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Abstract

This article develops a model that takes into account skewness risk in risk parity
portfolios. In this framework, asset returns are viewed as stochastic processes with
jumps or random variables generated by a Gaussian mixture distribution. This dual
representation allows us to show that skewness and jump risks are equivalent. As the
mixture representation is simple, we obtain analytical formulas for computing asset
risk contributions of a given portfolio. Therefore, we define risk budgeting portfolios
and derive existence and uniqueness conditions. We then apply our model to the
equity/bond/volatility asset mix policy. When assets exhibit jump risks like the short
volatility strategy, we show that skewness-based risk parity portfolios produce better
allocation than volatility-based risk parity portfolios. Finally, we illustrate how this
model is suitable to manage the skewness risk of long-only equity factor portfolios and
to allocate between alternative risk premia.

Keywords: Risk parity, equal risk contribution, expected shortfall, skewness, jump diffu-
sion, Gaussian mixture model, EM algorithm, filtering theory, factor investing, alternative
risk premia, short volatility strategy, diversification, skewness hedging, CTA strategy.

JEL classification: C50, C60, G11.

1 Introduction

Over the last few years, three concepts have rapidly emerged in asset management and
definitively changed allocation policies of large institutional investors and pension funds
around the world. These three concepts are risk parity, factor investing and alternative risk
premia. They constitute the key components of risk-based investing. Risk parity is an asset

∗We would like to thank Guillaume Lasserre and Guillaume Weisang for their helpful comments. Corre-
spondence should be addressed to thierry.roncalli@lyxor.com.
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allocation model, which focuses on risk diversification (Roncalli, 2013). The primary idea of
factor investing is to capture risk factors, which are rewarded in the universe of equities (Ang,
2014), whereas the concept of alternative risk premia is an extension of the factor investing
approach, and concerns all the asset classes (Hamdan et al., 2016). These three methods
share the same philosophy. For institutional investors, the main issue is the diversification
level of their allocation, that is the exposure to systematic risk factors, because idiosyncratic
risks and specific bets generally disappear in large portfolios. This explains that most of
factor investing portfolios and alternative risk premia portfolios are managed with a risk
parity approach.

However, risk parity portfolios are generally designed to manage a long-only portfolio of
traditional assets (equities and bonds). For instance, the ERC portfolio of Maillard et al.
(2010) consists in allocating the same amount of risk across the assets of the portfolio. The
simplicity and robustness of this portfolio have attracted many professionals. Nevertheless,
one may think that it is not adapted when assets present a high jump risk. In this case, the
volatility is certainly not the best metric to assess the risk of the asset. A typical example is
the volatility carry risk premium, which has a very low volatility but a high skewness. Other
examples are the value strategy or the long/short winners-minus-losers strategy in equities.

Portfolio allocation with skewness is an extensive field of research in finance (Kraus and
Litzenberger, 1976; Harvey and Siddique, 2000; Patton, 2004; Jurczenko and Maillet, 2006;
Jondeau and Rockinger, 2006; Martellini and Ziemann, 2010; Xiong and Idzorek, 2011).
Most of these studies are based on the maximization of a utility function that takes into
account high-order moments. Whereas these approaches are appealing from a theoretical
point of view, they are not actually implemented by professionals because of their complexity
and lack of robustness. Another approach consists in using the Cornish-Fisher value-at-risk.
Again, this approach is not used in practice because it requires the computation of co-
skewness statistics, which are difficult to estimate.

In this paper, we propose an approach as an extension of the original framework of risk
parity portfolios. By noting that skewness risk is related to jump risk, we consider a regime-
switching model with two states: a normal state and a state where the jumps occur. It
follows that asset returns follow a Gaussian mixture model, which is easy to manipulate.
Our model is related to the econometric literature on Markov switching models (Hamilton,
1989), without the ambitious nature of forecasting. The primary objective of the model is
to measure the total risk of a portfolio, including both volatility and skewness risks. For
that, we use the expected shortfall, a coherent and convex risk measure (thus) satisfying the
Euler decomposition. We can then calculate the risk contribution of assets and define risk
budgeting portfolios. We apply this framework to the equity/bond asset mix policy when
we introduce a short volatility strategy. We then compare the results with those obtained
with a traditional risk parity model. In particular, we illustrate the skewness aggregation
dilemma found by Hamdan et al. (2016) and discuss whether the skewness risk can be
hedged like the volatility risk.

This article is organized as follows. In section two, we describe the skewness model of
asset returns, and analyze the relationship between jump and skewness risks. In section
three, we provide analytical formulas of the expected shortfall and the corresponding risk
contributions. We also define risk budgeting portfolios and study the existence/uniqueness
problem. The application to the equity/bond/volatility asset mix policy is presented in
section four. Section five deals with the allocation of risk factors and alternative risk premia.
Finally, section six offers our concluding remarks.
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2 A skewness model of asset returns

In this section, we develop a simple model for modeling skewness. We consider a stan-
dard Lévy process and approximate its density by a mixture of two Gaussian distributions.
The mixture representation presents some appealing properties for computational purposes,
whereas the jump-diffusion representation helps in understanding the dynamics of the model.
Moreover, this framework highlights the relationship between skewness risk and jump risk.

2.1 A model of asset returns

2.1.1 The jump-diffusion representation

We consider n risky assets represented by the vector of prices St = (S1,t, . . . , Sn,t). We note
Bt the price of the risk-free asset. We assume that asset prices follow a diffusion, which is
governed by a standard Lévy process:

dBt = rBt dt
dSt = diag (St) dLt
dLt = µdt+ Σ1/2 dWt + dZt

where r is the interest rate, µ and Σ are the vector of expected returns and the covariance
matrix, Wt is a n-dimensional standard Brownian motion and Zt is a pure n-dimensional
jump process. We also assume that the components of Wt and Zt are mutually independent.

In order to keep the model simple, the jump process Zt is set to a compound Poisson
process with a finite number of jumps:

Zt =

Nt∑
i=1

Zi

whereNt is a scalar Poisson process with constant intensity parameter λ > 0, and Z1, . . . , ZNt
are vectors of i.i.d. random jump amplitudes with law ν (dz). Using standard assumptions,
we have ν (dz) = λf (z) dz where f (z) is the probability density function of the multivariate

Gaussian distribution N
(
µ̃, Σ̃

)
, µ̃ is the expected value of jump amplitudes and Σ̃ is the

associated covariance matrix. In Appendix A.1, we show that the characteristic function of
asset returns Rt = (R1,t, . . . , Rn,t) for the holding period dt may be approximated with the
following expression:

E
[
e−iu.Rt

]
≈ (1− λ dt) · e(iu

>µ− 1
2u
>Σu) dt + (λ dt) · eiu

>(µ dt+µ̃)− 1
2u
>(Σ dt+Σ̃)u (1)

2.1.2 The Gaussian mixture representation

For the sake of simplicity, we make the following assumptions: jumps occur simultaneously
for all assets; portfolio’s rebalancing is done at frequency dt; between two rebalancing dates,
the assets can jump with probability λ dt. Let Rt = (R1,t, . . . , Rn,t) be the asset returns
for the holding period dt. Using the previous assumptions, we consider a Gaussian mixture
model with two regimes to define Rt:

• The continuous component, which has probability (1− λ dt) to occur, is driven by the
Gaussian distribution N (µdt,Σ dt);

• The jump component, which has probability λ dt to occur, is driven by the Gaussian

distribution N
(
µ̃, Σ̃

)
.
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Therefore, asset returns have the following multivariate density function:

f (y) =
1− λ dt

(2π)
n/2 |Σ dt|1/2

exp

(
− 1

2
(y − µdt)

>
(Σ dt)

−1
(y − µdt)

)
+

λ dt

(2π)
n/2
∣∣∣Σ dt+ Σ̃

∣∣∣1/2 exp

(
−1

2
(y − (µdt+ µ̃))

>
(

Σ dt+ Σ̃
)−1

(y − (µdt+ µ̃))

)

It follows that the characteristic function of Rt is equal to:

E
[
e−iu.Rt

]
= (1− λ dt) · e(iu

>µ− 1
2u
>Σu) dt + (λ dt) · eiu

>(µ dt+µ̃)− 1
2u
>(Σ dt+Σ̃)u (2)

We notice that the characteristic functions (1) and (2) coincide. This justifies the use of a
Gaussian mixture distribution for modeling asset returns.

Remark 1 Without loss of generality, we set dt equal to one in the sequel. This simplifies
the notations without changing the results. If one prefers to consider another holding period,
it suffices to scale the parameters µ, Σ and λ by a factor dt.

2.2 Distribution function of the portfolio’s return

Let x = (x1, . . . , xn) be the vector of weights in the portfolio. We assume that the portfolio
is fully invested meaning that

∑n
i=1 xi = 1. We note Vt the value of the portfolio x at time

t. Let ni = xiVt/Si,t the number of shares invested in asset i. We have:

dVt =

n∑
i=1

ni dSi,t

= Vtx
> (diagSt)

−1
dSt

= Vtx
> dLt

It follows that:
dVt
Vt

= x> dLt

We deduce that the return of the portfolio R (x) =
∑n
i=1 xiRi = x>R is then a mixture of

two normal random variables:

R (x) = Y = B1 · Y1 +B2 · Y2

where B1 and B2 = 1 − B1 are Bernoulli random variables with probability π1 = 1 − λ
and π2 = λ. The first regime corresponds to the normal case: Y1 ∼ N

(
µ1 (x) , σ2

1 (x)
)

where µ1 (x) = x>µ and σ2
1 (x) = x>Σx. The second regime incorporates the jumps:

Y2 ∼ N
(
µ2 (x) , σ2

2 (x)
)

where µ2 (x) = x> (µ+ µ̃) and σ2
2 (x) = x>

(
Σ + Σ̃

)
x. It follows

that the portfolio’s return R (x) has the following density function:

f (y) = π1f1 (y) + π2f2 (y)

= (1− λ)
1

σ1 (x)
φ

(
y − µ1 (x)

σ1 (x)

)
+ λ

1

σ2 (x)
φ

(
y − µ2 (x)

σ2 (x)

)
(3)

We consider a universe of two assets with the following characteristics: µ1 = 5%, σ1 =
10%, µ̃1 = −20%, σ̃1 = 5%, µ2 = 10%, σ2 = 20%, µ̃2 = −40% and σ̃2 = 5%. The cross-
correlations are set to ρ = 50% and ρ̃ = 60%. When the jump frequency λ is equal to 20%,
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the probability density function of asset returns and portfolio’s returns is given in Figure
1. The shape of the distribution function depends highly on the parameter λ. Indeed, if
this parameter is equal to 0 or 1, the portfolio’s return is Gaussian. For λ ∈ ]0, 1[, the
distribution function exhibits skewness and kurtosis as shown in Figure 2.

Figure 1: Probability density function of R (x) when λ = 0.20

2.3 Relationship between jump risk and skewness risk

Using Equation (12) found in Appendix A.2, we deduce the skewness of the portfolio’s return
R (x) is equal to:

γ1 =

(
λ− λ2

) (
(1− 2λ)

(
x>µ̃

)3
+ 3

(
x>µ̃

) (
x>Σ̃x

))
(
x>Σx+ λx>Σ̃x+ (λ− λ2) (x>µ̃)

2
)3/2

It follows that the model exhibits skewness, except in some limit cases. Indeed, we have:

γ1 = 0⇔ x>µ̃ = 0 or λ = 0 or λ = 1

In the other cases, γ1 may be positive or negative depending on the value of the parameters:

sgn γ1 = sgn (1− 2λ)
(
x>µ̃

)3
+ 3

(
x>µ̃

) (
x>Σ̃x

)
If the expected value x>µ̃ of the portfolio’s jump is positive, the skewness is then positive.
If x>µ̃ < 0, the skewness is generally negative, except if the frequency λ is high and the
variance x>Σ̃x of the portfolio’s jump is low.
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Figure 2: Probability density function of R (x) for several values of λ

Figure 3: Skewness coefficient of the portfolio’s return R (x)
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Let us consider a portfolio with only one asset1. The parameters are equal to2 σ = 20%,
µ̃ = −40%, σ̃ = 20% and λ = 25%. In this case, we obtain γ1 = −0.663. In Figure 3, we
show the evolution of the skewness coefficient with respect to a given parameter while the
other parameters remain constant. Skewness coefficient increases with the normal volatility3

(top-right panel). That’s because all else being equal if the normal volatility increases, jumps
get more and more indistinct from normal movements of returns. We observe that the jump’s
volatility generally increases the magnitude of the skewness (bottom-left panel). The impact
of the frequency λ is more difficult to analyze, but we generally obtain a bell curve or an
inverted bell curve (top-left panel).

These results are in line with those found by Hamdan et al. (2016) on the skewness risk of
alternative risk premia. These authors observed that the skewness is maximum in absolute
value when the portfolio’s volatility is low. We now understand the mechanism behind this
stylized fact. When the volatility is high, jumps have a moderate impact on the probability
distribution of asset returns, because they may appear as the realization of a high volatility
regime. When the volatility is low, jumps substantially change the probability distribution
and are not compatible with the normal dynamics of asset returns. In particular, we have:

lim
σ1(x)→0

γ1 = ∆µ (x) ·

(
λ− λ2

) (
(1− 2λ) ∆µ (x)

2
+ 3∆σ (x)

2
)

(
(λ− λ2) ∆µ (x)

2
+ λ∆σ (x)

2
)3/2

where ∆µ (x) = µ2 (x) − µ1 (x) = x>µ̃ and ∆σ (x) =
√
σ2

2 (x)− σ2
1 (x) =

√
x>Σ̃x are the

portfolio’s expected return and volatility due to the jump component. In this case, the
(negative) skewness risk is an increasing function of ∆µ (x) and ∆σ (x).

2.4 Estimation of the parameters

Our Gaussian mixture model contains 5 parameters:

θ =
(
λ, µ,Σ, µ̃, Σ̃

)
A first idea to estimate θ is to use the method of maximum likelihood. We consider a sample
{Rt, t = 1, . . . , T} of asset returns, where Rt = (R1,t, . . . , Rn,t) is the vector of asset returns
observed at time t and Ri,t is the return of the asset i for the same period. The log-likelihood
function is then equal to:

` (θ) =

T∑
t=1

ln f (Rt)

where f (y) is the multivariate probability density function4:

f (y) = π1φn (y;µ,Σ) + π2φn

(
y;µ+ µ̃,Σ + Σ̃

)
However, maximizing the log-likelihood function is a difficult task using standard numerical
optimization procedure. A better approach is to consider the EM algorithm of Dempster et
al. (1977), which is used extensively for such problems (Xu and Jordan, 1996).

1We have x = 1.
2We notice that the skewness does not depend on the parameter µ.
3When the skewness is positive, it decreases with the normal volatility.
4Recall that π1 = 1 − λ, π2 = λ and φn (y;µ,Σ) is the probability density function of the Gaussian

distribution N (µ,Σ).
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Following Redner and Walker (1984), we introduce the notations: µ1 = µ, Σ1 = Σ,
µ2 = µ+ µ̃, Σ2 = Σ + Σ̃. The log-likelihood function becomes:

` (θ) =

T∑
t=1

ln

2∑
j=1

πjφn (Rt;µj ,Σj)

Let πj,t be the posterior probability of the regime j at time t. We have:

πj,t = Pr {Bj = 1 | Rt}

=
πjφn (Rt;µj ,Σj)∑2
s=1 πsφn (Rt;µs,Σs)

In Appendix A.3, we derive the following EM algorithm:

1. The E-step consists in updating the posterior distribution of Bj for all the observations:

π
(k)
j,t =

π
(k)
j φn

(
Rt;µ

(k)
j ,Σ

(k)
j

)
∑2
s=1 π

(k)
s φn

(
Rt;µ

(k)
s ,Σ

(k)
s

)
2. The M-step consists in updating the estimators π̂j , µ̂j and Σ̂j :

π
(k+1)
j =

∑T
t=1 π

(k)
j,t

T

µ
(k+1)
j =

∑T
t=1 π

(k)
j,t Rt∑T

t=1 π
(k)
j,t

Σ
(k+1)
j =

∑T
t=1 π

(k)
j,t

(
Rt − µ(k+1)

j

)(
Rt − µ(k+1)

j

)>
∑T
t=1 π

(k)
j,t

Starting from initial values π
(0)
j , µ

(0)
j and Σ

(0)
j , the EM algorithm generally converges and

we have π̂j = π
(∞)
j , µ̂j = π

(∞)
j and Σ̂j = Σ

(∞)
j .

3 Risk parity portfolios with jumps

As shown in the previous section, jumps occur rarely and their impacts mainly affect the
tail of the distribution. It is thus natural to change the volatility risk measure in order to
perform portfolio allocation. As value-at-risk is not a convex risk measure, expected shortfall
is a better alternative.

3.1 The expected shortfall risk measure

The expected shortfall of Portfolio x is defined by:

ESα (x) =
1

1− α

∫ 1

α

VaRu (x) du
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Acerbi and Tasche (2002) interpreted the expected shortfall as the average of the value-at-
risk at level α and higher. We also notice that it is equal to the expected loss given that the
loss is beyond the value-at-risk:

ESα (x) = E [L (x) | L (x) ≥ VaRα (x)]

where L (x) = −R (x) is the portfolio’s loss. Using results in Appendix A.4, we show that the
expression of the expected shortfall when the portfolio’s return R (x) follows the distribution
function (3) is equal to:

ESα (x) = (1− λ) · ϕ (VaRα (x) , µ1 (x) , σ1 (x)) + λ · ϕ (VaRα (x) , µ2 (x) , σ2 (x)) (4)

where the function ϕ (a, b, c) is defined by:

ϕ (a, b, c) =
c

1− α
φ

(
a+ b

c

)
− b

1− α
Φ

(
−a+ b

c

)
Here, the value-at-risk VaRα (x) is found by solving the following equation:

(1− λ) · Φ
(

VaRα (x) + µ1 (x)

σ1 (x)

)
+ λ · Φ

(
VaRα (x) + µ2 (x)

σ2 (x)

)
= α

3.2 Analytical expression of risk contributions

Using results in Appendix A.5, we show that the vector of risk contributions is equal to :

RC (x) =
$1 (x)

1− α
(x ◦ δ1 (x)) +

$2 (x)

1− α
(x ◦ δ2 (x))−

1

1− α
((1− λ) (x ◦ µ) Φ (−h1 (x)) + λ (x ◦ (µ+ µ̃)) Φ (−h2 (x))) (5)

where ◦ is the Hadamard product,

δ1 (x) =

(
1 +

h1 (x)

σ1 (x)
VaRα (x)

)
Σx−

VaRα (x)
$1 (x) h1(x)

σ1(x)Σx+$2 (x)
(
h2(x)
σ2(x)

(
Σ + Σ̃

)
x− µ̃

)
$1 (x) +$2 (x)

and:

δ2 (x) =

(
1 +

h2 (x)

σ2 (x)
VaRα (x)

)(
Σ + Σ̃

)
x−

VaRα (x)
$1 (x)

(
h1(x)
σ1(x)Σx+ µ̃

)
+$2 (x) h2(x)

σ2(x)

(
Σ + Σ̃

)
x

$1 (x) +$2 (x)

The other notations are hi (x) = σi (x)
−1

(VaRα (x) + µi (x)), $i (x) = πiσi (x)
−1
φ (hi (x))

where π1 = 1− λ and π2 = λ.

Example 1 We consider three assets, whose expected returns are equal to 10%, 15% and
20%. Their volatilities are equal to 20%, 25% and 30% while the correlation matrix of asset
returns is provided by the following matrix:

ρ =

 1.00
0.50 1.00
0.20 0.40 1.00
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For the jumps, we assume that µ̃i = −10%, σ̃i = 20% and ρ̃i,j = 50%. Moreover, the
intensity λ of jumps is equal to 0.25, meaning that we observe a jump every four years on
average.

We calculate the one-year expected shortfall at the 95% confidence level. Results (ex-
pressed in %) are reported in Tables 1 and 2. The first table corresponds to the traditional
Gaussian expected shortfall when we do not take into account the jumps. In this case, the
risk is equal to 28.46% of the portfolio’s value. By considering jumps, the expected shortfall
increases and is equal to 37.22%. The introduction of jumps has also modified the risk
decomposition. For instance, the risk contribution of Asset 1 has increased whereas this of
Asset 3 has been reduced.

Table 1: Expected shortfall decomposition (without jumps)

Asset xi MRi RCi RC?i
1 20.00 8.90 1.78 6.26
2 20.00 18.22 3.64 12.80
3 60.00 38.40 23.04 80.94

ESα (x) 28.46

Table 2: Expected shortfall decomposition (with jumps)

Asset xi MRi RCi RC?i
1 20.00 20.39 4.08 10.96
2 20.00 27.31 5.46 14.67
3 60.00 46.13 27.68 74.37

ESα (x) 37.22

3.3 Risk budgeting portfolios

Roncalli (2013) defines the RB portfolio using the following non-linear system:
RCi (x) = biR (x)
bi > 0
xi ≥ 0∑n
i=1 bi = 1∑n
i=1 xi = 1

(6)

where bi is the risk budget of asset i expressed in relative terms. The constraint bi > 0
implies that no risk budget can be set to zero. This restriction is necessary in order to
ensure that the RB portfolio is unique (Roncalli, 2013).

The program (6) is valid for any coherent and convex risk measure. Therefore, we can
use the expected shortfall, whose expression is given in Equation (4) and risk contributions
are defined by Formula (5).
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Figure 4: Evolution of risk contributions (in %) with respect to the intensity λ

3.3.1 Existence and uniqueness of the RB portfolio

In order to ensure the existence of the RB portfolio, we have to impose the following restric-
tion:

R (x) = ESα (x) ≥ 0

whereR (x) is the risk measure and corresponds to the expected shortfall in our case. Indeed,
a coherent convex risk measure satisfies the homogeneity property R (δx) = δR (x) where δ
is a positive scalar. Suppose that there is a portfolio x ∈ [0, 1]

n
such that R (x) < 0. We can

then leverage the portfolio by a scaling factor δ > 1, and we obtain R (δx) < R (x) < 0. It
follows that lim

δ→∞
R (δx) = −∞. This is why it is necessary for the risk measure to always be

positive. As Acerbi and Tasche (2002) proved that the expected shortfall is a coherent convex
risk measure, ESα (x) ≥ 0 must be satisfied to ensure the existence of the RB portfolio.

In Appendix A.6, we study the existence problem. Let α− be the root of the equation
below:

1− λ
1− α−

φ

(
Φ−1

(
α− − λ
1− λ

))
+ λΦ−1

(
α− − λ
1− λ

)
= (1 + λ) SR+

1

where SR+
1 is the maximum Sharpe ratio under the first regime. We obtain two cases that

depend on the parameter α−. In particular, we obtain the following theorem:

Theorem 1 If α ≥ max (α−, λ), the RB portfolio exists and is unique. It is the solution of
the following optimization program:

x? (c) = arg min ESα (x) (7)

u.c.


∑n
i=1 bi lnxi ≥ c

1>x = 1
c ≥ 0

11



Risk Parity Portfolios with Skewness Risk

where c is a constant to be determined.

Figure 5: Relationship between λ, SR+
1 and α−

This theorem states that the RB portfolio may not exist when α ≤ max (α−, λ). In
general, α is equal to 99% and λ is lower than 25%. This case corresponds to a jump
every four years. Therefore, the stronger constraint is α ≥ α−. In Figure 5, we report the
relationship between α− and the parameters λ and SR+

1 . We notice that α− is an increasing
function of the maximum Sharpe ratio. For instance, if λ is equal to 25%, the lower bound
α− is equal to 67.11% when the maximum Sharpe ratio is equal to 75%. In this case, the
existence condition is equivalent to:

α ≥ 67.11%

or:

SR+
1 ≤ 0.75

The worst scenario occurs when the Sharpe ratio of the tangency portfolio is high. In this
case, the expected shortfall may be negative, meaning that there is no risk, except if we
consider a high confidence level. For example, when we consider a trend-following strategy,
the maximum Sharpe ratio may be high at some periods due to important trends. However,
in most cases, the vector of expected returns µ is equal to zero, because the portfolio manager
has no views on the future performance of the assets. Therefore, his objective is to build a
diversified portfolio. In this case, the maximum Sharpe ratio is equal to zero, implying that
there is always a unique solution to the optimization program5.

5Because we assume that α� λ.
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3.3.2 Some examples

To find the numerical solution of the RB portfolio, we use the following optimization program
(Roncalli, 2013; Spinu, 2013):

y? = arg min ESα (y)−
n∑
i=1

bi ln yi

u.c. y ≥ 0

The RB portfolio corresponds then to the following weights:

x?i =
y?i∑n
j=1 y

?
j

Example 2 We consider three assets, whose expected returns are equal to 3%, 8% and 12%.
Their volatilities are equal to 8%, 20% and 30% while the correlation matrix of asset returns
is provided by the following matrix:

ρ =

 1.00
0.50 1.00
0.20 0.40 1.00


For the jumps, we have µ̃1 = −15%, µ̃2 = −40%, µ̃3 = 0%, σ̃1 = 15%, σ̃2 = 20% and
σ̃3 = 10%. We also assume that the correlation matrix between the jumps is equal to:

ρ̃ =

 1.00
0.50 1.00
0.00 0.00 1.00


Moreover, the intensity λ of jumps is equal to 0.25.

We consider the equal risk contribution (ERC) portfolio where the risk budgets are the
same for all the assets. In Table 3, we report the weights of the ERC portfolio when the
risk measure is the portfolio’s volatility (Maillard et al., 2010). In this case, the weight of
Asset 1 is equal to 60.94% whereas the weight of Asset 3 is equal to 16.87%. The difference
between the two weights can be explained by the difference in terms of volatility between the
three assets. If we use a Gaussian expected shortfall (Roncalli, 2015), the allocation does
not change significantly (Table 4). This is normal as the Sharpe ratio of the three assets is
similar. However, when we introduce jumps, we note a big impact on the allocation (Table
5). Indeed, Asset 3 is highly volatile, but the risk of jumps is limited. This is not the case for
the two other assets. In particular, the skewness risk of Asset 1 is high because its volatility
is low, but the expected value of a jump is approximatively five times the expected return
in the normal regime. As a result, the allocation is equal to (44.70%, 19.87%, 35.42%).

Table 3: ERC portfolio (volatility risk measure)

Asset xi MRi RCi RC?i
1 60.94 5.96 3.63 33.33
2 22.20 16.35 3.63 33.33
3 16.87 21.52 3.63 33.33

σ (x) 10.89

Remark 2 Using the previous example, we find that SR+
1 = 0.52. It follows that α− is

equal to 57.4%.
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Table 4: ERC portfolio (95% Gaussian expected shortfall)

Asset xi MRi RCi RC?i
1 60.85 9.24 5.62 33.33
2 21.96 25.60 5.62 33.33
3 17.19 32.72 5.62 33.33

ESα (x) 16.87

Table 5: ERC portfolio (95% expected shortfall with jumps)

Asset xi MRi RCi RC?i
1 44.70 24.70 11.04 33.33
2 19.87 55.56 11.04 33.33
3 35.42 31.17 11.04 33.33

ESα (x) 33.12

4 Illustration with the equity/bond/volatility asset mix
policy

We consider the traditional equity-bond asset mix policy. Nowadays, a lot of investors prefer
to use a risk parity portfolio instead of a constant-mix portfolio in order to obtain a risk-
balanced allocation between the two assets. While bonds and equities are not Gaussian,
it is however accepted that the volatility measure is a good approximation of the risks
taken by the investor. Nevertheless, if we introduce a short volatility (or volatility carry)
exposure, this assumption is not valid. For instance, we report the cumulative performance6

of bonds, equities and the short volatility strategy in Figure 6 for the study period January
2000–December 2015. We notice that the short volatility strategy presents a high jump risk
compared to bonds and equities. This is confirmed by the extreme returns and statistics of
skewness coefficients calculated with different frequencies (see Tables 6 and 7). Indeed, we
observe a high asymmetry between best and worst returns for the short volatility strategy.
Moreover, the skewness of daily returns is about −7 for the volatility carry index, whereas
it is close to zero for the bond and equity indices.

Table 6: Best returns, worst returns and maximum drawdown

Asset Daily Weekly Monthly Annually Maximum
Best returns (in %)

Bonds 1.89 3.06 7.10 15.75
Equities 11.58 19.21 22.64 75.32
Carry 2.27 3.13 4.39 16.99

Worst returns (in %)
Bonds −1.67 −2.81 −4.40 −3.41 −6.03

Equities −9.03 −18.29 −29.67 −49.69 −55.25
Carry −6.82 −11.04 −23.43 −23.37 −27.30

6We use the Barclays US Government Bond Index, the S&P 500 TR Index and the generic equi-
ties/volatility/carry/US index calculated by Hamdan et al. (2016).
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Figure 6: Cumulative performance of US bonds, US equities and US short volatility

Table 7: Skewness coefficients

Asset Daily Weekly Monthly Annually
Bonds −0.12 −0.17 0.07 0.22

Equities 0.01 −0.44 −0.81 −0.57
Carry −7.24 −5.77 −6.32 −2.23

4.1 Estimation of the mixture model

In Table 8, we report the maximum likelihood results of the Gaussian model:

f (y) = φ3 (y;µdt,Σ dt) (8)

The parameters µ and Σ (expressed in %) are estimated using daily returns. In Appendix B
on Page 44, we also give the estimated values of µ and Σ when we consider weekly, monthly
and annually overlapping returns. On average, the volatility of US bonds and volatility
carry is about 5%, whereas the volatility of US equities is 4 times larger and approximately
equal to 20%. US bonds have a negative correlation with US equites and volatility carry,

Table 8: Estimation of the Gaussian model (daily model)

Asset µi σi ρi,j
Bonds 5.54 4.37 100.00

Equities 6.25 20.39 −35.06 100.00
Carry 5.96 5.62 −22.28 58.07 100.00
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which are both positively correlated. We notice that the frequency to compute the returns
has an influence on the parameters, but the impact is relatively low, except for the cross-
correlations.

We now estimate the Gaussian mixture model with the following parametrization of the
probability density function:

f (y) = (1− π)φ1

(
y;µ1 dt, σ2

1 dt
)

+ πφ1

(
y;µ2 dt, σ2

2 dt
)

(9)

We only consider the one-dimensional case in order to illustrate some issues related to the
choice of parametrization and frequency. In Figures 7, 8 and 9, we report the estimated
values of the parameters π, µ1, µ2, σ1 and σ2. The frequency π is large for bonds and
equities. These results suggest that a two-volatility regime model is better to describe the
returns of equities and bonds than a model with jumps. The first regime is a low volatility
environment associated with positive returns, whereas the second regime is a high volatility
environment associated with negative returns. In the case of the carry risk premium, the
frequency π is lower. The large discrepancy between µ1 and µ2, but also between σ1 and σ2

justifies that a model with jumps is more relevant than a model with two volatility regimes.
Contrary to the standard Gaussian model, the choice of the period for calculating the returns
is an important factor. We notice that using one-year returns is not appropriate, because it
may produce incoherent results. For instance, the second regime for bonds corresponds to
an environment of high returns with low volatility. For the carry risk premium, the volatility
is also higher for the first regime than for the second regime. Similarly the case of daily
returns is an issue. Indeed, the period may be too short to observe a complete drawdown
risk. This is why we prefer to consider a weekly or monthly period to estimate the jump
component.

Figure 7: Estimated EM parameters (bonds)
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Figure 8: Estimated EM parameters (equities)

Figure 9: Estimated EM parameters (carry)
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Let us consider the multivariate case, where the probability density function is specified
as follows:

f (y) = (1− π)φ3 (y;µdt,Σ dt) + πφ3

(
y;µdt+ µ̃,Σ dt+ Σ̃

)
(10)

This parametrization ensures that the estimated model is a Gaussian mixture model with
a jump component, and not a two-volatility regime model. The reason is that Σ is a one-
year covariance matrix, whereas Σ̃ is a covariance matrix, whose period corresponds to the
frequency of calculated returns. Moreover, we assume that π is given in order to control the
jump frequency. Results are provided in Tables 15 – 18 on Page 45. We confirm that the
expected value of the jump µ̃i is positive for bonds, whereas it is negative for equities and
carry. Moreover, the absolute value of µ̃i increases when the jump frequency π decreases. For
the carry risk premium, we report the probability density function of the jump component
in Figure 10. Regarding the dependence of jumps, we notice that the correlations ρ̃i,j tend
to be higher when the jump probability is lower.

Figure 10: Density function of the jump component (carry)

Remark 3 With the parametrization (10), it is not possible to compare results for different
values of the frequency dt. Indeed, fixing π at 5% is equivalent to observing a jump every 20
periods on average. The return period is then approximately equal to five months in the case
of weekly returns and one year and eight months in the case of monthly returns. Conversely,
if fixing the return period is preferable, it is better to consider the parametrization π = λ dt,
where λ is the annually jump frequency:

f (y) = (1− λ dt)φ3 (y;µdt,Σ dt) + (λ dt)φ3

(
y;µdt+ µ̃,Σ dt+ Σ̃

)
(11)

In this case, the return period (expressed in years) is equal to 1/λ. For example, if λ is equal
to 10%, the return period of jumps is equal to ten years and we obtain results that are given
in Tables 19 and 20 on Page 46.
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Figure 11: Expected weekly drawdown (in %) of the carry risk premium

In order to deduce the final model, we calculate the expected drawdown associated to a
given return period τ :

E [DDi (τ)] = µ̃i + Φ−1

(
dt

τ

)
σ̃i

As the carry strategy constitutes our most skewed asset, it is the only one used in calibrating
the parameter π. Results are reported in Figure 11 for weekly returns. We observe that the
expected drawdown is about −10.5% for π = 0.5% when the return period is between 10 and
20 years. This expected drawdown is then close to the worst weekly return observed during
the period January 2000 – December 2015 (see Table 6 on Page 14). We also introduce the
constraint that bonds have no jump component, because the previous estimations suggest
that the expected jump is positive for this asset class. Moreover, it is not statistically
significant.

Table 9: Estimation of the constrained mixture model when π = 0.5% (weekly model)

Asset µi σi ρi,j
Bonds 5.38 4.17 100.00

Equities 7.89 15.64 −36.80 100.00
Carry 10.10 2.91 −25.17 57.43 100.00
Asset µ̃i σ̃i ρ̃i,j
Bonds 0.00 0.00 100.00

Equities −1.20 6.76 0.00 100.00
Carry −2.23 2.57 0.00 60.45 100.00
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Figure 12: Probability density function of asset returns in the normal regime (weekly model)

Using the method of maximum likelihood7, we finally obtain the results8 given in Table
9. In the case of bonds, we retrieve the results of the Gaussian model (see Table 12 on
Page 44). The normal expected return and volatility are equal to 5.38% and 4.17%. For
equities and the short volatility strategy, the introduction of the jump component increases
the expected return and decreases volatility. Indeed, µi is respectively equal to 7.89% and
10.10%, whereas it was equal to 6.09% and 6.00% in the Gaussian case. The impact on
volatility is particularly pronounced for the carry risk premium since it is divided by a
factor of 1.9 (2.91% versus 5.50%). The cross-correlations in the normal regime are close to
the values obtained in the Gaussian model. In order to compare the two models, we report
the probability density function of asset returns in the normal regime in Figure 12. We
confirm that the jump model impacts mainly the modeling of the carry risk premium9.

4.2 Comparing in-sample ERC portfolios

We now calculate the ERC portfolio using the 99% expected shortfall risk measure. For that,
we use the previous estimates. By construction, we introduce a backtesting bias because
the portfolio allocation is based on the full sample of historical data. However, we assume
that the expected returns µi are equal to zero and not to the historical estimates in order
to limit the in-sample bias. In the case of the Gaussian model, we obtain the traditional
ERC portfolio based on the volatility risk measure (Maillard et al., 2010). In the case of
the weekly model, the allocation is the following: 59.17% in bonds, 10.43% in equities and
30.40% in the short volatility strategy. If we consider the jump model and consider only the

7The EM algorithm can no longer be applied due to the constraints.
8For monthly returns, results are given in Table 21 on Page 46. We have selected π = 1.0%, because the

expected drawdown is about −22%, which is close to the worst monthly return of −23.43% (see Figure 21).
9As expected, the jump component is important for the short volatility strategy and we obtain µ̃3 =

−2.23%. For equities, we observe a lower expected jump, but a large dispersion of weekly jumps.
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normal regime, the allocation becomes: 46.46% in bonds, 9.18% in equities and 44.36% in
the short volatility strategy. Therefore, the carry risk premium represents a large part of the
portfolio. If we take into account the skewness risk, the allocation is lower and is equal to
36.93%. This difference in terms of allocation is even larger when we consider the monthly
model. In this case, the allocation for the carry risk premium is 45.58% without jumps and
25.53% with jumps.

Table 10: Weights (in %) of the ERC portfolio

Asset
Weekly model Monthly model

Jump model Jump model
Gaussian Normal Mixture Gaussian Normal Mixture

Bonds 59.17 46.46 52.71 61.36 44.36 62.22
Equities 10.43 9.18 10.36 12.09 10.06 12.25

carry 30.40 44.36 36.93 26.55 45.58 25.53

The previous results give the illusion that the Gaussian model is a conservative model
and can be compared to the mixture model. This is inaccurate because the results presented
are in-sample. For instance, the first major drawdown of the carry strategy occurs in 2008.
Before 2008, a Gaussian model will dramatically underestimate the skewness risk of the carry
strategy. By considering the full period (January 2000 – December 2015), the covariance
matrix of the Gaussian model incorporates these jumps, meaning that the ex-post volatility
risk takes into account this skewness risk. To illustrate this bias, we report the one-year
rolling volatility of the short volatility strategy in Figure 13. We verify that our estimate
largely overestimates the volatility of the carry risk premium in normal periods.

Figure 13: One-year rolling volatility (in %) of the carry risk premium (weekly model)
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4.3 Dynamics of out-of-sample ERC portfolios

A more realistic backtest consists in rebalancing the portfolio at a given frequency and to
calculate the allocation by using only past data. Therefore, the covariance matrix is no
longer static, but time-varying. Σt is then calculated using information until time t − 1.
In the case of the ERC portfolio, it is common to consider a monthly rebalancing based
on a one-year rolling covariance matrix. The allocation of the ERC portfolio based on the
Gaussian model is reported in Figure 14. We observe that the allocation is not smooth.
The weight of the carry risk premium decreases sharply every time there is a jump in asset
returns. This negative jump is accompanied by a positive jump in the allocation one year
later when the jump in the asset returns exits the rolling window. As a result, we obtain a
high turnover and changes in the allocation, which are mainly due to jumps in asset returns.

Figure 14: Dynamics of the ERC weights (Gaussian model)

When asset returns exhibit high skewness risk, the drawback of risk parity portfolios
is that they reduce the allocation after the occurrence of a jump. However, it is generally
too late because jumps are not frequent and not correlated. Moreover, the occurrence of a
negative jump is generally followed by a positive performance of the asset. Another drawback
of such portfolios is that they will overweight the asset that has no jump over the estimation
period, because the risk is underestimated. This implies that the weight will be generally
maximum just before the occurrence of a jump.

We now consider the dynamics of the ERC portfolio in the case of our mixture model.
We assume that the parameters π, µ̃ and Σ̃ are given once and for all, and are set to the
previous estimates. At each rebalancing date, we have to estimate the covariance matrix Σt
for the normal regime. For that, we can apply the method of maximum likelihood to the
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mixture model with the data of the rolling window:(
µ̂t, Σ̂t

)
= arg max

(µt,Σt)

nrw∑
s=1

ln
(

(1− π)φ3 (Rt−s, µt dt,Σt dt) + πφ3

(
Rt−s, µt dt+ µ̃,Σt dt+ Σ̃

))
where nrw is the length of the rolling window. Contrary to the previous analysis, the
parameters π, µ̃ and Σ̃ are not estimated, but are fixed. Only the parameters µt and Σt are
optimized. The resulting allocation of the ERC portfolio10 is reported on Page 48.

However, estimating the covariance matrix in the normal regime by maximum likelihood
is not our preferred approach. Instead, a popular approach consists in isolating continuous
and jump components (Ait-Sahalia and Jacod, 2012). Let Rt be the return of one asset. In
the thresholding approach, we observe a jump at time t when the absolute return11 is larger
than a given level r?:

Jt = 1⇔ |Rt − v| ≥ r?

Using a sample of asset returns, we can then create two sub-samples:

• a sub-sample of asset returns without jump that satisfy |Rt − v| < r?;

• a sample of asset returns with jumps that satisfy |Rt − v| ≥ r?;

This method is simple and easy to understand. For instance, we can easily estimate the
normal volatility by considering the first sub-sample. However, one of the issue is to choose
the truncating point r?. Another drawback is that the thresholding approach is only valid
in the one-dimensional case. Consequently we prefer to use another approach called the
filtering method. In this case, we calculate the posterior probability of the jump regime:

π̂t =
πφn

(
Rt, µdt+ µ̃,Σ dt+ Σ̃

)
(1− π)φn (Rt, µdt,Σ dt) + πφn

(
Rt, µdt+ µ̃,Σ dt+ Σ̃

)
We will say that we observe a jump at time t when the posterior probability is larger than
a threshold π?:

Jt = 1⇔ π̂t ≥ π?

In Appendix A.7, we show that the filtering procedure is equivalent to the thresholding
procedure in the one-dimensional case. However, the thresholding approach is no longer
valid in the multi-dimensional case, because the jumps across assets are not necessarily
synchronous and the jump regime depends on asset correlations. Moreover, the thresholding
rule becomes12:

Jt = 1⇔ (Rt − v)
>
(

Σ dt+ Σ̃
)−1

Σ̃ (Σ dt)
−1

(Rt − v) ≥ r?

where v and r? depend on the parameters µ, Σ, µ̃ and Σ̃. The solution of the thresholding
approach is therefore not unique. For this reason, we prefer the filtering approach to detect
jumps in the multi-dimensional case.

The filtering method can also be used to estimate the out-of-sample parameters µ̂t and
Σ̂t. The algorithm is explained in Appendix A.9. The underlying idea is the following:

10Recall that the risk measure corresponds to the 99% expected shortfall. Moreover, the ERC portfolio is
calculated by considering that the expected returns in the normal regime are equal to zero.

11The parameter v is generally set to zero. This is equivalent to assume that positive and negative jumps
are symmetric.

12See Appendix A.8 for the proof.
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• Given µ̂t−1 and Σ̂t−1, we estimate the jump probability for each dates of the rolling
window that ends at time t;

• Given the previous jump probabilities, we estimate the parameters µ̂t and Σ̂t by only
considering the dates of the rolling window, which do not correspond to a jump13;

• We iterate the algorithm until today.

The only difficulty is the initialization of the covariance matrix. For that, we consider that
there is no jump in the first rolling window. To illustrate the filtering method, we report
the jump probability in Figure 15. The in-sample probabilities are calculated using the
estimates given in Tables 9 and 21, which have been obtained using the full sample. The
out-of-sample probabilities correspond to the average of posterior probabilities14, which are
calculated using the filtering algorithm, a one-year rolling window and π? = 30%.

Figure 15: Jump probabilities (in %)

Remark 4 In Markov regime-switching models, in-sample probabilities are called smoothing
probabilities, whereas out-of-sample probabilities are called filtering probabilities.

We notice some differences between smoothing and filtering probabilities. One reason is
that filtering probabilities depend on the value taken by π?. If we use a small value, we will
delete a lot of observations when computing µ̂t and Σ̂t. Therefore, the covariance matrix
will be underestimated implying that the jump probabilities will be higher. The opposite
is also true. The choice of π? is then a key factor. In Figure 15, we observe that some
jumps detected by the smoothing procedure are not identified by the filtering algorithm.

13We use the rule π̂t ≥ π?.
14At each date, we calculate the posterior probabilities for all the dates in the rolling window. This implies

that we calculate nrw jump probabilities for a given date, where nrw is the size of the rolling window.
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This explains that the filtering volatility of the carry risk premium is slightly overestimated
with respect to the smoothing volatility (see Figure 16). However, the filtering procedure
appears as a robust out-of-sample method if we compare rolling and filtering volatilities.
Moreover, it produces an allocation (Figure 17) that is close to the one obtained by the
maximum likelihood approach (see Figure 23 on Page 48).

Figure 16: Estimated volatility (in %) of the carry risk premium (weekly model)

4.4 Analysis of the results

If we compare the previous out-of-sample ERC portfolios calculated using the volatility risk
measure and the skewness risk measure; we obtain the following results:

• The annual turnover of the skewness-based ERC allocation is 40% lower than the
annual turnover of the volatility-based ERC allocation15.

• This additional turnover is mainly explained by the jumps of the short volatility strat-
egy. In Figure 18, we report the cumulative performance of the carry risk premium
and the weights in the ERC portfolios. In the case of the volatility-based ERC alloca-
tion, we notice that each time we observe a jump, the volatility-based weight decreases
dramatically. One year later after the jump, the weight highly increases because the
jump falls outside the rolling window.

• In terms of historical performance, volatility and Sharpe ratio, the two portfolios are
equivalent. However, we observe two different periods. Before 2008, the volatility-
based ERC portfolio largely outperforms the skewness-based ERC portfolio (28 bps
more in terms of Sharpe ratio). Since 2008, the opposite is true.

15The turnover is equal to 53.19% for the volatility-based ERC allocation and 31.45% for the skewness-
based ERC allocation.
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Figure 17: Dynamics of the ERC weights (mixture model, filtering method)

Figure 18: Comparison of the carry allocation (weekly model)
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5 Application to factor investing and alternative risk
premia

The extensive study on the equity/bond/volatility asset mix policy in the previous section
shows how the properties of risk parity portfolios can be improved by taking into account
skewness or jump risk. This is particularly true if we consider transaction costs. Indeed,
the volatility-based risk parity portfolio reduces dramatically the allocation of one asset
immediately after the jump. In this situation, portfolio rebalancing happens in a period of
stress and there is no guarantee that market liquidity will be enough to ensure fair bid-ask
spreads or even execute the sell order.

Nowadays, the traditional16 risk parity portfolio (and especially the equal risk contri-
bution portfolio) has become the standard approach for allocating between risk premia, far
ahead mean-variance optimized portfolios (Maeso and Martellini, 2016). In the case of stan-
dard and liquid assets, this approach is robust. Indeed, the drawdowns of these assets are
generally in line with their volatility. This concerns equities, investment grade bonds and
commodities. However, as illustrated in this article, traditional risk-based portfolios are not
necessarily optimal investments when assets present high skewness risk. This is the case of
the short volatility strategy, but also other alternative risk premia like equity size and value
risk factors. This is also true with illiquid assets or low liquidity strategies like the credit
carry risk premium and some leveraged relative value strategies.

5.1 Factor investing

Equity factor investing is a typical example of skewness risk. It consists in building a diver-
sified portfolio using the more relevant long-only equity risk factors (size, value, momentum,
low beta and quality). This portfolio combines then two pure (or skewness) risk premia –
size and value – and three market anomalies – momentum, low beta and quality (Cazalet
and Roncalli, 2014). The risk parity portfolio allocates the same volatility risk to the five
risk factors. However, the risk parity portfolio ignores two main risks which are difficult to
measure using the volatility risk measure (Hamdan et al., 2016):

• The value strategy faces a distressed risk due to the default risk of value stocks. An
example was the impact of the Lehman Brothers bankruptcy on the performance of
value portfolios at the end of 2008.

• The size risk premium also faces a distressed risk due to the liquidity risk of small cap
stocks. For instance, the period of low liquidity between June 2008 and March 2009
has weighted on the performance of the size factor.

By using the framework developed here, we show that the size and value allocation is gen-
erally overestimated in factor-based investing, because the portfolio construction does not
take into account the skewness risk.

5.2 Skewness risk premia

By construction, our framework is particularly relevant for managing a portfolio of assets
that incorporates skewness risk premia. The equity/bond/volatility asset mix policy is an
emblematic illustration, because the short volatility strategy is one of the most famous
example of skewness risk. We may also consider other asset allocation problems, like the

16When it considers the volatility risk measure.
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portfolio of cross-asset carry risk premia or the introduction of less liquid strategies. Another
example concerns the equity cross-section momentum risk premium. In a long/short format,
this risk premium is subject to a high skewness risk known as momentum crashes (Daniel and
Moskowitz, 2016). In this context, a volatility-based risk parity portfolio overestimates the
allocation of such risk premium. Moreover, our analysis shows that this result depends on
the implementation of the momentum risk factor. In particular, the overestimation is more
salient for the winners-minus-losers strategy than for the winners-minus-market strategy.

5.3 Volatility hedging versus skewness hedging

Hamdan et al. (2016) noticed that “there is a floor to the hedging of the third moment,
which is not the case for the second moment. As a consequence, volatility diversification or
negative correlation leads to reduced volatility, but increased tail risks in relative terms”.
Using the equity/bond/carry example, we confirm that skewness hedging is a difficult task.
In table 11, we report the composition of some risk-based portfolios using the estimates
of the weekly model. Using the Gaussian model, the minimum variance (MV) portfolio is
composed of 63.26% of bonds, 2.23% of equities and 34.51% of the carry risk premium. The
volatility and the skewness17 of the MV portfolio are then equal to 2.62% and −2.75. If
we consider the normal regime of the mixture model and compute the MV portfolio, the
weights become 36.06% for bonds, 0% for equities and 63.95% for the carry risk premium.
In both cases, the MV portfolio has a low or zero allocation in equities, because this asset
class is highly volatile. The allocation in the short volatility strategy is high when we
consider the normal regime. This is the most frequent situation because jumps are rare.
However, the portfolio is also highly risky because skewness is equal to −19.81!. We have
also computed the minimum expected shortfall (MES) portfolio at the 99% confidence level
in the last column18. In this case, the portfolio is fully invested in bonds. Therefore, we
notice a big difference between MV and MES portfolios. Minimizing the volatility leads
then to allocating a large part in the carry risk premium, whereas minimizing the expected
shortfall implies replacing this asset by bonds. By focusing on volatility, the investor may
then neglect the skewness risk. Moreover, this risk cannot be diversified contrary to the
volatility risk. These results explain that life performance of risk factor and alternatives risk
premia portfolios are not always in line with the performance of their (in-sample) backtests.

Table 11: Volatility and skewness risks of risk-based portfolios (weekly model)

Portfolio MV MV ERC MES

Model
Gaussian Jump model

(full sample) Normal Mixture Mixture
Bonds 63.26% 36.05% 52.71% 100.00%

Equities 2.23% 0.00% 10.36% 0.00%
Carry 34.51% 63.95% 36.93% 0.00%
σ (x) 2.62% 2.33% 2.75% 4.17%
γ1 −2.75 −19.81 −6.17 0.00

17These statistics are calculated under the assumption that asset returns follow the Gaussian mixture
model.

18We have also reported the skewness-based ERC portfolio found previously in the fourth column. Its
skewness is equal to −6.17.
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Remark 5 Some investors think that CTA is a good strategy for hedging the skewness risk.
This belief comes from the 2008 financial crisis, when CTA has posted positive returns while
the drawdown of the equity market was large. In fact, there is a confusion between two risks:
the CTA strategy has done a good job in hedging the volatility risk, not the skewness risk.
Indeed, the 2008 financial crisis is more an event of high volatility risk than an episode of
pure skewness risk. This explains that the performance of CTA is generally disappointing
when skewness risks occur (e.g. 2011, January 2015, etc.)

6 Conclusion

This paper may be viewed as the end of a trilogy, which started with the study of factor
investing (Cazalet and Roncalli, 2014) and was extended with the analysis of alternative
risk premia (Hamdan et al., 2016). The two previous analysis have shown the importance
of skewness risk in the universe of risk premia and confirmed the asymmetric tail risks of
some strategies (Lempérière et al., 2014). This is particularly true for skewness risk premia,
which may exhibit extreme jump movements.

As shown by Hamdan et al. (2016), it is an illusion to think that we can fully hedge the
skewness risk, because there is a floor to skewness diversification. In this paper, we present
a new risk-based model, whose objective is to take into account these limits. Our framework
uses the risk budgeting approach by considering the expected shortfall measure instead of
the volatility risk measure. However, contrary to Roncalli (2015) who assumed that asset
returns are Gaussian, we use a mixture distribution with two regimes for modeling asset
returns. The first regime is normal whereas the second regime incorporates jumps. This
model allows us to obtain closed-form formulas for risk contributions, and we can then
compute risk-based portfolios.

To illustrate the model, we consider the traditional equity/bond asset mix policy by
introducing the short volatility strategy, which is a highly skewed asset. The comparison of
volatility-based and skewness-based risk parity portfolios showed that traditional risk-based
portfolios give too much weight to skewed assets in periods of calm. Skewness-based risk
parity portfolios are more robust and remain invested in skewed assets once the jump risk has
been observed. This example shows that hedging the skewness is a difficult task. Because the
skewness is a statistical measure of jumps, skewness hedging is equivalent to jump hedging.
However, contrary to the volatility, we show that jumps are difficult to hedge. In particular,
volatility diversification and optimization can produce portfolios, which present low volatility
risk but high stress risk. This is why skewness diversification is an illusion. The appropriate
answer is then to size the position of the skewed asset according to its real risk, and not only
to its volatility risk. This result is important for institutional investors and pension funds
managing portfolios of equity risk factors or alternative risk premia. More generally, our
results question the strategic asset allocation when it includes skewed and illiquid assets. It
is of course the case of hedge fund strategies (Billio et al., 2012), but also other alternative
assets like credit, real estate or infrastructure.
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A Mathematical results

A.1 Characteristic function of the jump-diffusion process

We know that the characteristic function of the compound Poisson process Zt has the fol-
lowing expression:

E
[
e−iu.Zt

]
= eλt(F (u)−1)

where F (u) = exp
(
iu>µ̃− 1

2u
>Σ̃u

)
is the characteristic function of jump amplitudes. It

follows that the characteristic function of the Lévy process dLt is equal to:

E
[
e−iu.dLt

]
= e(iu

>µ− 1
2u
>Σu) dt+λ(F (u)−1) dt

If we assume λ dt small enough (or alternatively that λ is small), we can make the following
approximation:

E
[
e−iu.dLt

]
≈ (1 + λ dt (F (u)− 1)) e(iu

>µ− 1
2u
>Σu) dt

≈ (1− λ dt) · e(iu
>µ− 1

2u
>Σu) dt + (λ dt) · e(iu

>µ− 1
2u
>Σu) dteiu

>µ̃− 1
2u
>Σ̃u

Finally, we obtain:

E
[
e−iu.dLt

]
≈ (1− λ dt) · e(iu

>µ− 1
2u
>Σu) dt + (λ dt) · eiu

>(µ dt+µ̃)− 1
2u
>(Σ dt+Σ̃)u

A.2 Skewness of Gaussian mixture models

We consider the mixture Y of two normal random variables Y1 and Y2, whose distribution
function is:

f (y) = π1f1 (y) + π2f2 (y)

where Y1 ∼ N
(
µ1, σ

2
1

)
, Y2 ∼ N

(
µ2, σ

2
2

)
and π1 + π2 = 1. The k-th moment of Y is given

by:

E
[
Y k
]

= π1E
[
Y k1
]

+ π2E
[
Y k2
]

We know that E [Yi] = µi, E
[
Y 2
i

]
= µ2

i + σ2
i and E

[
Y 3
i

]
= µ3

i + 3µiσ
2
i . We deduce that:

E [Y ] = π1µ1 + π2µ2

and:

σ2 (Y ) = π1E
[
Y 2

1

]
+ π2E

[
Y 2

2

]
− E2 [Y ]

= π1

(
µ2

1 + σ2
1

)
+ π2

(
µ2

2 + σ2
2

)
− (π1µ1 + π2µ2)

2

= π1σ
2
1 + π2σ

2
2 + π1 (1− π1)

(
µ2

1 + µ2
2

)
− 2π1π2µ1µ2

= π1σ
2
1 + π2σ

2
2 + π1π2 (µ1 − µ2)

2

because π2 = 1− π1. Recall that the skewness coefficient of Y has the following expression:

γ1 (Y ) = E

[(
Y − E [Y ]

σ (Y )

)3
]
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It follows:

E
[
(Y − E [Y ])

3
]

= E
[
Y 3
]
− 3E [Y ]σ2 (Y )− E3 [Y ]

= π1

(
µ3

1 + 3µ1σ
2
1

)
+ π2

(
µ3

2 + 3µ2σ
2
2

)
−

3 (π1µ1 + π2µ2)
(
π1σ

2
1 + π2σ

2
2 + π1π2 (µ1 − µ2)

2
)
−

(π1µ1 + π2µ2)
3

= π1π2 (π2 − π1) (µ1 − µ2)
3

+ 3π1π2 (µ1 − µ2)
(
σ2

1 − σ2
2

)
We deduce:

γ1 (Y ) =
π1π2

(
(π2 − π1) (µ1 − µ2)

3
+ 3 (µ1 − µ2)

(
σ2

1 − σ2
2

))
(
π1σ2

1 + π2σ2
2 + π1π2 (µ1 − µ2)

2
)3/2

(12)

A.3 Derivation of the EM algorithm

The log-likelihood function is:

` (θ) =

T∑
t=1

ln

2∑
j=1

πjφn (Rt;µj ,Σj)

The derivative of ` (θ) with respect to µj is equal to:

∂ ` (θ)

∂ µj
=

T∑
t=1

πjφn (Rt;µj ,Σj)∑2
s=1 πsφn (Rt;µs,Σs)

Σ−1
j (Rt − µj)

Therefore, the first-order condition is:

T∑
t=1

πj,tΣ
−1
j (Rt − µj) = 0

where:

πj,t =
πjφn (Rt;µj ,Σj)∑2
s=1 πsφn (Rt;µs,Σs)

We deduce the expression of the estimator µ̂j :

µ̂j =

∑T
t=1 πj,tRt∑T
t=1 πj,t

(13)

For the derivative with respect to Σj , we consider the function g
(
Σ−1
j

)
defined as follows:

g
(
Σ−1
j

)
=

1

(2π)
n/2 |Σj |1/2

e−
1
2 (Rt−µj)>Σ−1

j (Rt−µj)

=

∣∣Σ−1
j

∣∣1/2
(2π)

n/2
e−

1
2 trace(Σ−1

j (Rt−µj)(Rt−µj)>)
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It follows19:

∂ g
(
Σ−1
j

)
∂ Σ−1

j

=
1

2

∣∣Σ−1
j

∣∣−1/2 ∣∣Σ−1
j

∣∣Σj
(2π)

n/2
e
−

1

2
trace(Σ−1

j (Rt−µj)(Rt−µj)>)

−1

2
(Rt − µj) (Rt − µj)>

∣∣Σ−1
j

∣∣1/2
(2π)

n/2
e
−

1

2
trace(Σ−1

j (Rt−µj)(Rt−µj)>)

=
1

(2π)
n/2 |Σj |1/2

e
−

1

2
(Rt−µj)Σ−1

j (Rt−µj)>
(

Σj − (Rt − µj) (Rt − µj)>
)

2

We deduce:

∂ ` (θ)

∂ Σ−1
j

=
1

2

T∑
t=1

πjφn (Rt;µj ,Σj)∑2
s=1 πsφn (Rt;µs,Σs)

(
Σj − (Rt − µj) (Rt − µj)>

)
The first-order condition is then:

T∑
t=1

πj,t

(
Σj − (Rt − µj) (Rt − µj)>

)
= 0

It follows that the estimator Σ̂j is equal to:

Σ̂j =

∑T
t=1 πj,t (Rt − µ̂j) (Rt − µ̂j)>∑T

t=1 πj,t
(14)

Regarding the mixture probabilities πj , the first-order condition implies:

T∑
t=1

φn (Rt;µj ,Σj)∑2
s=1 πsφn (Rt;µs,Σs)

= c

where c is the Lagrange multiplier associated to the constraint
∑2
j=1 πj = 1. We deduce

that c = T . We conclude that it is not possible to directly define the estimator π̂j . This is
why we have to use another route to obtain the ML estimators.

We introduce the estimator π̂j,t:

π̂j,t =
πjφn (Rt;µj ,Σj)∑2
s=1 πsφn (Rt;µs,Σs)

(15)

π̂j,t is the posterior probability of the regime index for the observation t. Knowing π̂j,t, the
estimator π̂j is given by:

π̂j =

∑T
t=1 π̂j,t
T

(16)

The EM algorithm consists in the following iterations:

19We use the following results:

∂ |A|
∂ A

= |A|
(
A−1

)>
∂ trace

(
A>B

)
∂ A

= B
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1. Initialize the algorithm with starting values π
(0)
j , µ

(0)
j and Σ

(0)
j ; Set k = 0.

2. Using Equation (15), we calculate the posterior probabilities πj,t:

π
(k)
j,t =

π
(k)
j φn

(
Rt;µ

(k)
j ,Σ

(k)
j

)
∑2
s=1 π

(k)
s φn

(
Rt;µ

(k)
s ,Σ

(k)
s

)
3. Using Equations (16), (13) and (14), we update the estimators π̂j , µ̂j and Σ̂j :

π
(k+1)
j =

∑T
t=1 π

(k)
j,t

T

µ
(k+1)
j =

∑T
t=1 π

(k)
j,t Rt∑T

t=1 π
(k)
j,t

Σ
(k+1)
j =

∑T
t=1 π

(k)
j,t

(
Rt − µ(k+1)

j

)(
Rt − µ(k+1)

j

)>
∑T
t=1 π

(k)
j,t

4. We iterate Steps 2 and 3 until convergence.

5. Finally, we have π̂j = π
(∞)
j , µ̂j = π

(∞)
j and Σ̂j = Σ

(∞)
j .

A.4 Expression of the expected shortfall

Let Y ∼ N
(
µ, σ2

)
be a Gaussian random variable. We consider the following quantity:

ϕ = E [1 {Y ≥ a} · Y ]

We have20:

ϕ =

∫ ∞
a

y

σ
φ

(
y − µ
σ

)
dy

=

∫ ∞
σ−1(a−µ)

(µ+ σt)φ (t) dt

= µ [Φ (t)]
∞
σ−1(a−µ) +

σ√
2π

∫ ∞
σ−1(a−µ)

t exp

(
−1

2
t2
)

dt

= µ

(
1− Φ

(
a− µ
σ

))
+

σ√
2π

[
− exp

(
−1

2
t2
)]∞

σ−1(a−µ)

= µΦ

(
−a− µ

σ

)
+ σφ

(
a− µ
σ

)
In the case of the model with jumps, the definition of the expected shortfall is:

ESα (x) = E [L (x) | L (x) ≥ VaRα (x)]

where L(x) = −R(x) is the portfolio’s loss. It follows that:

ESα (x) =
1

1− α
· E [1 {L (x) ≥ VaRα (x)} · L (x)]

=
1

1− α

∫ ∞
VaRα(x)

yg (y) dy

20We consider the change of variable t = σ−1 (x− µ).
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where g (y) is the density function of L (x). Using Equation (3), we have:

g (y) = (1− λ)
1

σ1 (x)
φ

(
y + µ1 (x)

σ1 (x)

)
+ λ

1

σ2 (x)
φ

(
y + µ2 (x)

σ2 (x)

)
We deduce:∫ ∞

VaRα(x)

yg (y) dy = (1− λ) · E [1 {L1 (x) ≥ VaRα (x)} · L1 (x)] +

λ · E [1 {L2 (x) ≥ VaRα (x)} · L2 (x)]

where L1 (x) ∼ N
(
−µ1 (x) , σ2

1 (x)
)

and L2 (x) ∼ N
(
−µ2 (x) , σ2

2 (x)
)
. Finally, we obtain:

ESα (x) =
1− λ
1− α

(
σ1 (x)φ

(
VaRα (x) + µ1 (x)

σ1 (x)

)
− µ1 (x) Φ

(
−VaRα (x) + µ1 (x)

σ1 (x)

))
+

λ

1− α

(
σ2 (x)φ

(
VaRα (x) + µ2 (x)

σ2 (x)

)
− µ2 (x) Φ

(
−VaRα (x) + µ2 (x)

σ2 (x)

))
This expression depends on the value taken by the value-at-risk, which is defined by:

Pr {L (x) ≤ VaRα (x)} = α

It follows: ∫ VaRα(x)

−∞
g (y) dy = α

or:

(1− λ) · Φ
(

VaRα (x) + µ1 (x)

σ1 (x)

)
+ λ · Φ

(
VaRα (x) + µ2 (x)

σ2 (x)

)
= α

The calculation of the value-at-risk can then be done numerically using a bisection algorithm.

A.5 Calculation of the marginal expected shortfall

We introduce the following notations:

hi (x) =
VaRα (x) + µi (x)

σi (x)

Recall that the value-at-risk is defined by this implicit equation:

(1− λ) · Φ (h1 (x)) + λ · Φ (h2 (x)) = α

We deduce:
(1− λ) · φ (h1 (x)) ∂xh1 (x) + λ · φ (h2 (x)) ∂xh2 (x) = 0

where:

∂xh1 (x) =
∂x VaRα (x) + µ

σ1 (x)
− h1 (x)

σ2
1 (x)

Σx

and:

∂xh2 (x) =
∂x VaRα (x) + µ+ µ̃

σ2 (x)
− h2 (x)

σ2
2 (x)

(
Σ + Σ̃

)
x

We finally obtain the following gradient of the value-at-risk:

∂x VaRα (x) =
$1 (x)

(
h1(x)
σ1(x)Σx− µ

)
+$2 (x)

(
h2(x)
σ2(x)

(
Σ + Σ̃

)
x− (µ+ µ̃)

)
$1 (x) +$2 (x)
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where:

$i (x) =
πiφ (hi (x))

σi (x)

Let us now consider the expected shortfall. We have:

ESα (x) =
1− λ
1− α

σ1 (x)φ (h1 (x))− 1− λ
1− α

µ1 (x) Φ (−h1 (x)) +

λ

1− α
σ2 (x)φ (h2 (x))− λ

1− α
µ2 (x) Φ (−h2 (x))

We deduce21:

∂x ESα (x) =
1− λ
1− α

(∂xσ1 (x)φ (h1 (x))− σ1 (x)h1 (x)φ (h1 (x)) ∂xh1 (x))−

1− λ
1− α

(∂xµ1 (x) Φ (−h1 (x))− µ1 (x)φ (h1 (x)) ∂xh1 (x)) +

λ

1− α
(∂xσ2 (x)φ (h2 (x))− σ2 (x)h2 (x)φ (h2 (x)) ∂xh2 (x))−

λ

1− α
(∂xµ2 (x) Φ (−h2 (x))− µ2 (x)φ (h2 (x)) ∂xh2 (x))

We obtain:

∂x ESα (x) =
$1 (x)

1− α
δ1 (x) +

$2 (x)

1− α
δ2 (x)−

1

1− α
((1− λ)µΦ (−h1 (x)) + λ (µ+ µ̃) Φ (−h2 (x)))

where22:

δ1 (x) =

(
1 +

h1 (x)

σ1 (x)
VaRα (x)

)
Σx−VaRα (x) (∂x VaRα (x) + µ)

and:

δ2 (x) =

(
1 +

h2 (x)

σ2 (x)
VaRα (x)

)(
Σ + Σ̃

)
x−

VaRα (x) (∂x VaRα (x) + µ+ µ̃)

A.6 Existence and uniqueness of the RB portfolio

In our model, the portfolio’s loss L (x) can be decomposed in two components:

L (x) = B · L1 (x) + (1−B) · L2 (x)

where B ∼ B (π1), L1 (x) is the portfolio’s loss under the first regime without jumps and
L2 (x) is the portfolio’s loss under the second regime with jumps. In order to obtain some
interesting results, we will bound the expected shortfall of the jump model by another
expected shortfall.

21Because we have ∂xφ (x) = −xφ (x) and φ (−x) = φ (x).
22We use the result: µ1 (x)− σ1 (x)h1 (x) = µ2 (x)− σ2 (x)h2 (x) = −VaRα (x).
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A.6.1 VaR lower bound

Let us consider the value-at-risk, which is defined as:∫ VaRα(x)

−∞
g (y) dy = α

where g (y) = π1g1 (y) + π2g2 (y), g1 (y) is the density function of L1 (x) and g2 (y) is the
density function of L2 (x). We also have:∫ +∞

VaRα(x)

(π1g1 (y) + π2g2 (y)) dy = 1− α

Since π2g2 (y) ≥ 0, we have: ∫ +∞

VaRα(x)

π1g1 (y) dy ≤ 1− α

and: ∫ +∞

VaRα(x)

g1 (y) dy ≤ 1− α
π1

We set 1− α′ = (1− α) /π1. It follows:

α′ =
π1 − (1− α)

π1

=
α− λ
1− λ

If we assume that23 α ≥ λ, we obtain:∫ +∞

VaRα(x)

g1 (y) dy ≤ 1− α′ =

∫ +∞

VaR1
α′ (x)

g1 (y) dy

where VaR1
α′(x) is the value-at-risk of the portfolio’s loss under the first regime at the

confidence level α′. As
∫ b
a
g1 (y) dy is a decreasing function of a, we conclude:

VaRα (x) ≥ VaR1
α′ (x)

We have found a lower bound VaR− of the value-at-risk, which is equal to:

VaR− = −µ1 (x) + Φ−1

(
α− λ
1− λ

)
σ1 (x)

A.6.2 ES lower bound

The expected shortfall is equal to:

ESα (x) =
1

1− α

∫ +∞

VaRα(x)

yg (y) dy

=
π1

1− α

∫ +∞

VaRα(x)

yg1 (y) dy +
π2

1− α

∫ +∞

VaRα(x)

yg2 (y) dy

23This is the normal case, because the confidence level α is generally high (α ≥ 50%), whereas the intensity
parameter λ is low (λ ≤ 50%).
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We consider the worst case scenario when g2 (y) is a Dirac measure on VaRα (x). Using the
previous lower bound of the value-at-risk, it follows:∫ +∞

VaRα(x)

yg2 (y) dy ≥ (1− α) VaRα (x) ≥ (1− α) VaR1
α′ (x)

As the expected shortfall is an increasing function of the confidence level and the value-at-
risk, we obtain:∫ +∞

VaRα(x)

yg1 (y) dy ≥
∫ +∞

VaR1
α′ (x)

yg1 (y) dy = (1− α′) ES1
α′ (x)

where ES1
α′ (x) is the expected shortfall under the first regime at the confidence level α′. We

deduce:

ESα (x) ≥ π1

1− α
(1− α′) ES1

α′ (x) +
π2

1− α
(1− α) VaR1

α′ (x)

or:

ESα (x) ≥ ES1
α′ (x) + π2 VaR1

α′ (x)

Using the analytical expression of ES1
α′ (x) and VaR1

α′ (x), the lower bound ES− of the
expected shortfall becomes:

ES− = −µ1 (x) +
1− λ
1− α

φ

(
Φ−1

(
α− λ
1− λ

))
σ1 (x) +

λ

(
−µ1 (x) + Φ−1

(
α− λ
1− λ

)
σ1 (x)

)
= − (1 + λ)µ1 (x) +

(
1− λ
1− α

φ

(
Φ−1

(
α− λ
1− λ

))
+ λΦ−1

(
α− λ
1− λ

))
σ1 (x)

A.6.3 Main result

Roncalli (2015) showed that when the risk measure R (x) has the following form:

R (x) = − (µ (x)− r) + c · σ (x)

then the RB portfolio exists and is unique if the following condition holds:

c ≥ SR+ = max

(
sup

x∈[0,1]n
SR (x | r) , 0

)

In our case, it follows that the RB portfolio exists and is unique if we have:

α ≥ max
(
α−, 0

)
where:

1− λ
1− α−

φ

(
Φ−1

(
α− − λ
1− λ

))
+ λΦ−1

(
α− − λ
1− λ

)
= (1 + λ) SR+

1

and SR+
1 is the maximum Sharpe ratio under the first regime, which is calculated with a

zero-interest rate.
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A.7 Equivalence between filtering and thresholding methods in the
one-dimensional case

We use the following parametrization of the probability density function:

f (y) = (1− π)φ1

(
yt, µdt, σ2 dt

)
+ πφ1

(
yt, µdt+ µ̃, σ2 dt+ σ̃2

)
The posteriori probability to have a jump at time t is:

π̂t =
πφ1

(
yt, µdt+ µ̃, σ2 dt+ σ̃2

)
(1− π)φ1 (yt, µdt, σ2 dt) + πφ1 (yt, µdt+ µ̃, σ2 dt+ σ̃2)

It follows that π̂t ≥ π? is equivalent to:

φ1

(
yt, µdt, σ2 dt

)
≤ π (1− π?)
π? (1− π)

φ1

(
yt, µdt+ µ̃, σ2 dt+ σ̃2

)
or:

(yt − µdt− µ̃)
2

σ2 dt+ σ̃2
− (yt − µdt)

2

σ2 dt
≤ 2 ln

π (1− π?)
π? (1− π)

+ ln
σ2 dt

σ2 dt+ σ̃2

We finally obtain:
αy2

t + 2βyt + γ ≥ 0

where:

α = σ̃2

β =
(
µ̃σ2 − µσ̃2

)
dt

γ = (µdt)
2 (
σ2 dt+ σ̃2

)
− (µdt+ µ̃)

2
σ2 dt+(

2 ln
π (1− π?)
π? (1− π)

+ ln
σ2 dt

σ2 dt+ σ̃2

)(
σ2 dt+ σ̃2

)
σ2 dt

Under some assumptions24, we can show that ∆′ = β2 − αγ ≥ 0 implying that there are
two roots:

y− =
−β −

√
β2 − αγ
α

and:

y+ =
−β +

√
β2 − αγ
α

We deduce:
π̂t ≥ π? ⇔ yt ≤ y− or yt ≥ y+

We conclude that we observe a jump if the following condition holds25:

Jt = 1⇔ yt ≤ y− or yt ≥ y+

24We must have |µ̃| ≥ |µ| dt and σ̃2 � σ2 dt.
25We also have:

Jt = 1⇔
∣∣∣∣yt +

β

α

∣∣∣∣ ≥ κσ · (σ√dt
)

where:

κσ =

√
β2 − αγ
ασ
√

dt

According to Ait-Sahalia (2004), the multiplicative factor κσ takes its value between 3.5 and 4.0.
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Figure 19: Detecting the jumps of the carry risk premium (weekly model)

To show the equivalence of the two approaches, we consider the returns Rt of the carry
risk premium. Using the weekly model, we calculate the truncation points of the thresholding
approach. Results are given in top panels in Figure 19. For instance, when π? is equal to 30%,
we obtain R− = −1.24% and R+ = 1.74%. Therefore, we believe that we have a jump when
the weekly return is lower than −1.24% or when it is higher than 1.74%. In the bottom/left
panel, we illustrate the thresholding approach with R− = −1.24% and R+ = 1.74% whereas
the filtering approach is showed in the bottom/right panel with π? = 30%. As expected,
the two approaches detect the jumps at the same times.

A.8 Derivation of the thresholding approach in the multi-dimensional
case

We use the following parametrization of the probability density function:

f (y) = (1− π)φn (yt, µ1,Σ1) + πφn (yt, µ2,Σ2)

The posteriori probability to have a jump at time t is:

π̂t =
πφn (yt, µ2,Σ2)

(1− π)φn (yt, µ1,Σ1) + πφn (yt, µ2,Σ2)

It follows that π̂t ≥ π? is equivalent to:

(yt − µ1)
>

Σ−1
1 (yt − µ1)− (yt − µ2)

>
Σ−1

2 (yt − µ2) + 2 ln
π (1− π∗)
π∗ (1− π)

+ ln
|Σ1|
|Σ2|

≥ 0
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We deduce:

y>t
(
Σ−1

1 − Σ−1
2

)
yt + 2

(
µ>2 Σ−1

2 − µ>1 Σ−1
1

)
yt +(

µ>1 Σ−1
1 µ1 − µ>2 Σ−1

2 µ2

)
+ 2 ln

π (1− π∗)
π∗ (1− π)

+ ln
|Σ1|
|Σ2|

≥ 0

The quadratic form of this inequality is:

(yt − v)
>
Q (yt − v) ≥ r?

where:

Q = Σ−1
1 − Σ−1

2

v = Q−1
(
Σ−1

1 µ1 − Σ−1
2 µ2

)
r? = v>Qv + µ>2 Σ−1

2 µ2 − µ>1 Σ−1
1 µ1 − 2 ln

π (1− π∗)
π∗ (1− π)

− ln
|Σ1|
|Σ2|

With the parametrization µ1 = µdt, Σ1 = Σ dt, µ2 = µdt + µ̃ and Σ2 = Σ dt + Σ̃, we
obtain26:

Q =
(

Σ dt+ Σ̃
)−1

Σ̃ (Σ dt)
−1

v =
(
µ− ΣΣ̃−1µ̃

)
dt

r? = µ̃>Σ̃−1µ̃− 2 ln
π (1− π∗)
π∗ (1− π)

− ln
|Σ dt|∣∣∣Σ dt+ Σ̃

∣∣∣
The solution of the quadratic equation (yt − v)

>
Q (yt − v) = r? is a n-dimensional ellipsoid

centered at v and whose semi-axes are the square root of the eigenvalues of the matrix
r?Q−1. We deduce that the solution is not unique and can not be expressed in terms of
truncation points:

Jt = 1 < yi,t ≤ y−i and yi,t ≥ y+
i

We consider again the equity/bond/volatility example. In the top panel in Figure 20, we
report the solution of the quadratic equation, which is an ellipsoid27. For the thresholding
method, we compare at each date the quadratic form QFt = (Rt − v)

>
Q (Rt − v) with the

threshold r? = 16.03 calculated using the numerical values of Table 9. We will say that we
observe a jump if the following conditions holds:

Jt = 1⇔ QFt ≥ r?

The filtering method is given in the bottom/right panel. In this case, we have:

Jt = 1⇔ πt ≥ π?

26We use the following matrix formula: Q = Σ−1
2 (Σ2 − Σ1) Σ−1

1 .
27The spherical coordinates are: 

Rbond =
√
λ1 cos (θ) cos (φ)

Requity =
√
λ2 cos (θ) sin (φ)

Rcarry =
√
λ3 sin (θ)

where −π/2 ≤ θ ≤ π/2, −π ≤ φ ≤ π and {λi}i≥1 are the eigenvalues of r?Q−1.
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Figure 20: Detecting the jumps in the multivariate case (weekly model)

A.9 Filtering algorithm for estimating µ̂t and Σ̂t

We consider a sample {y1, . . . , yT } of T observations. We note yi,t the value of the ith

component at time t. Given π, µ̃ and Σ̃, we would like to estimate the parameters µ̂t and
Σ̂t by assuming that the probability density function of the mixture model is:

f (y) = (1− π)φn (y;µdt,Σ dt) + πφn

(
y;µdt+ µ̃,Σ dt+ Σ̃

)
We assume that there is a jump at time t if the filtering probability π̂t is larger than a given
threshold π?:

Jt = 1⇔ π̂t ≥ π?

The algorithm for estimating the parameters is then given by the following steps:

1. Let nrw be the length of the rolling window. We initialize the filtering procedure at
time nrw + 1.

2. At time t, we calculate the posterior jump probabilities:

π̂t−s =
πφn

(
yt−s, µ̂t−1 dt+ µ̃, Σ̂t−1 dt+ Σ̃

)
(1− π)φn

(
yt−s, µ̂t−1 dt, Σ̂t−1 dt

)
+ πφn

(
yt−s, µ̂t−1 dt+ µ̃, Σ̂t−1 dt+ Σ̃

)
for s = 0, . . . , nrw − 1. The probabilities π̂t−s are based on the estimates µ̂t−1 and
Σ̂t−1 calculated at time t− 1.

3. We update the estimates µ̂t−1 and Σ̂t−1 using the following formulas:

µ̂i,t dt =
1

nt

nrw−1∑
s=0

1 {π̂t−s ≤ π̄} · yi,t−s
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Σ̂i,j,t dt =
1

nt

nrw−1∑
s=0

1 {π̂t−s ≤ π̄} · (yi,t−s − µ̂i,t) (yj,t−s − µ̂j,t)

where nt indicates the number of observations that do not jump:

nt =

nrw−1∑
s=0

1 {π̂t−s ≤ π̄}

These new estimates µ̂t and Σ̂t will be valid to calculate the posterior probabilities
π̂t+1−s.

4. We go back to Step 2.

To initialize the algorithm, we can use the traditional Gaussian estimates.

B Additional results

Table 12: Estimation of the Gaussian model (weekly model)

Asset µi σi ρi,j
Bonds 5.38 4.17 100.00

Equities 6.09 18.38 −34.43 100.00
Carry 6.00 5.50 −18.22 51.92 100.00

Table 13: Estimation of the Gaussian model (monthly model)

Asset µi σi ρi,j
Bonds 5.32 4.31 100.00

Equities 5.91 16.97 −28.56 100.00
Carry 6.26 6.91 −14.50 55.21 100.00

Table 14: Estimation of the Gaussian model (annually model)

Asset µi σi ρi,j
Bonds 5.29 4.03 100.00

Equities 6.47 18.59 −69.26 100.00
Carry 6.68 8.16 −26.22 63.25 100.00
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Table 15: Estimation of the Gaussian mixture model when π = 5% (weekly model)

Asset µi σi ρi,j
Bonds 4.65 3.84 100.00

Equities 10.85 14.32 −34.78 100.00
Carry 11.35 2.53 −22.40 57.72 100.00
Asset µ̃i σ̃i ρ̃i,j
Bonds 0.18 0.78 100.00

Equities −1.26 5.56 −35.80 100.00
Carry −1.30 2.04 −16.34 53.86 100.00

Table 16: Estimation of the Gaussian mixture model when π = 5% (monthly model)

Asset µi σi ρi,j
Bonds 4.25 4.01 100.00

Equities 10.76 13.79 −33.04 100.00
Carry 10.14 2.61 −19.03 46.49 100.00
Asset µ̃i σ̃i ρ̃i,j
Bonds 1.18 1.21 100.00

Equities −5.33 8.97 26.78 100.00
Carry −4.14 5.21 32.51 65.69 100.00

Table 17: Estimation of the Gaussian mixture model when π = 1% (weekly model)

Asset µi σi ρi,j
Bonds 4.75 3.95 100.00

Equities 9.23 15.21 −34.60 100.00
Carry 10.51 2.80 −22.91 56.83 100.00
Asset µ̃i σ̃i ρ̃i,j
Bonds 0.29 0.85 100.00

Equities −1.56 6.66 −35.97 100.00
Carry −1.98 2.43 −7.65 57.45 100.00

Table 18: Estimation of the Gaussian mixture model when π = 1% (monthly model)

Asset µi σi ρi,j
Bonds 4.57 4.07 100.00

Equities 9.16 14.54 −32.14 100.00
Carry 9.70 2.90 −19.56 47.68 100.00
Asset µ̃i σ̃i ρ̃i,j
Bonds 1.36 1.33 100.00

Equities −5.84 10.17 30.97 100.00
Carry −5.94 5.77 55.18 74.83 100.00
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Table 19: Estimation of the Gaussian mixture model when λ = 10% (weekly model)

Asset µi σi ρi,j
Bonds 4.85 3.99 100.00

Equities 8.53 15.70 −35.21 100.00
Carry 10.10 2.94 −23.44 56.95 100.00
Asset µ̃i σ̃i ρ̃i,j
Bonds 0.33 0.89 100.00

Equities −1.71 7.22 −32.16 100.00
Carry −2.46 2.62 −1.96 60.59 100.00

Table 20: Estimation of the Gaussian mixture model when λ = 10% (monthly model)

Asset µi σi ρi,j
Bonds 4.59 4.08 100.00

Equities 8.96 14.64 −31.97 100.00
Carry 9.64 2.93 −19.58 48.02 100.00
Asset µ̃i σ̃i ρ̃i,j
Bonds 1.38 1.34 100.00

Equities −5.79 10.28 30.71 100.00
Carry −6.15 5.83 58.45 76.92 100.00

Table 21: Estimation of the constrained mixture model when π = 1% (monthly model)

Asset µi σi ρi,j
Bonds 5.32 4.31 100.00

Equities 8.69 14.53 −32.57 100.00
Carry 9.54 2.94 −22.21 48.50 100.00
Asset µ̃i σ̃i ρ̃i,j
Bonds 0.00 0.00 100.00

Equities −5.46 10.86 0.00 100.00
Carry −6.16 5.93 0.00 73.28 100.00
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Figure 21: Expected monthly drawdown (in %) of the carry risk premium

Figure 22: Probability density function of asset returns in the normal regime (monthly
model)
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Figure 23: Dynamics of the ERC weights (mixture model, ML method)
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