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Abstract

In this article, we consider smart beta indexing, which is an alternative to capita-
lization-weighted (CW) indexing. In particular, we focus on risk-based (RB) indexing,
the aim of which is to capture the equity risk premium more effectively. To achieve
this, portfolios are built which are more diversified and less volatile than CW portfolios.
However, RB portfolios are less liquid than CW portfolios by construction. Moreover,
they also present two risks in terms of passive management: tracking difference risk
and tracking error risk. Smart beta investors then have to a puzzle out the trade-off
between diversification, volatility, liquidity and tracking error. This article examines
the trade-off relationships. It also defines the return components of smart beta indexes.

Keywords: Smart beta, risk-based indexing, minimum variance portfolio, risk parity,
equally weighted portfolio, equal risk contribution portfolio, diversification, low beta anomaly,
low volatility anomaly, tracking error, liquidity.

JEL classification: G11.

1 Introduction

Smart beta is a (marketing) term used to refer to alternative-weighted indexing, which is a
new form of passive management (Roncalli, 2013). An alternative-weighted index is defined
as an index in which assets are weighted in a different way from those based on market
capitalization. We generally distinguish between two forms of alternative-weighted indexing:
fundamental indexing and risk-based indexing. The underlying idea of alternative-weighted
indexes is to improve the risk-return profile of market-cap indexes. This is already the goal of
active management, which is benchmarked on capitalization-weighted indexes. Nevertheless,
there is a major difference compared with active management solutions, because smart beta
indexes are formula-based solutions. As a result, smart beta may be offered by both asset
managers and index providers.

∗We are grateful to Tzee-man Chow for his helpful comments.
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The success of smart beta in recent years can be explained by two main products: the
RAFI indexes launched by Robert Arnott and minimum variance solutions. The former
is related to the value factor of Fama and French (1992), while the latter exploits the low
beta anomaly (Goltz and Martellini, 2013). However, smart beta is not limited to these
two solutions, and a broad indexing universe now exists. For instance, Amenc et al. (2013)
identify 13 portfolio allocation methods and combine them with different factors (value
stocks, growth stocks, high liquid stocks, small caps, etc.). Our article is less ambitious and
focuses on low volatility indexes.

Many investors would like to have a smart beta index that has low volatility, broad
diversification, low tracking error (and high liquidity) and strong performance. The goal
of this article is to show that there is a trade-off between these different characteristics.
For instance, it is obvious that a low volatility index implies high tracking error volatility.
In the same way, we can see that there is a negative relationship between volatility and
diversification. Thus, it is intuitive that a diversified smart beta index offering a volatility
reduction of 30% versus a capitalization-weighted index with tracking error volatility below
5% is unrealistic. The key issue is to precisely measure these trade-off relationships. This is
the aim of our work.

The article is organized as follows. In section two, we propose an allocation method
for building a low volatility diversified (LVD) portfolio. In particular, we show how we
can target an ex-ante volatility reduction using traditional risk-based indexing and create a
range of risk-based indexes. In section three, we estimate the trade-off relationships using
simulations based on the S&P 500 universe. We also propose a framework for assessing the
performance of LVD portfolios, and for gauging the difference in returns versus the CW
portfolio. Section four offers some concluding remarks.

2 Building a low volatility diversified portfolio

2.1 Traditional risk-based indexing
We consider a universe of n assets. Let x be the portfolio weights, b the benchmark portfolio
(or the index) and Σ the covariance matrix of asset returns. Demey et al. (2010) highlight
four methods:

1. The equally weighted (EW) portfolio
In this case, the weights are equal, meaning that:

xi = xj =
1

n

This is the least concentrated portfolio in terms of weights.

2. The minimum variance (MV) portfolio
The goal here is to define a portfolio that minimizes ex-ante volatility:

x? = arg minx>Σx

3. The most diversified (MDP) portfolio
Choueifaty and Coignard (2008) define the diversification ratio as follows:

DR (x) =
x>σ√
x>Σx
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where σ is the volatility vector. The MDP then corresponds to the portfolio that
maximizes the statistic DR (x):

x? = arg minDR (x)

4. The equal risk contribution (ERC) portfolio
In the ERC portfolio, the risk contributions are the same for all assets (Maillard et
al., 2010):

RCi = RCj
where:

RCi = xi ·
∂ σ (x)

∂ xi

In Table 9 (Appendix B on page 23), we set out the composition of the Eurostoxx 50
index at the end of February 2013. We also indicate the composition of the (long-only)
risk-based portfolios by considering a one-year empirical covariance matrix. In Table 1, we
give some statistics for these portfolios1. σ (x) is the ex-ante volatility of the portfolio x,
while σ (x | b) is the ex-ante volatility of tracking errors between the portfolio x and the
benchmark b:

σ (x | b) =

√
(x− b)>Σ (x− b)

We also compute the ex-ante risk reduction defined as follows:

δσ (x | b) = 1− σ (x)

σ (b)

β (x | b) is the beta of the portfolio x with respect to the benchmark b. We have:

β (x | b) =
x>Σb

b>Σb

N (x) measures the degrees of freedom of portfolio weights and corresponds to the inverse
of the Herfindahl index (Roncalli, 2013). It is equal to 1 if the portfolio is concentrated in
one stock. Conversely, it is equal to n for the EW portfolio, which is the least concentrated
portfolio in terms of weights. Similarly, N (RC) measures the degrees of freedom of portfolio
risk contributions2. In this case, N (RC) is equal to n for the ERC portfolio, which is
the least concentrated portfolio in terms of risk budgets. The minimum variance portfolio
provides a significant reduction in the volatility of the portfolio (δσ (x | b)) = 37.64%),
but it corresponds to a highly concentrated portfolio both in terms of weights and risk
concentrations. Indeed, N (x) and N (RC) are equal to 3.06, meaning that the MV portfolio
is equivalent to an EW or ERC portfolio, despite having only three assets. Conversely, the
equally weighted portfolio has a low concentration, but its volatility is higher than the
volatility of the CW portfolio. The MDP and ERC portfolios are located between these two
extremes. For instance, the ERC portfolio is highly diversified, but the reduction in risk is
small. We also report the tracking error volatility and the beta. We notice that we face a
high risk with respect to the benchmark in the case of the MV and MDP portfolios.

1The statistics are expressed in %, except for the beta and concentration measures.
2We have:

N (x) =
1∑n
i=1 x

2
i

and:
N (RC) =

1∑n
i=1RC

2
i
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Table 1: Statistics of risk-based portfolios (Eurostoxx 50, Feb. 2013)

Statistic CW EW MV MDP ERC
σ (x) 21.30 22.40 13.29 17.66 19.71

δσ (x | b) −5.15 37.64 17.09 7.49
σ (x | b) 2.35 12.63 9.75 2.48
β (x | b) 1.05 0.52 0.74 0.92
N (x) 36.65 50.00 3.06 10.31 44.27
N (RC) 35.93 43.66 3.06 9.66 50.00

Risk reduction No High Medium Low
Diversification High Low Low High

Beta risk Low High High Low

The traditional way to obtain a portfolio with low volatility and low concentration is
thus to consider a constrained minimum variance portfolio:

x? = arg minx>Σx

u.c. x−i ≤ xi ≤ x
+
i

We can then define the lower and upper bounds in an absolute way, for example 1% ≤
xi ≤ 5%. We can also define them in a relative way with respect to the benchmark. In
this case, we have c−i bi ≤ xi ≤ c+i bi where bi is the weight of asset i in the benchmark b,
c−i ≤ 1 and c+i ≥ 1. For instance, suppose that bi/2 ≤ xi ≤ 2bi. It means that the portfolio
weights may deviate from the benchmark weights by −50% and +100%. We report some
results3 in Table 2. The drawback of this method is that the solution strongly depends on
the choice of the bounds. Moreover, we cannot control the risk reduction with this method.
We observe the same problem with the beta risk. With these methods, the beta and the
tracking error volatility are observed in an ex-post analysis and depend on the design of the
weight constraints.

Table 2: Statistics of constrained MV portfolios (Eurostoxx 50, Feb. 2013)

Lower bound 0% 0% 1% 1% 0× bi 0.5× bi 1%
Upper bound 10% 5% 5% 4% 2× bi 2× bi 2× bi

σ (x) 14.32 15.75 18.05 18.45 16.12 17.81 18.19
δσ (x | b) 32.79 26.09 15.27 13.38 24.33 16.40 14.63
σ (x | b) 10.31 8.25 4.60 4.03 7.71 4.77 4.24
β (x | b) 0.61 0.70 0.84 0.86 0.72 0.82 0.84
N (x) 10.66 20.68 29.02 33.68 17.00 26.43 27.84
N (RC) 10.71 20.51 37.75 41.27 16.06 33.08 36.58

Risk reduction High High Medium Medium High Medium Medium
Diversification Low Low Medium High Low Medium Medium

Beta risk High High Medium Medium High Medium Medium

3Compositions are given in Table 10 on page 24
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2.2 Low volatility diversified portfolio
We now explore another route to building a low volatility portfolio that has a sufficient level
of diversification. Let x? (c) be an optimized portfolio that depends on a scalar c ∈ [c−, c+].
We assume that the volatility σ (x? (c)) is a continuous decreasing function with respect to
c. We also assume that x? (c−) = xmv and x? (c+) = xew, we obtain:

δ− ≤ δσ (x? (c) | b) ≤ δ+

with:

δ− = 1− σ (x? (c+))

σ (b)

and:

δ+ = 1− σ (x? (c−))

σ (b)

This implies that we can achieve a risk reduction δ ∈ [δ−, δ+]. Targeting a risk reduction δ?
is thus equivalent to finding the optimal value c? such that:

δσ (x? (c?) | b) = δ?

2.2.1 The LVD-MV portfolio

Let N (x) be the inverse of the Herfindahl index. We have:

N (x) = H−1 (x)

=
1∑n
i=1 x

2
i

We consider the following optimization program:

x? (c) = arg minx>Σx

u.c.

 N (x) ≥ c
1>x = 1
x ≥ 0

where c ∈ [c−, n] and c− is the effective number of stocks of the long-only MV portfolio4.
We verify that:

σ (xmv) ≤ σ (x? (c)) ≤ σ (xew) (1)

We can then calibrate c such that the risk reduction is equal to δ?.

Remark 1 To solve the previous optimization problem, we consider the shrinkage formula-
tion of the LVD-MV solution given in Appendix A.1.

2.2.2 The LVD-ERC portfolio

Maillard et al. (2010) show that the ERC portfolio is the solution of this optimization
program:

x? (c) = arg minx>Σx

u.c.


∑n
i=1 lnxi ≥ c

1>x = 1
x ≥ 0

4We have c− = N (xmv) and c+ = N (xew) = n.
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for a special value of the scalar c. Because we have x? (−∞) = xmv and x? (n lnn) = xew,
the inequalities (1) also hold in this case. Targeting a risk reduction of δ? is equivalent to
finding the value of c such that:

σ (x? (c)) = (1− δ?)σ (xcw)

Remark 2 We can define other forms of low volatility diversified portfolios. For instance,
Appendix A.2 present a LVD allocation based on MDP. We can also build a LVD-RB portfolio
by using an iterative risk budgeting portfolio (see Appendix A.3).

2.2.3 An illustration

We consider an investment universe of four assets. We assume that the CW portfolio is the
equally weighted portfolio. The volatility is respectively equal to 35%, 25%, 15% and 20%,
while the correlation matrix C is equal to:

C =


100%
80% 100%
70% 50% 100%
60% 40% 20% 100%


In Table 3, we report the weights and statistics of risk-based portfolios. Suppose that we
target a risk reduction of 20%. In this case, we obtain the results given in Table 4. We notice
that these are very similar for the LVD-ERC and LVD-RB portfolios. Moreover, we obtain
similar results in terms of weight and risk concentrations for the different LVD portfolios,
except for the MDP5. If we now consider a smaller risk reduction, we find that the difference
between the LVD-MV, LVD-ERC and LVD-RB portfolios is smaller (see Table 5).

Table 3: Weights and statistics of risk-based portfolios

Statistic EW MV MDP ERC
x1 25.00 0.00 0.00 12.51
x2 25.00 0.00 15.97 20.28
x3 25.00 67.33 46.59 37.47
x4 25.00 32.67 37.44 29.74
σ (x) 19.91 13.08 13.91 16.70

δσ (x | b) 0.00 34.32 30.13 16.12
σ (x | b) 0.00 10.41 7.45 3.79
β (x | b) 1.00 0.58 0.67 0.83
N (x) 4.00 1.79 2.61 3.50
N (RC) 3.31 1.79 2.82 4.00

2.2.4 Some results

In Table 6, we again use the Eurostoxx 50 index and report the statistics of low volatility
diversified portfolios for two values of δ?, while the portfolio weights are given in Table 11
on page 25. The difference between the LVD-RB and LVD-RB? portfolios comes from the
initial portfolio: the former starts the algorithm with the EW portfolio whereas the latter
starts the algorithm with the CW portfolio. If δ? = 10%, the diversification of the LVD

5In fact, the LVD-MDP does not allow both the volatility and the diversification to be managed.
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Table 4: Statistics of LVD portfolios (δ? = 20%)

Statistic EW MV MDP ERC RB
x1 25.00 7.22 3.70 9.82 9.71
x2 25.00 23.56 28.12 18.13 18.33
x3 25.00 36.96 29.29 41.86 41.51
x4 25.00 32.27 38.90 30.18 30.45
σ (x) 19.91 15.93 15.93 15.93 15.93

δσ (x | b) 0.00 20.00 20.00 20.00 20.00
σ (x | b) 0.00 4.61 5.14 4.81 4.79
β (x | b) 1.00 0.79 0.79 0.79 0.79
N (x) 4.00 3.32 3.15 3.24 3.25
N (RC) 3.31 3.77 3.17 3.92 3.92

Table 5: Statistics of LVD portfolios (δ? = 10%)

Statistic EW MV MDP ERC RB
x1 25.00 16.32 12.66 16.96 17.35
x2 25.00 24.15 27.91 22.83 22.11
x3 25.00 30.79 21.26 31.79 32.64
x4 25.00 28.73 38.17 28.41 27.90
σ (x) 19.91 17.92 17.92 17.92 17.92

δσ (x | b) 0.00 10.00 10.00 10.00 10.00
σ (x | b) 0.00 2.27 3.42 2.29 2.32
β (x | b) 1.00 0.90 0.89 0.90 0.90
N (x) 4.00 3.81 3.51 3.81 3.80
N (RC) 3.31 3.85 3.55 3.86 3.85

portfolios is equal to or larger than the diversification of the CW portfolio. Only the LVD-
RB? portfolio has a lower weight diversification than the CW portfolio. We notice that the
LVD portfolios have the same beta, but not the same tracking error volatility. If δ? = 20%,
the diversification remains at a satisfactory level in terms of risk contributions. However, we
observe some weight concentrations for the ERC and RB portfolios, because of the exposure
to Unilever.

Table 6: Statistics of low volatility diversified portfolios (Eurostoxx 50, Feb. 2013)

δ? = 10% δ? = 20%
Statistic CW MV ERC RB RB? MV ERC RB RB?

σ (x) 21.30 19.17 19.17 19.17 19.17 17.04 17.04 17.04 17.04
δσ (x | b) 10.00 10.00 10.00 10.00 20.00 20.00 20.00 20.00
σ (x | b) 3.23 3.04 3.05 2.90 6.04 5.78 5.86 6.01
β (x | b) 0.89 0.89 0.89 0.90 0.78 0.78 0.78 0.78
N (x) 36.65 43.05 41.27 41.53 32.11 32.60 19.55 27.68 22.63
N (RC) 35.93 47.46 49.61 49.62 36.91 36.09 33.47 38.82 29.91
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If we compare the concentration using the Lorenz curves6, we obtain the results given
in Figure 1. We can see that the three approaches (MV, ERC and RB) are very similar in
terms of weight and risk concentrations, especially when the risk reduction is small. If we
consider a larger value of δ?, we observe some differences, because the MV portfolio shrinks
the weights towards zero more quickly than the ERC and RB portfolios.

Figure 1: Lorenz curve of weights and risk contributions

In Figure 2, we show the trade-off relationships computed with the LVD-MV portfolios.
The first panel represents the change in tracking error volatility with respect to the risk
reduction. For low values of δσ (x | b) (lower than 10%), we observe that σ (x | b) is rela-
tively constant. The relationship between δσ (x | b) and σ (x | b) follows then an increasing
function. In the second panel, we consider the beta β (x | b) of the portfolio. It is a de-
creasing function of the volatility reduction. Finally, the last two panels show the impact
of the volatility reduction on the weight or risk diversification7. If we consider LVD-ERC
portfolios instead of LVD-MV portfolios, we obtain the results in Figure 3. It is remarkable
that the results are so similar and show little sensitivity to the diversification definition. We
only observe some small diversification differences in the region where the LDV portfolio
converges to the MV portfolio.

Remark 3 Results for the LVD-RB and LVD-RB? portfolios are given on page 26. We
observe the same patterns, except in the case of the LVD-RB? portfolio. This portfolio
uses the CW portfolio as the initial portfolio, whereas the LVD-RB portfolio uses the EW
portfolio.

6The x-axis of the curve corresponds to the percentile of the most important stocks, and the y-axis to
the percentage of cumulated weights or risk contributions. For instance, if x = 20% and y = 90%, it means
that 90% of the weights (or the risk contributions) are concentrated in 20% of stocks.

7The diversification statistic is equal to the ratio between N and the number of stocks n. It takes the
value 1 when the portfolio is perfectly diversified and should move towards 0 for a perfectly concentrated
portfolio.
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Figure 2: Trade-off relationships with LVD-MV portfolios (Eurostoxx 50, Feb. 2013)

Figure 3: Trade-off relationships with LVD-ERC portfolios (Eurostoxx 50, Feb. 2013)
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If we estimate the OLS relationship between the volatility reduction and tracking error
volatility (see Figure 4), we obtain the following result:

σ (x | b) ' 0.31 · δσ (x | b)

Each percentage point of volatility reduction costs 31 bps in terms of tracking error volatility.
This result depends on the rebalancing date and the asset universe, but it illustrates the
puzzle of smart beta indexing. It is not possible to build a smart beta index that combines all
the patterns: low volatility, high diversification and low risk with respect to the benchmark.

Figure 4: Relationships between δσ (x | b) and σ (x | b) (Eurostoxx 50, Feb. 2013)

3 Risk-return profile of LVD portfolios

3.1 Application to the S&P 500 index
We consider the universe of the S&P 500 index from December 31, 1989, to December 31,
2012. We simulate the performance of LVD portfolios using the following characteristics:

• Every month, we consider only the stocks belonging to the S&P 500 index.

• We compute the empirical covariance matrix using daily returns and a one-year rolling
window.

• The LVD portfolio is rebalanced on the first trading day of the next month.

• The LVD index is computed daily as a price index.

Results are reported in Figures 5, 6 and 7. From an ex-ante point of view, we observe
the same trade-off relationships as those noted with the Eurostoxx 50 index. In Figure 5, we

10
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Figure 5: Trade-off relationships with LVD portfolios (S&P 500, 1990 – 2012)

Figure 6: Trade-off relationships with LVD portfolios (S&P 500, 1990 – 2012)
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Figure 7: Trade-off relationships with LVD portfolios (S&P 500, 1990 – 2012)

represent them for the 276 rebalancing dates and also compute the average values. Figure 6
shows that the ex-post relationships are very similar to the ex-ante relationships. We only
observe a small discrepancy when we target a substantial volatility reduction, of larger than
30%. We confirm that a 10% volatility reduction implies a cost of about 3% in terms of
tracking error volatility. In Figure 7, we estimate some risk-return statistics by using the
simulated performance8 of LVD portfolios from December 31, 1989, to December 31, 2012.
We observe a decreasing function between the annualized return and the volatility reduction,
while the drawdown is reduced when we consider a greater volatility reduction. The Sharpe
and information ratios are relatively stable when the volatility reduction is between 0% and
20%. We obtain the same conclusion if we consider the (two-sided) turnover. The investment
capacity ratio9 of LVD portfolios is given in the last panel in Figure 7. This measure gives
some insight into capacity constraints, meaning that liquidity issues are more important if
this ratio is low. For this simulation, the investment capacity ratio is close to 60% if the

8These results are sensitive to the universe and the period under analysis. In particular, they depend on
the relative performance of the EW and MV portfolios with respect to the CW portfolio.

9According to Johansson and Pekkala (2013), the investment capacity ratio of asset i corresponds to the
CW weight xcw,i divided by the portfolio weight xi (see also NBIM, 2012):

ICRi =
xcw,i

xi

We then define the investment capacity ratio of portfolio x as the weighted mean:

ICR =
n∑
i=1

wi ICRi

with:

wi =
xcw,i · 1 {xi > xcw,i}∑n
j=1 xcw,j · 1 {xj > xcw,j}

12
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volatility reduction is relatively small.

Remark 4 The performance analysis of low volatility strategies is a difficult task. In this
simulation, the performance decreases when we consider a greater volatility reduction. This
implies that the EW portfolio has the higher return, while the MV portfolio has the lower
return. This is not always the case if we consider another universe or analysis period. In
what follows, we propose a framework for understanding the sources of performance for LVD
portfolios.

3.2 A framework for performance attribution
In this section, we break down the performance of LDV portfolios into three components:

1. Beta return

2. Diversification return

3. Alpha return

Let Rt (x) be the return of the LVD portfolio x at time t. We have:

Rt (x)− r = Rβ,t +Rd,t +Rα,t

where r is the risk-free rate, Rβ,t is the beta return, Rd,t is the diversification return and
Rα,t is the alpha return.

Remark 5 This approach to measuring the performance may seem curious, because the
traditional way to gauge the performance of an equity portfolio is to consider a Fama-French
breakdown. One of the problems with such approach is the relative instability of the Fama-
French factors. Moreover, we think that the small caps and value factors are special cases
of the low beta anomaly, which is the key aspect of the alpha return.

3.2.1 Beta return

Let us consider the CAPM model of Sharpe (1964). We have:

E [Rt (x)]− r = β (E [Rm,t]− r)

where β is the beta of the portfolio and Rm,t is the return of the market portfolio. We
consider that the beta return is equal to β (Rm,t − r). In this case, Rβ,t is an increasing
function of β. In LVD portfolios, the beta is a decreasing function of the volatility reduction
δσ (x | b). We therefore deduce that the beta return is also a decreasing function of δσ (x | b).

3.2.2 Diversification return

We may show that the return between the CW portfolio and the LVD portfolio also depends
on the level of diversification. This diversification return may be explained by two reasons.
By considering a more diversified portfolio than the CW portfolio, we capture the systematic
risk more effectively. Moreover, rebalancing a portfolio may generate extra performance
(Booth and Fama, 1992), particularly when the dispersion of volatilities and correlations
is high10. If we assume that a proxy for measuring the diversification return is given by

10More precisely, we may show that the diversification return depends on the difference between the
arithmetic mean and the harmonic mean of volatilities and is a decreasing function of the average correlation.
Simulations show that the diversification return lies between 0% and 3% for a highly diversified portfolio,
typically the ERC portfolio.

13
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the risk diversification, we deduce that the diversification return is an increasing function
of δσ (x | b) when the volatility reduction is small and a decreasing function of δσ (x | b)
when the volatility reduction becomes substantial. If the portfolio is concentrated, the
diversification return is negative.

3.2.3 Alpha return

This component is linked to the low beta anomaly and presupposes that the relationship
between the excess return πi = E [Ri,t]−r of asset i and its beta βi is much flatter than that
predicted by the CAPM theory. This anomaly was first illustrated by empirical analysis
(Black et al, 1972). Different explanations have been put forward to explain this stylized
fact (Goltz and Martellini, 2013). The most pertinent is the impact of constraints on the
CAPM model (Black, 1972). For instance, Frazzini and Pedersen (2010) have developed a
model with borrowing constraints. In this case, some investors cannot leverage the tangency
portfolio in order to obtain an optimal portfolio with a higher return. These investors will
then invest in a portfolio that is not optimal, but which is more risky than the tangency
portfolio. In this model, the CAPM relationship becomes:

E [Ri,t]− r = αi + βi (E [Rm,t]− r)

where αi is a linear decreasing function of βi and depends on the borrowing constraints.

Example 1 We consider four assets where µ1 = 5%, µ2 = 6%, µ3 = 8%, µ4 = 6%,
σ1 = 15%, σ2 = 20%, σ3 = 25%, σ4 = 20% and

C =


1.00
0.10 1.00
0.20 0.60 1.00
0.40 0.50 0.50 1.00


The risk-free rate is set to 2%.

This example is taken from Roncalli (2013). Using the previous parameters, we computed
the tangency portfolio x? and obtained the results given in Table 7. In this case, the expected
return and the volatility of the tangency portfolio are µ (x?) = 6.07% and σ (x?) = 13.77%.
Let βi (x) and πi (x) be the beta of the asset i and its implied risk premium11 with respect
to the market portfolio x. These two statistics are also reported in Table 7. We found that
the implied risk premium πi (x?) is equal to the true risk premium µi − r.

Table 7: Tangency portfolio x?

Asset x?i βi (x?) πi (x?)
1 47.50% 0.74 3.00%
2 19.83% 0.98 4.00%
3 27.37% 1.47 6.00%
4 5.30% 0.98 4.00%

11We have:
πi (x) = βi (x) · (µ (x)− r)

where µ (x) is the expected return of the portfolio x.
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Let us suppose that the market includes two investors. The first investor cannot leverage
his risky portfolio, whereas the second investor must hold 50% of his wealth in cash. The
market portfolio12 x̄ is therefore different from the tangency portfolio x? (see Table 8). It is
more heavily weighted in high risk assets and less heavily weighted in low risk assets. This
is why the implied risk premium is underestimated for low beta assets and overestimated
for high beta assets. For instance, the implied risk premium of the first asset is 2.68%. We
can also compute the alpha. We found that it is positive for low beta assets (βi (x̄) < 1)
and negative for high beta assets (βi (x̄) > 1). If we add the alpha return to the implied
risk premium, we obtain the true risk premium.

Table 8: Market portfolio x̄ with two investors

Asset x̄i αi βi (x̄) πi (x̄) αi + πi (x̄)
1 42.21% 0.32% 0.62 2.68% 3.00%
2 15.70% 0.07% 0.91 3.93% 4.00%
3 36.31% −0.41% 1.49 6.41% 6.00%
4 5.78% 0.07% 0.91 3.93% 4.00%

Remark 6 There is some confusion about the low beta anomaly and the low volatility
anomaly. The low beta anomaly tells us that the risk premium of low beta stocks (or high
beta stocks) is underestimated (or overestimated) if we consider the CAPM model. The low
volatility anomaly assumes that low volatility stocks perform better than high volatility stocks.
These statements are illustrated in the first panel of Figure 8. Given the low beta anomaly,
it is therefore possible to improve the risk-return profile of the market portfolio. However,
the low beta anomaly does not assume that the the minimum variance portfolio outperforms
the tangency portfolio. In the case of the low volatility anomaly, the minimum variance
portfolio is very close to the tangency portfolio, and outperforms the market portfolio. The
two anomalies can only be reconciled when we consider that the market portfolio has no risk
premium or negative risk premium.

Let us illustrate that LVD portfolios benefit from the low beta anomaly. In the CAPM
model, the covariance matrix Σ can be broken down as:

Σ = ββ>σ2
m +D

where β = (β1, . . . , βn) is the vector of betas, σ2
m is the variance of the market portfolio and

D = diag
(
σ̃2
1 , . . . , σ̃

2
n

)
is the diagonal matrix of specific variances. Following Scherer (2011)

and Clarke et al. (2010), we may show that the weights of the LDV portfolio are:

x?i =
σ2 (x?)

σ̃2
i + λ

·
(

1− βi
β?

)
· 1 {βi > β?}

with:

β? =
1 + σ2

m

∑
βi<β? β̃iβi

σ2
m

∑
βi<β? β̃i

and β̃i = βi/
(
σ̃2
i + λ

)
. The parameter λ is the Lagrange coefficient associated with the

Herfindahl constraint. In Figure 9, we show the composition of the EW, ERC, MV and

12We have µ (x̄) = 6.30% and σ (x̄) = 14.66%.

15



The Smart Beta Indexing Puzzle

Figure 8: Illustration of the low beta and low volatility anomalies

LVD portfolios when asset returns follow the one-factor CAPM model13. We find that LVD
portfolios exhibit a low beta bias. This bias is particularly marked when the volatility
reduction is substantial14.

3.2.4 Performance dilemma

We face a difficulty in terms of performance attribution. Smart beta indexing is designed to
capture the equity risk premium. The relative performance of such portfolios with respect to
CW portfolios must then be measured in a complete economic cycle. This is why smart beta
indexing principally concerns long-term investors. According to Benartzi and Thaler (1995),
we must however distinguish the evaluation period and the planning horizon of investors.
Even long-term investors evaluate their portfolios frequently, typically once per year. In this
context, benchmarking smart beta investments is a difficult task.

Suppose that an investor prefers a smart beta portfolio with a substantial volatility
reduction. In this case, the smart beta portfolio will outperform the CW portfolio if the
market is down or flat. We can explain this gain because the beta return is lower (Figure
10). Moreover, the portfolio may also benefit from the alpha return (Figure 11). A typical
example of such a situation is the year 2008. Nevertheless, the level of underperformance
may be high if the performance of the market is strong or moderate. For instance, if the
beta of the portfolio is 50% and the market performance is 30%, the beta return is only
15%. It is highly unlikely that the alpha return due to the low beta anomaly will offset this

13The idiosyncratic volatility σ̃i is set to 15% for all assets, while the volatility of the market portfolio σm
is taken to be 25%. The values of beta βi have been simulated uniformly between 0 and 2. Moreover, we
assume that the benchmark is the EW portfolio.

14See panels 5 and 6 in Figure 9 where the volatility reduction is equal to 30% and 40%.
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Figure 9: The composition of LVD portfolios with respect to asset betas

relative loss. This explains why minimum variance strategies largely underperformed the
CW indexes in 1999 and 2012.

Investors who evaluate their portfolios move on a yearly basis need to keep in mind
the three performance components that explain the risk premium. Targeting a substantial
reduction in volatility implies a negative diversification return, which is largely offset by the
beta return if the market performance is significantly negative. The alpha return may be
high, but it may not offset the beta return loss in a strong bull market. Targeting a small
volatility reduction implies a lower tracking error with respect to the CW portfolio. It is
a good solution when the market performance is positive, because these portfolios benefit
from the beta return and the diversification return. However, in the case of a bear market,
the loss reduction will be less significant.

4 Conclusion
Smart beta indexing is becoming increasingly popular with institutional investors and pen-
sion funds. It is perceived as a method of reducing risk and increasing performance with
respect to capitalization-weighted indexing. This is particularly true with low volatility
strategies, e.g. minimum variance portfolios. In this context, we observe a growing demand
for smart beta solutions that explicitly target a volatility reduction.

Building an equity portfolio with 30% lower volatility than the CW portfolio and the
same performance is attractive. However, everything has a cost and there is no free lunch.
There is a trade-off between the volatility reduction and the risks of such solutions. In
this article, we show and measure the relationships between volatility on the one hand, and
diversification, tracking-error, liquidity and performance on the other. For instance, the cost
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Figure 10: Scenario-based performance analysis

Figure 11: Breakdown of performance

18



The Smart Beta Indexing Puzzle

of a 10% reduction in volatility is between 3% and 4% in terms of tracking error. Investors
who are considering such strategies should keep these trade-off in mind.

Performance is another big issue in smart beta indexing. The return of a low volatil-
ity portfolio can be broken down into three components: the beta return, the diversifica-
tion return and the alpha return. From a theoretical point of view, the beta return is a
decreasing function of the volatility reduction, whereas the alpha return is an increasing
function. It explains that low volatility indexing may comfortably outperform (or underper-
form) capitalization-weighted indexing when the performance of the equity market is low or
negative (or strong). As a consequence, choosing a low volatility index is a bet on the future
behavior of the equity market.
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A Technical appendix

A.1 Shrinkage formulation of the LVD-MV portfolio
It is easy to show that the LVD-MV portfolio is the solution to this optimization problem:

x? (λ) = arg minx> (Σ + λIn)x

u.c.
{

1>x = 1
x ≥ 0

We obtain a minimum variance portfolio when the covariance matrix is shrunk (Bruder et
al., 2013). In this case, we have the following correspondence:

c =
1∑n

i=1 x
?
i (λ)

2

A.2 The LVD-MDP portfolio
We consider the following optimization program:

x? (c) = arg minx>Σx

u.c.

 x>σ ≥ c
1>x = 1
x ≥ 0

if c = 0, the optimized portfolio is equal to the MV portfolio. if c = supi σi, the optimized
portfolio is fully invested in the most risky asset. This implies that a scalar c+ exists such
that:

σ (xmv) ≤ σ (x? (c))

We can then target a risk reduction of δ? in the same way as we proceed for the LVD-
ERC portfolio. However, these solutions are not necessarily diversified, because they do not
encompass the equally weighted portfolio.

A.3 The LVD-RB portfolio
Let B = (B1, . . . , Bn) be a vector of budgets. We note x (B) the risk budgeting (RB)
portfolio such that the risk contribution of asset i is equal to the given risk budget Bi:

RCi = Bi

Bruder and Roncalli (2012) noticed that using portfolio weights B as risk budgets reduces
volatility:

σ (x (B)) ≤ σ (B)

Starting from the equally weighted portfolio x(0) = xew, we consider the iterative RB port-
folio. At iteration k, the portfolio x(k) is defined such that the risk budgets are equal to the
portfolio weights of the previous iteration:

B = x(k−1)

We finally obtain:

σ (xmv) = σ
(
x(∞)

)
≤ σ

(
x(k)

)
≤ σ

(
x(0)

)
= σ (xew)
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We can therefore find a RB portfolio such that σ
(
x(k)

)
< (1− δ?)σ (xcw). Targeting a risk

reduction equal to δ? can then be achieved by carrying out an interpolation between the
two consecutive RB portfolios: x? = αx(k) + (1− α)x(k−1).

Remark 7 If we consider that the initial portfolio x(0) is the capitalization-weighted port-
folio xcw, we obtain another solution. In this case, the lower bound δ− is 0.

B Results

22



The Smart Beta Indexing Puzzle

Table 9: Composition of risk-based portfolios – Eurostoxx 50 universe (Feb. 2013)

Stock CW EW MV MDP ERC
SANOFI 5.56 2.00 2.31
TOTAL 5.40 2.00 2.16
BASF 4.22 2.00 1.90

SIEMENS 4.21 2.00 13.69 2.61
BAYER 3.99 2.00 2.11

BANCO SANTANDER 3.81 2.00 1.30
SAP 3.52 2.00 2.81 2.97

ANHEUSER-BUSCH 3.39 2.00 1.48 17.29 3.62
ALLIANZ 3.01 2.00 1.96
UNILEVER 2.97 2.00 53.12 4.42

ENI 2.97 2.00 1.86
BNP PARIBAS 2.90 2.00 1.14

DAIMLER 2.85 2.00 1.84
BBVA 2.57 2.00 1.24

TELEFONICA 2.53 2.00 1.61
LVMH 2.24 2.00 1.96

DEUTSCHE BANK 2.08 2.00 1.28
SCHNEIDER ELECTRIC 2.05 2.00 1.37

DANONE 2.05 2.00 3.28 8.95 3.27
AIR LIQUIDE 1.85 2.00 2.29

L’OREAL 1.74 2.00 2.65
AXA 1.70 2.00 1.33
E ON 1.63 2.00 1.92 2.26

DEUTSCHE TELEKOM 1.56 2.00 12.88 13.90 2.93
VOLKSWAGEN 1.53 2.00 7.10 2.13

ING 1.51 2.00 1.16
SOCIETE GENERALE 1.45 2.00 1.01

BMW 1.44 2.00 1.84
MUENCHENER RUCK 1.41 2.00 2.44

INDITEX 1.38 2.00 6.26 2.22
UNICREDIT 1.34 2.00 0.98
PHILIPS 1.32 2.00 8.14 8.09 2.74

GDF SUEZ 1.31 2.00 4.88 2.30
VIVENDI 1.29 2.00 1.79 2.05

ASML HOLDING 1.24 2.00 9.24 2.65
VINCI 1.14 2.00 1.53
ENEL 1.12 2.00 1.66

IBERDROLA 1.11 2.00 0.65 1.43
INTESA SANPAOLO 1.10 2.00 0.99

ESSILOR 1.07 2.00 2.25 2.02 3.09
GENERALI 1.05 2.00 1.32

UNIBAIL-RODAMCO 1.04 2.00 2.35 2.63
FRANCE TELECOM 0.91 2.00 1.92

RWE 0.87 2.00 2.30
SAINT GOBAIN 0.86 2.00 1.45

REPSOL 0.81 2.00 2.24 1.33
CARREFOUR 0.79 2.00 0.97 1.75

CRH 0.77 2.00 5.39 1.98
ARCELORMITTAL 0.68 2.00 1.27

NOKIA 0.66 2.00 9.32 1.45
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Table 10: Composition of constrained MV portfolios – Eurostoxx 50 universe (Feb. 2013)

Lower bound 0% 0% 1% 1% 0× bi 0.5× bi 1%
Upper bound 10% 5% 5% 4% 2× bi 2× bi 2× bi
SANOFI 5.00 1.00 4.00 11.12 5.66 4.72
TOTAL 5.00 1.00 1.00 10.81 2.70 1.00
BASF 1.00 1.00 2.11 1.00

SIEMENS 10.00 5.00 5.00 4.00 8.42 8.42 8.42
BAYER 1.00 1.00 0.23 1.99 1.00

BANCO SANTANDER 1.00 1.00 1.91 1.00
SAP 10.00 5.00 5.00 4.00 7.03 7.03 7.03

ANHEUSER-BUSCH 10.00 5.00 5.00 4.00 6.78 6.78 6.78
ALLIANZ 1.00 1.00 3.76 1.50 1.00
UNILEVER 10.00 5.00 5.00 4.00 5.94 5.94 5.94

ENI 1.00 1.00 1.48 1.00
BNP PARIBAS 1.00 1.00 1.45 1.00

DAIMLER 1.00 1.00 1.43 1.00
BBVA 1.00 1.00 1.29 1.00

TELEFONICA 1.00 1.00 1.26 1.00
LVMH 1.00 1.00 1.12 1.00

DEUTSCHE BANK 1.00 1.00 1.04 1.00
SCHNEIDER ELECTRIC 1.00 1.00 1.03 1.00

DANONE 10.00 5.00 5.00 4.00 4.09 4.09 4.09
AIR LIQUIDE 5.00 1.00 4.00 3.70 3.70 3.70

L’OREAL 5.00 5.00 4.00 3.47 3.47 3.47
AXA 1.00 1.00 0.85 1.00
E ON 0.27 5.00 1.00 2.69 3.25 3.25 3.21

DEUTSCHE TELEKOM 10.00 5.00 5.00 4.00 3.12 3.12 3.12
VOLKSWAGEN 3.63 1.00 1.00 3.06 0.76 1.00

ING 1.00 1.00 0.76 1.00
SOCIETE GENERALE 1.00 1.00 0.73 1.00

BMW 1.00 1.00 0.72 1.00
MUENCHENER RUCK 3.83 5.00 5.00 4.00 2.82 2.82 2.82

INDITEX 2.94 1.00 1.31 2.77 1.08 1.00
UNICREDIT 1.00 1.00 0.67 1.00
PHILIPS 10.00 5.00 5.00 4.00 2.64 2.64 2.64

GDF SUEZ 4.70 5.00 2.54 4.00 2.62 2.62 2.62
VIVENDI 3.43 1.00 1.00 2.58 0.64 1.00

ASML HOLDING 0.81 5.00 5.00 4.00 2.47 2.47 2.47
VINCI 1.00 1.00 0.57 1.00
ENEL 1.00 1.00 0.56 1.00

IBERDROLA 1.00 1.00 0.56 1.00
INTESA SANPAOLO 1.00 1.00 0.55 1.00

ESSILOR 10.00 5.00 5.00 4.00 2.14 2.14 2.14
GENERALI 1.00 1.00 0.53 1.00

UNIBAIL-RODAMCO 10.00 5.00 5.00 4.00 2.07 2.07 2.07
FRANCE TELECOM 1.00 1.00 1.82 0.46 1.00

RWE 0.39 5.00 1.46 4.00 1.75 1.75 1.75
SAINT GOBAIN 1.00 1.00 0.43 1.00

REPSOL 1.00 1.00 0.40 1.00
CARREFOUR 1.00 1.00 0.39 1.00

CRH 1.00 1.00 1.54 0.39 1.00
ARCELORMITTAL 1.00 1.00 0.34 1.00

NOKIA 1.00 1.00 0.33 1.00
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Table 11: Composition of LVD portfolios – Eurostoxx 50 universe (Feb. 2013)

Stock δ? = 10% δ? = 20%
CW MV ERC RB RB? MV ERC RB RB?

SANOFI 5.56 2.53 2.29 2.32 5.94 2.88 1.88 2.26 5.60
TOTAL 5.40 2.42 2.13 2.15 5.55 2.75 1.75 2.01 5.11
BASF 4.22 2.14 1.81 1.83 3.83 1.99 1.33 1.43 2.92

SIEMENS 4.21 2.75 2.71 2.73 5.16 3.61 2.84 3.26 6.15
BAYER 3.99 2.35 2.04 2.06 3.89 2.41 1.54 1.79 3.22

BANCO SANTANDER 3.81 1.18 1.17 1.16 2.53 0.20 0.78 0.63 1.34
SAP 3.52 2.94 3.18 3.20 4.75 3.90 3.55 4.17 6.12

ANHEUSER-BUSCH 3.39 3.20 4.11 4.07 5.37 4.39 5.15 6.03 7.89
ALLIANZ 3.01 2.22 1.88 1.90 2.84 2.28 1.45 1.59 2.34
UNILEVER 2.97 3.42 5.67 5.39 5.75 5.04 17.89 10.53 11.52

ENI 2.97 2.11 1.78 1.79 2.69 2.09 1.34 1.43 2.11
BNP PARIBAS 2.90 0.73 1.01 1.00 1.72 0.64 0.45 0.75

DAIMLER 2.85 2.06 1.74 1.75 2.53 1.81 1.27 1.33 1.89
BBVA 2.57 1.03 1.12 1.10 1.65 0.74 0.57 0.82

TELEFONICA 2.53 1.78 1.50 1.50 2.04 1.52 1.11 1.05 1.42
LVMH 2.24 2.21 1.88 1.90 2.10 2.09 1.38 1.52 1.65

DEUTSCHE BANK 2.08 1.10 1.15 1.14 1.35 0.75 0.59 0.67
SCHNEIDER ELECTRI 2.05 1.29 1.23 1.23 1.41 0.08 0.80 0.67 0.74

DANONE 2.05 3.08 3.60 3.60 3.04 4.18 4.22 5.02 4.34
AIR LIQUIDE 1.85 2.52 2.27 2.29 1.98 2.91 1.88 2.23 1.89

L’OREAL 1.74 2.76 2.72 2.75 2.12 3.38 2.39 3.03 2.33
AXA 1.70 1.22 1.20 1.20 1.16 0.06 0.80 0.65 0.61
E ON 1.63 2.49 2.25 2.27 1.80 2.90 1.98 2.26 1.86

DEUTSCHE TELEKOM 1.56 2.93 3.16 3.17 2.17 4.00 3.86 4.29 3.11
VOLKSWAGEN 1.53 2.36 2.08 2.10 1.56 2.54 1.70 1.91 1.41

ING 1.51 0.79 1.03 1.02 0.91 0.66 0.47 0.41
SOCIETE GENERALE 1.45 0.29 0.89 0.87 0.78 0.56 0.35 0.30

BMW 1.44 2.05 1.74 1.75 1.29 1.83 1.29 1.35 0.98
MUENCHENER RUCK 1.41 2.65 2.48 2.50 1.63 3.30 2.24 2.70 1.78

INDITEX 1.38 2.46 2.19 2.21 1.47 2.73 1.78 2.07 1.39
UNICREDIT 1.34 0.18 0.86 0.84 0.70 0.53 0.33 0.26
PHILIPS 1.32 2.85 2.90 2.92 1.74 3.86 3.29 3.71 2.32

GDF SUEZ 1.31 2.54 2.31 2.33 1.48 3.11 2.09 2.42 1.59
VIVENDI 1.29 2.31 2.00 2.01 1.30 2.56 1.65 1.82 1.21

ASML HOLDING 1.24 2.76 2.71 2.74 1.54 3.31 2.43 3.00 1.74
VINCI 1.14 1.63 1.41 1.41 0.88 0.91 0.97 0.89 0.54
ENEL 1.12 1.86 1.56 1.56 0.94 1.72 1.17 1.14 0.70

IBERDROLA 1.11 1.46 1.31 1.31 0.82 0.84 0.92 0.80 0.50
INTESA SANPAOLO 1.10 0.22 0.87 0.85 0.59 0.54 0.34 0.22

ESSILOR 1.07 2.99 3.34 3.35 1.52 3.95 3.67 4.41 2.06
GENERALI 1.05 1.24 1.20 1.19 0.72 0.24 0.80 0.65 0.39

UNIBAIL-RODAMCO 1.04 2.77 2.73 2.75 1.29 3.55 2.74 3.22 1.55
FRANCE TELECOM 0.91 2.19 1.85 1.86 0.87 2.30 1.48 1.57 0.75

RWE 0.87 2.54 2.31 2.33 0.98 3.03 2.05 2.37 1.04
SAINT GOBAIN 0.86 1.48 1.33 1.32 0.64 0.58 0.89 0.78 0.37

REPSOL 0.81 1.23 1.21 1.20 0.55 0.27 0.82 0.66 0.30
CARREFOUR 0.79 1.95 1.65 1.66 0.70 1.72 1.22 1.23 0.53

CRH 0.77 2.22 1.91 1.92 0.75 2.32 1.54 1.65 0.66
ARCELORMITTAL 0.68 1.05 1.14 1.13 0.44 0.75 0.58 0.22

NOKIA 0.66 1.47 1.34 1.33 0.51 0.86 0.93 0.82 0.33
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Figure 12: Trade-off relationships with LVD-RB portfolios (Eurostoxx 50, Feb. 2013)

Figure 13: Trade-off relationships with LVD-RB? portfolios (Eurostoxx 50, Feb. 2013)
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