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Abstract

In this article, we show how to take into account skewness risk in portfolio allocation.
Until recently, this issue has been seen as a purely statistical problem, since skewness
corresponds to the third statistical moment of a probability distribution. However,
in finance, the concept of skewness is more related to extreme events that produce
portfolio losses. More precisely, the skewness measures the outcome resulting from bad
times and adverse scenarios in financial markets. Based on this interpretation of the
skewness risk, we focus on two approaches that are closely connected. The first one
is based on the Gaussian mixture model with two regimes: a ‘normal’ regime and a
‘turbulent’ regime. The second approach directly incorporates a stress scenario using
jump-diffusion modeling. This second approach can be seen as a special case of the
first approach. However, it has the advantage of being clearer and more in line with the
experience of professionals in financial markets: skewness is due to negative jumps in
asset prices. After presenting the mathematical framework, we analyze an investment
portfolio that mixes risk premia, more specifically risk parity, momentum and carry
strategies. We show that traditional portfolio management based on the volatility risk
measure is biased and corresponds to a short-sighted approach to bad times. We then
propose to replace the volatility risk measure by a skewness risk measure, which is
calculated as an expected shortfall that incorporates a stress scenario. We conclude
that constant-mix portfolios may be better adapted than actively managed portfolios,
when the investment universe is composed of negatively skewed financial assets.

Keywords: Skewness, volatility, expected shortfall, stress scenario, market regime, draw-
down, risk budgeting, equal risk contribution, Gaussian mixture model, jump-diffusion pro-
cess.

JEL classification: C50, C60, G11.
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1 Introduction

The concept of skewness risk1 in portfolio management is an old story (Arditti, 1967; Levy,
1969; Kraus and Litzenberger, 1976). The three-moment CAPM is an extension of the
capital asset pricing model of Sharpe (1964) when we apply a Taylor expansion to the utility
function. In this case, the expected utility depends on the product of the third derivative
of the utility function and the skewness of the portfolio. Since the seminal paper of Arditti
(1967), many academic researchers have proposed methods to estimate the moments of
asset returns and compute the optimized portfolio (Harvey and Siddique, 2000; Patton,
2004; Jurczenko and Maillet, 2006; Jondeau and Rockinger, 2006; Martellini and Ziemann,
2010; Harvey et al., 2010, Xiong and Idzorek, 2011; Jondeau et al., 2018). However, the
three-moment CAPM has never been very popular with professionals, because it involves
estimating many unstable parameters like skewness or co-skewness coefficients.

This explains that optimized portfolio models based on the volatility risk measure are
the main approaches used by professionals. Indeed, it is extremely difficult to go beyond
the mean-variance optimization (Markowitz, 1952) or the equal risk contribution (ERC)
portfolio (Maillard et al., 2010) without facing computational and complexity issues. This
is why professionals assume that asset returns can be approximated by Gaussian random
variables and prefer to use cooking recipes to stress the covariance matrix than directly
modeling the skewness risk. With the emergence of alternative risk premia, this approach
is flawed since skewness risk is the backbone of these strategies (Lempérière et al., 2017).
Indeed, the distinction between market anomalies and skewness risk premia depends on the
skewness risk of the strategy (Roncalli, 2017). For instance, a trend-following strategy is
considered as a market anomaly since it exhibits a positive skewness. On the contrary, a value
strategy has a negative skewness and belongs to skewness risk premia. By making reference
to option trading, Burgues et al. (2017) illustrate that alternative risk premia exhibit non-
linear payoffs that cannot be aggregated in a Gaussian world. Therefore, the ‘correlation
diversification approach’ is less appropriate when managing a portfolio of alternative risk
premia.

In this article, we address the challenge of portfolio management with skewness risk by
considering a very simple model. First, we acknowledge that professionals are more confident
when it comes to estimating and manipulating covariance matrices than co-skewness tensors.
Second, utility functions generally depend on risk aversion coefficients that are unknown.
This means that optimized portfolios are highly related to the specification of the utility
function. Third, portfolio optimization is dynamic, implying that parameter estimation
must be straightforward. Therefore, the skewness model must be close to those used by
professionals with similar estimated parameters. For that, we consider the Gaussian mixture
model (GMM) developed by Bruder et al. (2016) to describe the dynamics of asset returns.
We impose two market regimes: a normal regime that occurs most frequently and a stress
regime that may negatively impact the performance of the portfolio. Each market regime is
characterized by its own covariance matrix (and its vector of expected returns). However, the
covariance matrix of the stress regime is defined once and for all. It can be calibrated using
a long history of data or it can be specified by expert assessment. The Gaussian mixture
model is then dynamic since the covariance matrix of the normal regime is updated on a
regular basis2. Concerning the allocation model, we use the risk budgeting approach based
on the expected shortfall risk measure (Roncalli, 2015) because of three main reasons. First,

1We use the term skewness risk to name financial events that induce a negative skewness on assets or
investment strategies. Positive skewness is less of a concern in investment theory.

2The covariance matrix and the vector of expected returns are static for the stress regime, because it
models extreme events with a low frequency distribution. If the stress scenario is well calibrated, there is
then no reason for the second regime to be dynamic.
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the risk budgeting method is now widely accepted by professionals and produces a more
realistic asset allocation than the Markowitz model (Roncalli, 2013). Second, the expected
shortfall is related to the concept of maximum drawdown, which is a standard risk measure
in asset management. Third, we don’t face computational issues since the model is very
tractable. This last point is very important from a practical point of view, because fund
managers don’t use complex allocation models that require intensive programming skills.

The choice of a risk budgeting model based on the expected shortfall and a Gaussian
mixture model has several advantages. It can be viewed as a disruption of the traditional
ERC portfolio based on the volatility risk measure, which becomes a particular case for our
allocation model. Indeed, setting the probability of the second regime to zero allows us
to retrieve the ERC portfolio. Another special case is to only consider the stress regime.
Finally, the Skew-ERC portfolio3 may be interpreted as the weighted average between the
ERC portfolio based on the normal regime and the ERC portfolio based on the stress regime.
The weights of each portfolio depend on the risk appetite of the investor. For instance, if
the investor is very sensitive to a drawdown risk, he will overweight the second regime. The
analysis of Skew-RB portfolios also shows that drawdown management does not necessarily
imply an actively-managed dynamic allocation. Of course, we can risk manage each strategy
in order to reduce its skewness. However, since skewness events are often sudden and rapid,
it is generally too late to reduce ex-post the exposure to the strategy that suffered from a
skewness event. It is then better to take into account the drawdown risk from an ex-ante
point of view. This is exactly the objective of Skew-RB portfolios, and this is why they
do not overreact to skewness events contrary to traditional mean-variance or risk budgeting
portfolios.

This paper is organized as follows. Section Two is dedicated to the theoretical framework.
It presents the Gaussian mixture model and illustrates that such a model exhibits skewness
risk. We also derive the theoretical formula of the expected shortfall for a given portfolio.
Then, we can define the risk allocation process and the optimization program to obtain
risk budgeting portfolios. Since some jump-diffusion models can be cast into Gaussian
mixture models, we highlight the importance of the second regime that can be interpreted
as a stressed market regime, while the first regime is similar to a normal market regime.
Section Three considers an application of the theoretical model to a universe of traditional
and alternative risk premia with the objective of computing a robust asset allocation. This
requires a two-step process. We first calibrate the second regime using historical scenarios,
and then implement the risk budgeting allocation by considering a dynamic normal regime,
but a static stress regime. Finally, Section Four offers some concluding remarks.

2 Risk decomposition and allocation in the presence of
skewness risk

In what follows, we consider the Gaussian mixture model (GMM), which has the property
to exhibit positive and negative skewness. GMM is a very simple and tractable statistical
model because it satisfies many properties of the Gaussian model. In particular, the sum
of GMM random variables follows a GMM probability distribution. This stability property
is essential when modeling asset returns. Indeed, the fact that asset returns and portfolio
returns have the same probability distribution simplifies the risk budgeting problem. In the
second part, we will see how the probability distribution of some jump-diffusion processes
can be approximated by a Gaussian mixture model. The bridge between these two modeling

3In order to distinguish risk budgeting portfolios based on the volatility risk measure and risk budgeting
portfolios based on the skewness risk measure, we name these later Skew-RB or Skew-ERC portfolios.
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choices is very interesting, since GMM can be viewed as a statistical model that takes into
account bad times and adverse scenarios. In this case, skewness risk is just the demonstration
of extreme negative asset returns.

2.1 The Gaussian mixture model

2.1.1 Modeling asset returns

Let Rt = (R1,t, . . . , Rn,t) be the vector of asset returns. We assume that Rt follows a
Gaussian mixture distribution. We have two regimes:

1. In the first regime, the returns are driven by the multivariate normal distribution
N (µ1,Σ1);

2. In the second regime, the returns are driven by another multivariate normal distribu-
tion N (µ2,Σ2).

The probability of being in the jth regime is denoted by πj . The corresponding probability
density function is then equal to:

f (y) = π1φn (y;µ1,Σ1) + π2φn (y;µ2,Σ2)

where φn (y;µ,Σ) is the probability density function of the normal distribution N (µ,Σ).
Let Rt (x) be the return of Portfolio x = (x1, . . . , xn):

Rt (x) = x>Rt

= B1Y1 +B2Y2

where B1 and B2 = 1 − B1 are Bernoulli random variables with probability π1 and π2.
Y1 and Y2 represent the portfolio’s return in the first and second regime. We have Yj ∼
N
(
µj (x) , σ2

j (x)
)

where µj (x) = x>µj and σj (x) =
√
x>Σjx. We can show that Rt (x)

has a Gaussian mixture distribution4:

f (y) = π1
1

σ1 (x)
φ

(
y − µ1 (x)

σ1 (x)

)
+ π2

1

σ2 (x)
φ

(
y − µ2 (x)

σ2 (x)

)
(1)

2.1.2 Statistical moments of the portfolio’s return

Since Rt (x) is a mixture random variable, the k-th moment of Y = Rt (x) is given by:

E
[
Y k
]

= π1E
[
Y k1
]

+ π2E
[
Y k2
]

We know that E [Yj ] = µj (x), E
[
Y 2
j

]
= µ2

j (x) +σ2
j (x) and E

[
Y 3
j

]
= µ3

j (x) + 3µj (x)σ2
j (x).

We deduce that:

E [Y ] = π1µ1 (x) + π2µ2 (x)

and:

σ2 (Y ) = π1E
[
Y 2
1

]
+ π2E

[
Y 2
2

]
− E2 [Y ]

= π1σ
2
1 (x) + π2σ

2
2 (x) + π1π2 (µ1 (x)− µ2 (x))

2

4We note φ (y) and Φ (y) the probability density function (pdf) and the cumulative distribution function
(cdf) of the standard Normal distribution.
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because π2 = 1− π1. We also have:

E
[
(Y − E [Y ])

3
]

= E
[
Y 3
]
− 3E [Y ]σ2 (Y )− E3 [Y ]

= π1π2 (π2 − π1) (µ1 (x)− µ2 (x))
3

+

3π1π2 (µ1 (x)− µ2 (x))
(
σ2
1 (x)− σ2

2 (x)
)

The skewness coefficient of Y has then the following expression:

γ1 (Y ) = E

[(
Y − E [Y ]

σ (Y )

)3
]

=
π1π2

(
3 (µ1 (x)− µ2 (x))

(
σ2
1 (x)− σ2

2 (x)
)
− (π1 − π2) (µ1 (x)− µ2 (x))

3
)

(
π1σ2

1 (x) + π2σ2
2 (x) + π1π2 (µ1 (x)− µ2 (x))

2
)3/2

(2)

This result is important, because it shows that GMM exhibits skewness. The sign of the
skewness coefficient depends on the probability difference π1 − π2, the return difference
µ1 (x) − µ2 (x) and the variance difference σ2

1 (x) − σ2
2 (x). For instance, the skewness is

negative if the second regime has a low probability, a low portfolio return and a high portfolio
volatility. In finance, this situation occurs when the second regime corresponds to a financial
stress regime. We also notice that the skewness is equal to zero when there is only one regime
or when the two regimes have the same expected return.

Remark 1 Generally, people use complex probability distributions to model the skewness
risk (Fogler and Radcliffe, 1974; McDonald, 1996; Aı̈t-Sahalia and Lo, 1998; Jondeau et
al., 2006; Alexander et al., 2012). These statistical models are appealing from a theoretical
perspective, but in practice they are difficult to implement. Gaussian mixture models are
more known for modeling switching regimes (Frühwirth-Schnatter, 2006). However, they
are perfectly adapted to generate skewness risk. Moreover, they are infinitely more tractable
than the majority of non-Gaussian probability distributions.

2.1.3 The expected shortfall risk measure

The expected shortfall of Portfolio x is defined by:

ESα (x) =
1

1− α

∫ 1

α

VaRu (x) du

where α is the confidence level. Bruder et al. (2016) shows that:

ESα (x) = π1ϕ (VaRα (x) , µ1 (x) , σ1 (x)) + π2ϕ (VaRα (x) , µ2 (x) , σ2 (x)) (3)

where the function ϕ (a, b, c) is defined by:

ϕ (a, b, c) =
c

1− α
φ

(
a+ b

c

)
− b

1− α
Φ

(
−a+ b

c

)
and the value-at-risk VaRα (x) is the solution of the following equation:

π1Φ

(
VaRα (x) + µ1 (x)

σ1 (x)

)
+ π2Φ

(
VaRα (x) + µ2 (x)

σ2 (x)

)
= α (4)
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2.1.4 Analytical expression of risk contributions

Bruder et al. (2016) demonstrate that the vector of risk contributions with respect to the
expected shortfall is equal to:

RC (x) =
$1 (x)

1− α
(x ◦ δ1 (x)) +

$2 (x)

1− α
(x ◦ δ2 (x))−

1

1− α
(π1 (x ◦ µ1) Φ (−h1 (x)) + π2 (x ◦ µ2) Φ (−h2 (x))) (5)

where ◦ is the Hadamard product,

δ1 (x) =

(
1 +

h1 (x)

σ1 (x)
VaRα (x)

)
Σ1x−

VaRα (x)

$1 (x)
h1 (x)

σ1 (x)
Σ1x+$2 (x)

(
h2 (x)

σ2 (x)
Σ2x+ µ1 − µ2

)
$1 (x) +$2 (x)

and:

δ2 (x) =

(
1 +

h2 (x)

σ2 (x)
VaRα (x)

)
Σ2x−

VaRα (x)

$1 (x)

(
h1 (x)

σ1 (x)
Σ1x+ µ2 − µ1

)
+$2 (x)

h2 (x)

σ2 (x)
Σ2x

$1 (x) +$2 (x)

The other notations are hj (x) = σj (x)
−1

(VaRα (x) + µj (x)), $j (x) = πjσj (x)
−1
φ (hj (x)).

2.1.5 Risk budgeting portfolios

Roncalli (2013) defines risk budgeting (RB) portfolios using the following non-linear system:
RCi (x) = biR (x)
bi > 0
xi ≥ 0∑n
i=1 bi = 1∑n
i=1 xi = 1

(6)

where bi is the risk budget of asset i expressed in relative terms. The constraint bi > 0
implies that no risk budget can be set to zero. This restriction is necessary in order to
ensure that the RB portfolio is unique (Roncalli, 2013). In the case of the expected shortfall
risk measure ESα (x), Bruder et al. (2016) demonstrate that there exists a value α− such
that the RB portfolio exists and is unique for all α > α−. In this case, the weights of the
RB portfolio are equal to:

x?i =
y?i∑n
j=1 y

?
j

where y? is the solution of the following unconstrained optimization program5 (Roncalli,
2013):

y? = arg min ESα (y)− λ
n∑
i=1

bi ln yi

5Here, λ is an arbitrary Lagrange coefficient.
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2.1.6 Numerical example

We consider an investment universe of three assets. In the first regime, the expected returns
are equal to 5%, 10% and 15%, the volatilities are equal to 8%, 18% and 25%, while the
correlation matrix of asset returns is provided by the following matrix:

C1 =

 1.00
0.30 1.00
0.20 0.40 1.00


In the second regime, the expected returns are equal to −5%, −10% and −15%, the volatili-
ties are equal to 5%, 30% and 40%, while the correlation matrix of asset returns is provided
by the following matrix:

C2 =

 1.00
0.30 1.00
0.30 0.80 1.00


The first regime denotes a ‘normal’ market regime, while the second regime describes a
‘stressed’ market regime. The probabilities are π1 = 80% and π2 = 20%. The composition
of the portfolio is respectively 50%, 30% and 20%.

Figure 1: Probability density function of asset and portfolio returns
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In Figure 1, we report the probability density functions of asset returns for the two
market regimes. The blue line corresponds to the mixture distribution and can be seen as a
disruption of the normal regime. The last panel presents the probability distribution of the
portfolio, which is left skewed. This result is confirmed by the calculation of the skewness,
which is equal to −0.711. The magnitude of the skewness depends on the values taken by π1
and π2. For the two extreme cases — π1 = 1 and π1 = 0, the skewness parameter is equal to
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zero. In the other cases, the skewness is negative6 and reaches a peak around π1 = 80% (see
Figure 2). The negative skew is explained by the nature of the second regime. Indeed, it is
obvious that it corresponds to a ‘bear market’ regime because the probability of occurrence
is low, expected returns are negative, and volatilities are higher than in the first regime.

Figure 2: Skewness of the portfolio return
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In Tables 1 and 2, we report the risk decomposition7 of the portfolio when the risk
measure is the expected shortfall at the 90% confidence level. The Gaussian approximation
of asset returns is R̄t ∼ N

(
µ̄, Σ̄

)
where the expected returns are 3%, 6% and 9%, the

volatilities are 8.5%, 22.4% and 31.0% and the correlation matrix is:

C̄ =

 1.00
0.40 1.00
0.35 0.62 1.00


Using this Gaussian approximation, we find that the risk contribution of Asset 1 is 17.28%.
This number is greater than the value 15.17%, which is obtained with the Gaussian mixture
model. Therefore, the Gaussian approximation overestimates the risk of Asset 1. The issue
comes from the correlations, which are higher in the approximated Gaussian model than in
the two market regimes. This phenomenon of high correlations is well known by statisticians,
since the Gaussian approximation has the tendency to increase inter-regime correlations.

The choice of the model will then have an impact on the computation of RB portfolios.
For instance, we have reported the ERC portfolio in Table 3, when the risk budgets are equal
and the risk measure is the expected shortfall with a 90% confidence level. If we consider

6A Gaussian mixture model can produce a positive skewness, when the stressed regime has low volatilities
and the normal regime has high volatilities. However, this situation is not realistic in finance.

7xi indicates the weight of Asset i, MRi is the marginal risk, RCi is the absolute risk contribution and
RC?i is the normalized risk contribution. All statistics are expressed in %.
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Table 1: Expected shortfall decomposition (Gaussian approximation) — α = 90%

Asset xi MRi RCi RC?i
1 50.00 6.70 3.35 17.28
2 30.00 28.60 8.58 44.23
3 20.00 37.32 7.46 38.49

ESα (x) 19.39

Table 2: Expected shortfall decomposition (Gaussian mixture model) — α = 90%

Asset xi MRi RCi RC?i
1 50.00 7.06 3.53 15.17
2 30.00 34.71 10.41 44.75
3 20.00 46.64 9.33 40.09

ESα (x) 23.27

the ERC portfolio in the normal (or first) regime, the allocation is equal to 60.01% invested
in Asset 1, 22.15% in Asset 2, and 17.84% in Asset 3. If we only consider the stressed
regime, the allocation becomes 75.45%, 14.15% and 10.40%. In the second regime, the ERC
portfolio underweights the second and third assets, because they are riskier. We notice that
the Gaussian approximation produces an allocation, which is relatively close to the average
of the two previous ERC portfolios. This is not the case for the mixture model. Indeed, the
adverse scenario produces bad and extreme events, meaning that the expected shortfall is
more sensitive to the second regime than the first regime. This implies that the Skew-RB
portfolio calculated with the mixture model converges to the RB portfolio calculated with
the second regime when the confidence level α tends to 1. For instance, if α is equal to
99%, we obtain the ERC portfolios reported in Table 4. We verify that the Skew-ERC
portfolio calculated with the mixture model is close to the ERC portfolio calculated with
the stressed regime. It follows that the confidence level α is an important parameter and
may be interpreted as the investor’s risk aversion with respect to the stress scenario.

Table 3: ERC portfolio (in %) — 90% expected shortfall

Asset
Regime Gaussian Mixture

1 2 Avg. Approx. model
1 60.01 75.45 63.10 64.36 69.59
2 22.15 14.15 20.55 20.31 17.48
3 17.84 10.40 16.35 15.33 12.93

Table 4: ERC portfolio (in %) — 99% expected shortfall

Asset
Regime Gaussian Mixture

1 2 Avg. Approx. model
1 59.28 76.95 62.82 63.77 75.78
2 22.84 13.25 20.92 20.72 13.94
3 17.87 9.80 16.26 15.50 10.28

9
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2.2 Understanding the skewness risk

The main interest of the Gaussian mixture model is its tractability when calculating risk
decomposition and performing risk allocation. It is a way to deal with non-Gaussian proba-
bility distributions without the disadvantage of using Monte Carlo simulations for portfolio
risk analysis. As seen previously, the Gaussian mixture model can also generate skewness
risk, which may be positive or negative. We now consider a specific jump-diffusion model,
which is explicitly related to skewness risk. In this case, the skewness results from the exis-
tence of jumps in asset prices. It follows that skewness aggregation works differently than
volatility aggregation since it is extremely difficult to diversify or hedge jumps.

2.2.1 The jump-diffusion model

We consider n risky assets represented by the vector of prices St = (S1,t, . . . , Sn,t), the
dynamics of which are given by a jump-diffusion process:

dSt
St

= µdt+ Σ1/2 dWt + dZt (7)

where µ and Σ are the vector of expected returns and the covariance matrix, and Wt is a n-
dimensional standard Brownian motion. The n-dimensional jump process Zt is a compound
Poisson process with intensity parameter λ > 0 and jump sizes following the multivariate

Gaussian distribution N
(
µ̃, Σ̃

)
. Bruder et al. (2016) show that the asset returns Rt =

(R1,t, . . . , Rn,t) of the jump-diffusion model are approximately distributed as a Gaussian
mixture model where8:

1. the first regime is characterized by π1 = 1− λ dt, µ1 = µdt and Σ1 = Σ dt;

2. the second regime is characterized by π2 = λ dt, µ2 = µ1 + µ̃ and Σ2 = Σ1 + Σ̃.

Using the jump-diffusion model, we can explicitly characterize the sign of the skewness.
Indeed, we have the following property (Bruder et al., 2016):

γ1 (x) < 0⇒ x>µ̃ < 0

The only way to generate negative skewness is to have jumps that are negative on average.
The concept of skewness risk is then highly related to the concept of negative jump. It
confirms our previous intuition that negative skewness is due to adverse risk scenarios.

2.2.2 Why does skewness risk differ from volatility risk?

We consider a universe of n homogenous assets with the following characteristics: µi =
10%, σi = 20%, ρi,j = 50%, µ̃i = −10%, σ̃i = 30% and ρ̃i,j = 70%. We assume that
λ is equal to 20%, meaning that we observe a jump event every five years. In Figure
3, we have reported the statistics of the equally-weighted portfolio. We notice that the
expected return is independent from the number of assets n, the volatility is a decreasing
function of n whereas the Sharpe ratio is an increasing function of n. We retrieve the results
of the Markowitz diversification. However, we also notice that the skewness coefficient
increases with the number of assets. Therefore, the relationship between skewness risk and
diversification is more complex than expected by the financial theory.

The previous result is disturbing: why does diversification reduce the volatility risk, but
not the skewness risk? In order to understand this paradox, we consider the example given

8The scalar dt denotes the time period when measuring asset returns: Ri,t = ln
(
Si,t+dt

)
− ln (Si,t).
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Figure 3: Annualized statistics of portfolio’s monthly returns
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Figure 4: Skewness aggregation of two log-normal random variables
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in Hamdan et al. (2016) and Roncalli (2017). The authors consider that the opposite of the
random vector X = (X1, X2) follows a bivariate log-normal distribution:

−X ∼ LN 2

(
µ1, σ

2
1 , µ2, σ

2
2 , ρ
)

and calculate the skewness of the sum γ1 (X1 +X2). In Table 5 and Figure 4, we reproduce
the numerical illustration of Roncalli (2017). We can make several important comments.
First, we notice that the skewness is not a monotone function of the correlation. Second,
the skewness risk is maximum when the correlation is equal to −100%. Third, the skewness
of a sum of random variables may be larger than the sum of the skewness of each random
variable. We conclude that the skewness is not a convex risk measure9.

Table 5: Skewness aggregation of two log-normal random variables

Case µ1 σ1 µ2 σ2 γ1 (X1) γ1 (X2)
(a) 0.5 0.5 0.5 0.5 −1.750 −1.750
(b) 0.5 1.0 0.5 0.5 −6.185 −1.750
(c) 1.5 0.1 1.5 0.5 −0.302 −1.750
(d) 1.5 0.1 1.5 0.1 −0.302 −0.302

Case γ1 (X1) + γ1 (X2)
γ1 (X1 +X2)

ρ = −1 ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 1
(a) −3.500 −3.433 −1.226 −1.238 −1.470 −1.750
(b) −7.935 −8.030 −6.558 −5.559 −5.018 −4.897
(c) −2.052 −2.179 −1.862 −1.681 −1.577 −1.521
(d) −0.604 −2.850 −0.154 −0.213 −0.261 −0.302

From the previous analysis, it follows that diversification helps to reduce the volatility
of a portfolio and improves the Sharpe ratio. However, it also increases the skewness risk.
How can we explain this inconsistency? As explained by Roncalli (2017), the skewness risk
takes the form of a jump risk when asset returns follow a jump-diffusion process. The worst-
case scenario concerning skewness aggregation is thus to build a well-diversified portfolio by
dramatically reducing the portfolio’s volatility. Indeed, it is extremely difficult to diversify
the negative jump of an asset. For that, we need to find a second asset that jumps at
the same time and has a positive jump. By extending the investment universe, we then
increase the volatility diversification and reduce the absolute value of the drawdown, but
the drawdown of the portfolio compared to its realized volatility may appear to be very high.
This explains that the Sharpe ratio is not the right measure for evaluating the risk/return
ratio of a portfolio, when the underlying assets are exposed to skewness risks.

3 Application to a risk premia portfolio

The previous section shows that Gaussian mixture models generate non-zero skewness, and
skewness risk is associated with negative jumps in asset returns. We consider here an asset
allocation problem, which is very common in asset management. It consists in building a
multi-asset risk premia portfolio with non-Gaussian and non-linear strategies. It mixes a

9Let R (X) be the risk measure of the random variable X. R is a convex risk measure if the following
property holds:

R (X1 +X2) ≤ R (X1) +R (X2)

This property is the pillar of risk diversification.

12



Portfolio Allocation with Skewness Risk: A Practical Guide

traditional risk premia exposure captured by an equity/bond risk parity strategy with two
alternative risk premia exposures, which are momentum and carry strategies (Burgues et
al., 2017).

3.1 Data

We consider a large universe of assets from January 2001 to April 2018. The risk parity
strategy is based on several equity asset classes and 10Y sovereign bonds10. For the mo-
mentum risk premium, we use a lasso-ridge optimized strategy with an EWMA average and
with a duration of six months. As proposed by Jusselin et al. (2017), we use a multi-asset
universe of futures contracts using equity, rates, bonds and currencies. The global carry
strategy is based on four individual carry strategies: volatility, FX, bonds and dividends.
The volatility carry premium is a systematic short volatility strategy based on SPX variance
swaps. For the FX carry premium, we use the ten most liquid DM and EM currencies. The
bond carry strategy captures the roll-down premium on DM yield curves (Koijen et al.,
2018). Finally, the dividend carry premium is based on dividend futures contracts on the
S&P 500, Eurostoxx 50 and Nikkei stock indices. These different strategies are unfunded
and their leverages have been calibrated in order to obtain volatility of around 4%.

In Figure 5, we have reported the cumulative performance of the three generic strate-
gies11. Descriptive statistics are given in Table 6. For each strategy, we have calculated the
annualized performance µ (x), the volatility σ (x), the Sharpe ratio SR (x), the maximum
drawdown DD (x) and the skew measure ξ (x), which is the ratio between the drawdown
and the volatility. If ξ (x) is greater than 3, this indicates a strategy that presents a high
skewness risk. This is the case for the global carry strategy, and most of the carry strate-
gies (volatility, FX and dividend). These empirical results are in line with theoretical risk
premia models (Roncalli, 2017). The momentum risk premium may be seen as a market
anomaly whereas the performance of the carry strategy may be explained by a skewness
risk premium. This is why the carry strategy behaves differently to the momentum strategy
or even the risk parity strategy. Indeed, we observe drawdowns in the performance of the
carry risk premium that cannot be attributed to a volatility risk. They correspond more to
a jump risk. These differences in the origin of losses impacts portfolio management as we
will show in the last section of this article.

Table 6: Descriptive statistics (in %)

Strategy µ (x) σ (x) SR (x) DD (x) ξ (x)
Risk parity 3.97 3.71 1.07 9.94 2.68
Momentum 5.90 4.87 1.21 8.04 1.65

Carry 4.39 3.95 1.11 17.16 4.34
Volatility carry 1.70 4.36 0.39 15.71 3.60

FX carry 4.28 4.63 0.92 14.52 3.13
Bond carry 3.90 4.32 0.90 8.14 1.88

Dividend carry 4.38 4.64 0.94 18.68 4.03

10For equities, we use both DM and EM equity indices. For bonds, we restrict the universe to the most
liquid DM government bonds.

11We also report on page 29 the cumulative performance of the carry strategies. Even if they are not used
in our asset allocation exercise, the study of the individual carry risk premia is of primary interest in order
to illustrate the aggregation puzzle of the skewness risk. In particular, we will see that it is not obvious to
deduce the statistical properties of the global carry strategies from the elementary carry strategies.
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Figure 5: Cumulative performance of risk parity, momentum and carry
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3.2 Calibrating the stress regime

In order to calibrate the stress regime, we proceed in two steps. First, we determine the
univariate stress scenarios for each risk premium strategy. Then, we estimate dependence
between these univariate stress scenarios.

3.2.1 Estimating uni-dimensional stress scenarios

To calibrate univariate stress scenarios, we estimate the univariate Gaussian mixture model.
Using weekly returns, we report the annualized EM estimates in Table 7. We notice that
the regime probabilities are different from one risk premium to another. The issue here
is that the results are not comparable. For instance, the occurrence probability of the
second regime is 10.86% for the volatility carry strategy, whereas it is equal to 24.99%
for the bond carry strategy. If we build a stress scenario based on these estimates, we
implicitly underestimate the expected drawdown of momentum, bond carry, currency carry
and dividend carry strategies with respect to risk parity, carry and volatility carry strategies.
The main reason is that the nature of the second regime differs from one strategy to another,
implying that the second regime is not necessarily a stress regime. In order to obtain
comparable results, we fix the probabilities π1 and π2. This approach is already suggested by
Bruder et al. (2016), who notice that estimating a two-regime model is generally equivalent
to considering two volatility regimes. However, the objective of the Gaussian mixture model
in our case is to describe a stressed regime that may produce a sudden drawdown and a
high skewness risk.

If we impose that π1 = 95%, we obtain the results12 given in Table 8. First, we notice
that the annualized expected return of the second regime is systematically negative. Second,

12They have been estimated using the method of constrained maximum likelihood.
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Table 7: EM estimates (in %)

Strategy π̂1 µ̂1 σ̂1 π̂2 µ̂2 σ̂2
Risk parity 88.00 6.51 3.37 12.00 −14.77 7.65
Momentum 82.78 11.35 3.97 17.22 −20.45 8.50

Carry 90.12 6.93 2.56 9.88 −19.07 10.14
Volatility carry 89.14 5.37 1.31 10.86 −28.08 9.82

FX carry 75.01 7.46 3.66 24.99 −5.25 7.35
Bond carry 75.01 7.02 3.99 24.99 −5.41 6.91

Dividend carry 81.76 4.78 1.54 18.24 2.77 12.34

we also verify that the volatility of the second regime is generally between two and eight
times the volatility of the first regime. It is then obvious the second regime corresponds to a
market stress with negative returns and high volatilities. However, we notice that skewness
patterns impact trading strategies differently. For example, the ratio σ̂2/σ̂1 is moderate for
momentum, currency carry and bond carry strategies. On the contrary, it is very high for
volatility carry and dividend carry strategies.

Table 8: Constrained ML estimates (in %)

Strategy π1 µ̂1 σ̂1 π2 µ̂2 σ̂2 σ̂2/σ̂1
Risk parity 95.00 5.80 3.59 5.00 −28.23 9.21 2.6
Momentum 95.00 9.82 4.45 5.00 −62.75 8.85 2.0

Carry 95.00 6.77 2.74 5.00 −33.52 11.87 4.3
Volatility carry 95.00 5.12 1.46 5.00 −41.94 11.37 7.8

FX carry 95.00 6.18 4.30 5.00 −29.19 10.02 2.3
Bond carry 95.00 5.26 4.49 5.00 −20.32 9.41 2.1

Dividend carry 95.00 5.27 1.98 5.00 −3.48 16.33 8.3

In what follows, we set π1 = π and π2 = 1 − π. In order to measure the sensitivity
of the results with respect to the probability π, we calculate the expected drawdown for a
return period τ . We assume that the drawdown occurs in the second regime. In this case,
we have13:

E [DD (π)] = −
(
µ̂2 (π) + Φ−1

(
dt

τ

)
σ̂2 (π)

)
where dt is the sampling frequency14. By construction, the drawdown DD (π) and the
estimated parameters µ̂2 (π) and σ̂2 (π) depends on the parameter π, because the model is
estimated conditionally to π1 = π and π2 = 1 − π. We also introduce the skew measure
as the ratio between the expected drawdown and the annualized volatility of the normal
regime:

ζ (π) =
E [DD (π)]

σ̂1

= −
µ̂2 (π) + Φ−1

(
dt
τ

)
σ̂2 (π)

σ̂1

13We define the drawdown as a positive risk measure. This is why we take the opposite of the loss.
14We reiterate here that we are considering weekly returns. As such, the sampling frequency dt is set to

five trading days.
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In Figure 6, we have reported the weekly drawdown in % and the skew ratio for different
values of π. As expected, the loss is an increasing function of the probability π, because
the second regime is increasingly stressed when its occurrence probability decreases. We
notice some differences between the strategies. The dividend and volatility carry strategies
are riskier than the other strategies (see Figure 13 on page 29). In particular, the dividend
carry strategy presents a high drawdown risk. If we consider the skew measure, we have
three types of strategies. The first group is composed of the risk parity, momentum, bond
carry and currency carry strategies, and has a low skew measure, which is generally less
than 1.5. The global carry strategy has an intermediate skew value. Finally, the riskiest
strategies are the dividend and volatility carry strategies. In these two cases, the weekly
drawdown may be double the annual volatility if the probability π is very high!

Figure 6: Weekly stress scenario for a four-year return period
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In Table 9, we have reported the figures for some specific values of the probability π. All
the results are expressed in %, except the ratio ζ (π). The statistic σ̄ is the annualized long-
run volatility. By construction, σ̄ is greater than the volatility σ1 of the normal regime. For
instance, if we consider the bond carry strategy, 70% of the time we observe a volatility of
3.90%, whereas the long-run volatility is equal to 4.94%. When we increase the probability π,
we observe two phenomena that impact the skew ratio: first, the drawdown increases because
the stress regime is more severe; second, the volatility of the normal regime increases too,
because the first regime contains more and more skewness events. Therefore, it is not obvious
whether the skew ratio increases or decreases. However, we notice that the first phenomenon
has a larger impact than the second one in Table 9. If we consider a probability π of 95%,
we obtain the following conclusions:

• The global carry strategy has a volatility that is lower than the average volatility
of individual carry strategies. For the expected drawdown, we observe the opposite
effect. These results illustrate that volatility diversification is easier to achieve than
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Figure 7: Skew measure for a four-year return period
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Table 9: Expected drawdown (in %) and skew ratio statistics

Statistic π (in %)
Risk Momen-

Carry
Carry

Parity tum Vol. FX Bond Div.
σ̄ 4.23 5.31 4.15 3.75 4.91 4.94 5.46

σ1

70 2.98 3.61 2.06 1.02 3.54 3.90 1.36
80 3.18 3.88 2.28 1.16 3.80 4.09 1.51
90 3.42 4.22 2.56 1.33 4.11 4.33 1.75
95 3.59 4.45 2.74 1.46 4.30 4.49 1.98
99 3.84 4.74 3.00 1.67 4.54 4.68 2.39

E [DD (π)]

70 2.29 2.92 2.63 2.86 2.60 2.47 3.77
80 2.60 3.30 3.10 3.35 2.91 2.73 4.27
90 3.19 3.97 3.99 4.16 3.50 3.22 5.08
95 3.85 4.38 4.91 4.89 4.16 3.77 5.93
99 4.15 4.81 6.51 6.24 4.09 3.58 7.73

ζ (π)

70 0.77 0.81 1.27 2.79 0.74 0.63 2.78
80 0.82 0.85 1.36 2.89 0.77 0.67 2.83
90 0.93 0.94 1.56 3.13 0.85 0.74 2.91
95 1.07 0.98 1.79 3.36 0.97 0.84 3.00
99 1.08 1.01 2.17 3.74 0.90 0.77 3.24
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drawdown diversification. While the carry strategy is less volatile than the risk parity
and carry strategies, it presents the largest expected drawdown and skew ratio.

• The skewness risk is particularly important for the volatility carry and dividend carry
strategies. In the first regime, the volatility of these strategies is low and less than 2%.
This implies that at least 50% of the total volatility is explained by skewness risk. For
example, in the case of the dividend carry strategy, the volatility of the first regime
is equal to 1.98% whereas the total volatility is equal to 5.46%. This means that the
realized volatility is not the right risk measure most of the time.

3.2.2 Estimating the dependence between stress scenarios

We reiterate that the probability density function of the asset returns Rt is equal to:

f (y) = π1φn (y;µ1,Σ1) + π2φn (y;µ2,Σ2)

where n is the number of assets. Since the number of parameters is n2 + 3n + 1, it may
be difficult to estimate the model when n ≥ 3. For instance, we have 41 parameters when
n is equal to 5. However, we can reduce the computational issue because we have already
estimated the univariate parameters µ̂1,i, σ̂1,i, µ̂2,i and σ̂2,i and we can fix the probabilities
π1 and π2. In this case, we have only to estimate the two correlation matrices C1 and C2,
or n2 − n parameters15. Results are given in Tables 10 and 11. We observe that the corre-
lation matrices of the two regimes are very different. It is then difficult to assume that the
dependence between stress scenarios may be approximated by the covariance matrix of the
normal regime. For instance, the correlation between risk parity and momentum strategies
is 60% in the first regime and 33% in the second regime. Similarly, the correlation between
momentum and carry strategies is lower in the second regime than in the first regime. These
results are not surprising since momentum generally exhibits positive skewness, and the ad-
verse scenario for momentum strategies is different than for risk parity and carry strategies.
On the contrary, the correlation between risk parity and carry strategies remains high in the
second regime. Again, this is not surprising because the bad times of the carry risk premium
are correlated with the bad times of the risk parity strategy.

Table 10: Correlation matrix Ĉ1 (in %)

Risk parity 100
Momentum 60 100

Carry 69 36 100
Volatility carry 21 17 65 100

FX carry 37 5 62 31 100
Bond carry 62 35 37 −20 −11 100

Dividend carry 16 4 35 30 33 −25 100

In Table 12, we have also reported the empirical correlation matrix Ĉ for the entire
period. We notice that Ĉ is closer to Ĉ1 than Ĉ2. However, we observe that the empirical
correlation is not a weighted average of the normal correlation and the stressed correla-
tion. This implies that the empirical correlation matrix does not help to characterize the
dependence in the stressed regime.

15When n is large, we can reduce the complexity by estimating each pairwise correlation coefficient inde-
pendently. Then, we have to regularize the correlation matrix to obtain a positive-definite matrix.
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Table 11: Correlation matrix Ĉ2 (in %)

Risk parity 100
Momentum 33 100

Carry 71 22 100
Volatility carry 53 20 93 100

FX carry 40 22 51 39 100
Bond carry 50 11 4 −16 −31 100

Dividend carry 41 12 64 49 54 −25 100

Table 12: Empirical correlation matrix Ĉ (in %)

Risk parity 100
Momentum 53 100

Carry 66 34 100
Volatility carry 39 24 88 100

FX carry 39 13 52 31 100
Bond carry 58 29 18 −12 −15 100

Dividend carry 28 9 60 42 38 −19 100

Remark 2 In Appendix A.1 on page 26, we show that the relationship between the empirical
covariance matrix and the covariance matrices of the two regimes is:

Σ̂ = π1Σ̂1 + π2Σ̂2 + π1π2 (µ̂1 − µ̂2) (µ̂1 − µ̂2)
>

It follows Σ̂ is only related to Σ̂1 and Σ̂2 if and only if the expected returns are the same
in the two regimes (µ̂1 = µ̂2). Otherwise, the empirical covariance matrix depends on a
modified stressed covariance matrix:

Σ̂ = π1Σ̂1 + π2Σ̃2

where Σ̃2 = Σ̂2 + π1 (µ̂1 − µ̂2) (µ̂1 − µ̂2)
>

. Since the second regime corresponds to a stress,
we have µ̂1 � µ̂2, implying that Σ̃2 is larger than Σ̂2. It follows that the relationship between
the correlation matrices Ĉ, Ĉ1 and Ĉ2 is not trivial. For instance, if Ĉ1 = Ĉ2, we obtain
that Ĉ � Ĉ1 in most cases.

3.3 Designing the portfolio allocation

We first analyze the skewness impact on the risk allocation of constant-mix portfolios. In
particular, we show that the traditional approach for estimating volatility and covariance
risk is biased. In a second step, we build risk-budgeting portfolios that take into account
the skewness risk.

3.3.1 Constant-mix portfolios

We consider an equally-weighted portfolio between the three strategies (risk parity, momen-
tum and carry). We assume that the portfolio is rebalanced at the end of each month, and
we calculate the volatility risk using a one-year rolling covariance matrix and daily returns.
In Figure 8, we report the evolution of the risk contribution when we consider the tradi-
tional volatility risk measure or a Gaussian model. We observe that these risk contributions
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present some jumps. For example, we observe a sharp increase in the risk contribution
of the carry strategy in September/October 2008, August 2011, August 2015 or February
2018. These positive jumps correspond to negative jumps in the cumulative performance
of the carry strategy. We also notice that these sharp increases are generally followed by a
drop one year later. We explain this phenomenon because the risk measure is based on the
one-year covariance matrix, implying that its level depends on whether or not the one-year
sample contains the jump event. When the date of the jump is outside the one-year rolling
window, the historical volatility is reduced. This is why we observe a second jump in the
risk allocation after the initial jump.

Figure 8: Risk contribution of the EW portfolio (Gaussian model)
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We now consider the 90% expected shortfall measure using the jump process. For that,
we use the second regime estimated in the previous section. We assume a weekly model for
asset returns, meaning that the frequency parameter λ is set to π2/dt, and the time period
dt is equal to 1/52. For estimating the covariance matrix Σ of the normal regime, we exploit
the thresholding algorithm given in Appendix A.2 on page 27. The underlying idea is to split
the one-year rolling sample into two subsamples: a subsample that corresponds to the first
regime and a subsample that corresponds to the second regime. Therefore, we only consider
the first subsample when calculating the empirical covariance matrix Σ̂. Indeed, if one
observation corresponds to a jump event, it must be deleted because it artificially increases
the volatility of the first regime. In Figure 9, the thresholding algorithm is implemented
with π?2 = 50%. It is equivalent to assume that the observation t belongs to the first regime
if π̂2,t is less than 50% and to the jump regime otherwise16. We obtain a smoother risk
allocation, because the expected shortfall measure is based on the jump model that already
incorporates the long-term stress scenario.

16We have reported the value of the posterior probability π̂2,t in Figure 15 on page 30. The frequency
of observations that satisfy π̂2,t > 50% is equal to 5.62%. This number is very close to the theoretical
probability π2 = 5%.
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Figure 9: Risk contribution of the EW portfolio (GMM, α = 90%)
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In Table 13, we report the risk allocation of the EW portfolio in the static case when we
use the long-term figures. We also report the average risk allocation in the dynamic case,
that is when we estimate the covariance matrix using a one-year rolling window. We obtain
similar figures using the Gaussian model and the jump model. These results contrast with
those obtained in Figures 8 and 9.

Table 13: Risk contribution of the EW portfolio (α = 90%)

Strategy
Static Dynamic

Gaussian GMM Gaussian GMM
Risk parity 29.53% 30.57% 30.51% 30.89%
Momentum 39.24% 31.01% 41.37% 40.66%

Carry 31.23% 38.42% 28.12% 28.45%

The thresholding method avoids the double counting effect. Indeed, the empirical volatil-
ity is generally overestimated because it is calculated with jumps. However, jumps are more
an expression of the skewness risk than the volatility risk. Without implementing the thresh-
olding method, we obtain Figure 16 on page 31. We notice that the risk allocation is not
smoothed and contains jumps, just as in the case of the risk allocation with the Gaussian
model (Figure 8). Figure 10 represents the covariance matrix estimated with empirical and
thresholding methods. We notice that the thresholding approach operates a small correction
on risk parity and momentum strategies. For instance, the volatility is slightly reduced, but
the cross-correlation is equivalent. With the carry strategy, the correction is more impor-
tant. First, the thresholding approach does not only reduce the volatility, but it eliminates
the jumps. Second, it also impacts the cross-correlation. This is why the use of the empirical
covariance matrix introduces a bias when estimating the risk allocation of a given portfolio.

21



Portfolio Allocation with Skewness Risk: A Practical Guide

Figure 10: Empirical and thresholding estimates of the covariance matrix
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Remark 3 The risk allocation based on the skewness model mainly depends on the two
parameters π2 and α. They both define the severity of the stress scenario. In particular,
when the confidence level α of the expected shortfall tends to one, the dynamic allocation
becomes flat and is entirely given by the second regime (Figure 17 in page 31). When
π2 � 1− α, the dynamic allocation is mainly driven by the first regime. It follows that the
choice of α is important to determine the proportion of each risk (volatility and skewness)
to take into account.

3.3.2 Risk budgeting portfolios

We now implement the risk budgeting approach using the previous framework. We rebalance
the portfolio every month and compare the ERC portfolio obtained with the Gaussian model
(or the volatility risk measure) with the Skew-ERC portfolio obtained with the Gaussian
mixture model (or the skewness risk measure). In Figure 11, we report the weight difference
between the ERC portfolio and the Skew-ERC portfolio17. As in the previous section, we
observe that jumps have a big impact on the allocation. Every time, we observe a negative
jump in the carry strategy, the allocation is shifted when we consider the volatility risk
measure. This generates a trade-off between the carry strategy and the two other strategies.

Remark 4 In Figures 20 and 21 on page 33, we consider a higher value for the confidence
level α. We deduce that the ERC portfolio overestimates the allocation in the carry strategy
with respect to the Skew-ERC portfolio.

All these results show that skewness risk really matters in portfolio management. If we
observe such big differences between ERC and Skew-ERC portfolios, it is because Skew-RB
portfolios takes into account the skewness risk from an ex-ante point of view.

17The nominal allocation of these portfolios is given in Appendix B.2 on page 32.
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Figure 11: Weight difference (in %) between ERC and Skew-ERC portfolios (α = 90%)
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4 Conclusion

This paper presents a very simple model of skewness risk, which is tractable from a pro-
fessional point of view. This model acknowledges that negative skewness is mainly due to
stress events in finance. Therefore, the model is just an extension of the Gaussian model
that is traditionally used for modeling asset returns but incorporates a second regime for
taking into account turbulent periods. It appears that the two market regimes are different
in nature. The first regime drives the dynamics of the true volatility, whereas the second
regime is responsible for jumps in asset returns. It follows that the normal regime is time-
varying and predictable because it describes the short-term volatility, which is a persistent
process. On the contrary, the stress regime is a component that is not predictable. This
forces us to define the second regime once and for all.

In this framework, skewness risk is then completely different to volatility risk. Generally,
volatility risk implies adopting a dynamic allocation in order to respond to market patterns.
Skewness risk prefers a static allocation, because jump risk cannot be hedged and should be
taken into account from an ex-ante point of view. This result is not necessarily intuitive for
professionals, because we generally learn that high risks must be actively managed. However,
this basic rule is only valid when the risk is predictable. This is why skewness and jump
risks cannot be managed in the same way as volatility risk.

23



Portfolio Allocation with Skewness Risk: A Practical Guide

References
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A Mathematical results

A.1 Gaussian approximation of asset returns

Let Rt = (R1,t, . . . , Rn,t) be the asset returns. We remind that:

Rt = B1Y1 +B2Y2

where B1 and B2 = 1 − B1 are Bernoulli random variable with probability π1 and π2,
Y1 ∼ N (µ1,Σ1) and Y2 ∼ N (µ2,Σ2). It follows that:

E [Rt] = π1µ1 + π2µ2

and:

cov (Rt) = E
[
RtR

>
t

]
− E [Rt]E [Rt]

>

We have:

E
[
RtR

>
t

]
= E

[
B2

1Y1Y
>
1 +B2

2Y2Y
>
2 + 2B1B2Y1Y

>
2

]
= π1

(
Σ1 + µ1µ

>
1

)
+ π2

(
Σ2 + µ2µ

>
2

)
= π1Σ1 + π2Σ2 + π1µ1µ

>
1 + π2µ2µ

>
2

and:

E [Rt]E [Rt]
>

= (π1µ1 + π2µ2) (π1µ1 + π2µ2)
>

= π2
1µ1µ

>
1 + π2

2µ2µ
>
2 + π1π2

(
µ1µ

>
2 + µ2µ

>
1

)
We deduce that18:

cov (Rt) = π1Σ1 + π2Σ2 + π1µ1µ
>
1 + π2µ2µ

>
2 −(

π2
1µ1µ

>
1 + π2

2µ2µ
>
2 + π1π2

(
µ1µ

>
2 + µ2µ

>
1

))
= π1Σ1 + π2Σ2 + π1π2

(
µ1µ

>
1 + µ2µ

>
2

)
−

π1π2
(
µ1µ

>
2 + µ2µ

>
1

)
We deduce that the Gaussian approximation of asset returns is:

Rt ≈ R̄t ∼ N
(
µ̄, Σ̄

)
where:

µ̄ = π1µ1 + π2µ2

and:

Σ̄ = π1Σ1 + π2Σ2 + π1π2 (µ1 − µ2) (µ1 − µ2)
>

18We verify that the variance of portfolio returns is equal to:

σ2 (Rt (x)) = x> cov (Rt)x

= π1σ
2
1 (x) + π2σ

2
1 (x) + π1π2

(
µ21 (x) + µ22 (x)

)
−

π1π2 (µ1 (x)µ2 (x) + µ2 (x)µ1 (x))

= π1σ
2
1 (x) + π2σ

2
1 (x) + π1π2 (µ1 (x)− µ2 (x))2
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A.2 The thresholding approach

Let Rt be the vector of asset returns at time t. If Rt follows a Gaussian mixture model, the
posterior probability of observing a stress at time t is equal to:

π̂2,t =
π2φn (Rt;µ2,Σ2)

π1φn (Rt;µ1,Σ1) + π2φn (Rt;µ2,Σ2)

We assume that there is a stress at time t if the posterior probability π̂2,t is greater than a
given threshold π?2 :

St = 1⇔ π̂2,t ≥ π?2
Knowing the parameters π1, µ1, Σ1, π2, µ2, Σ2, we can then detect all the dates t that
correspond to a stress. However, in practice, the Gaussian mixture model takes the following
form:

f (y) = π1φn (y;µ1,t,Σ1,t) + π2φn (y;µ2,Σ2)

where µ1,t and Σ1,t are time-varying parameters. Most of the times, µ1,t and Σ1,t correspond
to rolling estimates using a one-year window. The algorithm for estimating the parameters
µ1,t and Σ1,t is then given by the following steps:

1. Let nrw be the length of the rolling window. We initialize the filtering procedure at
time nrw + 1 with the Gaussian estimates.

2. At time t, we calculate the posterior jump probabilities:

π̂2,t−s =
π2φn (Rt−s;µ2,Σ2)

π1φn

(
Rt−s, µ̂1,t−1, Σ̂1,t−1

)
+ π2φn (Rt−s;µ2,Σ2)

for s = 0, . . . , nrw − 1. The probabilities π̂2,t−s are then based on the estimates µ̂1,t−1
and Σ̂1,t−1 calculated at time t− 1.

3. We update µ̂t−1 and Σ̂t−1 by calculating the empirical mean and covariance matrix
with the subsample of {Rt−nrw+1, . . . , Rt}. The observation t − s is included in the
subsample if it satisfies the rule π̂2,t−s < π?2 . These new estimates µ̂t and Σ̂t will be
valid in order to calculate the posterior probabilities π̂t+1−s at time t+ 1.

4. We go back to Step 2.

B Additional results

B.1 Tables

Here are some additional results concerning the risk budgeting approach.

Table 14: Risk contribution of the EW portfolio (α = 95%)

Strategy
Static Dynamic

Gaussian GMM Gaussian GMM
Risk parity 29.53% 30.93% 30.51% 30.04%
Momentum 39.24% 30.12% 41.37% 38.98%

Carry 31.23% 38.95% 28.12% 30.98%
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Table 15: Risk contribution of the EW portfolio (α = 99%)

Strategy
Static Dynamic

Gaussian GMM Gaussian GMM
Risk parity 29.53% 31.45% 30.51% 30.12%
Momentum 39.24% 28.85% 41.37% 33.38%

Carry 31.23% 39.70% 28.12% 36.51%

Table 16: Weights of ERC and Skew-ERC portfolios (α = 90%)

Strategy
Static Dynamic

Gaussian GMM Gaussian GMM
Risk parity 36.23% 35.86% 34.23% 34.53%
Momentum 29.24% 34.84% 27.52% 28.02%

Carry 34.53% 29.30% 38.25% 37.45%

Table 17: Weights of ERC and Skew-ERC portfolios (α = 95%)

Strategy
Static Dynamic

Gaussian GMM Gaussian GMM
Risk parity 36.23% 35.48% 34.23% 35.90%
Momentum 29.24% 35.53% 27.52% 29.10%

Carry 34.53% 28.99% 38.25% 35.00%

Table 18: Weights of ERC and Skew-ERC portfolios (α = 99%)

Strategy
Static Dynamic

Gaussian GMM Gaussian GMM
Risk parity 36.23% 34.93% 34.23% 36.35%
Momentum 29.24% 36.52% 27.52% 33.05%

Carry 34.53% 28.55% 38.25% 30.60%

In the case of the EW portfolio, we notice that the risk allocation based on the Gaussian
model may significantly differ from the risk allocation based on the Gaussian mixture model
(GMM). Moreover, we also observe some large differences between static and dynamic results
in the GMM case. However, these differences reduce as the confidence level α increases.

The weights obtained for the ERC portfolio are in line with the results obtained for the
EW portfolio. Generally, the ERC portfolio overweights the carry strategy with respect to
the Skew-ERC portfolio. It is remarkable that the trade-off is between the carry strategy
and the momentum strategy, that is between a strategy with a negative skewness and a
strategy with a positive skewness.

B.2 Figures

We report below some additional figures concerning the individual carry strategies, the risk
allocation of the EW portfolio and the weight allocation of the ERC portfolio.
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Figure 12: Cumulative performance of carry strategies
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Figure 13: Weekly stress scenario for a four-year return period (carry strategies)
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Figure 14: Skew measure for a four-year return period (carry strategies)
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Figure 15: Posterior probability π̂2,t (in %)
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Figure 16: Risk contribution of the EW portfolio (GMM, no thresholding, α = 90%)
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Figure 17: Risk contribution of the EW portfolio (GMMl, α = 99%)
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Figure 18: Weight allocation of the ERC portfolio
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Figure 19: Weight allocation of the Skew-ERC portfolio (α = 90%)
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Figure 20: Weight difference between ERC and Skew-ERC portfolios (α = 95%)
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Figure 21: Weight difference between ERC and Skew-ERC portfolios (α = 99%)
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