:

µ̄ =
µ̃ + µ̆

2
2 If we assume that Σm = Σ̂ and Σε = τΣ̂, we obtain:

µ̄ =
τ

1+ τ
µ̃ +

1
1+ τ

µ̆

Black-Litterman and regularization

The Black-Litterman model with absolute views is a special case of the tracking-error
optimization problem where:

the current allocation x0 is the benchmark;
the uncertainty on the views and the covariance matrix of asset returns are in the same
order of magnitude (τ is equal to one).
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Example of Bayesian optimization
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Example of Bayesian optimization
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Example of Bayesian optimization
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Example of Bayesian optimization
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Example of Bayesian optimization
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Example of Bayesian optimization
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Example of Bayesian optimization
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Example of Bayesian optimization

Figure: Objective function of the minimization
problem

0.0 0.2 0.4 0.6 0.8 1.0

x

−5

0

5

10

15
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Disclaimer

This material is provided for information purposes only and does not constitute a recommendation, a solicitation, an offer, an advice or an invitation to purchase or sell any 

fund, SICAV, sub-fund, (“the Funds”) described herein and should in no case be interpreted as such. 

This material, which is not a contract, is based on sources that Amundi considers to be reliable. Data, opinions and estimates may be changed without notice. 

Amundi accepts no liability whatsoever, whether direct or indirect, that may arise from the use of information contained in this material. Amundi can in no way be held 

responsible for any decision or investment made on the basis of information contained in this material. 

The information contained in this document is disclosed to you on a confidential basis and shall not be copied, reproduced, modified, translated or distributed without the prior 

written approval of Amundi, to any third person or entity in any country or jurisdiction which would subject Amundi or any of “the Funds”, to any registration requirements within 

these jurisdictions or where it might be considered as unlawful. Accordingly, this material is for distribution solely in jurisdictions where permitted and to persons who may 

receive it without breaching applicable legal or regulatory requirements. 

Not all funds, or sub-funds will be necessarily be registered or authorized in all jurisdictions or be available to all investors. 

Investment involves risk. Past performances and simulations based on these, do not guarantee future results, nor are they reliable indicators of futures performances. 

The value of an investment in the Funds, in any security or financial product may fluctuate according to market conditions and cause the value of an investment to go up or 

down. As a result, you may lose, as the case may be, the amount originally invested. 

All investors should seek the advice of their legal and/or tax counsel or their financial advisor prior to any investment decision in order to determine its suitability. 

It is your responsibility to read the legal documents in force in particular the current French prospectus for each fund, as approved by the AMF, and each investment should be 

made on the basis of such prospectus, a copy of which can be obtained upon request free of charge at the registered office of the management company. 

This material is solely for the attention of institutional, professional, qualified or sophisticated investors and distributors. It is not to be distributed to the general public, private 

customers or retail investors in any jurisdiction whatsoever nor to “US Persons”. 

Moreover, any such investor should be, in the European Union, a “Professional” investor as defined in Directive 2004/39/EC dated 21 May 2004 on markets in financial 

instruments (“MIFID”) or as the case may be in each local regulations and, as far as the offering in Switzerland is concerned, a “Qualified Investor” within the meaning of the 

provisions of the Swiss Collective Investment Schemes Ordinance of 23 June 2006 (CISA), the Swiss Collective Investment Schemes Ordinance of 22 November 2006 

(CISO) and the FINMA’s Circular 08/8 on Public Offering within the meaning of the legislation on Collective Investment Schemes of 20 November 2008. In no event may this 

material be distributed in the European Union to non “Professional” investors as defined in the MIFID or in each local regulation, or in Switzerland to investors who do not 

comply with the definition of “qualified investors” as defined in the applicable legislation and regulation. 

Amundi, French joint stock company (“Société Anonyme”) with a registered capital of € 1 086 262 605 and approved by the French Securities Regulator (Autorité des Marchés 

Financiers-AMF)  under number GP 04000036 as a portfolio management company,  

90 boulevard Pasteur, 75015 Paris-France  

437 574 452 RCS Paris. 

www.amundi.com 
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