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Remark 1 The first five questions are corrected in TR-GDR1 and in the document of exercise solutions,
which is available in my web page2.

1 The Basle II regulation

2 Market risk

3 Credit risk

4 Counterparty credit risk

5 Operational risk

6 Value at risk of a long/short portfolio
The principal reference for this exercise is TR-GDR (pages 61-63). We note PA (t) (resp. PB (t)) the
value of the stock A (resp. B) at the date t. The portfolio value is:

P (t) = xA · PA (t) + xB · PB (t)

with xA and xB the number of stocks A and B. We deduce that the PnL between t and t+ 1 is:

PnL (t; t+ 1) = P (t+ 1)− P (t)

= xA (PA (t+ 1)− PA (t)) + xB (PB (t+ 1)− PB (t))

= xAPA (t)RA (t; t+ 1) + xBPB (t)RB (t; t+ 1)

with RA (t; t+ 1) and RB (t; t+ 1) the asset returns of A and B between the dates t and t+ 1.

1. We have xA = +1, xB = −1 and PA (t) = PB (t) = 100. It comes that:

PnL (t; t+ 1) = 100 · (RA −RB)

We have RA −RB ∼ N (0, σA−B) with:

σA−B =

√
0.202 + (−0.20)

2
+ 2 · 0.5 · 0.20 · (−0.20)

= 20%

1Thierry Roncalli, La Gestion des Risques Financiers, Economica, deuxième édition, 2009.
2The direct link is www.thierry-roncalli.com/download/gdr-correction.pdf.
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The annual volatility of the long/short portfolio is then equal to 20%. To compute the value at risk
for a time horizon of one day, we consider the square root rule (TR-GDR, page 74). We obtain3:

VaR1D = Φ−1 (0.99) · 100 · σA−B · 1√
260

= 2.33 · 100 · 0.20 · 1√
260

= 2.89

The probability to lose 2.89 euros per day is equal to 1%.

2. We have PnL (t; t+ 1) = 100 · (RA −RB). We use the historical data to calculate the scenarios of
asset returns (RA, RB). We then deduce the empirical distribution of the PnL. Finally, we compute
the corresponding empirical quantile. With 250 scenarios, the 1% decile is between the second and
third worst cases:

VaR1D = −
[
−3.09 +

1

2
(−2.72− (−3.09))

]
= 2.905

The probability to lose 2.905 euros per day is equal to 1%. This result is very similar to
the one calculated with the gaussian VaR.

3. The PnL formula becomes (TR-GDR, pages 91-95) :

PnL (t; t+ 1) = (PA (t+ 1)− PA (t))−
(PB (t+ 1)− PB (t))−
(CA (t+ 1)− CA (t))

with CA (t) the call option price. We have:

CA (t+ 1)− CA (t) ≃ ∆ · (PA (t+ 1)− PA (t))

where ∆ is the delta of the option. We deduce that:

PnL (t; t+ 1) = 50 ·RA − 100 ·RB

For the analytical VaR, we obtain:

VaR1D = Φ−1 (0.99) · σA/B · 1√
260

= 2.33 · 17.32 · 1√
260

= 2.50

because:

σA/B =

√
(50 · 0.20)2 + (−100 · 0.20)2 + 2 · 0.5 · (50 · 0.20)× (−100 · 0.20)

= 17.32

The daily 99% VaR decreases from 2.89 euros to 2.50 euros.
3because Φ−1 (0.99) = −Φ−1 (0.01).
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7 Parameter estimation for operational risk
1. (a) The density of the gaussian distribution Y ∼ N (µ, σ) is:

g (y) =
1

σ
√
2π

exp

(
−1

2

(
y − µ

σ

)2
)

Let X ∼ LN (µ, σ). We have:
X = eY

It comes that:
f (x) = g (y)

∣∣∣∣dydx
∣∣∣∣

with y = lnx. We deduce that:

f (x) =
1

σ
√
2π

exp

(
−1

2

(
y − µ

σ

)2
)

· 1
x

=
1

xσ
√
2π

exp

(
−1

2

(
lnx− µ

σ

)2
)

(b) The log-likelihood function of the sample {L1, . . . , Ln} is:

L (µ, σ) = ln
n∏

i=1

f (Li)

=
n∑

i=1

ln f (Li)

= −n

2
ln 2π − n

2
lnσ2 −

n∑
i=1

lnLi −
1

2

n∑
i=1

(
lnLi − µ

σ

)2

(c) We have:
{µ̂, σ̂} = argmaxL (µ, σ)

We notice that:

maxL (µ, σ) = max

(
−n

2
ln 2π − n

2
lnσ2 −

n∑
i=1

lnLi −
1

2

n∑
i=1

(
lnLi − µ

σ

)2
)

= max

(
−n

2
ln 2π − n

2
lnσ2 − 1

2

n∑
i=1

(
xi − µ

σ

)2
)

with xi = lnLi. We recognize the gaussian log-likelihood function. We deduce that:

µ̂ =
1

n

n∑
i=1

xi =
1

n

n∑
i=1

lnLi

σ̂ =

√√√√ 1

n

n∑
i=1

(xi − µ̂)
2
=

√√√√ 1

n

n∑
i=1

(
lnLi −

1

n

n∑
i=1

lnLi

)2

(d) Using Bayes’ formula, we have:

Pr {X ≤ x | X ≥ H} =
Pr {H ≤ X ≤ x}
Pr {X ≥ H}

=
F (x)− F (H)

1− F (H)
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with F the cdf of X. It comes that the conditional density is:

fH (x) = ∂x Pr {X ≤ x | X ≥ H}

=
f (x)

1− F (H)

=
1(

1− Φ
(

lnH−µ
σ

)) · 1

xσ
√
2π

exp

(
−1

2

(
lnx− µ

σ

)2
)

It comes that the log-likelihood function of the sample {L1, . . . , Ln} is:

L (µ, σ) = ln
n∏

i=1

fH (Li)

= −n

2
ln 2π − n

2
lnσ2 −

n∑
i=1

lnLi −
1

2

n∑
i=1

(
lnLi − µ

σ

)2

−

n ln

(
1− Φ

(
lnH − µ

σ

))
2. (a) By definition, we have:

Pr {Nt = n} = e−λλ
n

n!

We deduce that:

E [Nt] =

∞∑
n=0

n · Pr {Nt = n}

=
∞∑

n=0

ne−λλ
n

n!

= λe−λ
∞∑

n=0

λn

n!

= λ

(b) We have:

E

[
m∏
i=0

(Nt − i)

]
=

∞∑
n=0

m∏
i=0

(n− i) e−λλ
n

n!

=
∞∑

n=0

(n (n− 1) · · · (n−m)) e−λλ
n

n!

The term of the sum is equal to zero if n = 0, 1, . . . ,m. It comes that:

E

[
m∏
i=0

(Nt − i)

]
=

∞∑
n=m+1

(n (n− 1) · · · (n−m)) e−λλ
n

n!

= e−λ
∞∑

n=m+1

λn

(n−m− 1)!

= λm+1e−λ
∞∑

n=m+1

λn−m−1

(n−m− 1)!

= λm+1e−λ
∞∑

n′=0

λn′

n′!
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with n′ = n− (m+ 1). It comes that:

E

[
m∏
i=0

(Nt − i)

]
= λm+1e−λeλ

= λm+1 (1)

We deduce that:

var (Nt) = E
[
N2

t

]
− E2 [Nt]

= E
[
N2

t −Nt

]
+ E [Nt]− E2 [Nt]

= E [Nt (Nt − 1)] + E [Nt]− E2 [Nt]

Using the formula (1) with m = 1, we finally obtain:

var (Nt) = λ1+1 + λ− λ2

= λ

(c) The estimator based on the first moment is:

λ̂ =
1

T

T∑
t=1

Nt

whereas the estimator based on the second moment is:

λ̂ =
1

T

T∑
t=1

(
Nt −

1

T

T∑
t=1

Nt

)2

3. Let L be the random sum:

L =

Nt∑
i=0

Li

where Li ∼ LN (µ, σ), Li ⊥ Lj and Nt ∼ P (λ).

(a) We have:

E [L] = E

[
Nt∑
i=0

Li

]
= E [Nt]E [Li]

= λ exp

(
µ+

1

2
σ2

)

(b) Because (
∑n

i=1 xi)
2
=
∑n

i=1 x
2
i +

∑
i̸=j xixj , it comes that:

E
[
L2
]

= E

 Nt∑
i=0

L2
i +

Nt∑ Nt∑
i ̸=j

LiLj


= E [Nt]E

[
L2
i

]
+ E [Nt (Nt − 1)]E [LiLj ]

= E [Nt]E
[
L2
i

]
+
(
E
[
N2

t

]
− E [Nt]

)
E [Li]E [Lj ]
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We have:

E [Nt] = λ

E
[
N2

t

]
= var (Nt) + E2 [Nt] = λ+ λ2

E
[
L2
i

]
= var (Li) + E2 [Li] = e2µ+σ2

(
eσ

2

− 1
)
+
(
eµ+

1
2σ

2
)2

= e2µ+2σ2

E [Li]E [Lj ] = eµ+
1
2σ

2

eµ+
1
2σ

2

= e2µ+σ2

We deduce that:

E
[
L2
]

= λE
[
L2
i

]
+
(
λ+ λ2 − λ

)
E [Li]E [Lj ]

= λE
[
L2
i

]
+ λ2E [Li]E [Lj ]

= λe2µ+2σ2

+ λ2e2µ+σ2

and:

var (L) = E
[
L2
]
− E2 [L]

= λe2µ+2σ2

+ λ2e2µ+σ2

− λ2
(
eµ+

1
2σ

2
)2

= λe2µ+2σ2

(c) We have: {
E [L] = λeµ+

1
2σ

2

var (L) = λe2µ+2σ2

We deduce that:
var (L)

E2 [L]
=

λe2µ+2σ2

λ2e2µ+σ2 =
eσ

2

λ

It comes that:
σ2 = lnλ+ ln var (L)− lnE2 [L]

and:

µ = lnE [L]− lnλ− 1

2
σ2

= lnE [L] + lnE2 [L]− 3

2
lnλ− ln var (L)

Let λ̂ be an estimated value of λ. We finally obtain:

µ̂ = lnm+ lnm2 − 3

2
ln λ̂− lnV

and
σ̂ =

√
ln λ̂+ lnV − lnm2

where m and V are the empirical mean and variance of aggregated losses.

8 Copula functions
1. (a) If P is a lower triangular matrix, then the matrix Σ may be decomposed as:

Σ = PP⊤
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This is the Cholesky decomposition. In our case, we have:

P =

(
1 0

ρ
√
1− ρ2

)
We verify that:

PP⊤ =

(
1 0

ρ
√
1− ρ2

)(
1 ρ

0
√
1− ρ2

)
=

(
1 ρ
ρ 1

)
= Σ

The copula of U is the copula of the gaussian standardized vector X = (X1, X2) with correla-
tion ρ. Let n1 and n2 be two random drawing of N (0, 1). Using the Cholesky decomposition4,
we can simulate X by the following way:

x1 = n1

x2 = ρn1 +
√
1− ρ2n2

We deduce that we can simulate U with the relations:

u1 = Φ(x1) = Φ (n1)

u2 = Φ(x2) = Φ
(
ρn1 +

√
1− ρ2n2

)
(b) We have:

C (u1, u2) = Φ
(
Φ−1 (u1) ,Φ

−1 (u2) ; ρ
)

=

∫ Φ−1(u1)

−∞
Φ

(
Φ−1 (u2)− ρx√

1− ρ2

)
ϕ (x) dx

=

∫ u1

0

Φ

(
Φ−1 (u2)− ρΦ−1 (u)√

1− ρ2

)
du

because x = Φ−1 (u), du = ϕ (x) dx, Φ(−∞) = 0 and Φ
(
Φ−1 (u1)

)
= u1. The conditional

copula function C2|1 is then equal to:

C2|1 (u1, u2) =
∂C (u1, u2)

∂ u1

= Φ

(
Φ−1 (u2)− ρΦ−1 (u1)√

1− ρ2

)

(c) We know that Pr {U1 ≤ u1} = u1 and C2|1 (u1, u2) = Pr {U2 ≤ u2 | U1 = u1}. Because
C (U1, 1) and C2|1 (u1, U2) are two independent uniform random variables, we obtain the
following algorithm:

i. we simulate two independent uniform variates v1 and v2;
ii. set u1 equal to v1;
iii. set u2 equal to K−1

u1
(v2) where Ku1 (u2) = C2|1 (u1, u2).

4We have N (µ,Σ) = µ+ PN (0, I).
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If we apply this algorithm to the Normal copula, we obtain:

Φ

(
Φ−1 (u2)− ρΦ−1 (u1)√

1− ρ2

)
= v2

It comes that:
Φ−1 (u2) = ρΦ−1 (u1) +

√
1− ρ2Φ−1 (v2)

We deduce that:

u1 = v1

u2 = Φ
(
ρΦ−1 (v1) +

√
1− ρ2Φ−1 (v2)

)
We see that this algorithm is a special case of the Cholesky algorithm if we take n1 = Φ−1 (v1)
and n2 = Φ−1 (v2). Whereas n1 and n2 are directly simulated in the Cholesky algorithm with
a gaussian random generator, they are simulated using the inverse transform in the conditional
distribution method.

(d) We know that:
1− e−λ1τ1 ∼ U[0,1]

We deduce that:

τ1 = −λ−1
1 ln (1− u1)

τ2 = −λ−1
2 ln (1− u2)

2. (a) If ρ = 1, the Normal copula becomes the upper Frechet copula. It means that τ1 and τ2 are
comonotonic. Because U1 = U2, we have:

1− e−λ1τ1 = 1− e−λ2τ2

or:
λ1τ1 = λ2τ2

We have E [τ1] = σ (τ1) = 1/λ1 and:

E [τ1τ2] = E
[
λ2

λ1
τ2τ2

]
=

λ2

λ1

(
var (τ2) + E2 [τ2]

)
=

λ2

λ1

(
1

λ2
2

+
1

λ2
2

)
=

2

λ1λ2

We deduce that:

ρ ⟨τ1, τ2⟩ =
E [τ1τ2]− E [τ1]E [τ2]

σ (τ1)σ (τ2)

=
2

λ1λ2
− 1

λ1λ2

1
λ1λ2

= +1
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(b) If ρ = −1, the Normal copula becomes the lower Frechet copula. It means that τ1 and τ2 are
counter-monotonic. Because U1 = 1− U2, we have:

1− e−λ1τ1 = 1−
(
1− e−λ2τ2

)
or:

τ1 = −
ln
(
1− e−λ2τ2

)
λ1

The correlation is equal to −1 if τ1 is a decreasing linear function of τ2. The function f (t) =
−λ−1

1 ln
(
1− e−λ2t

)
is a decreasing function, but not a linear function. We deduce that:

ρ ⟨τ1, τ2⟩ > −1

9 Credit spreads
1. We have (TR-GDR, page 427) :

F (t) = 1− e−λt

S (t) = e−λt

f (t) = λe−λt

Let U = S (τ). We have U ∈ [0, 1] and:

Pr {U ≤ u} = Pr {S (τ) ≤ u}
= Pr

{
τ ≤ S−1 (u)

}
= S

(
S−1 (u)

)
= u

We deduce that S (τ) ∼ U[0,1] (TR-GDR, page 428). It comes that τ = S−1 (U) with U ∼ U[0,1].
Let u be a uniform random variate. Simulating τ is equivalent to transform u into t:

t = − 1

λ
lnu

2. We have (TR-GDR, pages 409-411) :

P− =
1

4
· s ·N

P+ = (1−R) ·N

with s the spread, N the notional, P− the premium leg and P+ the protection leg. The quarterly
payment of the premium leg explains the factor 1/4 in the formula of P−. We deduce the flow chart
given in Figure 2.

3. The ATM margin (or spread) is the value of s such that the CDS price is zero (TR-GDR, page
410):

P (t) = E [P− − P+] = 0

We have the following triangle relation (TR-GDR, page 410):

s ≃ λ× (1−R)
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Figure 1: Flow chart from the viewpoint of the protection buyer'
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4. Let PD be the annual default probability. We have

PD = 1− S (1)

= 1− e−λ

≃ 1− (1− λ)

≃ λ

because λ is generally small (λ ≤ 10%). We deduce that:

PD ≃ s

1−R

5. We have:
PD =

2%

1− 25%
= 267 bps

10 Extreme value theory and stress-testing
1. See TR-GDR, page 121-129.

2. We have (TR-GDR, pages 131-133):

Gn (x) = Pr {max (X1, . . . , Xn) ≤ x}
= Pr {X1 ≤ x, . . . ,Xn ≤ x}

=
n∏

i=1

Pr {Xi ≤ x}

= Φ

(
x− µ

σ

)n

3. See TR-GDR, page 139.

4. (a) An extreme value (EV) copula C satisfies the following relation:

C
(
ut
1, u

t
2

)
= Ct (u1, u2)

for all t > 0.
(b) The product copula is an EV copula because:

C⊥ (ut
1, u

t
2

)
= ut

1u
t
2

= (u1u2)
t

=
[
C⊥ (u1, u2)

]t
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(c) We have:

C
(
ut
1, u

t
2

)
= u

t(1−θ1)
1 u

t(1−θ2)
2 min

(
utθ1
1 , utθ2

2

)
=

(
u1−θ1
1

)t (
u1−θ2
2

)t (
min

(
uθ1
1 , uθ2

2

))t
=

(
u1−θ1
1 u1−θ2

2 min
(
uθ1
1 , uθ2

2

))t
= Ct (u1, u2)

(d) The upper tail dependence λ is defined as follows:

λ = lim
u→1+

1− 2u+C (u1, u2)

1− u

It indicates the probability to have an extreme in one direction knowing that we have already
an extreme in the other direction. If λ = 0, extremes are independent and the copula of
extreme values is the product copula. If λ = 1, extremes are comonotonic and the copula of
extreme values is the upper Fréchet copula. Moreover, the upper tail dependence of the copula
between the random variables is equal to the upper tail dependence of the copula between the
extremes.

(e) If θ1 > θ2, we obtain using L’Hospital’s rule:

λ = lim
u→1+

1− 2u+ u1−θ1u1−θ2 min
(
uθ1 , uθ2

)
1− u

= lim
u→1+

1− 2u+ u1−θ1u1−θ2uθ1

1− u

= lim
u→1+

1− 2u+ u2−θ2

1− u

= lim
u→1+

0− 2 + (2− θ2)u
1−θ2

−1

= lim
u→1+

2− 2u1−θ2 + θ2u
1−θ2

= θ2

If θ2 > θ1, λ = θ1. We deduce that the upper tail dependence of the the Marshall-Olkin copula
is min (θ1, θ2).

(f) If θ1 = 0 or θ2 = 0, λ = 0. It comes that the copula of the extremes is the product copula.
Extremes are then not correlated.
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