Portfolio Diversification & Asset Allocation What Does It Mean?

Thierry Roncalli*

*Amundi Asset Management¹, France

Advances in Quantitative Asset Management, Bordeaux

November 25, 2016

¹The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

Thierry Roncalli

Portfolio Diversification & Asset Allocation

1 / 69

Mean-variance optimized portfolios Risk budgeting portfolios MVO portfolios versus RB portfolios

Which method for diversifying?

- Portfolio optimization (Markowitz)
- Risk budgeting

▲□▶ ▲□▶ ▲□▶ ▲ □▶ →

590

Ξ

Mean-variance optimized portfolios Risk budgeting portfolios MVO portfolios versus RB portfolios

Mean-variance optimized portfolios

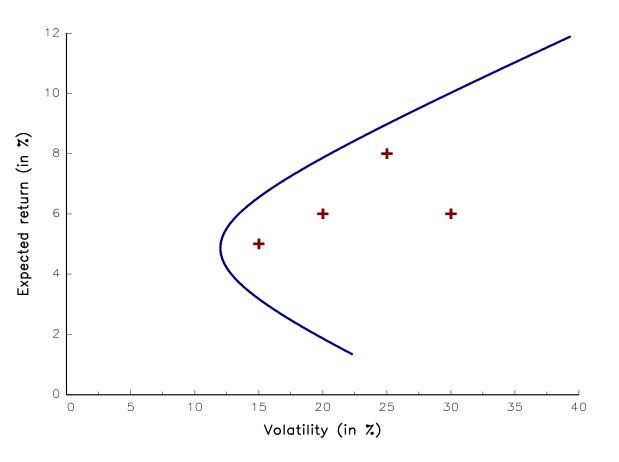
Let μ and Σ be the vector of expected returns and the covariance matrix of asset returns. The optimization problem is:

$$egin{arggamma} x^{\star} &= rgmax x^{ op} \mu \ u.c. & \sqrt{x^{ op}\Sigma x} \leq \sigma^{\star} \end{array}$$

This problem is equivalent to the QP problem:

$$x^{\star} = \arg \min \frac{1}{2} x^{\top} \Sigma x - \gamma x^{\top} \mu$$

= $\gamma \Sigma^{-1} \mu$



(日) (同) (三) (三)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

王

MVO portfolios are sensitive to arbitrage factors

MVO portfolios are of the following form: $x^* \propto f(\Sigma^{-1})$.

The important quantity is then the information matrix $\mathscr{I} = \Sigma^{-1}$.

We have
$$\Sigma = V \Lambda V^ op$$
 and $\Sigma^{-1} = \left(V \Lambda V^ op
ight)^{-1} = V^{ op -1} \Lambda^{-1} V^{-1} = V \Lambda^{-1} V^ op$

If we consider the following example: $\sigma_1 = 20\%$, $\sigma_2 = 21\%$, $\sigma_3 = 10\%$ and $\rho_{i,i} = 80\%$, we obtain the following eigendecomposition:

	Covariance matrix Σ			Information matrix I		
Asset / Factor	1	2	3	1	2	3
1	65.35%	-72.29%	-22.43%	-22.43%	-72.29%	65.35%
2	69.38%	69.06%	-20.43%	-20.43%	69.06%	69.38%
3	30.26%	-2.21%	95.29%	95.29%	-2.21%	30.26%
Eigenvalue	8.31%	0.84%	0.26%	379.97	119.18	12.04
% cumulated	88.29%	97.20%	100.00%	74.33%	97.65%	100.00%
						•

 $12.04 \equiv 1/8.31\%$

Reverse order of eigenvectors

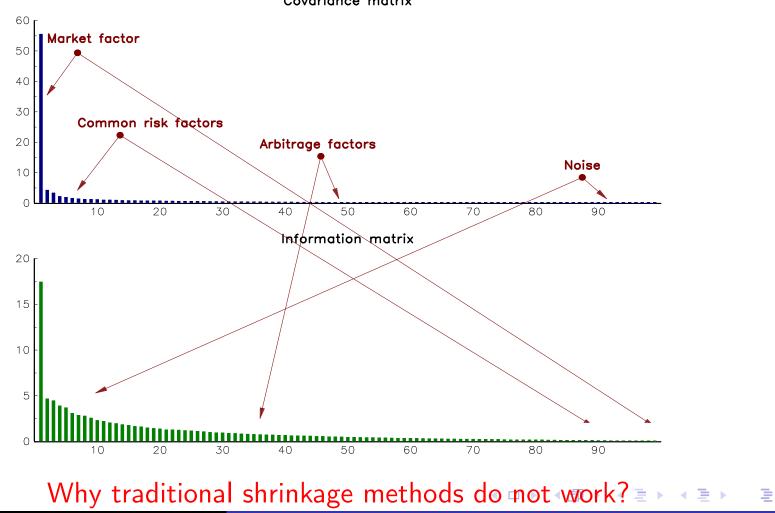
▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 $\mathcal{A} \cup \mathcal{A}$

Mean-variance optimized portfolios Risk budgeting portfolios MVO portfolios versus RB portfolios

Common factors versus idiosyncratic factors

Figure: PCA applied to the stocks of the FTSE index (June 2012)



Covariance matrix

Arbitrage factors and hedging portfolios

We consider the following regression model:

$$R_{i,t} = \beta_0 + \beta_i^{\top} R_t^{(-i)} + \varepsilon_{i,t}$$

- $R_t^{(-i)}$ denotes the vector of asset returns R_t excluding the *i*th asset
- $\varepsilon_{i,t} \sim \mathcal{N}(0, s_i^2)$
- R_i^2 is the *R*-squared of the linear regression

Information matrix

Stevens (1998) shows that the information matrix is given by:

$$\mathscr{I}_{i,i} = rac{1}{\hat{\sigma}_i^2 \left(1 - R_i^2\right)}$$

$$\mathscr{I}_{i,j} = -rac{\hat{eta}_{i,j}}{\hat{\sigma}_i^2 \left(1 - R_i^2
ight)} = -rac{\hat{eta}_{j,i}}{\hat{\sigma}_j^2 \left(1 - R_j^2
ight)}$$

na a

Mean-variance optimized portfolios Risk budgeting portfolios MVO portfolios versus RB portfolios

Arbitrage factors and hedging portfolios

Table: Hedging portfolios (in %) at the end of 2006

	SPX	SX5E	TPX	RTY	EM	US HY	EMBI	EUR	JPY	GSCI
SPX		58.6	6.0	150.3	-30.8	-0.5	5.0	-7.3	15.3	-25.5
SX5E	9.0		-1.2	-1.3	35.2	0.8	3.2	-4.5	-5.0	-1.5
TPX	0.4	-0.6		-2.4	38.1	1.1	-3.5	-4.9	-0.8	-0.3
RTY	48.6	-2.7	-10.4		26.2	-0.6	1.9	0.2	-6.4	5.6
EM	-4.1	30.9	69.2	10.9		0.9	4.6	9.1	3.9	33.1
ĪŪSĪHŢ	-5.0	53.5	160.0	-18.8	69.5		95.6	48.4	31.4	-211.7
EMBI	10.8	44.2	-102.1	12.3	73.4	19.4		-5.8	40.5	86.2
ĒŪR	-3.6	-14.7	-33.4	0.3	33.8	2.3	-1.4		56.7	48.2
JPY	6.8	-14.5	-4.8	-8.8	12.7	1.3	8.4	50.4		-33.2
GSCI -	-1.1	0.4	-0.2	0.8	10.7	-0.9	1.8	4.2	-3.3	
ŝi	0.3	0.7	0.9	0.5	0.7	0.1	0.2	0.4	0.4	1.2
R_i^2	83.0	47.7	34.9	82.4	60.9	39.8	51.6	42.3	43.7	12.1

▲□▶ ▲□▶ ▲□▶ ▲□▶

臣

Arbitrage factors and hedging portfolios

We finally obtain:

$$\mathbf{x}_{i}^{\star}\left(\gamma
ight)=\gammarac{\mu_{i}-\hat{eta}_{i}^{ op}\mu^{\left(-i
ight)}}{\widehat{s}_{i}^{2}}$$

From this equation, we deduce the following conclusions:

- The better the hedge, the higher the exposure. This is why highly correlated assets produces unstable MVO portfolios.
- 2 The long-short position is defined by the sign of $\mu_i \hat{\beta}_i^\top \mu^{(-i)}$. If the expected return of the asset is lower than the conditional expected return of the hedging portfolio, the weight is negative.

Markowitz diversification \neq Diversification of risk factors=Concentration on arbitrage factors

▲□▶ ▲□▶ ▲□▶ ▲□▶

Mean-variance optimized portfolios Risk budgeting portfolios MVO portfolios versus RB portfolios

Markowitz optimization and active management

The rules of the game

The mean-variance approach is one of the most aggressive active management models: it concentrates the portfolio on a small number of bets (idiosyncratic factors and arbitrage factors).

Traditional shrinkage approaches (RMT, Ledoit-Wolf, etc.) are not sufficient. This is why portfolio managers use discretionary constraints: $Cx \ge D$. Jagannathan and Ma (2003) showed that:

$$\tilde{\boldsymbol{\Sigma}} = \boldsymbol{\Sigma} - \left(\boldsymbol{C}^{\top}\boldsymbol{\lambda}\boldsymbol{1}^{\top} + \boldsymbol{1}^{\top}\boldsymbol{\lambda}\,\boldsymbol{C}^{\top}\right)$$

where λ is the vector of Lagrange coefficients associated to $Cx \ge D$.

 \Rightarrow Using constraints is equivalent to shrink the covariance matrix (Ledoit-Wolf) or to introduce relative views (Black-Litterman)

Mean-variance optimized portfolios Risk budgeting portfolios MVO portfolios versus RB portfolios

Weight budgeting versus risk budgeting

Let $x = (x_1, ..., x_n)$ be the weights of *n* assets in the portfolio. Let $\mathscr{R}(x_1, ..., x_n)$ be a coherent and convex risk measure. We have:

$$\mathcal{R}(x_1,\ldots,x_n) = \sum_{i=1}^n x_i \cdot \frac{\partial \mathcal{R}(x_1,\ldots,x_n)}{\partial x_i}$$
$$= \sum_{i=1}^n \mathrm{RC}_i (x_1,\ldots,x_n)$$

Let $b = (b_1, ..., b_n)$ be a vector of budgets such that $b_i \ge 0$ and $\sum_{i=1}^{n} b_i = 1$. We consider two allocation schemes:

Weight budgeting (WB)

$$x_i = b_i$$

Risk budgeting (RB)

$$\mathrm{RC}_i = b_i \cdot \mathscr{R}(x_1, \ldots, x_n)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

3

Mean-variance optimized portfolios Risk budgeting portfolios MVO portfolios versus RB portfolios

Traditional risk parity with the volatility risk measure

Let Σ be the covariance matrix of the assets returns. We assume that the risk measure $\Re(x)$ is the volatility of the portfolio $\sigma(x) = \sqrt{x^{\top}\Sigma x}$. We have:

$$\frac{\partial \mathscr{R}(x)}{\partial x} = \frac{\Sigma x}{\sqrt{x^{\top}\Sigma x}}$$

$$\operatorname{RC}_{i}(x_{1},...,x_{n}) = x_{i} \cdot \frac{(\Sigma x)_{i}}{\sqrt{x^{\top}\Sigma x}}$$

$$\sum_{i=1}^{n} \operatorname{RC}_{i}(x_{1},...,x_{n}) = \sum_{i=1}^{n} x_{i} \cdot \frac{(\Sigma x)_{i}}{\sqrt{x^{\top}\Sigma x}} = x^{\top} \frac{\Sigma x}{\sqrt{x^{\top}\Sigma x}} = \sigma(x)$$

The risk budgeting portfolio is defined by this system of equations:

$$\begin{cases} x_i \cdot (\Sigma x)_i = b_i \cdot (x^\top \Sigma x) \\ x_i \ge 0 \\ \sum_{i=1}^n x_i = 1 \end{cases}$$

(日) (同) (三) (三)

Mean-variance optimized portfolios Risk budgeting portfolios MVO portfolios versus RB portfolios

An example

Illustration

- 3 assets
- Volatilities are equal to 30%, 20% and 15%
- Correlations are set to 80% between the 1st asset and the 2nd asset, 50% between the 1st asset and the 3rd asset and 30% between the 2nd asset and the 3rd asset
- Budgets are set to 50%, 20% and 30%
- For the ERC (Equal Risk Contribution) portfolio, all the assets have the same risk budget

Weight budgeting (or traditional) approach

Accet	Weight	Marginal	Risk Contribution		
Asset		Risk	Absolute	Relative	
1	50.00%	29.40%	14.70%	70.43%	
2	20.00%	16.63%	3.33%	15.93%	
3	30.00%	9.49%	2.85%	13.64%	
Volatility 20.87%					

Risk budgeting approach

Asset	Weight	Marginal	Risk Contribution			
	weight	Risk	Absolute	Relative		
1	31.15%	28.08%	8.74%	50.00%		
2	21.90%	15.97%	3.50%	20.00%		
3	46.96%	11.17%	5.25%	30.00%		
Volatility	ty 17.49%					

ERC approach

Asset	Woight	Marginal	Risk Contribution		
	Weight	Risk	Absolute	Relative	
1	19.69%	27.31%	5.38%	33.33%	
2	32.44%	16.57%	5.38%	33.33%	
3	47.87%	11.23%	5.38%	33.33%	
Volatility			16.13%		

- - I

< 4 P→

< □ ▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

э.

Mean-variance optimized portfolios Risk budgeting portfolios MVO portfolios versus RB portfolios

The logarithmic barrier problem

Roncalli (2013) shows that:

$$x^{\star} = rgmin \mathscr{R}(x) - \lambda \sum_{i=1}^{n} b_i \ln x_i$$

 \Rightarrow CCD algorithm (Griveau-Billion *et al.*, 2013).

• The RB portfolio is a combination of the MR and WB portfolios:

$$x_i/b_i = x_j/b_j \quad (wb)$$

$$\partial_{x_i} \mathscr{R}(x) = \partial_{x_j} \mathscr{R}(x) \quad (mr)$$

$$RC_i/b_i = RC_j/b_j \quad (rb)$$

• The risk of the RB portfolio is between the risk of the MR portfolio and the risk of the WB portfolio:

$$\mathscr{R}(x_{\mathrm{mr}}) \leq \mathscr{R}(x_{\mathrm{rb}}) \leq \mathscr{R}(x_{\mathrm{wb}})$$

With risk budgeting, we always diminish the risk compared to the weight budgeting.

Mean-variance optimized portfolios Risk budgeting portfolios MVO portfolios versus RB portfolios

MVO portfolios versus RB portfolios

MVO portfolios

- Volatility optimization
- Marginal risk
- Sensitive to Σ^{-1}
- Arbitrage factors

RB portfolios

- Volatility diversification
- Risk contribution
- \bullet Sensitive to Σ
- Common risk factors

▲□▶ ▲□▶ ▲□▶ ▲□▶

 \Rightarrow Risk parity is the right approach for managing the diversification of **long-only** diversified portfolios.

And in the long/short case?

 $\mathcal{A} \mathcal{A} \mathcal{A}$

3

Which assets (common risk factors) to diversify?

- Traditional assets or risk premia
 - Stocks
 - Bonds
- Equity risk factors
- Alternative risk premia
- Illiquid assets
 - Private equity
 - Private debt
 - Real estate
 - Infrastructure

《曰》 《圖》 《臣》 《臣》

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Ξ.

Factor investing Alternative risk premia

What is the rationale for factor investing?

How to define risk factors?

Risk factors are common factors that explain the cross-section variance of expected returns

- 1964: Market or MKT (or BETA) factor
- 1972: Low beta or BAB factor
- 1981: Size or SMB factor
- 1985: Value or HML factor
- 1991: Low volatility or VOL factor
- 1993: Momentum or WML factor
- 2000: Quality or QMJ factor

Factor investing is a subset of smart (new) beta

< ロ > < 同 > < 三 > < 三 > < 三 > <

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Э.

Factor investing Alternative risk premia

What is the rationale for factor investing?

At the security level, there is a lot of idiosyncratic risk or alpha:

	Common	Idiosyncratic
	Risk	Risk
GOOGLE	47%	53%
NETFLIX	24%	76%
MASTERCARD	50%	50%
NOKIA	32%	68%
TOTAL	89%	11%
AIRBUS	56%	44%

Carhart's model with 4 factors, 2010-2014 Source: Author's research

▲□▶ ▲□▶ ▲□▶ ▲□▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

E

Factor investing Alternative risk premia

What is the rationale for factor investing?

• Jensen (1968) – How to measure the performance of active management?

$$R_t^F = lpha + eta R_t^{MKT} + arepsilon_t$$

 $\Rightarrow \bar{\alpha} = -\text{fees}$

• Hendricks et al. (1993) – Hot Hands in Mutual Funds

$$\operatorname{cov}\left(lpha_{t}^{\mathsf{Jensen}}, lpha_{t-1}^{\mathsf{Jensen}}
ight) > 0$$

where:

$$\alpha_t^{\mathsf{Jensen}} = R_t^F - \beta^{\mathsf{MKT}} R_t^{\mathsf{MKT}}$$

 \Rightarrow The persistence of the performance of active management is due to the **persistence of the alpha**

▲□▶ ▲□▶ ▲□▶ ▲□▶ →

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Э.

Factor investing Alternative risk premia

What is the rationale for factor investing?

• Grinblatt *et al.* (1995) – Momentum investors versus Value investors

"77% of mutual funds are momentum investors"

• Carhart (1997):

$$\begin{pmatrix} \operatorname{cov} \left(\alpha_{t}^{\operatorname{Jensen}}, \alpha_{t-1}^{\operatorname{Jensen}} \right) > 0 \\ \operatorname{cov} \left(\alpha_{t}^{\operatorname{Carhart}}, \alpha_{t-1}^{\operatorname{Carhart}} \right) = 0 \end{cases}$$

where:

$$\alpha_t^{\text{Carhart}} = R_t^F - \beta^{\text{MKT}} R_t^{\text{MKT}} - \beta^{\text{SMB}} R_t^{\text{SMB}} - \beta^{\text{HML}} R_t^{\text{HML}} - \beta^{\text{WML}} R_t^{\text{WML}}$$

 \Rightarrow The (short-term) persistence of the performance of active management is due to the (short-term) **persistence of the performance of risk factors**

▲□▶ ▲□▶ ▲□▶ ▲□▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

3

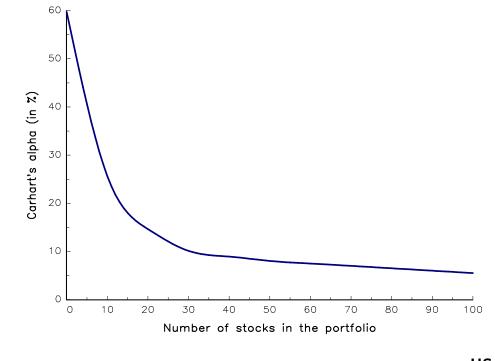
Factor investing Alternative risk premia

What is the rationale for factor investing?

David Swensen's rule for effective stock picking

Concentrated portfolio \Rightarrow No more than 20 bets?

Figure: Carhart's alpha decreases with the number of holding assets



 $\mathcal{A} \subset \mathcal{A}$

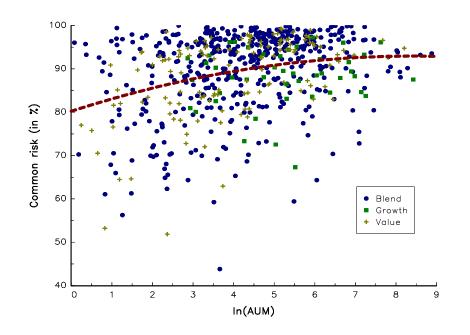
20 / 69

< □ ▶

Factor investing Alternative risk premia

What is the rationale for factor investing?

Figure: What proportion of return variance is explained?



Morningstar database, 880 mutual funds, European equities Carhart's model with 4 factors, 2010-2014 Source: Author's research How many bets are there in large portfolios of institutional investors?

- 1986 Less than 10% of institutional portfolio return is explained by security picking and market timing (Brinson *et al.*, 1986)
- 2009 Professors' Report on the Norwegian GPFG: Risk factors represent 99.1% of the fund return variation (Ang *et al.*, 2009)

21 / 69

 $\mathcal{A} \mathcal{A} \mathcal{A}$

∍

-∢ ∃ ▶

Factor investing Alternative risk premia

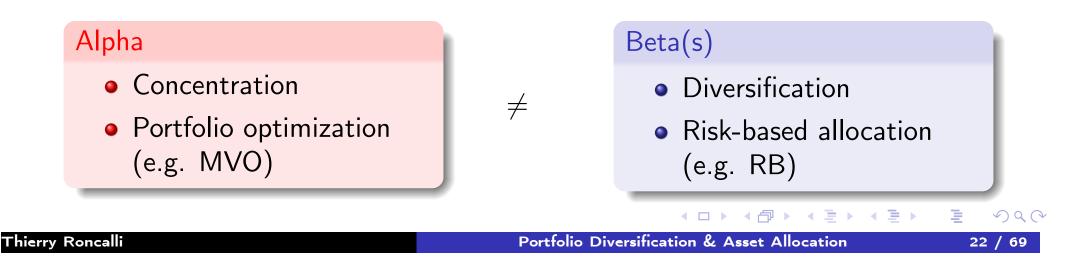
What is the rationale for factor investing?

What lessons can we draw from this?

Idiosyncratic risks and specific bets disappear in (large) diversified portfolios. Performance of institutional investors is then exposed to risk factors.

Alpha is not scalable, but risk factors are scalable.

 \Rightarrow Risk factors are the only bets that are compatible with diversification.



Factor investing Alternative risk premia

A new opportunity for active managers

- Active management does not reduce to stock picking
- Understanding the diversification of equity portfolios
- New tactical products

Approaches of equity investing

- Pure stock picking process (with a limited number of bets)
- Pactor-based stock picking process
- Output Allocation between factor-based portfolios

▲□▶ ▲□▶ ▲□▶ ▲三▶

23 / 69

Factor investing Alternative risk premia

A new opportunity for active managers

Figure: Heatmap of risk factors (before 2008) – MSCI Europe

2000	2001	2002	2003	2004	2005	2006	2007	2008
Value	Value	Momentum	Value	Low Beta	Size	Momentum	Momentum	Low Beta
25.5%	6.2%	-3.3%	66.9%	31.1%	32.1%	39.1%	10.1%	-40.9%
Size	Momentum	Low Beta	Size	Value	Value	Size	Market	Momentum
23.9%	-1.7%	-6.8%	40.6%	30.4%	31.5%	34.3%	2.7%	-41.4%
Quality	Low Beta	Value	Momentum	Momentum	Quality	Low Beta	Quality	Market
9.5%	-2.0%	-18.7%	27.5%	30.1%	27.9%	31.5%	1.8%	-43.6%
Low Beta	Size	Size	Low Beta	Quality	Momentum	Value	Low Beta	Size
6.2%	-7.5%	-18.9%	23.9%	29.5%	26.5%	25.5%	-1.0%	-49.0%
Market	Quality	Quality	Quality	Size	Low Beta	Quality	Size	Quality
-2.2%	-9.1%	-26.0%	19.9%	28.7%	26.1%	24.1%	-4.4%	-53.9%
Momentum	Market	Market	Market	Market	Market	Market	Value	Value
-2.3%	-15.5%	-30.7%	15.3%	12.2%	26.1%	19.6%	-9.0%	-63.6%

Source: Richard and Roncalli (2015)

▲□▶ ▲□▶ ▲□▶ ▲□▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

E

Factor investing Alternative risk premia

A new opportunity for active managers

Figure: Heatmap of risk factors (after 2008) – MSCI Europe

2008	2009	2010	2011	2012	2013	2014	2015	2016
Low Beta	Value	Quality	Low Beta	Quality	Momentum	Size	Size	Momentum
-40.9%	65.7%	25.3%	-2.2%	24.0%	29.8%	11.5%	16.1%	-3.0%
Momentum	Size	Momentum	Quality	Momentum	Value	Value	Quality	Low Beta
-41.4%	51.6%	22.2%	-3.2%	24.0%	28.4%	10.8%	16.1%	-7.1%
Market	Quality	Size	Market	Value	Quality	Quality	Low Beta	Market
-43.6%	42.7%	19.2%	-8.1%	18.7%	21.0%	8.6%	15.7%	-7.2%
Size	Market	Low Beta	Momentum	Market	Market	Low Beta	Momentum	Quality
-49.0%	31.6%	17.9%	-9.1%	17.3%	19.8%	8.1%	12.3%	-7.7%
Quality	Momentum	Market	Size	Low Beta	Low Beta	Market	Market	Size
-53.9%	22.3%	11.1%	-25.0%	15.8%	17.0%	6.8%	8.2%	-12.1%
Value	Low Beta	Value	Value	Size	Size	Momentum	Value	Value
-63.6%	18.8%	7.3%	-35.3%	10.7%	13.9%	5.2%	-1.5%	-14.8%

Source: Richard and Roncalli (2015)

▲□▶ ▲□▶ ▲□▶ ▲□▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

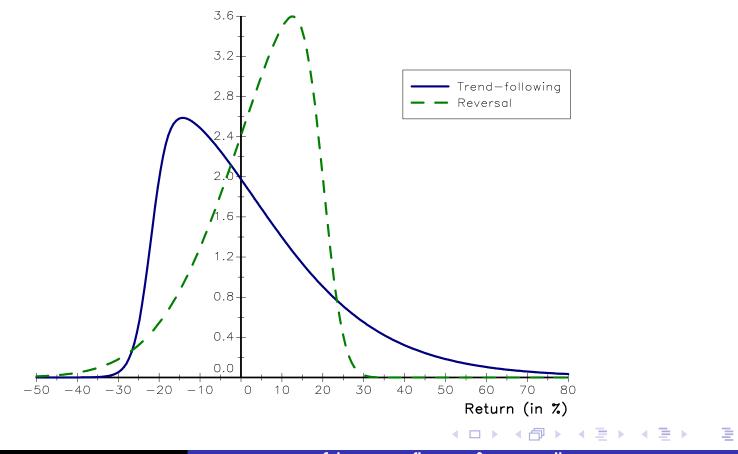
E

Factor investing Alternative risk premia

Risk premia & non-diversifiable risk

Consumption-based model (Lucas, 1978; Cochrane, 2001)

A risk premium is a compensation for accepting (systematic) risk in bad times.



Skewness risk premia & market anomalies

Characterization of alternative risk premia

- An alternative risk premium (ARP) is a risk premium, which is not traditional
 - Traditional risk premia (TRP): equities, sovereign/corporate bonds
 - Currencies and commodities are not TRP
- The drawdown of an ARP must be positively correlated to bad times
 - Risk premia \neq insurance against bad times
 - (SMB, HML) \neq WML
- Risk premia are an increasing function of the volatility and a decreasing function of the skewness

In the market practice, alternative risk premia recovers:

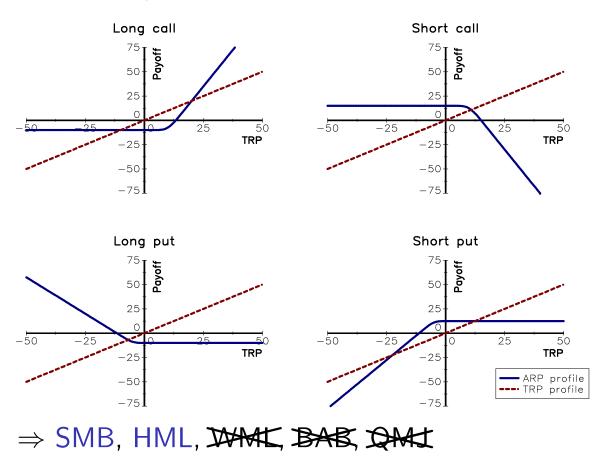
- Skewness risk premia (or pure risk premia), which present high negative skewness and potential large drawdown
- Markets anomalies

< ロ > < 同 > < 三 > < 三 > <

Factor investing Alternative risk premia

Payoff function of alternative risk premia

Figure: Which option profile may be considered as a skewness risk premium?



- Long (risk adverse)
- Short call (market anomaly)
- Longout (insurance)
- Short put

▲□▶ ▲□▶ ▲□▶ ▲□▶

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

王

Factor investing Alternative risk premia

A myriad of alternative risk premia?

Figure: Mapping of ARP candidates

Risk Factor	Equities	Rates	Credit	Currencies	Commodities
Carry	Dividend Futures High Dividend Yield	FRB TSS CTS	FRB	FRB	FRB TSS CTS
Liquidity	Amihud liquidity	Turn-of-the-month	Turn-of-the-month		Turn-of-the-month
Momentum	Cross-section Time-series	Cross-section Time-series	Time-Series	Cross-section Time-series	Cross-section Time-series
Reversal	Time-series Variance	Time-series		Time-series	Time-series
Value	Value	Value	Value	PPP Economic model	Value
Volatility	Carry Term structure	Carry Term structure		Carry	Carry
Event	Buyback Merger arbitrage				
Growth	Growth				
Low volatility	Low volatility				
Quality	Quality				
Size	Size				

▲□▶ ▲□▶ ▲三▶ ▲三▶

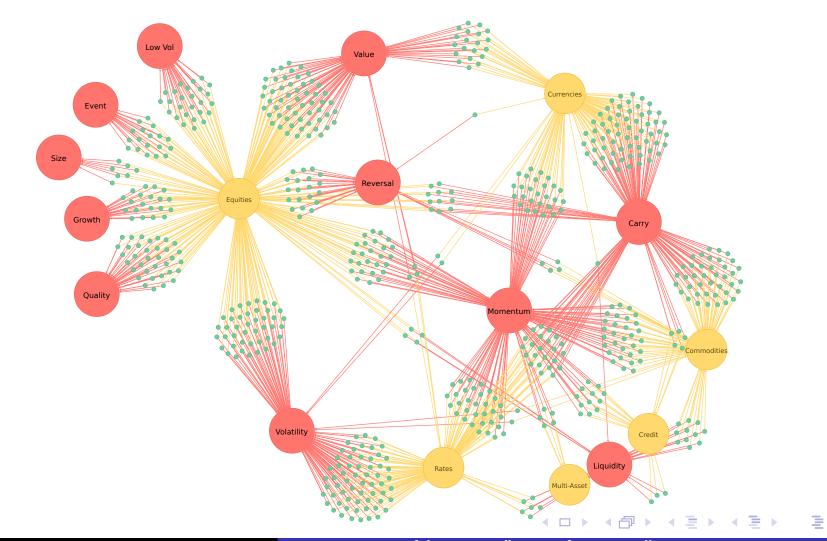
 $\mathcal{A} \mathcal{A} \mathcal{A}$

Ξ

Factor investing Alternative risk premia

The example of bank's proprietary indices

Figure: Graph database of bank's proprietary indices



SQ (?

Factor investing Alternative risk premia

The identification problem

What is the problem?

- For traditional risk premia, the cross-correlation between several indices replicating the TRP is higher than 90%
- For alternative risk premia, the cross-correlation between several indices replicating the ARP is between -80% and 100%

Examples (2000-2015)

- In the case of the equities/US traditional risk premium, the cross-correlation between S&P 500, FTSE USA, MSCI USA, Russell 1000 and Russell 3000 indices is between 99.65% and 99.92%
- In the case of the equities/volatility/carry/US risk premium, the cross-correlation between the 14 short volatility indices is between -34.9% and 98.6% (mean = 43.0%, $Q_3 Q_1 > 35\%$)

< 口 > < 同 > < 三 > < 三 >

 $\mathcal{A} \mathcal{A} \mathcal{A}$

э.

Factor investing Alternative risk premia

The identification problem

Step 1 Define the set of relevant indices (qualitative due diligence).

Step 2 Given an initial set of indices, the underlying idea is to find the subset, whose elements present very similar patterns. For that, we use the deletion algorithm using the R² statistic:

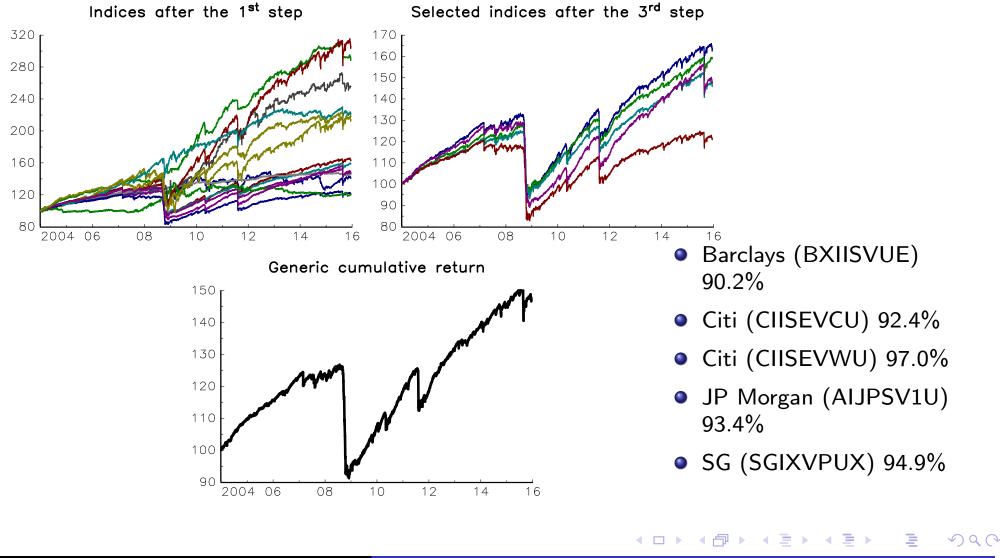
$$R_{k,t} = \alpha_k + \beta_k R_t^{(-k)} + \varepsilon_{k,t} \quad \Rightarrow \quad \mathbf{R}_k^2$$

- Step 3 The algorithm stops when the similarity is larger than a given threshold for all the elements of the subset (e.g. $\mathbf{R}_k^2 > \mathbf{R}_{\min}^2 = 70\%$).
- Step 4 The generic backtest of the ARP is the weighted average of the performance of the subset elements

< ロ > < 同 > < 三 > < 三 > <

Factor investing Alternative risk premia

Illustration with the volatility carry risk premium



Factor investing Alternative risk premia

ValueCarry and momentum everywhere

Figure: Mapping of relevant ARP²

Risk Factor	Equities	Rates	Credit	Currencies	Commodities
Carry	Dividend Futures High Dividend Yield	FRB TSS CTS	FRB	FRB	FRB TSS CTS
Liquidity	Amihud liquidity	Turn-of-the-month	Turn-of-the-month		Turn-of-the-month
Momentum	Cross-section Time-series	Cross-section Time-series	Time-Series	Cross-section Time-series	Cross-section Time-series
Reversal	Time-series Variance	Time-series		Time-series	Time-series
Value	Value	Value	Value	PPP Economic model	Value
Volatility	Carry Term structure	Carry Term structure		Carry	Carry
Event	Buyback Merger arbitrage				
Growth	Growth				
Low volatility	Low volatility				
Quality	Quality				
Size	Size				

²Based on bank's proprietary indices.

▲□▶ ▲□▶ ▲□▶ ▲□▶

34 / 69

 $\mathcal{A} \mathcal{A} \mathcal{A}$

王

Factor investing Alternative risk premia

ValueCarry and momentum everywhere

- Value Carry and momentum everywhere
- Some ARP candidates are not relevant (e.g. liquidity premium in equities, rates and currencies; reversal premium using variance swaps; value premium in rates and commodities; dividend premium; volatility premium in currencies and commodities; correlation premium; seasonality premium.)
- Hierarchy of ARP
- Equities value, carry, low volatility, volatility/carry, momentum, quality, growth, size, event, reversal

Rates volatility/carry, momentum, carry

Currencies carry, momentum, value

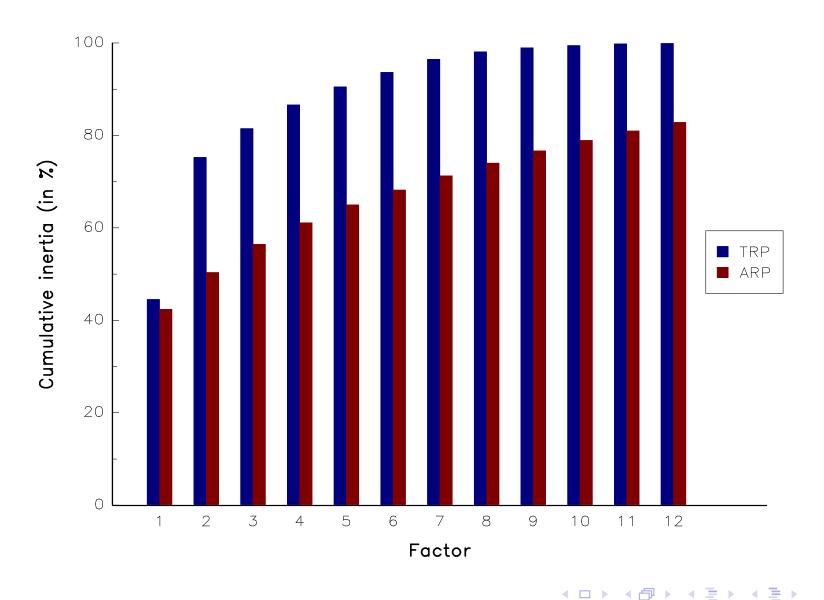
Commodities carry, momentum, liquidity

• Carry recovers different notions: FRB (Forward Rate Bias), TSS (Term Structure Slope) and CTS (Cross Term Structure).

イロト イヨト イヨト

Factor investing Alternative risk premia

Volatility diversification



590

₹.

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

How to diversify (common risk factors)?

- Volatility diversification
- Skewness diversification
- Liquidity diversification

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ξ

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

Correlation and diversification

Consider a portfolio with 2 assets: $R(x) = x_1R_1 + x_2R_2$. We have:

$$\operatorname{var}(R(x)) = x_1^2 \sigma_1^2 + x_2^2 \sigma_2^2 + 2x_1 x_2 \rho \sigma_1 \sigma_2$$

Best solution in terms of volatility diversification

- Long-only portfolios: ho=-1
- Long/short portfolios: ho=0

In long-only portfolios, volatility diversification consists in finding assets with negative correlations. In long/short portfolios, volatility diversification consists in finding assets with zero correlations.

Remark

In long/short portfolios, a correlation of $-\rho$ is equivalent to a correlation of $+\rho$.

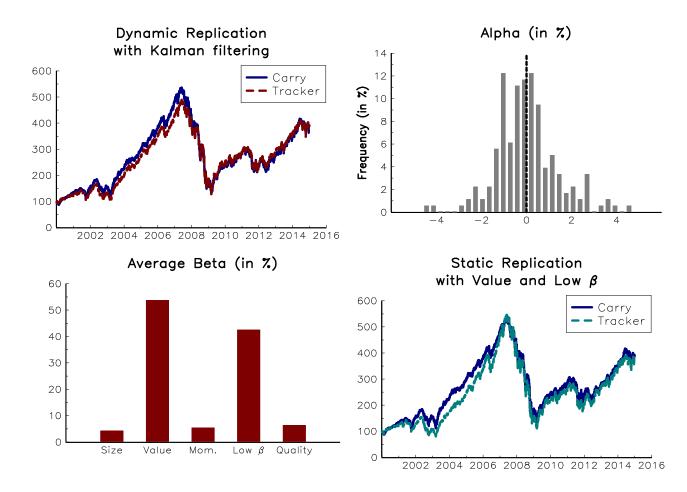
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

Dependence between risk factors

Figure: Value, low beta and carry are not orthogonal risk factors



Source: Author's calculation.

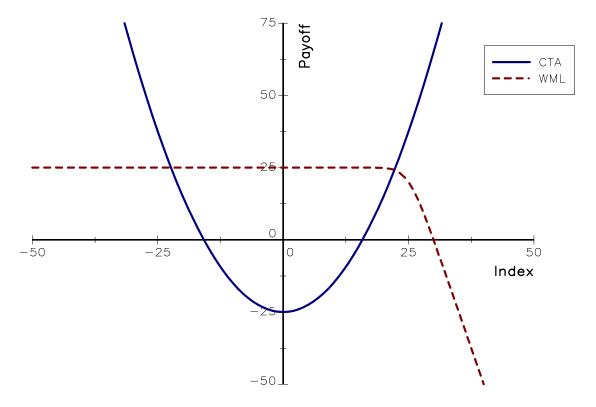
< □ ▶

 $\mathcal{A} \subset \mathcal{A}$

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

TRP and non-linear payoff functions

Figure: WML does not exhibit a CTA option profile



Source: Cazalet and Roncalli (2014)

∃►

- Cross-section momentum \neq Time-series momentum
- Long-only momentum \neq Long/short momentum

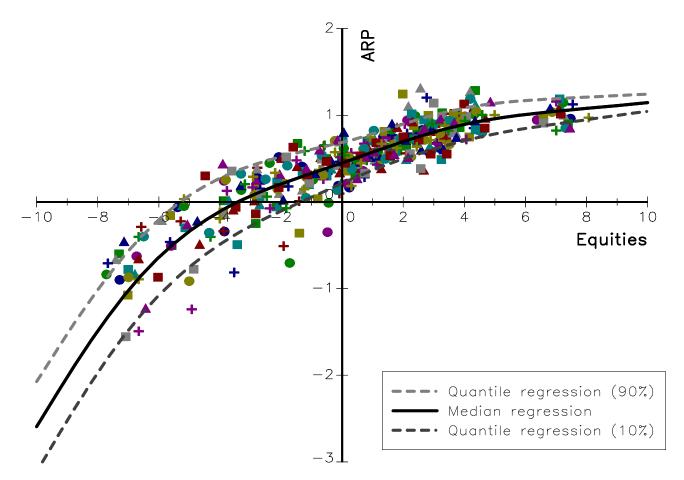
SQA

王

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

TRP and non-linear payoff functions

Figure: Payoff function of the US short volatility strategy



▲□▶ ▲□▶ ▲三▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

王

< ⊒ >

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

The skewness puzzle

- ARP are not all-weather strategies:
 - Extreme risks of ARP are high and may be correlated
 - Aggregation of skewness is not straightforward

Skewness aggregation \neq volatility aggregation

When we accumulate long/short skewness risk premia in a portfolio, the volatility of this portfolio decreases dramatically, but its skewness risk generally increases!

• Skewness diversification \neq volatility diversification

$$egin{array}{rll} \sigma\left(X+Y
ight)&\leq&\sigma\left(X
ight)+\sigma\left(X
ight)\ \gamma_{1}\left(X+Y
ight)&\nleq&\gamma_{1}\left(X
ight)+\gamma_{1}\left(Y
ight) \end{array}$$

 \Rightarrow Skewness is not a convex risk measure

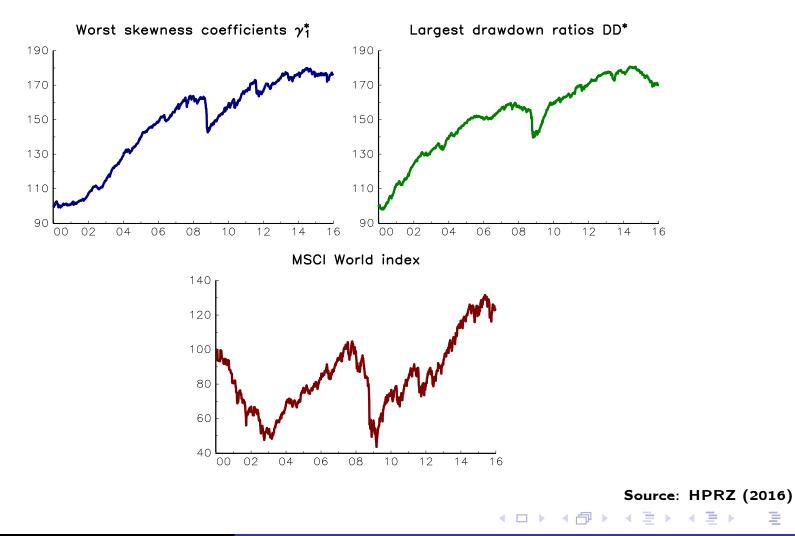
▲□▶ ▲□▶ ▲□▶ ▲三▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

The skewness puzzle

Figure: Skewness aggregation of L/S alternative risk premia



Thierry Roncalli

Portfolio Diversification & Asset Allocation

43 / 69

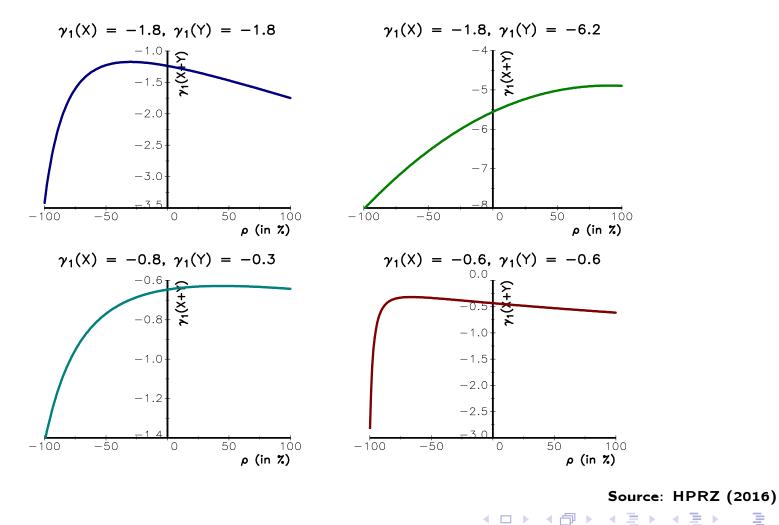
 $\mathcal{A} \mathcal{A} \mathcal{A}$

臣

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

The skewness puzzle

Figure: Skewness aggregation in the case of the bivariate log-normal distribution



 $\mathcal{O} \mathcal{Q} \mathcal{O}$

王

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

The skewness puzzle

Why?

• Volatility diversification works very well with L/S risk premia:

$$\sigma(R(x))\approx \frac{\bar{\sigma}}{\sqrt{n}}$$

• Drawdown diversification don't work very well because bad times are correlated and are difficult to hedge:

$$DD(x) \approx \overline{DD}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

王

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

The jump-diffusion representation

• *n* risky assets represented by the vector of prices $S_t = (S_{1,t}, \ldots, S_{n,t})$ with:

$$\begin{cases} dS_t = diag(S_t) dL_t \\ dL_t = \mu dt + \Sigma^{1/2} dW_t + dZ_t \end{cases}$$

where Z_t is a pure *n*-dimensional jump process.

• We assume that the jump process Z_t is a compound Poisson process:

$$Z_t = \sum_{i=1}^{N_t} Z_i$$

where $N_t \sim \mathscr{P}(\lambda)$ and $Z_i \sim \mathscr{N}\left(\tilde{\mu}, \tilde{\Sigma}\right)$.

The characteristic function of asset returns $R_t = (R_{1,t}, \ldots, R_{n,t})$ for the holding period dt may be approximated by:

$$\mathbb{E}\left[e^{-iu\cdot R_t}\right] \approx (1-\lambda \,\mathrm{d}t) \cdot e^{\left(iu^\top \mu - \frac{1}{2}u^\top \Sigma u\right) \,\mathrm{d}t} + (\lambda \,\mathrm{d}t) \cdot e^{iu^\top (\mu \,\mathrm{d}t + \tilde{\mu}) - \frac{1}{2}u^\top (\Sigma \,\mathrm{d}t + \tilde{\Sigma})u}$$

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

The Gaussian mixture representation

We consider a Gaussian mixture model with two regimes to define R_t :

- **1** The continuous component, which has the probability $(1 \lambda dt)$ to occur, is driven by the Gaussian distribution $\mathcal{N}(\mu dt, \Sigma dt)$;
- 2 The jump component, which has the probability λdt to occur, is driven by the Gaussian distribution $\mathcal{N}(\tilde{\mu}, \tilde{\Sigma})$.

The multivariate density function of R_t is:

$$f(y) = \frac{1 - \lambda \, \mathrm{d}t}{(2\pi)^{n/2} |\Sigma \, \mathrm{d}t|^{1/2}} e^{-\frac{1}{2} (y - \mu \, \mathrm{d}t)^\top (\Sigma \, \mathrm{d}t)^{-1} (y - \mu \, \mathrm{d}t)} + \frac{\lambda \, \mathrm{d}t}{(2\pi)^{n/2} |\Sigma \, \mathrm{d}t + \tilde{\Sigma}|^{1/2}} e^{-\frac{1}{2} (y - (\mu \, \mathrm{d}t + \tilde{\mu}))^\top (\Sigma \, \mathrm{d}t + \tilde{\Sigma})^{-1} (y - (\mu \, \mathrm{d}t + \tilde{\mu}))}$$

The characteristic function of R_t is equal to:

$$\mathbb{E}\left[e^{-iu\cdot R_t}\right] = (1 - \lambda \,\mathrm{d}t) \cdot e^{\left(iu^\top \mu - \frac{1}{2}u^\top \Sigma u\right) \,\mathrm{d}t} + (\lambda \,\mathrm{d}t) \cdot e^{iu^\top (\mu \,\mathrm{d}t + \tilde{\mu}) - \frac{1}{2}u^\top (\Sigma \,\mathrm{d}t + \tilde{\Sigma})u}$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

Distribution function of the portfolio's return

Let $x = (x_1, \ldots, x_n)$ be the vector of weights in the portfolio. We have:

$$R(x) = Y = B_1 \cdot Y_1 + B_2 \cdot Y_2$$

where:

1

•
$$B_1 \sim B(\pi_1), B_2 = 1 - B_1 \sim B(\pi_2), \pi_1 = 1 - \lambda \text{ and } \pi_2 = \lambda$$

 $(\underline{\mathscr{H}} : \underline{dt} = 1);$
• $Y_1 \sim \mathscr{N}(\mu_1(x), \sigma_1^2(x)), \mu_1(x) = x^\top \mu \text{ and } \sigma_1^2(x) = x^\top \Sigma x;$
• $Y_2 \sim \mathscr{N}(\mu_2(x), \sigma_2^2(x)), \mu_2(x) = x^\top (\mu + \tilde{\mu}) \text{ and}$
 $\sigma_2^2(x) = x^\top (\Sigma + \tilde{\Sigma}) x.$

 \Rightarrow The portfolio's return R(x) has the following density function:

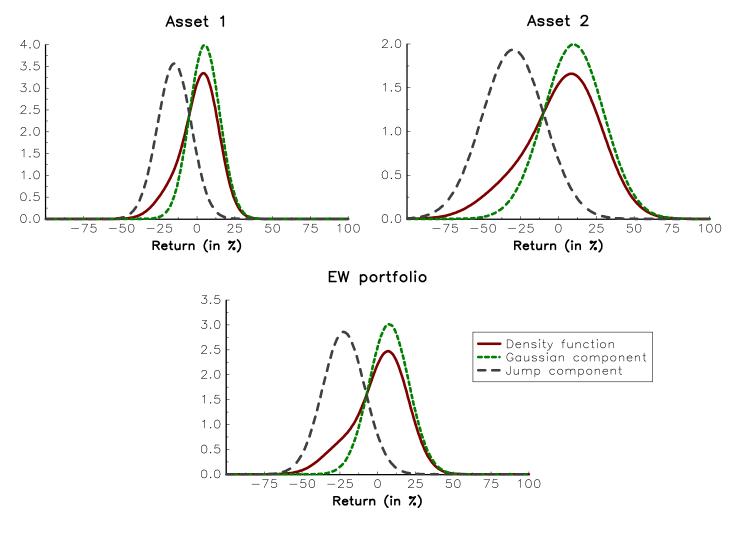
$$\begin{aligned} f(y) &= & \pi_1 f_1(y) + \pi_2 f_2(y) \\ &= & (1 - \lambda) \frac{1}{\sigma_1(x)} \phi \left(\frac{y - \mu_1(x)}{\sigma_1(x)} \right) + \lambda \frac{1}{\sigma_2(x)} \phi \left(\frac{y - \mu_2(x)}{\sigma_2(x)} \right) \end{aligned}$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Ξ

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

Distribution function of the portfolio's return



Parameters: $\mu_1 = 5\%$, $\sigma_1 = 10\%$, $\tilde{\mu}_1 = -20\%$, $\tilde{\sigma}_1 = 5\%$, $\mu_2 = 10\%$, $\sigma_2 = 20\%$, $\tilde{\mu}_2 = -40\%$, $\tilde{\sigma}_2 = 5\%$, $\rho = 50\%$, $\tilde{\rho} = 60\%$ and $\lambda = 0.20$.

Thierry Roncalli

Portfolio Diversification & Asset Allocation

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

Relationship between jump risk and skewness risk

The skewness of R(x) is equal to:

$$\gamma_{1} = \frac{\left(\lambda - \lambda^{2}\right) \left(\left(1 - 2\lambda\right) \left(x^{\top} \tilde{\mu}\right)^{3} + 3\left(x^{\top} \tilde{\mu}\right) \left(x^{\top} \tilde{\Sigma} x\right)\right)}{\left(x^{\top} \Sigma x + \lambda x^{\top} \tilde{\Sigma} x + (\lambda - \lambda^{2}) \left(x^{\top} \tilde{\mu}\right)^{2}\right)^{3/2}}$$

The portfolio exhibits skewness, except for some limit cases:

$$\gamma_1 = 0 \Leftrightarrow x^ op ilde{\mu} = 0 \, \, ext{or} \, \, \lambda = 0 \, \, ext{or} \, \, \lambda = 1$$

We have:

- If $x^{ op} \tilde{\mu} > 0$, then $\gamma_1 > 0$;
- If $x^{\top} \tilde{\mu} < 0$, then $\gamma_1 < 0$ in most cases.

 \Rightarrow We retrieve the result of Hamdan *et al.* (2016):

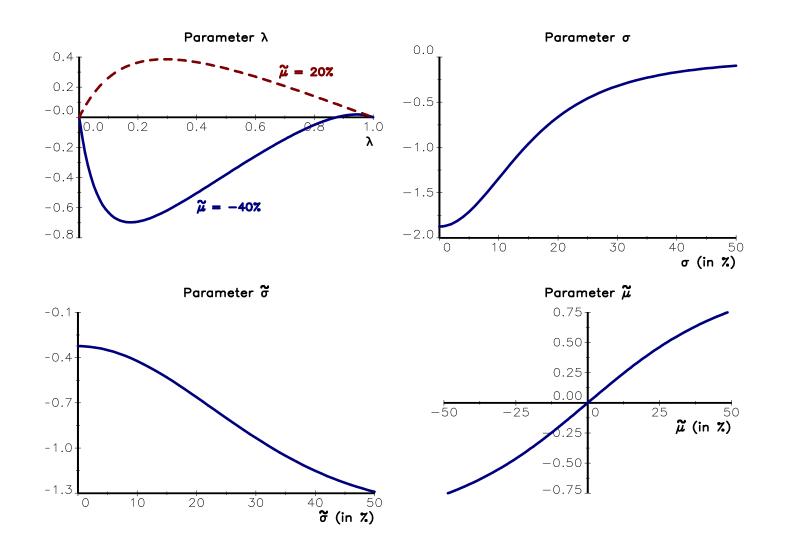
Skewness risk is maximum when volatility risk is minimum

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

Relationship between jump risk and skewness risk



Parameters: $\sigma = 20\%$, $\tilde{\mu} = -40\%$, $\tilde{\sigma} = 20\%$ and $\lambda = 25\%$.

5900

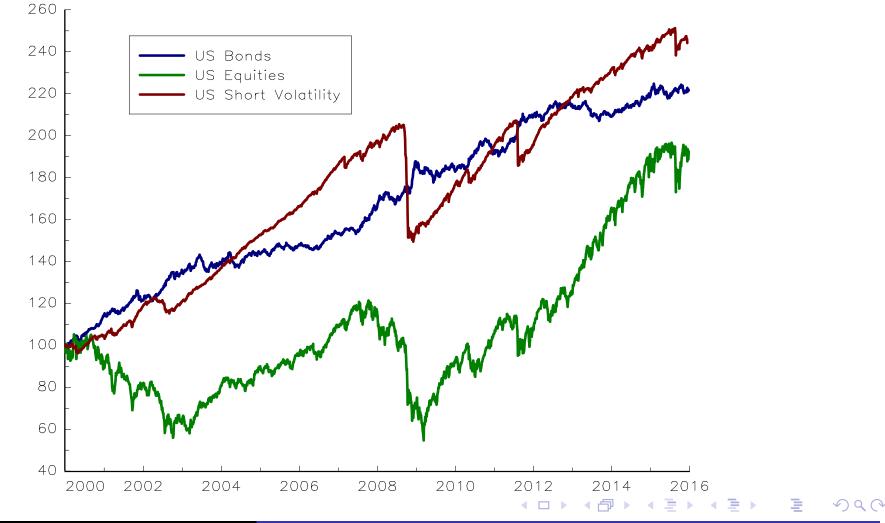
1

∃ →

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

The Equity/Bond/Volatility asset mix policy

Figure: Cumulative performance of US bonds, US equities and US short volatility



Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

Statistics

Table: Worst returns (in %)

Asset	Daily	Weekly	Monthly	Annually	Maximum
Bonds	-1.67	-2.81	-4.40	-3.41	-6.03
Equities	-9.03	-18.29	-29.67	-49.69	-55.25
Carry	-6.82	-11.04	-23.43	-23.37	-27.30

Table: Skewness coefficients

Asset	Daily	Weekly	Monthly	Annually	Volatility
Bonds	-0.12	-0.17	0.07	0.22	4.17
Equities	0.01	-0.44	-0.81	-0.57	18.38
Carry	-7.24	-5.77	-6.32	-2.23	5.50

▲□▶ ▲□▶ ▲□▶ ▲□▶

5900

Ξ.

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

Calibration of the model

Table: Estimation of the mixture model when $\lambda dt = 0.5\%$ (weekly model)

Regime	Asset	μ_i	σ_i		$ ho_{i,j}$	
	Bonds	5.38	4.17	100.00		
Normal	Equities	7.89	15.64	-36.80	100.00	
	Carry	10.10	2.91	-25.17	57.43	100.00
Regime	Asset	$\tilde{\mu}_i$	$\tilde{\sigma}_i$		$ ilde{ ho}_{i,j}$	
	Bonds	0.00	0.00	100.00		
Jump	Equities	-1.20	6.76	0.00	100.00	
	Carry	-2.23	2.57	0.00	60.45	100.00

▲□▶ ▲□▶ ▲□▶ ▲□▶ -

590

=

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

Impact of the jump component

Figure: PDF of asset returns (weekly model)



 $\mathcal{A} \mathcal{A} \mathcal{A}$

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

The expected shortfall risk measure

Definition of the expected shortfall

$$\mathrm{ES}_{\alpha}(x) = \mathbb{E}\left[L(x) \mid L(x) \ge \mathrm{VaR}_{\alpha}(x)\right]$$

where L(x) = -R(x) is the portfolio's loss.

We obtain:

 $\mathrm{ES}_{\alpha}(x) = (1 - \lambda) \cdot \varphi(\mathrm{VaR}_{\alpha}(x), \mu_{1}(x), \sigma_{1}(x)) + \lambda \cdot \varphi(\mathrm{VaR}_{\alpha}(x), \mu_{2}(x), \sigma_{2}(x))$ where the function $\varphi(a, b, c)$ is defined by:

$$\varphi(a,b,c) = \frac{c}{1-\alpha}\phi\left(\frac{a+b}{c}\right) - \frac{b}{1-\alpha}\Phi\left(-\frac{a+b}{c}\right)$$

Here, the value-at-risk $VaR_{\alpha}(x)$ is the root of the following equation:

$$(1-\lambda) \cdot \Phi\left(\frac{\operatorname{VaR}_{\alpha}(x) + \mu_{1}(x)}{\sigma_{1}(x)}\right) + \lambda \cdot \Phi\left(\frac{\operatorname{VaR}_{\alpha}(x) + \mu_{2}(x)}{\sigma_{2}(x)}\right) = \alpha$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

王

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

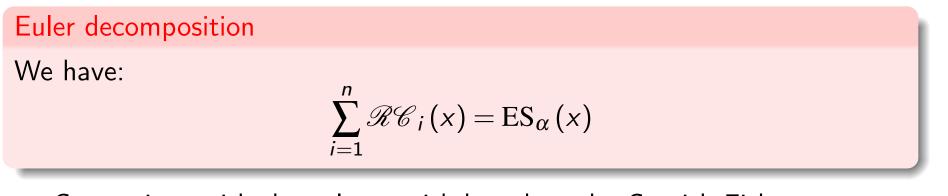
Analytical expression of risk contributions

We obtain a complicated expression of the risk contribution:

$$\mathscr{RC}_i(x) = x_i \frac{\partial \mathrm{ES}_{\alpha}(x)}{\partial x_i} = \dots$$

But it is an analytical formula!

 \Rightarrow No numerical issues for implementing the model



 \Rightarrow Comparison with the value-at-risk based on the Cornish-Fisher expansion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

Risk budgeting portfolios

The RB portfolio is defined by the following non-linear system:

$$egin{aligned} & \mathscr{RC}_i\left(x
ight)=b_i\mathscr{R}\left(x
ight)\ b_i>0\ x_i\geq 0\ \sum_{i=1}^n b_i=1\ \sum_{i=1}^n x_i=1 \end{aligned}$$

where b_i is the ex-ante risk budget of asset *i* expressed in relative terms.

Numerical solution of the RB portfolio

$$y^{\star} = \arg\min \mathrm{ES}_{\alpha}(y) - \sum_{i=1}^{n} b_i \ln y_i \quad \mathrm{u.c.} \quad y \geq \mathbf{0}$$

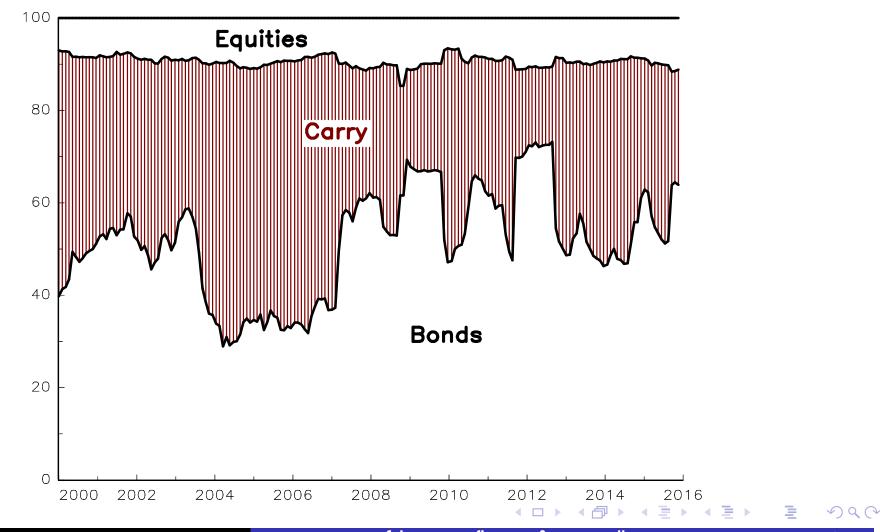
The RB portfolio corresponds to the normalized portfolio:

$$x_i^{\star} = \frac{y_i^{\star}}{\sum_{j=1}^n y_j^{\star}}$$

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

Risk allocation

Figure: Volatility-based ERC portfolio



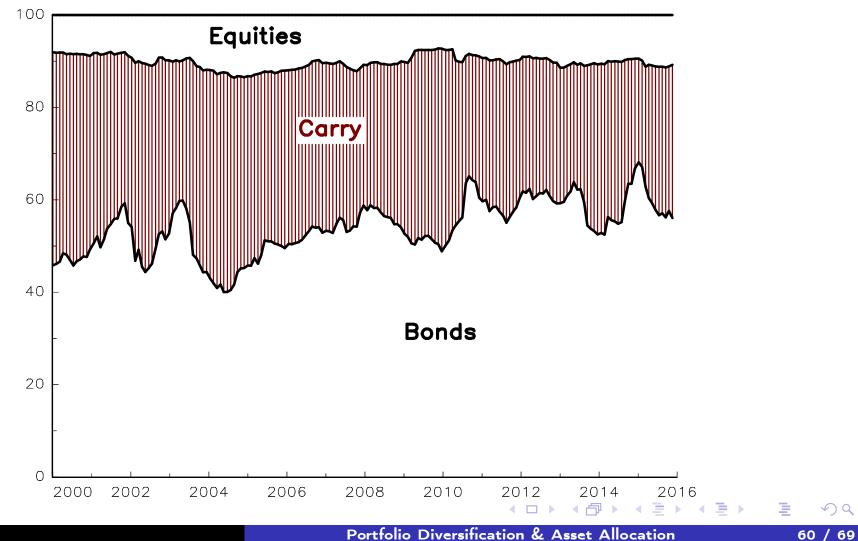
Portfolio Diversification & Asset Allocation

59 / 69

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

Risk allocation

Figure: Skewness-based ERC portfolio



Thierry Roncalli

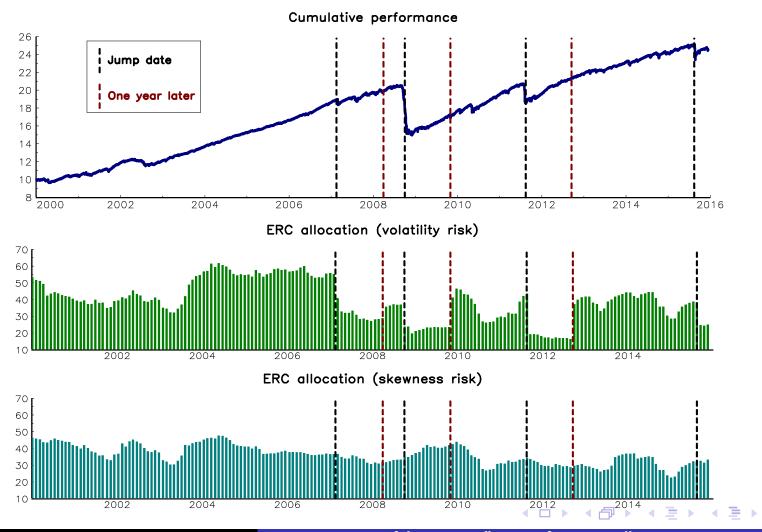
Portfolio Diversification & Asset Allocation

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

Risk allocation

Figure: Comparison of the carry allocation



Thierry Roncalli

Portfolio Diversification & Asset Allocation

臣

 $\mathcal{A} \mathcal{A} \mathcal{A}$

61 / 69

Some issues The skewness puzzle What does skewness mean? Portfolio allocation with skewness risk

Volatility hedging versus skewness hedging

Table: Volatility and skewness risks of risk-based portfolios (weekly model)

Portfolio	MV	MV	ERC	MES
Model	Gaussian	Jump model		
INIOUEI	(full sample)	Normal	Mixture	Mixture
Bonds	63.26%	36.05%	52.71%	100.00%
Equities	2.23%	0.00%	10.36%	0.00%
Carry	34.51%	63.95%	36.93%	0.00%
$\bar{\sigma}(x)$	2.62%	2.33%	2.75%	4.17%
γ_1	-2.75	-19.81	-6.17	0.00

Source: BKR (2016)

The arithmetics of skewness $-(36.05\% \times 0.17 + 0\% \times 0.44 + 63.95\% \times 5.77) = -19.81$ Thierry RoncalliPortfolio Diversification & Asset Allocation62 / 69

Conclusion

- The portfolio management of alpha and beta must be different
 - Portfolio optimization (MVO) is suitable for managing the concentration of active bets
 - Risk-based allocation (RB) is suitable for managing the diversification of risk premia or risk factors
- Volatility diversification \neq skewness diversification
 - Volatility hedging \neq skewness hedging
 - Skewness risk = main driver of strategic asset allocation (SAA)
 - Volatility risk = main driver of tactical asset allocation (TAA)
- Long-only diversification vs long/short diversification
- Liquidity issue?

Skewness risk = a strategic allocation decision Volatility risk = a <u>tactical</u> allocation decision

- 4 国 🕨 - 4 国 🕨 - 4 国 🕨

 $\mathcal{O}Q(\mathbf{A})$

References I

Ang, A.

Asset Management – A Systematic Approach to Factor Investing. Oxford University Press, 2014.

Bruder, B., Kostyuchyk, N. and Roncalli, T. (BKR) Risk Parity Portfolios with Skewness Risk: An Application to Factor Investing and Alternative Risk Premia. SSRN, www.ssrn.com/abstract=2813384, 2016.

Cazalet, Z., Grison, P. and Roncalli, T. The Smart Indexing Puzzle. *Journal of Index Investing*, 5(1), 2014.

Cazalet, Z. and Roncalli, T.

Facts and Fantasies About Factor Investing. SSRN, www.ssrn.com/abstract=2524547, 2014.

イロト イヨト イヨト

 $\mathcal{A} \mathcal{A} \mathcal{A}$

E.

References II

Choueifaty, Y. and Coignard, Y. Toward Maximum Diversification. *Journal of Portfolio Management*, 35(1), 2008.

Cochrane, J.H.

Asset Pricing. Princeton University Press, 2001.

Dao, T.L., Nguyen, T.T., Deremble, C., Lempérière, Y., Bouchaud, J-P. and Potters, M. Tail Protection for Long Investors: Trend Convexity at Work. SSRN, www.ssrn.com/abstract=2777657, 2016.

Griveau-Billion, T., Richard, J-C. and Roncalli, T. A Fast Algorithm for Computing High-Dimensional Risk Parity Portfolios. SSRN, www.ssrn.com/abstract=2325255, 2013.

< ロ > < 同 > < 三 > < 三 > < 三 > <

 $\mathcal{A} \mathcal{A} \mathcal{A}$

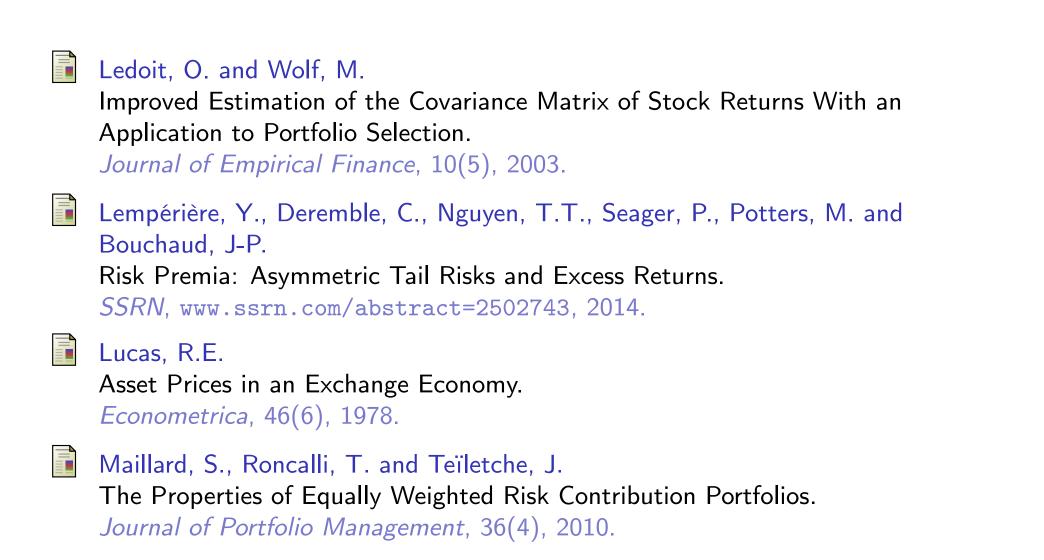
E.

References III

イロト イポト イヨト イヨト

 $\mathcal{A} \mathcal{A} \mathcal{A}$

References IV



<ロ > < 同 > < 同 > < 三 > < 三 > <

 $\mathcal{A} \mathcal{A} \mathcal{A}$

References V

Michaud, R.

The Markowitz Optimization Enigma: Is Optimized Optimal? *Financial Analysts Journal*, 45(1), 1989.

Scherer, B.

Portfolio Construction & Risk Budgeting. Third edition, Risk Books, 2007.

Richard, J-C. and Roncalli, T.

Smart Beta: Managing Diversification of Minimum Variance Portfolios. in *Risk-based and Factor Investing*, edited by E. Jurczenko, 2015.

Roncalli, T. Introduction to Risk Parity and Budgeting.

Chapman & Hall, 410 pages, 2013.

《曰》 《圖》 《言》 《言》

 $\mathcal{A} \mathcal{A} \mathcal{A}$

References VI

Roncalli, T.

Introducing Expected Returns into Risk Parity Portfolios: A New Framework for Asset Allocation.

Bankers, Markets & Investors, 138, 2015.

Roncalli, T.

Alternative Risk Premia: What Do We Know? *forthcoming*, 2017.

Roncalli, T. and Weisang, G.

Risk Parity Portfolios with Risk Factors. *Quantitative Finance*, 16(3), 2016.

Stevens, G.V.G.

On the Inverse of the Covariance Matrix in Portfolio analysis.

Journal of Finance, 53(5), 1998.

▲□▶ ▲□▶ ▲□▶ ▲□▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$