Climate Finance

Thierry Roncalli

February 15th, 2023

Deadline: ??

We consider an investment universe of 8 issuers. In the table below, we report the carbon emissions $\mathcal{CE}_{i,j}$ of these companies and their revenues Y_i , and we indicate in the last row whether the company belongs to sector S_1 or S_2 :

Issuer	#1	#2	#3	#4	#5	#6	#7	#8
$\mathcal{CE}_{i,1}$ (in ktCO ₂ e)	75	5000	720	50	2500	25	30000	5
$\mathcal{CE}_{i,2}$ (in ktCO ₂ e)	75	5000	1030	350	4500	5	2000	64
$\overline{Y_i}$ (in \$ bn)	300	$\bar{328}$	-125	100	200	$\bar{1}0\bar{2}$	107	-25
Sector	$\bar{\mathcal{S}}_1^-$	$\overline{\mathcal{S}}_2$	$\overline{\mathcal{S}_1}$	\bar{S}_1	$\bar{\mathcal{S}}_2$	$\overline{\mathcal{S}_1}$	$\overline{\mathcal{S}}_2$	$\overline{\mathcal{S}_2}$

The benchmark b of this investment universe is defined as:

b = (22%, 19%, 17%, 13%, 11%, 8%, 6%, 4%)

In what follows, we consider **long-only portfolios**.

- 1. We want to compute the carbon intensity of the benchmark.
 - (a) Deduce the carbon intensities $\mathcal{CI}_{i,1+2}$ of each company *i* for scope 1+2 emissions.
 - (b) Deduce the weighted average carbone intensity (WACI) of the benchmark.
- 2. We would like to manage an equity portfolio with respect to the previous investment universe and reduce the weighted average carbon intensity of the benchmark by the rate \mathcal{R} . We assume that the volatility of the stocks is respectively equal to 22%, 20%, 25%, 18%, 40%, 23%, 13% and 29%. The correlation matrix between these stocks is given by:

	/ 100%)
$\rho =$	80%	100%						
	70%	75%	100%					
	60%	65%	80%	100%				
	70%	50%	70%	85%	100%			
	50%	60%	70%	80%	60%	100%		
	70%	50%	70%	75%	80%	50%	100%	
	60%	65%	70%	75%	65%	70%	60%	100%

- (a) Compute the covariance matrix Σ .
- (b) Write the optimization problem if the objective function is to minimize the tracking error risk under the constraint of carbon intensity.
- (c) Give the QP formulation of the optimization problem.

- (d) \mathcal{R} is equal to 20%. Find the optimal portfolio if we target scopes 1 + 2. What is the value of the tracking error volatility?
- (e) Same question if \mathcal{R} is equal to 30%, 50%, and 70%.
- 3. We would like to manage <u>a bond portfolio</u> with respect to the previous investment universe and reduce the weighted average carbon intensity of the benchmark by the rate \mathcal{R} (scope 1 + 2 intensity). In the table below, we report the modified duration MD_i and the duration times spread DTS_i of each corporate bond *i*:

Issuer	#1	#2	#3	#4	#5	#6	#7	#8
MD_i (in year)	3.56	7.48	6.54	10.23	2.40	2.30	9.12	7.96
DTS_i (in bps)	103	155	75	796	89	45	320	245
Sector	$\overline{\mathcal{S}}_1$	\bar{S}_2	$\overline{\mathcal{S}_1}$	$\overline{S_1}$	$\overline{\mathcal{S}_2}$	$\bar{\mathcal{S}}_1$	\bar{S}_2	$\overline{\mathcal{S}_2}$

In what follows, we use the following numerical values: $\varphi_{AS} = 100$, $\varphi_{MD} = 25$ and $\varphi_{DTS} = 1$. The reduction rate \mathcal{R} of the weighted average carbon intensity is set to 50% for scopes 1, 2 and 3.

- (a) Compute the modified duration MD(b) and the duration times spread DTS(b) of the benchmark.
- (b) Let x be the equally-weighted portfolio. Compute¹ MD (x), DTS (x), $\sigma_{AS}(x \mid b)$, $\sigma_{MD}(x \mid b)$ and $\sigma_{DTS}(x \mid b)$.
- (c) Solve the following optimization problem²:

$$\begin{aligned} x^{\star} &= \arg \min \frac{1}{2} \mathcal{R}_{AS} \left(x \mid b \right) \\ \text{s.t.} & \begin{cases} \sum_{i=1}^{n} x_i = 1 \\ \text{MD} \left(x \right) = \text{MD} \left(b \right) \\ \text{DTS} \left(x \right) = \text{DTS} \left(b \right) \\ \mathcal{CI} \left(x \right) \leq \left(1 - \mathcal{R} \right) \mathcal{CI} \left(b \right) \\ 0 \leq x_i \leq 1 \end{aligned} \end{aligned}$$

Compute MD (x^*) , DTS (x^*) , $\sigma_{AS}(x^* \mid b)$, $\sigma_{MD}(x^* \mid b)$ and $\sigma_{DTS}(x^* \mid b)$.

(d) Solve the following optimization problem:

$$x^{\star} = \arg \min \frac{1}{2} \varphi_{AS} \mathcal{R}_{AS} \left(x \mid b \right) + \frac{1}{2} \varphi_{MD} \mathcal{R}_{MD} \left(x \mid b \right)$$

s.t.
$$\begin{cases} \sum_{i=1}^{n} x_i = 1 \\ DTS \left(x \right) = DTS \left(b \right) \\ \mathcal{CI} \left(x \right) \le \left(1 - \mathcal{R} \right) \mathcal{CI} \left(b \right) \\ 0 \le x_i \le 1 \end{cases}$$

Compute MD (x^*) , DTS (x^*) , $\sigma_{AS}(x^* \mid b)$, $\sigma_{MD}(x^* \mid b)$ and $\sigma_{DTS}(x^* \mid b)$. (e) Solve the following optimization problem:

$$x^{\star} = \arg \min \frac{1}{2} \mathcal{R} (x \mid b)$$

s.t.
$$\begin{cases} \sum_{i=1}^{n} x_i = 1 \\ \mathcal{CI} (x) \leq (1 - \mathcal{R}) \mathcal{CI} (b) \\ 0 \leq x_i \leq 1 \end{cases}$$

Compute MD (x^*) , DTS (x^*) , $\sigma_{AS}(x^* \mid b)$, $\sigma_{MD}(x^* \mid b)$ and $\sigma_{DTS}(x^* \mid b)$.

(f) Comment on the results obtained in Question 3.(c), 3.(d) and 3.(e).

¹Precise the corresponding unit (years, bps or %) for each metric.

²You can use any numerical nonlinear solvers in Questions 3.(c), 3.(d) and 3.(e), not necessarily a QP solver.

Reminders

• The MD of portfolio x is equal to:

$$\mathrm{MD}\left(x\right) = \sum_{i=1}^{n} x_{i} \cdot \mathrm{MD}_{i}$$

• The DTS of portfolio x is equal to:

$$DTS(x) = \sum_{i=1}^{n} x_i \cdot DTS_i$$

• The active share risk is equal to:

$$\sigma_{\mathrm{AS}}\left(x \mid b\right) = \sqrt{\sum_{i=1}^{n} \left(x_i - b_i\right)^2}$$

• The MD-based tracking error risk is equal to:

$$\sigma_{\mathrm{MD}}\left(x \mid b\right) = \sqrt{\left(\sum_{i \in \mathcal{S}_{1}} \left(x_{i} - b_{i}\right) \mathrm{MD}_{i}\right)^{2} + \left(\sum_{i \in \mathcal{S}_{2}} \left(x_{i} - b_{i}\right) \mathrm{MD}_{i}\right)^{2}}$$

• The DTS-based tracking error risk is equal to:

$$\sigma_{\text{DTS}}\left(x \mid b\right) = \sqrt{\left(\sum_{i \in \mathcal{S}_{1}} \left(x_{i} - b_{i}\right) \text{DTS}_{i}\right)^{2} + \left(\sum_{i \in \mathcal{S}_{2}} \left(x_{i} - b_{i}\right) \text{DTS}_{i}\right)^{2}}$$

- We note $\mathcal{R}_{AS}(x \mid b) = \sigma_{AS}^2(x \mid b), \mathcal{R}_{MD}(x \mid b) = \sigma_{MD}^2(x \mid b) \text{ and } \mathcal{R}_{DTS}(x \mid b) = \sigma_{MD}^2(x \mid b)$
- The synthetic risk measure is the combination of AS, MD and DTS active risks:

$$\mathcal{R}\left(x \mid b\right) = \varphi_{\mathrm{AS}} \mathcal{R}_{\mathrm{AS}}\left(x \mid b\right) + \varphi_{\mathrm{MD}} \mathcal{R}_{\mathrm{MD}}\left(x \mid b\right) + \varphi_{\mathrm{DTS}} \mathcal{R}_{\mathrm{DTS}}\left(x \mid b\right)$$

where $\varphi_{\rm AS} \ge 0, \, \varphi_{\rm MD} \ge 0$ and $\varphi_{\rm DTS} \ge 0$ indicate the weight of each risk