New Trends in Asset Management

Thierry Roncalli*

*Professor of Finance, University of Evry, France

7th JIAO-JI Afterwork

Shanghai Jiao Tong University Alumni / Tongji University Shanghai Alumni

Skema Business School, October 13, 2016

◆ロ → ◆ 母 → ◆ き → き め へ で

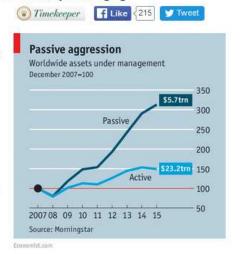
Foundations of portfolio management The risk management revolution Smart beta & factor investing Alternative risk premia Other topics

For institutional investors (pension funds, insurance companies, sovereign wealth funds, etc.)

This is the end of the traditional asset management

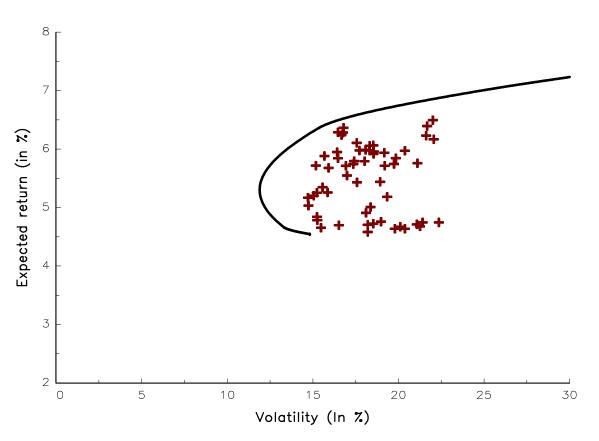
The quantitative asset management has definitively taken the power

Figure: Janus Henderson



Active defence

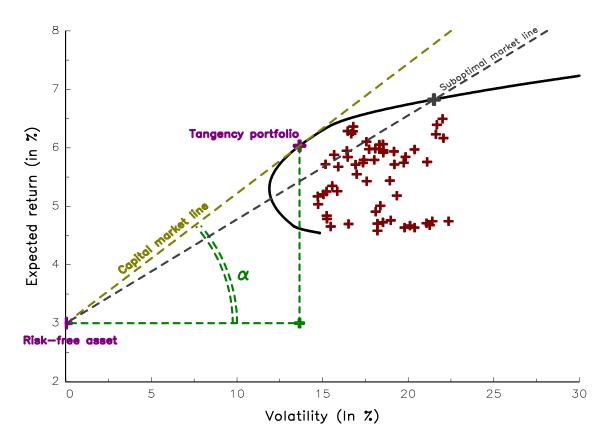
A merger reflects how the fund-management industry is changing


Oct 8th 2016 | From the print edition

WHEN firms merge, their bosses gush Panglossian jargon. So it was with the tie-up announced this week of Henderson Global Investors, an Anglo-Australian asset manager, and Janus Capital, an American one. Janus Henderson, as the combined business will be known, will become a "truly global" asset manager that will deliver "compelling value creation", boasted its American half. Yet behind the boosterism lie the real fears of active fund managers: of losing business to passive ones—ie, those offering funds that simply track a market index. It is hard not to see the merger as, more than anything, a defensive move.

To be fair, the companies do have a strong business case for merging. Janus is deeply established in America and Japan. It is famous for having in 2014 hired Bill Gross, the "bond king", when he abruptly left Pacific Investment Management Co, PIMCO, the firm he co-founded and turned into a giant. Henderson's sales network is centred on Europe. The firms stand to gain more from selling each other's products in new markets than they will lose from stepping on each other's toes.

The efficient frontier



- "the investor does (or should) consider expected return a desirable thing and variance of return an undesirable thing" (Markowitz, 1952).
- We consider a universe of n assets. Let μ and Σ be the vector of expected returns and the covariance matrix of returns. We have:

$$\max \mu(x) = \mu^{\top} x$$
 u.c.
$$\sigma(x) = \sqrt{x^{\top} \Sigma x} = \sigma^{*}$$

There isn't one optimal portfolio, but a set of optimal portfolios!

The tangency portfolio

- Tobin (1958) introduces the risk-free rate and shows that the efficient frontier is a straight line.
- Optimal portfolios are a combination of the tangency portfolio and the risk-free asset.
- Separation theorem (Lintner, 1965).

There is one optimal (risky) portfolio!

The market portfolio theory

- Sharpe (1964) develops the CAPM theory.
- If the market is at the equilibrium, the prices of assets are such that the tangency portfolio is the market portfolio (or the market-cap portfolio).
- Avoids assumptions on expected returns, volatilities and correlations!
- The risk premium depends on the beta:

$$\pi_{i} = \mu_{i} - r = \beta_{i} \left(\mu_{M} - r \right)$$

where:

$$\beta_i = \frac{\operatorname{cov}(R_i, R_M)}{\operatorname{var}(R_M)}$$

Passive management vs active management

How to measure the performance of active management?

$$R_F(t) = \alpha + \beta R_M(t) + \varepsilon(t)$$

The rise of cap-weighted indexation

- Jensen (1969): no alpha in mutual equity funds
- John McQuown (Wells Fargo Bank, 1971)
- Rex Sinquefield (American National Bank, 1973)

Portfolio optimization and active management

For active management, portfolio optimization continues to make sense.

However...

"The indifference of many investment practitioners to mean-variance optimization technology, despite its theoretical appeal, is understandable in many cases. The major problem with MV optimization is its tendency to maximize the effects of errors in the input assumptions. Unconstrained MV optimization can yield results that are inferior to those of simple equal-weighting schemes" (Michaud, 1989).

Are optimized portfolios optimal?

⇒ The mean-variance approach is certainly the most aggressive active management model.

The emergence of risk parity

The rise of heuristic approaches

- Don't be sensitive to expected returns
- EW, MV, ERC, MDP, etc.

The rise of risk parity portfolios

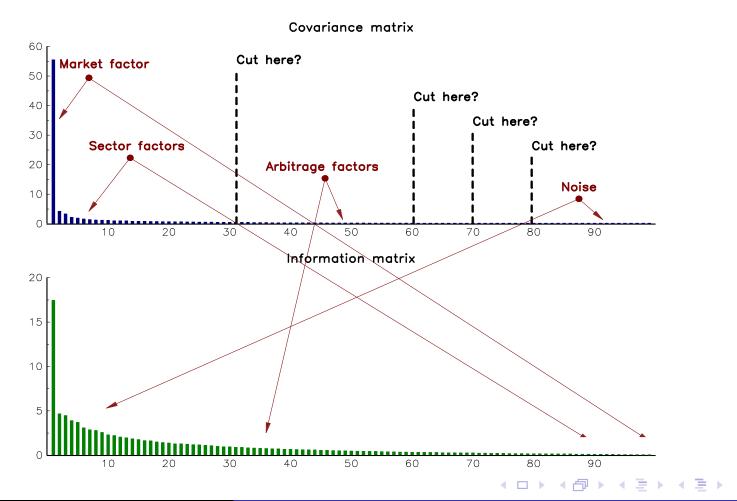
- The place of risk management in asset management
- Be sensitive to Σ and not to Σ^{-1}
- Capturing risk premia in a balanced portfolio

How to be sensitive to Σ and not to Σ^{-1} ?

MVO portfolios are of the following form: $x^* \propto f(\Sigma^{-1})$.

The important quantity is then the information matrix $\mathcal{I} = \Sigma^{-1}$.

If we consider the following example: $\sigma_1 = 20\%$, $\sigma_2 = 21\%$, $\sigma_3 = 10\%$ and $\rho_{i,j} = 80\%$, we obtain the following eigendecomposition:


	Covariance matrix Σ			Information matrix ${\cal I}$			
Asset / Factor	1	2	3	1	2	3	
1	65.35%	-72.29%	-22.43%	-22.43%	-72.29%	65.35%	
2	69.38%	69.06%	-20.43%	-20.43%	69.06%	69.38%	
3	30.26%	-2.21%	95.29%	95.29%	-2.21%	30.26%	
Eigenvalue	8.31%	0.84%	0.26%	379.97	119.18	12.04	
% cumulated	88.29%	97.20%	100.00%	74.33%	97.65%	100.00%	

$$12.04 \equiv 1/8.31\%$$

Reverse order of eigenvectors

How to be sensitive to Σ and not to Σ^{-1} ?

Figure: PCA applied to the stocks of the FTSE index (June 2012)

9 Q (2)

Risk allocation

Let $x = (x_1, ..., x_n)$ be the weights of n assets in the portfolio. Let $\mathcal{R}(x_1, ..., x_n)$ be a coherent and convex risk measure. We have:

$$\mathcal{R}(x_1, \dots, x_n) = \sum_{i=1}^n x_i \cdot \frac{\partial \mathcal{R}(x_1, \dots, x_n)}{\partial x_i}$$
$$= \sum_{i=1}^n \mathrm{RC}_i(x_1, \dots, x_n)$$

Let $b = (b_1, ..., b_n)$ be a vector of budgets such that $b_i \ge 0$ and $\sum_{i=1}^{n} b_i = 1$. We consider two allocation schemes:

Weight budgeting (WB)

$$x_i = b_i$$

Risk budgeting (RB)

$$RC_i = b_i \cdot \mathcal{R}(x_1, \dots, x_n)$$

Original risk parity with the volatility risk measure

Let Σ be the covariance matrix of the assets returns. We assume that the risk measure $\mathcal{R}(x)$ is the volatility of the portfolio $\sigma(x) = \sqrt{x^{\top}\Sigma x}$. We have:

$$\frac{\partial \mathcal{R}(x)}{\partial x} = \frac{\sum x}{\sqrt{x^{\top} \sum x}}$$

$$RC_{i}(x_{1},...,x_{n}) = x_{i} \cdot \frac{(\sum x)_{i}}{\sqrt{x^{\top} \sum x}}$$

$$\sum_{i=1}^{n} RC_{i}(x_{1},...,x_{n}) = \sum_{i=1}^{n} x_{i} \cdot \frac{(\sum x)_{i}}{\sqrt{x^{\top} \sum x}} = x^{\top} \frac{\sum x}{\sqrt{x^{\top} \sum x}} = \sigma(x)$$

The risk budgeting portfolio is defined by this system of equations:

$$\mathrm{RC}_{i}(x) = x_{i} \cdot \frac{(\Sigma x)_{i}}{\sigma(x)} = b_{i} \cdot \sigma(x)$$

An example

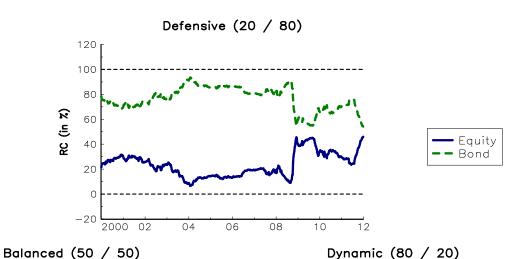
Illustration

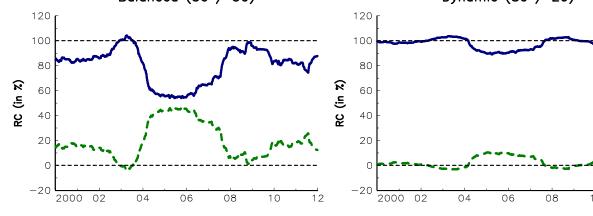
- 3 assets
- Volatilities are respectively 30%, 20% and 15%
- Correlations are set to 80% between the $1^{\rm st}$ asset and the $2^{\rm nd}$ asset, 50% between the $1^{\rm st}$ asset and the $3^{\rm rd}$ asset and 30% between the $2^{\rm nd}$ asset and the $3^{\rm rd}$ asset and the $3^{\rm rd}$ asset
- Budgets are set to 50%, 20% and 30%
- For the ERC (Equal Risk Contribution) portfolio, all the assets have the same risk budget

Weight budgeting (or traditional) approach

Asset	Weight	Marginal Risk Contribution			
Asset		Risk	Absolute	Relative	
1	50.00%	29.40%	14.70%	70.43%	
2	20.00%	16.63%	3.33%	15.93%	
3	30.00%	9.49%	2.85%	13.64%	
Volatility			20.87%		

Risk budgeting approach


Assot	Weight	Marginal	tribution	
Asset		Risk	Absolute	Relative
1	31.15%	28.08%	8.74%	50.00%
2	21.90%	15.97%	3.50%	20.00%
3	46.96%	11.17%	5.25%	30.00%
Volatility			17.49%	


ERC approach

Asset	Weight	Marginal	Risk Contribution		
		Risk	Absolute	Relative	
1	19.69%	27.31%	5.38%	33.33%	
2	32.44%	16.57%	5.38%	33.33%	
3	47.87%	11.23%	5.38%	33.33%	
Volatility			16.13%		

The case of diversified funds

Figure: Equity (MSCI World) and bond (WGBI) risk contributions

- Contrarian constant-mix strategy
- Deleverage of an equity exposure
- Low risk diversification
- No mapping between fund profiles and investor profiles
- Static weights
- Dynamic risk contributions

Diversified funds

Marketing idea?

Reducing volatility and maximizing diversification

The ERC portfolio is the solution of this optimization program:

$$x^*$$
 = $\arg\min \frac{1}{2}x^{\top} \Sigma x$
u.c.
$$\begin{cases} \sum_{i=1}^{n} \ln x_i \ge \kappa \\ \mathbf{1}^{\top} x = 1 \\ x \ge \mathbf{0} \end{cases}$$

⇒ Trade-off between volatility reduction and weight diversification.

The ERC portfolio is located between MV and EW portfolios:

$$x_i = x_j$$
 (EW)
 $\partial_{x_i} \mathcal{R}(x) = \partial_{x_j} \mathcal{R}(x)$ (MV)
 $RC_i = RC_j$ (ERC)

and we have:

$$\sigma(x_{\rm mv}) \le \sigma(x_{\rm erc}) \le \sigma(x_{\rm ew})$$

What is the original risk parity strategy

Equity smart beta

- Stock volatility risk measure
- ERC Eurostoxx50 Index, etc.

Bond smart beta

- Credit volatility risk measure
- RB EGBI Index, etc.

Diversified funds

- Asset volatility
 risk measure
- Naive risk parity funds.

⇒ The original risk parity strategy is a portfolio allocation approach to harvest risk premia across or within asset classes in the most efficient way.

Risk parity = risk premium parity = diversification

... and what it is not

Absolute return strategy

- All Weather Fund (Bridgewater Associates)
- Risk parity funds: AQR, Invesco, Lyxor, Raiffeisen, etc.

 \Rightarrow The original risk parity strategy is $\boxed{\text{NOT}}$ an absolute return strategy.

How to define risk factors?

Risk factors are common factors that explain the variance of expected returns

- 1964: Market or MKT (or BETA) factor
- 1972: Low beta or BAB factor
- 1981: Size or SMB factor
- 1985: Value or HML factor
- 1991: Low volatility or VOL factor
- 1993: Momentum or WML factor
- 2000: Quality or QMJ factor

Factor investing is a subset of smart (new) beta

At the security level, there is a lot of idiosyncratic risk or alpha:

	Common	Idiosyncratic
	Risk	Risk
GOOGLE	47%	53%
NETFLIX	24%	76%
MASTERCARD	50%	50%
NOKIA	32%	68%
TOTAL	89%	11%
AIRBUS	56%	44%

Source: Cazalet and Roncalli (2014)

• Jensen (1968):

$$\bar{\alpha} = -\text{fees}$$

• Hendricks *et al.* (1993) – **Hot Hands in Mutual Funds**:

$$cov(\alpha_t, \alpha_{t-1}) > 0$$

where:

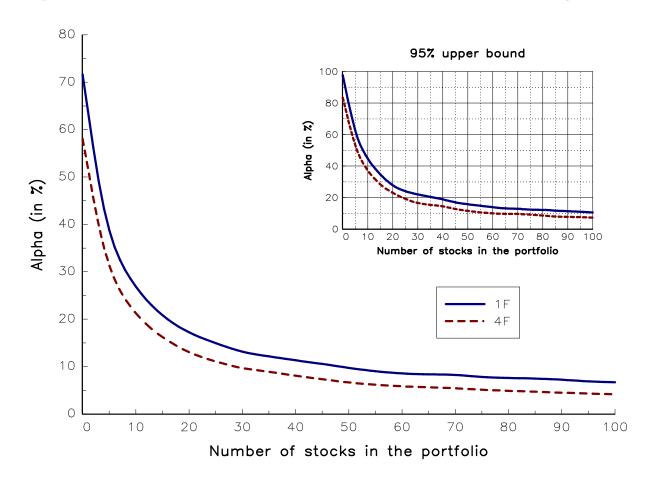
$$\alpha_t = R(t) - \beta_M R_M(t)$$

⇒ The persistence of the performance of active management is due to the persistence of the alpha

Grinblatt et al. (1995) – Momentum investors versus Value investors

"77% of mutual funds are momentum investors"

• Carhart (1997):


$$cov(\alpha_t, \alpha_{t-1}) = 0$$

where:

$$\alpha_{t} = R(t) - \beta_{M}R_{M}(t) - \beta_{SMB}R_{SMB}(t) - \beta_{HML}R_{HML}(t) - \beta_{WML}R_{WML}(t)$$

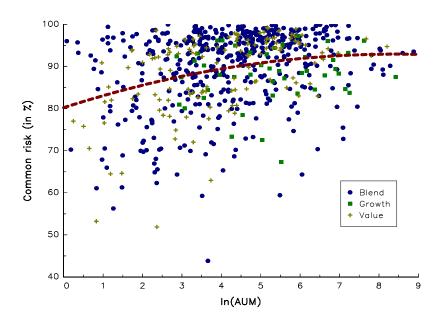

⇒ The (short-term) persistence of the performance of active management is due to the (short-term) persistence of the performance of risk factors

Figure: Alpha decreases with the number of holding assets

Thierry Roncalli New Trends in Asset Management 23 / 67

Figure: What proportion of return variance is explained?

Source: Cazalet and Roncalli (2014)

How many bets are there in large portfolios of institutional investors?

- 1986 Less than 10% of institutional portfolio return is explained by security picking and market timing (Brinson *et al.*, 1986)
- 2009 Professors' Report on the Norwegian GPFG: Risk factors represent 99.1% of the fund return variation (Ang et al., 2009)

What lessons can we draw from this?

Idiosyncratic risks and specific bets disappear in (large) diversified portfolios. Performance of institutional investors is then exposed to risk factors.

Alpha is not scalable, but risk factors are scalable.

 \Rightarrow Risk factors are the only bets that are compatible with diversification.

A subset of smart beta

Table: Definition of Smart Beta					
Risk Factor	Market Risk Factor	Other Risk Factors			
Beta	Traditional Beta (Old Beta)	Alternative Betas (New Betas)			
Smart Beta	CW, EW, MDP, ERC M	SMB, HML, WML, BAB, QMJ IV			

The rationale for factor investing
A subset of smart beta
Fact and fantasies
New paradigms for the equity active management

Facts and fantasies

Main fact

Risk factors are a powerful tool to understand the cross-section of (expected) returns.

Fact

- Common risk factors explain more variance than idiosyncratic risks in diversified portfolios.
- Some risk factors are more relevant than others, for instance SMB, HML and WML.
- Risk premia are time-varying and low-frequency mean-reverting. The length of a cycle is between 3 and 10 years.
- The explanatory power of risk factors other than the market risk factor has declined over the last few years, because Beta has been back since 2003.

Fact

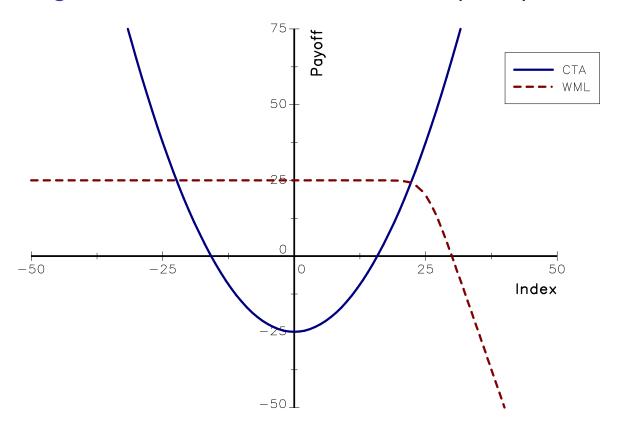
- Long-only and long/short risk factors have not the same behavior.
 This is for example the case of BAB and WML factors.
- Risk factors are local, not global. It means that risk factors are not homogeneous. For instance, the value factors in US and Japan cannot be compared (distressed stocks versus quality stocks).
- Factor investing is not a new investment style. It has been largely used by asset managers and hedge fund managers for a long time.

Main fantasy

• There are many rewarded risk factors.

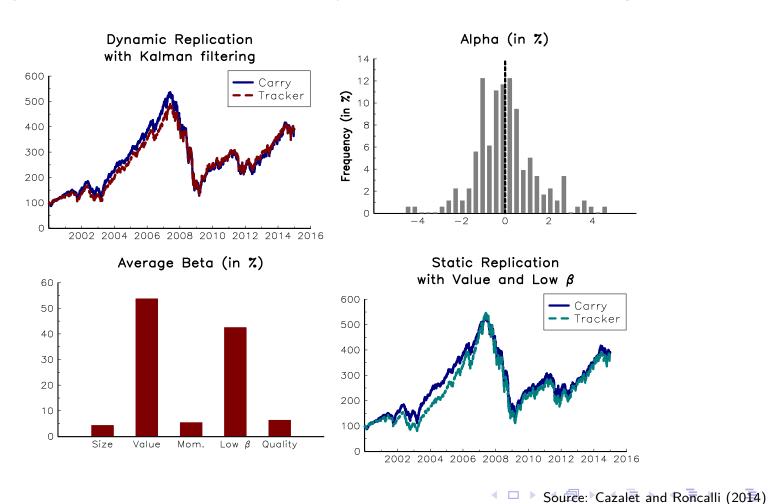
Fantasy

- Risk factors are not dependent on size. It is a fantasy. Some risk factors present a size bias, like the HML risk factor.
- HML is much more rewarded than WML.
- WML exhibits a CTA option profile. This is wrong. The option profile
 of a CTA is a long straddle whereas WML presents some similarities
 to a short call exposure.
- Long-only risk factors are more risky than long/short risk factors.
 This is not always the case. For instance, the risk of the long/short WML factor is very high.



Fantasy

- HML is riskier than WML. It is generally admitted in finance that contrarian strategies are riskier than trend-following strategies. However, this is not always the case, such as with the WML factor, which is exposed to momentum crashes.
- Strategic asset allocation with risk factors is easier than strategic asset allocation with asset classes. This is not easy, in particular in a long-only framework. Estimating the alpha, beta and idiosyncratic volatility of a long-only risk factor remains an issue, implying that portfolio allocation is not straightforward.


Figure: WML does not exhibit a CTA option profile

Source: Cazalet and Roncalli (2014)

Thierry Roncalli

Figure: Value, low beta and carry risk factors are not orthogonal

New Trends in Asset Management 34 / 67

A new opportunity for active managers

- Active management does not reduce to stock picking
- Understanding the diversification of equity portfolios
- Stock investing ≪ Sector investing ≪ Factor investing
- New tactical products

A new opportunity for active managers

Figure: Heatmap of risk factors (before 2008)

2000	2001	2002	2003	2004	2005	2006	2007	2008
Value	Value	Momentum	Value	Low Beta	Size	Momentum	Momentum	Low Beta
25.5%	6.2%	-3.3%	66.9%	31.1%	32.1%	39.1%	10.1%	-40.9%
Size	Momentum	Low Beta	Size	Value	Value	Size	Market	Momentum
23.9%	-1.7%	-6.8%	40.6%	30.4%	31.5%	34.3%	2.7%	-41.4%
Quality	Low Beta	Value	Momentum	Momentum	Quality	Low Beta	Quality	Market
9.5%	-2.0%	-18.7%	27.5%	30.1%	27.9%	31.5%	1.8%	-43.6%
Low Beta	Size	Size	Low Beta	Quality	Momentum	Value	Low Beta	Size
6.2%	-7.5%	-18.9%	23.9%	29.5%	26.5%	25.5%	-1.0%	-49.0%
Market	Quality	Quality	Quality	Size	Low Beta	Quality	Size	Quality
-2.2%	-9.1%	-26.0%	19.9%	28.7%	26.1%	24.1%	-4.4%	-53.9%
Momentum	Market	Market	Market	Market	Market	Market	Value	Value
-2.3%	-15.5%	-30.7%	15.3%	12.2%	26.1%	19.6%	-9.0%	-63.6%

Source: Richard and Roncalli (2015)

Thierry Roncalli New Trends in Asset Management 36 / 67

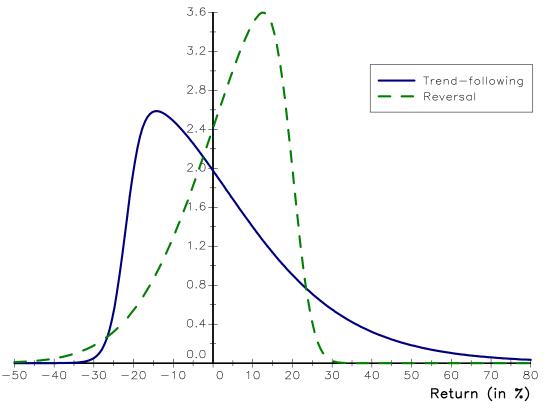
A new opportunity for active managers

Figure: Heatmap of risk factors (after 2008)

2008	2009	2010	2011	2012	2013	2014	2015	2016
Low Beta	Value	Quality	Low Beta	Quality	Momentum	Size	Size	Momentum
-40.9%	65.7%	25.3%	-2.2%	24.0%	29.8%	11.5%	16.1%	-3.0%
Momentum	Size	Momentum	Quality	Momentum	Value	Value	Quality	Low Beta
-41.4%	51.6%	22.2%	-3.2%	24.0%	28.4%	10.8%	16.1%	-7.1%
Market	Quality	Size	Market	Value	Quality	Quality	Low Beta	Market
-43.6%	42.7%	19.2%	-8.1%	18.7%	21.0%	8.6%	15.7%	-7.2%
Size	Market	Low Beta	Momentum	Market	Market	Low Beta	Momentum	Quality
-49.0%	31.6%	17.9%	-9.1%	17.3%	19.8%	8.1%	12.3%	-7.7%
Quality	Momentum	Market	Size	Low Beta	Low Beta	Market	Market	Size
-53.9%	22.3%	11.1%	-25.0%	15.8%	17.0%	6.8%	8.2%	-12.1%
Value	Low Beta	Value	Value	Size	Size	Momentum	Value	Value
-63.6%	18.8%	7.3%	-35.3%	10.7%	13.9%	5.2%	-1.5%	-14.8%

Source: Richard and Roncalli (2015)

Thierry Roncalli New Trends in Asset Management 37 / 67


- A risk premium is a compensation for being exposed to a non-diversifiable risk (e.g. equity risk premium vs bond risk premium)
- Risk factors are the systematic components that explain the return variation of diversified portfolios (e.g. the Fama-French-Carhart risk factors)
- A market anomaly is a strategy that exhibits a positive excess return, which is not explained by a risk premium (e.g. the trend-following strategy)

Risk premia and market anomalies are generally risk factors The converse is not true

- ⇒ The cat bond premium is a risk premium, but it is not a risk factor
- \Rightarrow A risk factor may have a positive or negative excess return

Consumption-based model

A risk premium is a compensation for accepting risk in bad times.

- The equity premium puzzle (1900-2000)
- The bond premium puzzle (2000-2015)
- Are size, value and momentum factors risk premia?
- The cat bond risk premium

Characterization of alternative risk premia

- An alternative risk premium (ARP) is a risk premium, which is not traditional
 - Traditional risk premia (TRP): equities, sovereign/corporate bonds
 - Currencies and commodities are not TRP
- The drawdown of an ARP must be positively correlated to bad times
 - Risk premia \neq insurance against bad times
 - (SMB, HML) \neq WML
- Risk premia are an increasing function of the volatility and a decreasing function of the skewness

In the market practice, alternative risk premia recovers:

- Skewness risk premia (or pure risk premia), which present high negative skewness and potential large drawdown
- Markets anomalies

Figure: Which option profile may be considered as a skewness risk premium?

- Long call (risk adverse)
- Short call (market anomaly)
- Long put (insurance)
- Short put

⇒ SMB, HML, WML, BAB, QMI

Merger arbitrage

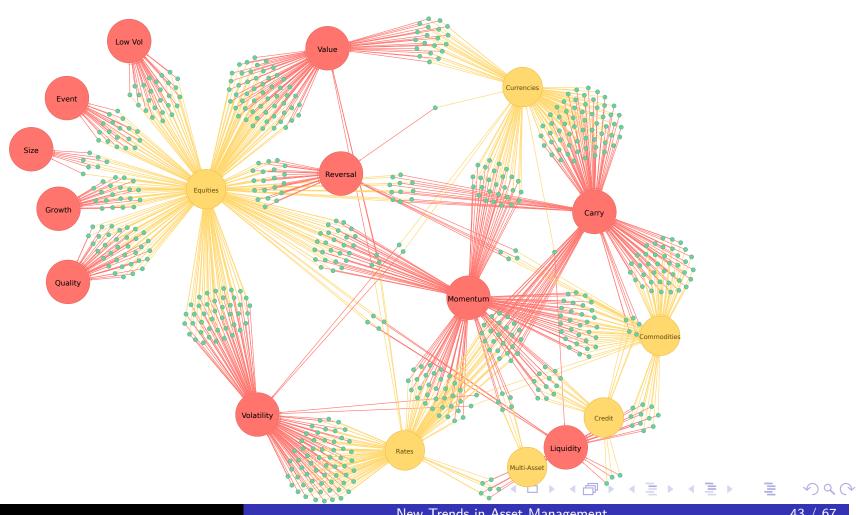
Growth

Size

Low volatility

Quality

Figure: Mapping of ARP candidates


Risk Factor	Equities	Rates	Credit	Currencies	Commodities
Carry	Dividend Futures	FRB			FRB
	High Dividend Yield	TSS	FRB	FRB	TSS
		CTS			CTS
Liquidity	Amihud liquidity	Turn-of-the-month	Turn-of-the-month		Turn-of-the-month
Momentum	Cross-section	Cross-section	Time-Series	Cross-section	Cross-section
	Time-series	Time-series		Time-series	Time-series
Reversal	Time-series	Time-series		Time-series	Time-series
	Variance	Time-series		Tillie-Series	rime-series
Value	Value	Value	Value	PPP	Value
	value	value	value	Economic model	value
Volatility	Carry	Carry		Corm	Carry
	Term structure	Term structure		Carry	
Event	Buyback				

Growth

Low volatility

Quality Size

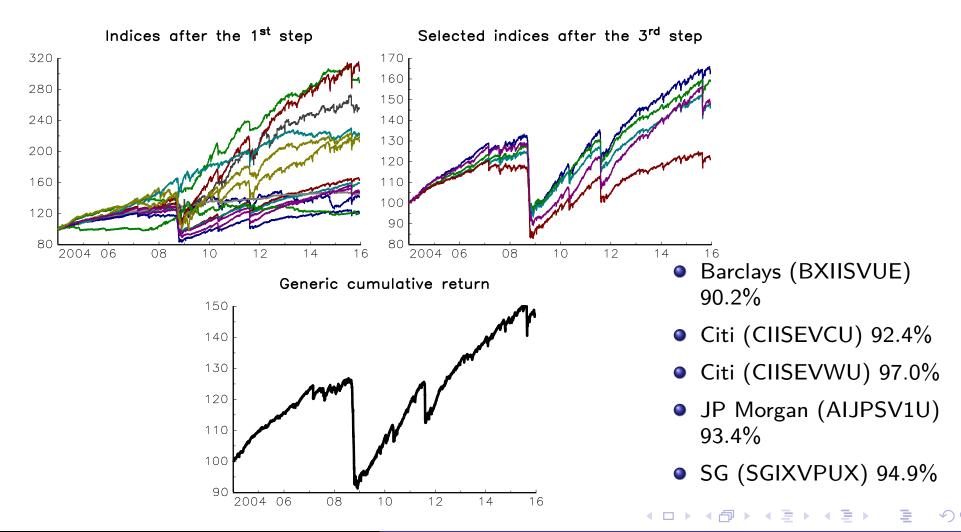
Figure: Graph database of bank's proprietary indices

What is the problem?

- For traditional risk premia, the cross-correlation between several indices replicating the TRP is higher than 90%
- For alternative risk premia, the cross-correlation between several indices replicating the ARP is between -80% and 100%

Examples (2000-2015)

- In the case of the equities/US traditional risk premium, the cross-correlation between S&P 500, FTSE USA, MSCI USA, Russell 1000 and Russell 3000 indices is between 99.65% and 99.92%
- In the case of the equities/volatility/carry/US risk premium, the cross-correlation between the 14 short volatility indices is between -34.9% and 98.6% (mean =43.0%, $Q_3-Q_1>35\%$)


The identification protocol

- Step 1 Define the set of relevant indices (qualitative due diligence).
- Step 2 Given an initial set of indices, the underlying idea is to find the subset, whose elements present very similar patterns. For that, we use the deletion algorithm using the \mathbb{R}^2 statistic:

$$R_{k,t} = \alpha_k + \beta_k R_t^{(-k)} + \varepsilon_{k,t} \quad \Rightarrow \quad \mathbf{R}_k^2$$

- Step 3 The algorithm stops when the similarity is larger than a given threshold for all the elements of the subset (e.g. $\mathbf{R}_k^2 > \mathbf{R}_{\min}^2 = 70\%$).
- Step 4 The generic backtest of the ARP is the weighted average of the performance of the subset elements

Illustration with the equities/volatility/carry/US risk premium

Merger arbitrage

Growth

Size

Low volatility

Quality

Figure: Mapping of relevant ARP

Risk Factor	Equities	Rates	Credit	Currencies	Commodities	
Carry	Dividend Futures	FRB			FRB	
	High Dividend Yield	TSS	FRB	FRB	TSS	
	High Dividend Held	CTS			CTS	
Liquidity	Amihud liquidity	Turn of the month	Turn of the month		Turn-of-the-month	
Momentum	Cross-section	Cross-section	Time Series	Cross-section	Cross-section	
	Time-series	Time-series		Time-series	Time-series	
Davasal	Time-series	Time-series		Time-series	Time-series	
Reversal	Variance	Time-series		Time-series	Time Series	
Value	Value	Value	Value	PPP	Value	
	value			Economic model	value	
Volatility	Carry	Carry	Carry		<u> </u>	
	Term structure	Term structure		Carry	Carry	
Event	Buyback				-	
	0.0					

Growth

Low volatility

Quality Size

- Value Carry and momentum everywhere
- Some ARP candidates are not relevant (e.g. liquidity premium in equities, rates and currencies; reversal premium using variance swaps; value premium in rates and commodities; dividend premium; volatility premium in currencies and commodities; correlation premium; seasonality premium.)
- Hierarchy of ARP

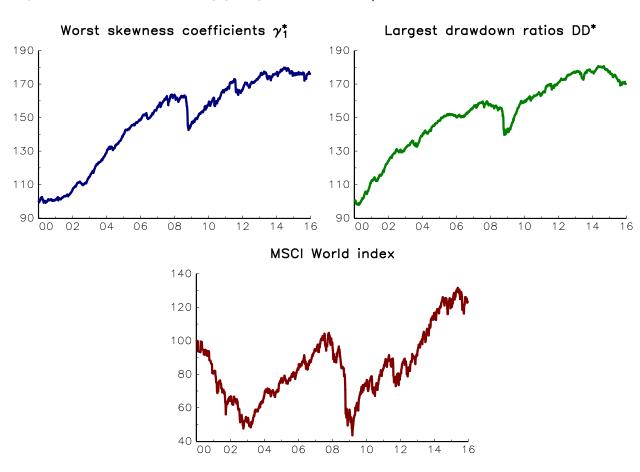
Equities value, carry, low volatility, volatility/carry, momentum, quality, growth, size, event, reversal

Rates volatility/carry, momentum, carry

Currencies carry, momentum, value

Commodities carry, momentum, liquidity

Carry recovers different notions: FRB, TSS and CTS

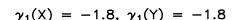

- ARP are not all-weather strategies:
 - Extreme risks of ARP are high and may be correlated
 - Aggregation of skewness is not straightforward

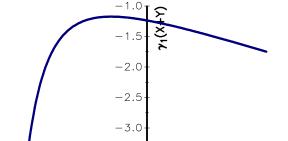
Skewness aggregation \neq volatility aggregation

When we accumulate long/short skewness risk premia in a portfolio, the volatility of this portfolio decreases dramatically, but its skewness risk generally increases!

 \Rightarrow Skewness diversification \neq volatility diversification

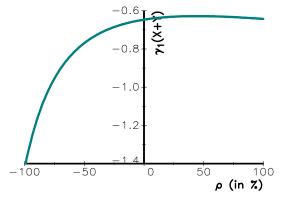
Figure: Skewness aggregation of L/S alternative risk premia

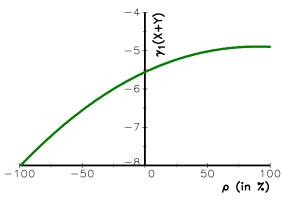



Thierry Roncalli New Trends in Asset Management $50 \ / \ 67$

-100

-50


Figure: Skewness aggregation in the case of the bivariate log-normal distribution

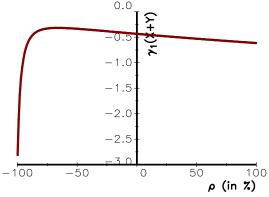
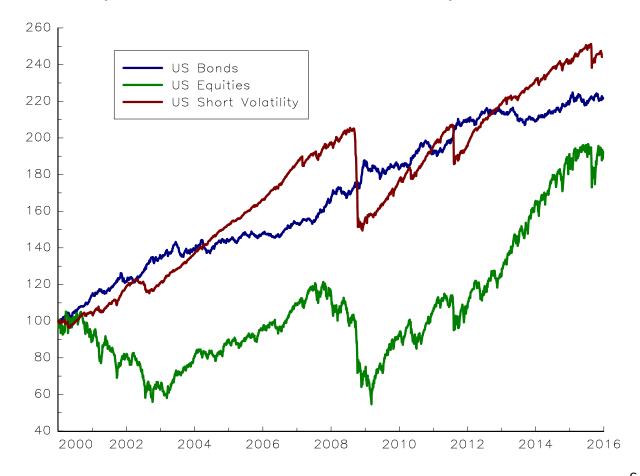


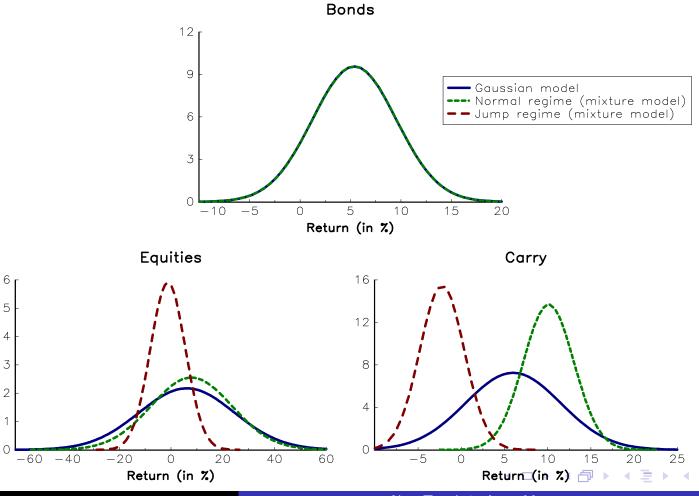
$$\gamma_1(X) = -0.8, \ \gamma_1(Y) = -0.3$$

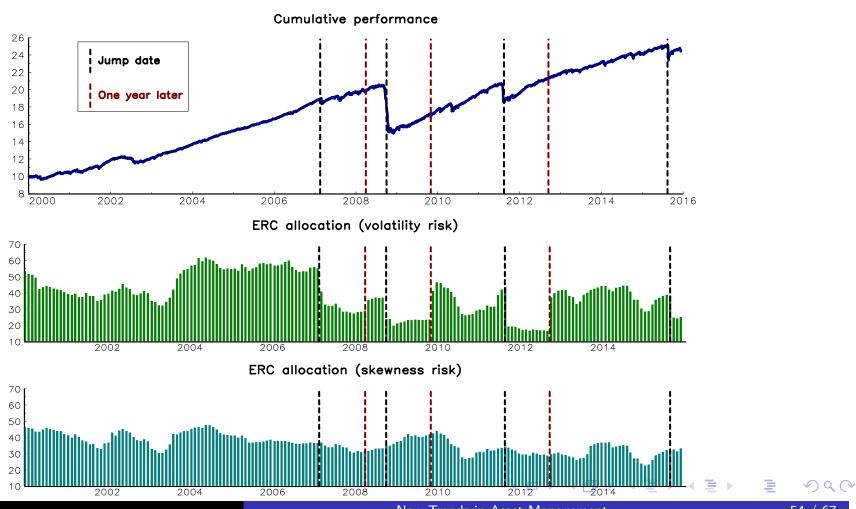
ρ (in %)

$$\gamma_1(X) = -1.8, \gamma_1(Y) = -6.2$$

$$\gamma_1(X) = -0.6, \gamma_1(Y) = -0.6$$


Figure: Cumulative performance of US bonds, US equities and US short volatility


999

The skewness puzzle

Figure: Comparison of Gaussian and mixture models

Figure: Comparison of the carry allocation

Volatility hedging versus skewness hedging

Table: Volatility and skewness risks of risk-based portfolios (weekly model)

Portfolio	MV	MV	ERC	MES		
_	Gaussian	Jump model				
iviodei	(full sample)	Normal	Mixture	Mixture		
Bonds	63.26%	36.05%	52.71%	100.00%		
Equities	2.23%	0.00%	10.36%	0.00%		
Carry	34.51%	63.95%	36.93%	0.00%		
$\sigma(x)$	2.62%	2.33%	2.75%	$\begin{bmatrix} -&-4.17\% \end{bmatrix}$		
γ_1	-2.75	-19.81	-6.17	0.00		

Source: BKR (2016)

 $\mathcal{O} \mathcal{Q} \mathcal{Q}$

The arithmetics of skewness

$$-(36.05\% \times 0.17 + 0\% \times 0.44 + 63.95\% \times 5.77) = -19.81$$

Thierry Roncalli New Trends in Asset Management 55 / 67

The lost generation of value investors

The value of value investors

- A value strategy exhibits a high skewness risk (\simeq default risk)
- Markets need value investors in order to exist, because they are the only investors who are able to reverse the market (in a bull market, but more important in a bear market)
- Value investors also provide liquidity
- Markets have to reward value investors

Since 2008

- The equity market has not rewarded value investors
- The bond/credit market has rewarded value investors
- Who are the value investors in illiquid markets?
 - ⇒ The number of value investors decreases dramatically!

The diversification enigma

Consider a portfolio with 2 assets: $R = x_1R_1 + x_2R_2$. We have:

$$var(R) = x_1^2 \sigma_1^2 + x_2^2 \sigma_2^2 + 2x_1 x_2 \rho \sigma_1 \sigma_2$$

Best solution in terms of volatility diversification

Long-only portfolios:

$$\rho = -1$$

Long/short portfolios:

$$\rho = 0$$

⇒ Long/short portfolio management can not mimick long-only portfolio management

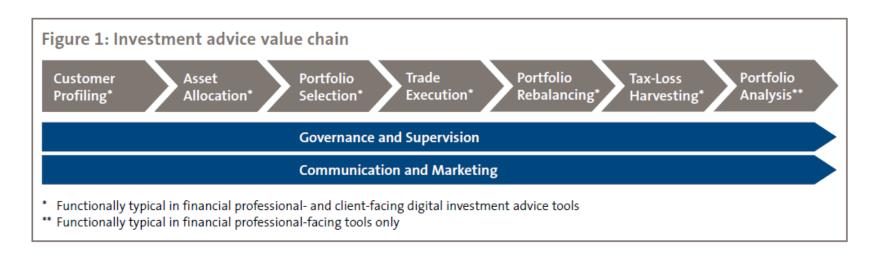
The notion of diversification is not universal

The impact of low/negative interest rates

Gordon-Shapiro (or dividend discount) model

The stock price P is equal to:

$$P = \frac{D}{r - g}$$


where D is the current dividend, g is the growth rate of dividends and r is the interest rate. When $r-g\approx 0$, P goes to ∞ .

- ⇒ The level of interest rates has an impact on all asset classes (equities, sovereign bonds, credit, commodities)
- \Rightarrow The "low-long-rate-high-asset-prices" (Shiller, 2007)
- \Rightarrow In low interest rate environment, investors have a greater appetite for risk taking and reach for yield (Lian *et al.*, 2016)

Interest rates are not always included in quantitative models

The rise of robo-advisors

- US: Betterment, Wealthfront, Personal Capital, FutureAdvisor, Schwab Intelligent Portfolios, Vanguard Personal Advisor, TradeKing Advisors, SigFig, Hedgeable, etc.
- UK: Nutmeg, Scalable Capital, True Potential, Wealthify, Wealth Horizon, Wealth Wizards, etc.
- France: Marie Quantier, Yomoni, WeSave (Anatec), Advize, Fundshop, etc.

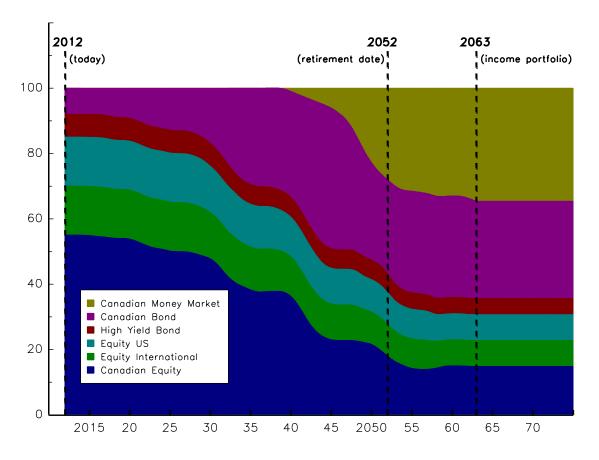
Source: FINRA (2016)

The rise of robo-advisors

- The response of the quantitative asset management for individual/household investors
- Mass customization (Martellini, 2016)
- The problem of distribution costs:

retrocession payments ⇒ fee-based models?

The liability dilemma


Liabilities change portfolio management

- Target-date funds (TDF)
- Liability-driven investment (LDI)
- Goal based investing (GBI)

This is one of the big challenge of (quantitative) asset management

The liability dilemma

Figure: Allocation of the Fidelity ClearPath® 2045 Retirement Portfolio

Source: www.fidelity.ca.

References I

ANG, A., GOETZMANN, W., and SCHAEFER, S.

Evaluation of Active Management of the Norwegian GPFG.

Norway: Ministry of Finance, 2009.

Brinson, G.P., Hood, L.R., and Beebower, G.L.

Determinants of Portfolio Performance.

Financial Analysts Journal, 42(4), 1986.

Bruder, B., Kostyuchyk, N. and Roncalli, T. (BKR)

Risk Parity Portfolios with Skewness Risk: An Application to Factor Investing and Alternative Risk Premia.

SSRN, www.ssrn.com/abstract=2813384, 2016.

CARHART, M.M.

On Persistence in Mutual Fund Performance.

Journal of Finance, 52(1), 1997.

References II

CAZALET, Z., and RONCALLI, T.

Facts and Fantasies About Factor Investing.

SSRN, www.ssrn.com/abstract=2524547, 2014.

Financial Industry Regulatory Authorithy (FINRA).

Report on Digital Investment Advice.

www.finra.org, March 2016.

GRINBLATT, M., TITMAN, S. and WERMERS, R.

Momentum Investment Strategies, Portfolio Performance and Herding: A Study of Mutual Fund Behavior.

American Economic Review, 85(5), 1995.

HAMDAN, R., PAVLOWSKY, F., RONCALLI, T. and ZHENG, B. (HPRZ)

A Primer on Alternative Risk Premia.

SSRN, www.ssrn.com/abstract=2766850, 2016.

References III

HENDRICKS, D., PATEL, J. and ZECKHAUSER, R.

Hot Hands in Mutual Funds: Short-Run Persistence of Relative Performance. *Journal of Finance*, 48(1), 1993.

LIAN, C., MA, Y., and WANG, C.

Low Interest Rates and Risk Taking: Evidence from Individual Investment Decisions.

SSRN, www.ssrn.com/abstract=2809191, 2016.

MAILLARD, S., RONCALLI, T. and TEÏLETCHE, J.

The Properties of Equally Weighted Risk Contribution Portfolios.

Journal of Portfolio Management, 36(4), 2010.

MARKOWITZ, H.

Portfolio Selection.

Journal of Finance, 7(1), 1952.

References IV

Martellini, L.

The Rise of the Robo-Advisors.

EDHEC-Risk Institute, 2016.

MICHAUD, R.

The Markowitz Optimization Enigma: Is Optimized Optimal? *Financial Analysts Journal*, 45(1), 1989.

RONCALLI, T.

Introduction to Risk Parity and Budgeting.

Chapman & Hall/CRC Financial Mathematics Series, 2013.

SHARPE, W.F.

Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk.

Journal of Finance, 19(3), 1964.

References V

SHILLER, R.J.

Low Interest Rates and High Asset Prices: An Interpretation in terms of Changing Popular Economic Models.

National Bureau of Economic Research, 13558, 2007.

SIRONI, P.

From Robo-Adviors to Goal Based Investing and Gamification. Wiley, 2016.

TIBSHIRANI, R.

Regression Shrinkage and Selection via the Lasso.

Journal of the Royal Statistical Society B, 58(1), 1996.

TOBIN, J.

Liquidity Preference as Behavior Towards Risk.

Review of Economic Studies, 25(2), 1964.

VARIAN, H.

Big Data: New Tricks for Econometrics.

SSRN, 2013.

